Btrfs: Fix extent replacment race
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57 };
58
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
93 {
94 int err;
95
96 err = btrfs_init_acl(inode, dir);
97 if (!err)
98 err = btrfs_xattr_security_init(inode, dir);
99 return err;
100 }
101
102 /*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111 {
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
131 path = btrfs_alloc_path();
132 if (!path)
133 return -ENOMEM;
134
135 path->leave_spinning = 1;
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
164 while (compressed_size > 0) {
165 cpage = compressed_pages[i];
166 cur_size = min_t(unsigned long, compressed_size,
167 PAGE_CACHE_SIZE);
168
169 kaddr = kmap_atomic(cpage, KM_USER0);
170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
171 kunmap_atomic(kaddr, KM_USER0);
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
192 BTRFS_I(inode)->disk_i_size = inode->i_size;
193 btrfs_update_inode(trans, root, inode);
194 return 0;
195 fail:
196 btrfs_free_path(path);
197 return err;
198 }
199
200
201 /*
202 * conditionally insert an inline extent into the file. This
203 * does the checks required to make sure the data is small enough
204 * to fit as an inline extent.
205 */
206 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
207 struct btrfs_root *root,
208 struct inode *inode, u64 start, u64 end,
209 size_t compressed_size,
210 struct page **compressed_pages)
211 {
212 u64 isize = i_size_read(inode);
213 u64 actual_end = min(end + 1, isize);
214 u64 inline_len = actual_end - start;
215 u64 aligned_end = (end + root->sectorsize - 1) &
216 ~((u64)root->sectorsize - 1);
217 u64 hint_byte;
218 u64 data_len = inline_len;
219 int ret;
220
221 if (compressed_size)
222 data_len = compressed_size;
223
224 if (start > 0 ||
225 actual_end >= PAGE_CACHE_SIZE ||
226 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
227 (!compressed_size &&
228 (actual_end & (root->sectorsize - 1)) == 0) ||
229 end + 1 < isize ||
230 data_len > root->fs_info->max_inline) {
231 return 1;
232 }
233
234 ret = btrfs_drop_extents(trans, root, inode, start,
235 aligned_end, aligned_end, start,
236 &hint_byte, 1);
237 BUG_ON(ret);
238
239 if (isize > actual_end)
240 inline_len = min_t(u64, isize, actual_end);
241 ret = insert_inline_extent(trans, root, inode, start,
242 inline_len, compressed_size,
243 compressed_pages);
244 BUG_ON(ret);
245 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
246 return 0;
247 }
248
249 struct async_extent {
250 u64 start;
251 u64 ram_size;
252 u64 compressed_size;
253 struct page **pages;
254 unsigned long nr_pages;
255 struct list_head list;
256 };
257
258 struct async_cow {
259 struct inode *inode;
260 struct btrfs_root *root;
261 struct page *locked_page;
262 u64 start;
263 u64 end;
264 struct list_head extents;
265 struct btrfs_work work;
266 };
267
268 static noinline int add_async_extent(struct async_cow *cow,
269 u64 start, u64 ram_size,
270 u64 compressed_size,
271 struct page **pages,
272 unsigned long nr_pages)
273 {
274 struct async_extent *async_extent;
275
276 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
277 async_extent->start = start;
278 async_extent->ram_size = ram_size;
279 async_extent->compressed_size = compressed_size;
280 async_extent->pages = pages;
281 async_extent->nr_pages = nr_pages;
282 list_add_tail(&async_extent->list, &cow->extents);
283 return 0;
284 }
285
286 /*
287 * we create compressed extents in two phases. The first
288 * phase compresses a range of pages that have already been
289 * locked (both pages and state bits are locked).
290 *
291 * This is done inside an ordered work queue, and the compression
292 * is spread across many cpus. The actual IO submission is step
293 * two, and the ordered work queue takes care of making sure that
294 * happens in the same order things were put onto the queue by
295 * writepages and friends.
296 *
297 * If this code finds it can't get good compression, it puts an
298 * entry onto the work queue to write the uncompressed bytes. This
299 * makes sure that both compressed inodes and uncompressed inodes
300 * are written in the same order that pdflush sent them down.
301 */
302 static noinline int compress_file_range(struct inode *inode,
303 struct page *locked_page,
304 u64 start, u64 end,
305 struct async_cow *async_cow,
306 int *num_added)
307 {
308 struct btrfs_root *root = BTRFS_I(inode)->root;
309 struct btrfs_trans_handle *trans;
310 u64 num_bytes;
311 u64 orig_start;
312 u64 disk_num_bytes;
313 u64 blocksize = root->sectorsize;
314 u64 actual_end;
315 u64 isize = i_size_read(inode);
316 int ret = 0;
317 struct page **pages = NULL;
318 unsigned long nr_pages;
319 unsigned long nr_pages_ret = 0;
320 unsigned long total_compressed = 0;
321 unsigned long total_in = 0;
322 unsigned long max_compressed = 128 * 1024;
323 unsigned long max_uncompressed = 128 * 1024;
324 int i;
325 int will_compress;
326
327 orig_start = start;
328
329 actual_end = min_t(u64, isize, end + 1);
330 again:
331 will_compress = 0;
332 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
333 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
334
335 /*
336 * we don't want to send crud past the end of i_size through
337 * compression, that's just a waste of CPU time. So, if the
338 * end of the file is before the start of our current
339 * requested range of bytes, we bail out to the uncompressed
340 * cleanup code that can deal with all of this.
341 *
342 * It isn't really the fastest way to fix things, but this is a
343 * very uncommon corner.
344 */
345 if (actual_end <= start)
346 goto cleanup_and_bail_uncompressed;
347
348 total_compressed = actual_end - start;
349
350 /* we want to make sure that amount of ram required to uncompress
351 * an extent is reasonable, so we limit the total size in ram
352 * of a compressed extent to 128k. This is a crucial number
353 * because it also controls how easily we can spread reads across
354 * cpus for decompression.
355 *
356 * We also want to make sure the amount of IO required to do
357 * a random read is reasonably small, so we limit the size of
358 * a compressed extent to 128k.
359 */
360 total_compressed = min(total_compressed, max_uncompressed);
361 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
362 num_bytes = max(blocksize, num_bytes);
363 disk_num_bytes = num_bytes;
364 total_in = 0;
365 ret = 0;
366
367 /*
368 * we do compression for mount -o compress and when the
369 * inode has not been flagged as nocompress. This flag can
370 * change at any time if we discover bad compression ratios.
371 */
372 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
373 btrfs_test_opt(root, COMPRESS)) {
374 WARN_ON(pages);
375 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
376
377 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
378 total_compressed, pages,
379 nr_pages, &nr_pages_ret,
380 &total_in,
381 &total_compressed,
382 max_compressed);
383
384 if (!ret) {
385 unsigned long offset = total_compressed &
386 (PAGE_CACHE_SIZE - 1);
387 struct page *page = pages[nr_pages_ret - 1];
388 char *kaddr;
389
390 /* zero the tail end of the last page, we might be
391 * sending it down to disk
392 */
393 if (offset) {
394 kaddr = kmap_atomic(page, KM_USER0);
395 memset(kaddr + offset, 0,
396 PAGE_CACHE_SIZE - offset);
397 kunmap_atomic(kaddr, KM_USER0);
398 }
399 will_compress = 1;
400 }
401 }
402 if (start == 0) {
403 trans = btrfs_join_transaction(root, 1);
404 BUG_ON(!trans);
405 btrfs_set_trans_block_group(trans, inode);
406
407 /* lets try to make an inline extent */
408 if (ret || total_in < (actual_end - start)) {
409 /* we didn't compress the entire range, try
410 * to make an uncompressed inline extent.
411 */
412 ret = cow_file_range_inline(trans, root, inode,
413 start, end, 0, NULL);
414 } else {
415 /* try making a compressed inline extent */
416 ret = cow_file_range_inline(trans, root, inode,
417 start, end,
418 total_compressed, pages);
419 }
420 btrfs_end_transaction(trans, root);
421 if (ret == 0) {
422 /*
423 * inline extent creation worked, we don't need
424 * to create any more async work items. Unlock
425 * and free up our temp pages.
426 */
427 extent_clear_unlock_delalloc(inode,
428 &BTRFS_I(inode)->io_tree,
429 start, end, NULL, 1, 0,
430 0, 1, 1, 1, 0);
431 ret = 0;
432 goto free_pages_out;
433 }
434 }
435
436 if (will_compress) {
437 /*
438 * we aren't doing an inline extent round the compressed size
439 * up to a block size boundary so the allocator does sane
440 * things
441 */
442 total_compressed = (total_compressed + blocksize - 1) &
443 ~(blocksize - 1);
444
445 /*
446 * one last check to make sure the compression is really a
447 * win, compare the page count read with the blocks on disk
448 */
449 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
450 ~(PAGE_CACHE_SIZE - 1);
451 if (total_compressed >= total_in) {
452 will_compress = 0;
453 } else {
454 disk_num_bytes = total_compressed;
455 num_bytes = total_in;
456 }
457 }
458 if (!will_compress && pages) {
459 /*
460 * the compression code ran but failed to make things smaller,
461 * free any pages it allocated and our page pointer array
462 */
463 for (i = 0; i < nr_pages_ret; i++) {
464 WARN_ON(pages[i]->mapping);
465 page_cache_release(pages[i]);
466 }
467 kfree(pages);
468 pages = NULL;
469 total_compressed = 0;
470 nr_pages_ret = 0;
471
472 /* flag the file so we don't compress in the future */
473 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
474 }
475 if (will_compress) {
476 *num_added += 1;
477
478 /* the async work queues will take care of doing actual
479 * allocation on disk for these compressed pages,
480 * and will submit them to the elevator.
481 */
482 add_async_extent(async_cow, start, num_bytes,
483 total_compressed, pages, nr_pages_ret);
484
485 if (start + num_bytes < end && start + num_bytes < actual_end) {
486 start += num_bytes;
487 pages = NULL;
488 cond_resched();
489 goto again;
490 }
491 } else {
492 cleanup_and_bail_uncompressed:
493 /*
494 * No compression, but we still need to write the pages in
495 * the file we've been given so far. redirty the locked
496 * page if it corresponds to our extent and set things up
497 * for the async work queue to run cow_file_range to do
498 * the normal delalloc dance
499 */
500 if (page_offset(locked_page) >= start &&
501 page_offset(locked_page) <= end) {
502 __set_page_dirty_nobuffers(locked_page);
503 /* unlocked later on in the async handlers */
504 }
505 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
506 *num_added += 1;
507 }
508
509 out:
510 return 0;
511
512 free_pages_out:
513 for (i = 0; i < nr_pages_ret; i++) {
514 WARN_ON(pages[i]->mapping);
515 page_cache_release(pages[i]);
516 }
517 kfree(pages);
518
519 goto out;
520 }
521
522 /*
523 * phase two of compressed writeback. This is the ordered portion
524 * of the code, which only gets called in the order the work was
525 * queued. We walk all the async extents created by compress_file_range
526 * and send them down to the disk.
527 */
528 static noinline int submit_compressed_extents(struct inode *inode,
529 struct async_cow *async_cow)
530 {
531 struct async_extent *async_extent;
532 u64 alloc_hint = 0;
533 struct btrfs_trans_handle *trans;
534 struct btrfs_key ins;
535 struct extent_map *em;
536 struct btrfs_root *root = BTRFS_I(inode)->root;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 struct extent_io_tree *io_tree;
539 int ret;
540
541 if (list_empty(&async_cow->extents))
542 return 0;
543
544 trans = btrfs_join_transaction(root, 1);
545
546 while (!list_empty(&async_cow->extents)) {
547 async_extent = list_entry(async_cow->extents.next,
548 struct async_extent, list);
549 list_del(&async_extent->list);
550
551 io_tree = &BTRFS_I(inode)->io_tree;
552
553 /* did the compression code fall back to uncompressed IO? */
554 if (!async_extent->pages) {
555 int page_started = 0;
556 unsigned long nr_written = 0;
557
558 lock_extent(io_tree, async_extent->start,
559 async_extent->start +
560 async_extent->ram_size - 1, GFP_NOFS);
561
562 /* allocate blocks */
563 cow_file_range(inode, async_cow->locked_page,
564 async_extent->start,
565 async_extent->start +
566 async_extent->ram_size - 1,
567 &page_started, &nr_written, 0);
568
569 /*
570 * if page_started, cow_file_range inserted an
571 * inline extent and took care of all the unlocking
572 * and IO for us. Otherwise, we need to submit
573 * all those pages down to the drive.
574 */
575 if (!page_started)
576 extent_write_locked_range(io_tree,
577 inode, async_extent->start,
578 async_extent->start +
579 async_extent->ram_size - 1,
580 btrfs_get_extent,
581 WB_SYNC_ALL);
582 kfree(async_extent);
583 cond_resched();
584 continue;
585 }
586
587 lock_extent(io_tree, async_extent->start,
588 async_extent->start + async_extent->ram_size - 1,
589 GFP_NOFS);
590 /*
591 * here we're doing allocation and writeback of the
592 * compressed pages
593 */
594 btrfs_drop_extent_cache(inode, async_extent->start,
595 async_extent->start +
596 async_extent->ram_size - 1, 0);
597
598 ret = btrfs_reserve_extent(trans, root,
599 async_extent->compressed_size,
600 async_extent->compressed_size,
601 0, alloc_hint,
602 (u64)-1, &ins, 1);
603 BUG_ON(ret);
604 em = alloc_extent_map(GFP_NOFS);
605 em->start = async_extent->start;
606 em->len = async_extent->ram_size;
607 em->orig_start = em->start;
608
609 em->block_start = ins.objectid;
610 em->block_len = ins.offset;
611 em->bdev = root->fs_info->fs_devices->latest_bdev;
612 set_bit(EXTENT_FLAG_PINNED, &em->flags);
613 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
614
615 while (1) {
616 write_lock(&em_tree->lock);
617 ret = add_extent_mapping(em_tree, em);
618 write_unlock(&em_tree->lock);
619 if (ret != -EEXIST) {
620 free_extent_map(em);
621 break;
622 }
623 btrfs_drop_extent_cache(inode, async_extent->start,
624 async_extent->start +
625 async_extent->ram_size - 1, 0);
626 }
627
628 ret = btrfs_add_ordered_extent(inode, async_extent->start,
629 ins.objectid,
630 async_extent->ram_size,
631 ins.offset,
632 BTRFS_ORDERED_COMPRESSED);
633 BUG_ON(ret);
634
635 btrfs_end_transaction(trans, root);
636
637 /*
638 * clear dirty, set writeback and unlock the pages.
639 */
640 extent_clear_unlock_delalloc(inode,
641 &BTRFS_I(inode)->io_tree,
642 async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1,
645 NULL, 1, 1, 0, 1, 1, 0, 0);
646
647 ret = btrfs_submit_compressed_write(inode,
648 async_extent->start,
649 async_extent->ram_size,
650 ins.objectid,
651 ins.offset, async_extent->pages,
652 async_extent->nr_pages);
653
654 BUG_ON(ret);
655 trans = btrfs_join_transaction(root, 1);
656 alloc_hint = ins.objectid + ins.offset;
657 kfree(async_extent);
658 cond_resched();
659 }
660
661 btrfs_end_transaction(trans, root);
662 return 0;
663 }
664
665 /*
666 * when extent_io.c finds a delayed allocation range in the file,
667 * the call backs end up in this code. The basic idea is to
668 * allocate extents on disk for the range, and create ordered data structs
669 * in ram to track those extents.
670 *
671 * locked_page is the page that writepage had locked already. We use
672 * it to make sure we don't do extra locks or unlocks.
673 *
674 * *page_started is set to one if we unlock locked_page and do everything
675 * required to start IO on it. It may be clean and already done with
676 * IO when we return.
677 */
678 static noinline int cow_file_range(struct inode *inode,
679 struct page *locked_page,
680 u64 start, u64 end, int *page_started,
681 unsigned long *nr_written,
682 int unlock)
683 {
684 struct btrfs_root *root = BTRFS_I(inode)->root;
685 struct btrfs_trans_handle *trans;
686 u64 alloc_hint = 0;
687 u64 num_bytes;
688 unsigned long ram_size;
689 u64 disk_num_bytes;
690 u64 cur_alloc_size;
691 u64 blocksize = root->sectorsize;
692 u64 actual_end;
693 u64 isize = i_size_read(inode);
694 struct btrfs_key ins;
695 struct extent_map *em;
696 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
697 int ret = 0;
698
699 trans = btrfs_join_transaction(root, 1);
700 BUG_ON(!trans);
701 btrfs_set_trans_block_group(trans, inode);
702
703 actual_end = min_t(u64, isize, end + 1);
704
705 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
706 num_bytes = max(blocksize, num_bytes);
707 disk_num_bytes = num_bytes;
708 ret = 0;
709
710 if (start == 0) {
711 /* lets try to make an inline extent */
712 ret = cow_file_range_inline(trans, root, inode,
713 start, end, 0, NULL);
714 if (ret == 0) {
715 extent_clear_unlock_delalloc(inode,
716 &BTRFS_I(inode)->io_tree,
717 start, end, NULL, 1, 1,
718 1, 1, 1, 1, 0);
719 *nr_written = *nr_written +
720 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
721 *page_started = 1;
722 ret = 0;
723 goto out;
724 }
725 }
726
727 BUG_ON(disk_num_bytes >
728 btrfs_super_total_bytes(&root->fs_info->super_copy));
729
730 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
731
732 while (disk_num_bytes > 0) {
733 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
734 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
735 root->sectorsize, 0, alloc_hint,
736 (u64)-1, &ins, 1);
737 BUG_ON(ret);
738
739 em = alloc_extent_map(GFP_NOFS);
740 em->start = start;
741 em->orig_start = em->start;
742
743 ram_size = ins.offset;
744 em->len = ins.offset;
745
746 em->block_start = ins.objectid;
747 em->block_len = ins.offset;
748 em->bdev = root->fs_info->fs_devices->latest_bdev;
749 set_bit(EXTENT_FLAG_PINNED, &em->flags);
750
751 while (1) {
752 write_lock(&em_tree->lock);
753 ret = add_extent_mapping(em_tree, em);
754 write_unlock(&em_tree->lock);
755 if (ret != -EEXIST) {
756 free_extent_map(em);
757 break;
758 }
759 btrfs_drop_extent_cache(inode, start,
760 start + ram_size - 1, 0);
761 }
762
763 cur_alloc_size = ins.offset;
764 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
765 ram_size, cur_alloc_size, 0);
766 BUG_ON(ret);
767
768 if (root->root_key.objectid ==
769 BTRFS_DATA_RELOC_TREE_OBJECTID) {
770 ret = btrfs_reloc_clone_csums(inode, start,
771 cur_alloc_size);
772 BUG_ON(ret);
773 }
774
775 if (disk_num_bytes < cur_alloc_size)
776 break;
777
778 /* we're not doing compressed IO, don't unlock the first
779 * page (which the caller expects to stay locked), don't
780 * clear any dirty bits and don't set any writeback bits
781 *
782 * Do set the Private2 bit so we know this page was properly
783 * setup for writepage
784 */
785 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
786 start, start + ram_size - 1,
787 locked_page, unlock, 1,
788 1, 0, 0, 0, 1);
789 disk_num_bytes -= cur_alloc_size;
790 num_bytes -= cur_alloc_size;
791 alloc_hint = ins.objectid + ins.offset;
792 start += cur_alloc_size;
793 }
794 out:
795 ret = 0;
796 btrfs_end_transaction(trans, root);
797
798 return ret;
799 }
800
801 /*
802 * work queue call back to started compression on a file and pages
803 */
804 static noinline void async_cow_start(struct btrfs_work *work)
805 {
806 struct async_cow *async_cow;
807 int num_added = 0;
808 async_cow = container_of(work, struct async_cow, work);
809
810 compress_file_range(async_cow->inode, async_cow->locked_page,
811 async_cow->start, async_cow->end, async_cow,
812 &num_added);
813 if (num_added == 0)
814 async_cow->inode = NULL;
815 }
816
817 /*
818 * work queue call back to submit previously compressed pages
819 */
820 static noinline void async_cow_submit(struct btrfs_work *work)
821 {
822 struct async_cow *async_cow;
823 struct btrfs_root *root;
824 unsigned long nr_pages;
825
826 async_cow = container_of(work, struct async_cow, work);
827
828 root = async_cow->root;
829 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
830 PAGE_CACHE_SHIFT;
831
832 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
833
834 if (atomic_read(&root->fs_info->async_delalloc_pages) <
835 5 * 1042 * 1024 &&
836 waitqueue_active(&root->fs_info->async_submit_wait))
837 wake_up(&root->fs_info->async_submit_wait);
838
839 if (async_cow->inode)
840 submit_compressed_extents(async_cow->inode, async_cow);
841 }
842
843 static noinline void async_cow_free(struct btrfs_work *work)
844 {
845 struct async_cow *async_cow;
846 async_cow = container_of(work, struct async_cow, work);
847 kfree(async_cow);
848 }
849
850 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
851 u64 start, u64 end, int *page_started,
852 unsigned long *nr_written)
853 {
854 struct async_cow *async_cow;
855 struct btrfs_root *root = BTRFS_I(inode)->root;
856 unsigned long nr_pages;
857 u64 cur_end;
858 int limit = 10 * 1024 * 1042;
859
860 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
861 EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
862 while (start < end) {
863 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
864 async_cow->inode = inode;
865 async_cow->root = root;
866 async_cow->locked_page = locked_page;
867 async_cow->start = start;
868
869 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
870 cur_end = end;
871 else
872 cur_end = min(end, start + 512 * 1024 - 1);
873
874 async_cow->end = cur_end;
875 INIT_LIST_HEAD(&async_cow->extents);
876
877 async_cow->work.func = async_cow_start;
878 async_cow->work.ordered_func = async_cow_submit;
879 async_cow->work.ordered_free = async_cow_free;
880 async_cow->work.flags = 0;
881
882 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
883 PAGE_CACHE_SHIFT;
884 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
885
886 btrfs_queue_worker(&root->fs_info->delalloc_workers,
887 &async_cow->work);
888
889 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
890 wait_event(root->fs_info->async_submit_wait,
891 (atomic_read(&root->fs_info->async_delalloc_pages) <
892 limit));
893 }
894
895 while (atomic_read(&root->fs_info->async_submit_draining) &&
896 atomic_read(&root->fs_info->async_delalloc_pages)) {
897 wait_event(root->fs_info->async_submit_wait,
898 (atomic_read(&root->fs_info->async_delalloc_pages) ==
899 0));
900 }
901
902 *nr_written += nr_pages;
903 start = cur_end + 1;
904 }
905 *page_started = 1;
906 return 0;
907 }
908
909 static noinline int csum_exist_in_range(struct btrfs_root *root,
910 u64 bytenr, u64 num_bytes)
911 {
912 int ret;
913 struct btrfs_ordered_sum *sums;
914 LIST_HEAD(list);
915
916 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
917 bytenr + num_bytes - 1, &list);
918 if (ret == 0 && list_empty(&list))
919 return 0;
920
921 while (!list_empty(&list)) {
922 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
923 list_del(&sums->list);
924 kfree(sums);
925 }
926 return 1;
927 }
928
929 /*
930 * when nowcow writeback call back. This checks for snapshots or COW copies
931 * of the extents that exist in the file, and COWs the file as required.
932 *
933 * If no cow copies or snapshots exist, we write directly to the existing
934 * blocks on disk
935 */
936 static noinline int run_delalloc_nocow(struct inode *inode,
937 struct page *locked_page,
938 u64 start, u64 end, int *page_started, int force,
939 unsigned long *nr_written)
940 {
941 struct btrfs_root *root = BTRFS_I(inode)->root;
942 struct btrfs_trans_handle *trans;
943 struct extent_buffer *leaf;
944 struct btrfs_path *path;
945 struct btrfs_file_extent_item *fi;
946 struct btrfs_key found_key;
947 u64 cow_start;
948 u64 cur_offset;
949 u64 extent_end;
950 u64 extent_offset;
951 u64 disk_bytenr;
952 u64 num_bytes;
953 int extent_type;
954 int ret;
955 int type;
956 int nocow;
957 int check_prev = 1;
958
959 path = btrfs_alloc_path();
960 BUG_ON(!path);
961 trans = btrfs_join_transaction(root, 1);
962 BUG_ON(!trans);
963
964 cow_start = (u64)-1;
965 cur_offset = start;
966 while (1) {
967 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
968 cur_offset, 0);
969 BUG_ON(ret < 0);
970 if (ret > 0 && path->slots[0] > 0 && check_prev) {
971 leaf = path->nodes[0];
972 btrfs_item_key_to_cpu(leaf, &found_key,
973 path->slots[0] - 1);
974 if (found_key.objectid == inode->i_ino &&
975 found_key.type == BTRFS_EXTENT_DATA_KEY)
976 path->slots[0]--;
977 }
978 check_prev = 0;
979 next_slot:
980 leaf = path->nodes[0];
981 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 ret = btrfs_next_leaf(root, path);
983 if (ret < 0)
984 BUG_ON(1);
985 if (ret > 0)
986 break;
987 leaf = path->nodes[0];
988 }
989
990 nocow = 0;
991 disk_bytenr = 0;
992 num_bytes = 0;
993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
994
995 if (found_key.objectid > inode->i_ino ||
996 found_key.type > BTRFS_EXTENT_DATA_KEY ||
997 found_key.offset > end)
998 break;
999
1000 if (found_key.offset > cur_offset) {
1001 extent_end = found_key.offset;
1002 goto out_check;
1003 }
1004
1005 fi = btrfs_item_ptr(leaf, path->slots[0],
1006 struct btrfs_file_extent_item);
1007 extent_type = btrfs_file_extent_type(leaf, fi);
1008
1009 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1010 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1011 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1012 extent_offset = btrfs_file_extent_offset(leaf, fi);
1013 extent_end = found_key.offset +
1014 btrfs_file_extent_num_bytes(leaf, fi);
1015 if (extent_end <= start) {
1016 path->slots[0]++;
1017 goto next_slot;
1018 }
1019 if (disk_bytenr == 0)
1020 goto out_check;
1021 if (btrfs_file_extent_compression(leaf, fi) ||
1022 btrfs_file_extent_encryption(leaf, fi) ||
1023 btrfs_file_extent_other_encoding(leaf, fi))
1024 goto out_check;
1025 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1026 goto out_check;
1027 if (btrfs_extent_readonly(root, disk_bytenr))
1028 goto out_check;
1029 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1030 found_key.offset -
1031 extent_offset, disk_bytenr))
1032 goto out_check;
1033 disk_bytenr += extent_offset;
1034 disk_bytenr += cur_offset - found_key.offset;
1035 num_bytes = min(end + 1, extent_end) - cur_offset;
1036 /*
1037 * force cow if csum exists in the range.
1038 * this ensure that csum for a given extent are
1039 * either valid or do not exist.
1040 */
1041 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1042 goto out_check;
1043 nocow = 1;
1044 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1045 extent_end = found_key.offset +
1046 btrfs_file_extent_inline_len(leaf, fi);
1047 extent_end = ALIGN(extent_end, root->sectorsize);
1048 } else {
1049 BUG_ON(1);
1050 }
1051 out_check:
1052 if (extent_end <= start) {
1053 path->slots[0]++;
1054 goto next_slot;
1055 }
1056 if (!nocow) {
1057 if (cow_start == (u64)-1)
1058 cow_start = cur_offset;
1059 cur_offset = extent_end;
1060 if (cur_offset > end)
1061 break;
1062 path->slots[0]++;
1063 goto next_slot;
1064 }
1065
1066 btrfs_release_path(root, path);
1067 if (cow_start != (u64)-1) {
1068 ret = cow_file_range(inode, locked_page, cow_start,
1069 found_key.offset - 1, page_started,
1070 nr_written, 1);
1071 BUG_ON(ret);
1072 cow_start = (u64)-1;
1073 }
1074
1075 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1076 struct extent_map *em;
1077 struct extent_map_tree *em_tree;
1078 em_tree = &BTRFS_I(inode)->extent_tree;
1079 em = alloc_extent_map(GFP_NOFS);
1080 em->start = cur_offset;
1081 em->orig_start = em->start;
1082 em->len = num_bytes;
1083 em->block_len = num_bytes;
1084 em->block_start = disk_bytenr;
1085 em->bdev = root->fs_info->fs_devices->latest_bdev;
1086 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1087 while (1) {
1088 write_lock(&em_tree->lock);
1089 ret = add_extent_mapping(em_tree, em);
1090 write_unlock(&em_tree->lock);
1091 if (ret != -EEXIST) {
1092 free_extent_map(em);
1093 break;
1094 }
1095 btrfs_drop_extent_cache(inode, em->start,
1096 em->start + em->len - 1, 0);
1097 }
1098 type = BTRFS_ORDERED_PREALLOC;
1099 } else {
1100 type = BTRFS_ORDERED_NOCOW;
1101 }
1102
1103 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1104 num_bytes, num_bytes, type);
1105 BUG_ON(ret);
1106
1107 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1108 cur_offset, cur_offset + num_bytes - 1,
1109 locked_page, 1, 1, 1, 0, 0, 0, 1);
1110 cur_offset = extent_end;
1111 if (cur_offset > end)
1112 break;
1113 }
1114 btrfs_release_path(root, path);
1115
1116 if (cur_offset <= end && cow_start == (u64)-1)
1117 cow_start = cur_offset;
1118 if (cow_start != (u64)-1) {
1119 ret = cow_file_range(inode, locked_page, cow_start, end,
1120 page_started, nr_written, 1);
1121 BUG_ON(ret);
1122 }
1123
1124 ret = btrfs_end_transaction(trans, root);
1125 BUG_ON(ret);
1126 btrfs_free_path(path);
1127 return 0;
1128 }
1129
1130 /*
1131 * extent_io.c call back to do delayed allocation processing
1132 */
1133 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1134 u64 start, u64 end, int *page_started,
1135 unsigned long *nr_written)
1136 {
1137 int ret;
1138 struct btrfs_root *root = BTRFS_I(inode)->root;
1139
1140 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1141 ret = run_delalloc_nocow(inode, locked_page, start, end,
1142 page_started, 1, nr_written);
1143 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1144 ret = run_delalloc_nocow(inode, locked_page, start, end,
1145 page_started, 0, nr_written);
1146 else if (!btrfs_test_opt(root, COMPRESS))
1147 ret = cow_file_range(inode, locked_page, start, end,
1148 page_started, nr_written, 1);
1149 else
1150 ret = cow_file_range_async(inode, locked_page, start, end,
1151 page_started, nr_written);
1152 return ret;
1153 }
1154
1155 /*
1156 * extent_io.c set_bit_hook, used to track delayed allocation
1157 * bytes in this file, and to maintain the list of inodes that
1158 * have pending delalloc work to be done.
1159 */
1160 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1161 unsigned long old, unsigned long bits)
1162 {
1163 /*
1164 * set_bit and clear bit hooks normally require _irqsave/restore
1165 * but in this case, we are only testeing for the DELALLOC
1166 * bit, which is only set or cleared with irqs on
1167 */
1168 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1169 struct btrfs_root *root = BTRFS_I(inode)->root;
1170 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1171 spin_lock(&root->fs_info->delalloc_lock);
1172 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1173 root->fs_info->delalloc_bytes += end - start + 1;
1174 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1175 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1176 &root->fs_info->delalloc_inodes);
1177 }
1178 spin_unlock(&root->fs_info->delalloc_lock);
1179 }
1180 return 0;
1181 }
1182
1183 /*
1184 * extent_io.c clear_bit_hook, see set_bit_hook for why
1185 */
1186 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1187 unsigned long old, unsigned long bits)
1188 {
1189 /*
1190 * set_bit and clear bit hooks normally require _irqsave/restore
1191 * but in this case, we are only testeing for the DELALLOC
1192 * bit, which is only set or cleared with irqs on
1193 */
1194 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1195 struct btrfs_root *root = BTRFS_I(inode)->root;
1196
1197 spin_lock(&root->fs_info->delalloc_lock);
1198 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1199 printk(KERN_INFO "btrfs warning: delalloc account "
1200 "%llu %llu\n",
1201 (unsigned long long)end - start + 1,
1202 (unsigned long long)
1203 root->fs_info->delalloc_bytes);
1204 btrfs_delalloc_free_space(root, inode, (u64)-1);
1205 root->fs_info->delalloc_bytes = 0;
1206 BTRFS_I(inode)->delalloc_bytes = 0;
1207 } else {
1208 btrfs_delalloc_free_space(root, inode,
1209 end - start + 1);
1210 root->fs_info->delalloc_bytes -= end - start + 1;
1211 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1212 }
1213 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1214 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1215 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1216 }
1217 spin_unlock(&root->fs_info->delalloc_lock);
1218 }
1219 return 0;
1220 }
1221
1222 /*
1223 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1224 * we don't create bios that span stripes or chunks
1225 */
1226 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1227 size_t size, struct bio *bio,
1228 unsigned long bio_flags)
1229 {
1230 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1231 struct btrfs_mapping_tree *map_tree;
1232 u64 logical = (u64)bio->bi_sector << 9;
1233 u64 length = 0;
1234 u64 map_length;
1235 int ret;
1236
1237 if (bio_flags & EXTENT_BIO_COMPRESSED)
1238 return 0;
1239
1240 length = bio->bi_size;
1241 map_tree = &root->fs_info->mapping_tree;
1242 map_length = length;
1243 ret = btrfs_map_block(map_tree, READ, logical,
1244 &map_length, NULL, 0);
1245
1246 if (map_length < length + size)
1247 return 1;
1248 return 0;
1249 }
1250
1251 /*
1252 * in order to insert checksums into the metadata in large chunks,
1253 * we wait until bio submission time. All the pages in the bio are
1254 * checksummed and sums are attached onto the ordered extent record.
1255 *
1256 * At IO completion time the cums attached on the ordered extent record
1257 * are inserted into the btree
1258 */
1259 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1260 struct bio *bio, int mirror_num,
1261 unsigned long bio_flags)
1262 {
1263 struct btrfs_root *root = BTRFS_I(inode)->root;
1264 int ret = 0;
1265
1266 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1267 BUG_ON(ret);
1268 return 0;
1269 }
1270
1271 /*
1272 * in order to insert checksums into the metadata in large chunks,
1273 * we wait until bio submission time. All the pages in the bio are
1274 * checksummed and sums are attached onto the ordered extent record.
1275 *
1276 * At IO completion time the cums attached on the ordered extent record
1277 * are inserted into the btree
1278 */
1279 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1280 int mirror_num, unsigned long bio_flags)
1281 {
1282 struct btrfs_root *root = BTRFS_I(inode)->root;
1283 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1284 }
1285
1286 /*
1287 * extent_io.c submission hook. This does the right thing for csum calculation
1288 * on write, or reading the csums from the tree before a read
1289 */
1290 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1291 int mirror_num, unsigned long bio_flags)
1292 {
1293 struct btrfs_root *root = BTRFS_I(inode)->root;
1294 int ret = 0;
1295 int skip_sum;
1296
1297 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1298
1299 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1300 BUG_ON(ret);
1301
1302 if (!(rw & (1 << BIO_RW))) {
1303 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1304 return btrfs_submit_compressed_read(inode, bio,
1305 mirror_num, bio_flags);
1306 } else if (!skip_sum)
1307 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1308 goto mapit;
1309 } else if (!skip_sum) {
1310 /* csum items have already been cloned */
1311 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1312 goto mapit;
1313 /* we're doing a write, do the async checksumming */
1314 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1315 inode, rw, bio, mirror_num,
1316 bio_flags, __btrfs_submit_bio_start,
1317 __btrfs_submit_bio_done);
1318 }
1319
1320 mapit:
1321 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1322 }
1323
1324 /*
1325 * given a list of ordered sums record them in the inode. This happens
1326 * at IO completion time based on sums calculated at bio submission time.
1327 */
1328 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1329 struct inode *inode, u64 file_offset,
1330 struct list_head *list)
1331 {
1332 struct btrfs_ordered_sum *sum;
1333
1334 btrfs_set_trans_block_group(trans, inode);
1335
1336 list_for_each_entry(sum, list, list) {
1337 btrfs_csum_file_blocks(trans,
1338 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1339 }
1340 return 0;
1341 }
1342
1343 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1344 {
1345 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1346 WARN_ON(1);
1347 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1348 GFP_NOFS);
1349 }
1350
1351 /* see btrfs_writepage_start_hook for details on why this is required */
1352 struct btrfs_writepage_fixup {
1353 struct page *page;
1354 struct btrfs_work work;
1355 };
1356
1357 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1358 {
1359 struct btrfs_writepage_fixup *fixup;
1360 struct btrfs_ordered_extent *ordered;
1361 struct page *page;
1362 struct inode *inode;
1363 u64 page_start;
1364 u64 page_end;
1365
1366 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1367 page = fixup->page;
1368 again:
1369 lock_page(page);
1370 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1371 ClearPageChecked(page);
1372 goto out_page;
1373 }
1374
1375 inode = page->mapping->host;
1376 page_start = page_offset(page);
1377 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1378
1379 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1380
1381 /* already ordered? We're done */
1382 if (PagePrivate2(page))
1383 goto out;
1384
1385 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1386 if (ordered) {
1387 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1388 page_end, GFP_NOFS);
1389 unlock_page(page);
1390 btrfs_start_ordered_extent(inode, ordered, 1);
1391 goto again;
1392 }
1393
1394 btrfs_set_extent_delalloc(inode, page_start, page_end);
1395 ClearPageChecked(page);
1396 out:
1397 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1398 out_page:
1399 unlock_page(page);
1400 page_cache_release(page);
1401 }
1402
1403 /*
1404 * There are a few paths in the higher layers of the kernel that directly
1405 * set the page dirty bit without asking the filesystem if it is a
1406 * good idea. This causes problems because we want to make sure COW
1407 * properly happens and the data=ordered rules are followed.
1408 *
1409 * In our case any range that doesn't have the ORDERED bit set
1410 * hasn't been properly setup for IO. We kick off an async process
1411 * to fix it up. The async helper will wait for ordered extents, set
1412 * the delalloc bit and make it safe to write the page.
1413 */
1414 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1415 {
1416 struct inode *inode = page->mapping->host;
1417 struct btrfs_writepage_fixup *fixup;
1418 struct btrfs_root *root = BTRFS_I(inode)->root;
1419
1420 /* this page is properly in the ordered list */
1421 if (TestClearPagePrivate2(page))
1422 return 0;
1423
1424 if (PageChecked(page))
1425 return -EAGAIN;
1426
1427 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1428 if (!fixup)
1429 return -EAGAIN;
1430
1431 SetPageChecked(page);
1432 page_cache_get(page);
1433 fixup->work.func = btrfs_writepage_fixup_worker;
1434 fixup->page = page;
1435 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1436 return -EAGAIN;
1437 }
1438
1439 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1440 struct inode *inode, u64 file_pos,
1441 u64 disk_bytenr, u64 disk_num_bytes,
1442 u64 num_bytes, u64 ram_bytes,
1443 u64 locked_end,
1444 u8 compression, u8 encryption,
1445 u16 other_encoding, int extent_type)
1446 {
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1448 struct btrfs_file_extent_item *fi;
1449 struct btrfs_path *path;
1450 struct extent_buffer *leaf;
1451 struct btrfs_key ins;
1452 u64 hint;
1453 int ret;
1454
1455 path = btrfs_alloc_path();
1456 BUG_ON(!path);
1457
1458 path->leave_spinning = 1;
1459
1460 /*
1461 * we may be replacing one extent in the tree with another.
1462 * The new extent is pinned in the extent map, and we don't want
1463 * to drop it from the cache until it is completely in the btree.
1464 *
1465 * So, tell btrfs_drop_extents to leave this extent in the cache.
1466 * the caller is expected to unpin it and allow it to be merged
1467 * with the others.
1468 */
1469 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1470 file_pos + num_bytes, locked_end,
1471 file_pos, &hint, 0);
1472 BUG_ON(ret);
1473
1474 ins.objectid = inode->i_ino;
1475 ins.offset = file_pos;
1476 ins.type = BTRFS_EXTENT_DATA_KEY;
1477 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1478 BUG_ON(ret);
1479 leaf = path->nodes[0];
1480 fi = btrfs_item_ptr(leaf, path->slots[0],
1481 struct btrfs_file_extent_item);
1482 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1483 btrfs_set_file_extent_type(leaf, fi, extent_type);
1484 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1485 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1486 btrfs_set_file_extent_offset(leaf, fi, 0);
1487 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1488 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1489 btrfs_set_file_extent_compression(leaf, fi, compression);
1490 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1491 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1492
1493 btrfs_unlock_up_safe(path, 1);
1494 btrfs_set_lock_blocking(leaf);
1495
1496 btrfs_mark_buffer_dirty(leaf);
1497
1498 inode_add_bytes(inode, num_bytes);
1499
1500 ins.objectid = disk_bytenr;
1501 ins.offset = disk_num_bytes;
1502 ins.type = BTRFS_EXTENT_ITEM_KEY;
1503 ret = btrfs_alloc_reserved_file_extent(trans, root,
1504 root->root_key.objectid,
1505 inode->i_ino, file_pos, &ins);
1506 BUG_ON(ret);
1507 btrfs_free_path(path);
1508
1509 return 0;
1510 }
1511
1512 /*
1513 * helper function for btrfs_finish_ordered_io, this
1514 * just reads in some of the csum leaves to prime them into ram
1515 * before we start the transaction. It limits the amount of btree
1516 * reads required while inside the transaction.
1517 */
1518 static noinline void reada_csum(struct btrfs_root *root,
1519 struct btrfs_path *path,
1520 struct btrfs_ordered_extent *ordered_extent)
1521 {
1522 struct btrfs_ordered_sum *sum;
1523 u64 bytenr;
1524
1525 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1526 list);
1527 bytenr = sum->sums[0].bytenr;
1528
1529 /*
1530 * we don't care about the results, the point of this search is
1531 * just to get the btree leaves into ram
1532 */
1533 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1534 }
1535
1536 /* as ordered data IO finishes, this gets called so we can finish
1537 * an ordered extent if the range of bytes in the file it covers are
1538 * fully written.
1539 */
1540 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1541 {
1542 struct btrfs_root *root = BTRFS_I(inode)->root;
1543 struct btrfs_trans_handle *trans;
1544 struct btrfs_ordered_extent *ordered_extent = NULL;
1545 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1546 struct btrfs_path *path;
1547 int compressed = 0;
1548 int ret;
1549
1550 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1551 if (!ret)
1552 return 0;
1553
1554 /*
1555 * before we join the transaction, try to do some of our IO.
1556 * This will limit the amount of IO that we have to do with
1557 * the transaction running. We're unlikely to need to do any
1558 * IO if the file extents are new, the disk_i_size checks
1559 * covers the most common case.
1560 */
1561 if (start < BTRFS_I(inode)->disk_i_size) {
1562 path = btrfs_alloc_path();
1563 if (path) {
1564 ret = btrfs_lookup_file_extent(NULL, root, path,
1565 inode->i_ino,
1566 start, 0);
1567 ordered_extent = btrfs_lookup_ordered_extent(inode,
1568 start);
1569 if (!list_empty(&ordered_extent->list)) {
1570 btrfs_release_path(root, path);
1571 reada_csum(root, path, ordered_extent);
1572 }
1573 btrfs_free_path(path);
1574 }
1575 }
1576
1577 trans = btrfs_join_transaction(root, 1);
1578
1579 if (!ordered_extent)
1580 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1581 BUG_ON(!ordered_extent);
1582 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1583 goto nocow;
1584
1585 lock_extent(io_tree, ordered_extent->file_offset,
1586 ordered_extent->file_offset + ordered_extent->len - 1,
1587 GFP_NOFS);
1588
1589 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1590 compressed = 1;
1591 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1592 BUG_ON(compressed);
1593 ret = btrfs_mark_extent_written(trans, root, inode,
1594 ordered_extent->file_offset,
1595 ordered_extent->file_offset +
1596 ordered_extent->len);
1597 BUG_ON(ret);
1598 } else {
1599 ret = insert_reserved_file_extent(trans, inode,
1600 ordered_extent->file_offset,
1601 ordered_extent->start,
1602 ordered_extent->disk_len,
1603 ordered_extent->len,
1604 ordered_extent->len,
1605 ordered_extent->file_offset +
1606 ordered_extent->len,
1607 compressed, 0, 0,
1608 BTRFS_FILE_EXTENT_REG);
1609 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1610 ordered_extent->file_offset,
1611 ordered_extent->len);
1612 BUG_ON(ret);
1613 }
1614 unlock_extent(io_tree, ordered_extent->file_offset,
1615 ordered_extent->file_offset + ordered_extent->len - 1,
1616 GFP_NOFS);
1617 nocow:
1618 add_pending_csums(trans, inode, ordered_extent->file_offset,
1619 &ordered_extent->list);
1620
1621 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1622 btrfs_ordered_update_i_size(inode, ordered_extent);
1623 btrfs_update_inode(trans, root, inode);
1624 btrfs_remove_ordered_extent(inode, ordered_extent);
1625 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1626
1627 /* once for us */
1628 btrfs_put_ordered_extent(ordered_extent);
1629 /* once for the tree */
1630 btrfs_put_ordered_extent(ordered_extent);
1631
1632 btrfs_end_transaction(trans, root);
1633 return 0;
1634 }
1635
1636 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1637 struct extent_state *state, int uptodate)
1638 {
1639 ClearPagePrivate2(page);
1640 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1641 }
1642
1643 /*
1644 * When IO fails, either with EIO or csum verification fails, we
1645 * try other mirrors that might have a good copy of the data. This
1646 * io_failure_record is used to record state as we go through all the
1647 * mirrors. If another mirror has good data, the page is set up to date
1648 * and things continue. If a good mirror can't be found, the original
1649 * bio end_io callback is called to indicate things have failed.
1650 */
1651 struct io_failure_record {
1652 struct page *page;
1653 u64 start;
1654 u64 len;
1655 u64 logical;
1656 unsigned long bio_flags;
1657 int last_mirror;
1658 };
1659
1660 static int btrfs_io_failed_hook(struct bio *failed_bio,
1661 struct page *page, u64 start, u64 end,
1662 struct extent_state *state)
1663 {
1664 struct io_failure_record *failrec = NULL;
1665 u64 private;
1666 struct extent_map *em;
1667 struct inode *inode = page->mapping->host;
1668 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1669 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1670 struct bio *bio;
1671 int num_copies;
1672 int ret;
1673 int rw;
1674 u64 logical;
1675
1676 ret = get_state_private(failure_tree, start, &private);
1677 if (ret) {
1678 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1679 if (!failrec)
1680 return -ENOMEM;
1681 failrec->start = start;
1682 failrec->len = end - start + 1;
1683 failrec->last_mirror = 0;
1684 failrec->bio_flags = 0;
1685
1686 read_lock(&em_tree->lock);
1687 em = lookup_extent_mapping(em_tree, start, failrec->len);
1688 if (em->start > start || em->start + em->len < start) {
1689 free_extent_map(em);
1690 em = NULL;
1691 }
1692 read_unlock(&em_tree->lock);
1693
1694 if (!em || IS_ERR(em)) {
1695 kfree(failrec);
1696 return -EIO;
1697 }
1698 logical = start - em->start;
1699 logical = em->block_start + logical;
1700 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1701 logical = em->block_start;
1702 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1703 }
1704 failrec->logical = logical;
1705 free_extent_map(em);
1706 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1707 EXTENT_DIRTY, GFP_NOFS);
1708 set_state_private(failure_tree, start,
1709 (u64)(unsigned long)failrec);
1710 } else {
1711 failrec = (struct io_failure_record *)(unsigned long)private;
1712 }
1713 num_copies = btrfs_num_copies(
1714 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1715 failrec->logical, failrec->len);
1716 failrec->last_mirror++;
1717 if (!state) {
1718 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1719 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1720 failrec->start,
1721 EXTENT_LOCKED);
1722 if (state && state->start != failrec->start)
1723 state = NULL;
1724 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1725 }
1726 if (!state || failrec->last_mirror > num_copies) {
1727 set_state_private(failure_tree, failrec->start, 0);
1728 clear_extent_bits(failure_tree, failrec->start,
1729 failrec->start + failrec->len - 1,
1730 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1731 kfree(failrec);
1732 return -EIO;
1733 }
1734 bio = bio_alloc(GFP_NOFS, 1);
1735 bio->bi_private = state;
1736 bio->bi_end_io = failed_bio->bi_end_io;
1737 bio->bi_sector = failrec->logical >> 9;
1738 bio->bi_bdev = failed_bio->bi_bdev;
1739 bio->bi_size = 0;
1740
1741 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1742 if (failed_bio->bi_rw & (1 << BIO_RW))
1743 rw = WRITE;
1744 else
1745 rw = READ;
1746
1747 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1748 failrec->last_mirror,
1749 failrec->bio_flags);
1750 return 0;
1751 }
1752
1753 /*
1754 * each time an IO finishes, we do a fast check in the IO failure tree
1755 * to see if we need to process or clean up an io_failure_record
1756 */
1757 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1758 {
1759 u64 private;
1760 u64 private_failure;
1761 struct io_failure_record *failure;
1762 int ret;
1763
1764 private = 0;
1765 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1766 (u64)-1, 1, EXTENT_DIRTY)) {
1767 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1768 start, &private_failure);
1769 if (ret == 0) {
1770 failure = (struct io_failure_record *)(unsigned long)
1771 private_failure;
1772 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1773 failure->start, 0);
1774 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1775 failure->start,
1776 failure->start + failure->len - 1,
1777 EXTENT_DIRTY | EXTENT_LOCKED,
1778 GFP_NOFS);
1779 kfree(failure);
1780 }
1781 }
1782 return 0;
1783 }
1784
1785 /*
1786 * when reads are done, we need to check csums to verify the data is correct
1787 * if there's a match, we allow the bio to finish. If not, we go through
1788 * the io_failure_record routines to find good copies
1789 */
1790 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1791 struct extent_state *state)
1792 {
1793 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1794 struct inode *inode = page->mapping->host;
1795 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1796 char *kaddr;
1797 u64 private = ~(u32)0;
1798 int ret;
1799 struct btrfs_root *root = BTRFS_I(inode)->root;
1800 u32 csum = ~(u32)0;
1801
1802 if (PageChecked(page)) {
1803 ClearPageChecked(page);
1804 goto good;
1805 }
1806
1807 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1808 return 0;
1809
1810 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1811 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1812 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1813 GFP_NOFS);
1814 return 0;
1815 }
1816
1817 if (state && state->start == start) {
1818 private = state->private;
1819 ret = 0;
1820 } else {
1821 ret = get_state_private(io_tree, start, &private);
1822 }
1823 kaddr = kmap_atomic(page, KM_USER0);
1824 if (ret)
1825 goto zeroit;
1826
1827 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1828 btrfs_csum_final(csum, (char *)&csum);
1829 if (csum != private)
1830 goto zeroit;
1831
1832 kunmap_atomic(kaddr, KM_USER0);
1833 good:
1834 /* if the io failure tree for this inode is non-empty,
1835 * check to see if we've recovered from a failed IO
1836 */
1837 btrfs_clean_io_failures(inode, start);
1838 return 0;
1839
1840 zeroit:
1841 if (printk_ratelimit()) {
1842 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1843 "private %llu\n", page->mapping->host->i_ino,
1844 (unsigned long long)start, csum,
1845 (unsigned long long)private);
1846 }
1847 memset(kaddr + offset, 1, end - start + 1);
1848 flush_dcache_page(page);
1849 kunmap_atomic(kaddr, KM_USER0);
1850 if (private == 0)
1851 return 0;
1852 return -EIO;
1853 }
1854
1855 /*
1856 * This creates an orphan entry for the given inode in case something goes
1857 * wrong in the middle of an unlink/truncate.
1858 */
1859 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1860 {
1861 struct btrfs_root *root = BTRFS_I(inode)->root;
1862 int ret = 0;
1863
1864 spin_lock(&root->list_lock);
1865
1866 /* already on the orphan list, we're good */
1867 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1868 spin_unlock(&root->list_lock);
1869 return 0;
1870 }
1871
1872 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1873
1874 spin_unlock(&root->list_lock);
1875
1876 /*
1877 * insert an orphan item to track this unlinked/truncated file
1878 */
1879 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1880
1881 return ret;
1882 }
1883
1884 /*
1885 * We have done the truncate/delete so we can go ahead and remove the orphan
1886 * item for this particular inode.
1887 */
1888 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1889 {
1890 struct btrfs_root *root = BTRFS_I(inode)->root;
1891 int ret = 0;
1892
1893 spin_lock(&root->list_lock);
1894
1895 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1896 spin_unlock(&root->list_lock);
1897 return 0;
1898 }
1899
1900 list_del_init(&BTRFS_I(inode)->i_orphan);
1901 if (!trans) {
1902 spin_unlock(&root->list_lock);
1903 return 0;
1904 }
1905
1906 spin_unlock(&root->list_lock);
1907
1908 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1909
1910 return ret;
1911 }
1912
1913 /*
1914 * this cleans up any orphans that may be left on the list from the last use
1915 * of this root.
1916 */
1917 void btrfs_orphan_cleanup(struct btrfs_root *root)
1918 {
1919 struct btrfs_path *path;
1920 struct extent_buffer *leaf;
1921 struct btrfs_item *item;
1922 struct btrfs_key key, found_key;
1923 struct btrfs_trans_handle *trans;
1924 struct inode *inode;
1925 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1926
1927 path = btrfs_alloc_path();
1928 if (!path)
1929 return;
1930 path->reada = -1;
1931
1932 key.objectid = BTRFS_ORPHAN_OBJECTID;
1933 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1934 key.offset = (u64)-1;
1935
1936
1937 while (1) {
1938 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1939 if (ret < 0) {
1940 printk(KERN_ERR "Error searching slot for orphan: %d"
1941 "\n", ret);
1942 break;
1943 }
1944
1945 /*
1946 * if ret == 0 means we found what we were searching for, which
1947 * is weird, but possible, so only screw with path if we didnt
1948 * find the key and see if we have stuff that matches
1949 */
1950 if (ret > 0) {
1951 if (path->slots[0] == 0)
1952 break;
1953 path->slots[0]--;
1954 }
1955
1956 /* pull out the item */
1957 leaf = path->nodes[0];
1958 item = btrfs_item_nr(leaf, path->slots[0]);
1959 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1960
1961 /* make sure the item matches what we want */
1962 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1963 break;
1964 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1965 break;
1966
1967 /* release the path since we're done with it */
1968 btrfs_release_path(root, path);
1969
1970 /*
1971 * this is where we are basically btrfs_lookup, without the
1972 * crossing root thing. we store the inode number in the
1973 * offset of the orphan item.
1974 */
1975 found_key.objectid = found_key.offset;
1976 found_key.type = BTRFS_INODE_ITEM_KEY;
1977 found_key.offset = 0;
1978 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1979 if (IS_ERR(inode))
1980 break;
1981
1982 /*
1983 * add this inode to the orphan list so btrfs_orphan_del does
1984 * the proper thing when we hit it
1985 */
1986 spin_lock(&root->list_lock);
1987 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1988 spin_unlock(&root->list_lock);
1989
1990 /*
1991 * if this is a bad inode, means we actually succeeded in
1992 * removing the inode, but not the orphan record, which means
1993 * we need to manually delete the orphan since iput will just
1994 * do a destroy_inode
1995 */
1996 if (is_bad_inode(inode)) {
1997 trans = btrfs_start_transaction(root, 1);
1998 btrfs_orphan_del(trans, inode);
1999 btrfs_end_transaction(trans, root);
2000 iput(inode);
2001 continue;
2002 }
2003
2004 /* if we have links, this was a truncate, lets do that */
2005 if (inode->i_nlink) {
2006 nr_truncate++;
2007 btrfs_truncate(inode);
2008 } else {
2009 nr_unlink++;
2010 }
2011
2012 /* this will do delete_inode and everything for us */
2013 iput(inode);
2014 }
2015
2016 if (nr_unlink)
2017 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2018 if (nr_truncate)
2019 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2020
2021 btrfs_free_path(path);
2022 }
2023
2024 /*
2025 * very simple check to peek ahead in the leaf looking for xattrs. If we
2026 * don't find any xattrs, we know there can't be any acls.
2027 *
2028 * slot is the slot the inode is in, objectid is the objectid of the inode
2029 */
2030 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2031 int slot, u64 objectid)
2032 {
2033 u32 nritems = btrfs_header_nritems(leaf);
2034 struct btrfs_key found_key;
2035 int scanned = 0;
2036
2037 slot++;
2038 while (slot < nritems) {
2039 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2040
2041 /* we found a different objectid, there must not be acls */
2042 if (found_key.objectid != objectid)
2043 return 0;
2044
2045 /* we found an xattr, assume we've got an acl */
2046 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2047 return 1;
2048
2049 /*
2050 * we found a key greater than an xattr key, there can't
2051 * be any acls later on
2052 */
2053 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2054 return 0;
2055
2056 slot++;
2057 scanned++;
2058
2059 /*
2060 * it goes inode, inode backrefs, xattrs, extents,
2061 * so if there are a ton of hard links to an inode there can
2062 * be a lot of backrefs. Don't waste time searching too hard,
2063 * this is just an optimization
2064 */
2065 if (scanned >= 8)
2066 break;
2067 }
2068 /* we hit the end of the leaf before we found an xattr or
2069 * something larger than an xattr. We have to assume the inode
2070 * has acls
2071 */
2072 return 1;
2073 }
2074
2075 /*
2076 * read an inode from the btree into the in-memory inode
2077 */
2078 static void btrfs_read_locked_inode(struct inode *inode)
2079 {
2080 struct btrfs_path *path;
2081 struct extent_buffer *leaf;
2082 struct btrfs_inode_item *inode_item;
2083 struct btrfs_timespec *tspec;
2084 struct btrfs_root *root = BTRFS_I(inode)->root;
2085 struct btrfs_key location;
2086 int maybe_acls;
2087 u64 alloc_group_block;
2088 u32 rdev;
2089 int ret;
2090
2091 path = btrfs_alloc_path();
2092 BUG_ON(!path);
2093 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2094
2095 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2096 if (ret)
2097 goto make_bad;
2098
2099 leaf = path->nodes[0];
2100 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2101 struct btrfs_inode_item);
2102
2103 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2104 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2105 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2106 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2107 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2108
2109 tspec = btrfs_inode_atime(inode_item);
2110 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2111 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2112
2113 tspec = btrfs_inode_mtime(inode_item);
2114 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2115 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2116
2117 tspec = btrfs_inode_ctime(inode_item);
2118 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2119 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2120
2121 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2122 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2123 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2124 inode->i_generation = BTRFS_I(inode)->generation;
2125 inode->i_rdev = 0;
2126 rdev = btrfs_inode_rdev(leaf, inode_item);
2127
2128 BTRFS_I(inode)->index_cnt = (u64)-1;
2129 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2130
2131 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2132
2133 /*
2134 * try to precache a NULL acl entry for files that don't have
2135 * any xattrs or acls
2136 */
2137 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2138 if (!maybe_acls) {
2139 BTRFS_I(inode)->i_acl = NULL;
2140 BTRFS_I(inode)->i_default_acl = NULL;
2141 }
2142
2143 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2144 alloc_group_block, 0);
2145 btrfs_free_path(path);
2146 inode_item = NULL;
2147
2148 switch (inode->i_mode & S_IFMT) {
2149 case S_IFREG:
2150 inode->i_mapping->a_ops = &btrfs_aops;
2151 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2152 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2153 inode->i_fop = &btrfs_file_operations;
2154 inode->i_op = &btrfs_file_inode_operations;
2155 break;
2156 case S_IFDIR:
2157 inode->i_fop = &btrfs_dir_file_operations;
2158 if (root == root->fs_info->tree_root)
2159 inode->i_op = &btrfs_dir_ro_inode_operations;
2160 else
2161 inode->i_op = &btrfs_dir_inode_operations;
2162 break;
2163 case S_IFLNK:
2164 inode->i_op = &btrfs_symlink_inode_operations;
2165 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2166 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2167 break;
2168 default:
2169 inode->i_op = &btrfs_special_inode_operations;
2170 init_special_inode(inode, inode->i_mode, rdev);
2171 break;
2172 }
2173
2174 btrfs_update_iflags(inode);
2175 return;
2176
2177 make_bad:
2178 btrfs_free_path(path);
2179 make_bad_inode(inode);
2180 }
2181
2182 /*
2183 * given a leaf and an inode, copy the inode fields into the leaf
2184 */
2185 static void fill_inode_item(struct btrfs_trans_handle *trans,
2186 struct extent_buffer *leaf,
2187 struct btrfs_inode_item *item,
2188 struct inode *inode)
2189 {
2190 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2191 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2192 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2193 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2194 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2195
2196 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2197 inode->i_atime.tv_sec);
2198 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2199 inode->i_atime.tv_nsec);
2200
2201 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2202 inode->i_mtime.tv_sec);
2203 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2204 inode->i_mtime.tv_nsec);
2205
2206 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2207 inode->i_ctime.tv_sec);
2208 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2209 inode->i_ctime.tv_nsec);
2210
2211 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2212 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2213 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2214 btrfs_set_inode_transid(leaf, item, trans->transid);
2215 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2216 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2217 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2218 }
2219
2220 /*
2221 * copy everything in the in-memory inode into the btree.
2222 */
2223 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2224 struct btrfs_root *root, struct inode *inode)
2225 {
2226 struct btrfs_inode_item *inode_item;
2227 struct btrfs_path *path;
2228 struct extent_buffer *leaf;
2229 int ret;
2230
2231 path = btrfs_alloc_path();
2232 BUG_ON(!path);
2233 path->leave_spinning = 1;
2234 ret = btrfs_lookup_inode(trans, root, path,
2235 &BTRFS_I(inode)->location, 1);
2236 if (ret) {
2237 if (ret > 0)
2238 ret = -ENOENT;
2239 goto failed;
2240 }
2241
2242 btrfs_unlock_up_safe(path, 1);
2243 leaf = path->nodes[0];
2244 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2245 struct btrfs_inode_item);
2246
2247 fill_inode_item(trans, leaf, inode_item, inode);
2248 btrfs_mark_buffer_dirty(leaf);
2249 btrfs_set_inode_last_trans(trans, inode);
2250 ret = 0;
2251 failed:
2252 btrfs_free_path(path);
2253 return ret;
2254 }
2255
2256
2257 /*
2258 * unlink helper that gets used here in inode.c and in the tree logging
2259 * recovery code. It remove a link in a directory with a given name, and
2260 * also drops the back refs in the inode to the directory
2261 */
2262 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2263 struct btrfs_root *root,
2264 struct inode *dir, struct inode *inode,
2265 const char *name, int name_len)
2266 {
2267 struct btrfs_path *path;
2268 int ret = 0;
2269 struct extent_buffer *leaf;
2270 struct btrfs_dir_item *di;
2271 struct btrfs_key key;
2272 u64 index;
2273
2274 path = btrfs_alloc_path();
2275 if (!path) {
2276 ret = -ENOMEM;
2277 goto err;
2278 }
2279
2280 path->leave_spinning = 1;
2281 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2282 name, name_len, -1);
2283 if (IS_ERR(di)) {
2284 ret = PTR_ERR(di);
2285 goto err;
2286 }
2287 if (!di) {
2288 ret = -ENOENT;
2289 goto err;
2290 }
2291 leaf = path->nodes[0];
2292 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2293 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2294 if (ret)
2295 goto err;
2296 btrfs_release_path(root, path);
2297
2298 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2299 inode->i_ino,
2300 dir->i_ino, &index);
2301 if (ret) {
2302 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2303 "inode %lu parent %lu\n", name_len, name,
2304 inode->i_ino, dir->i_ino);
2305 goto err;
2306 }
2307
2308 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2309 index, name, name_len, -1);
2310 if (IS_ERR(di)) {
2311 ret = PTR_ERR(di);
2312 goto err;
2313 }
2314 if (!di) {
2315 ret = -ENOENT;
2316 goto err;
2317 }
2318 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2319 btrfs_release_path(root, path);
2320
2321 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2322 inode, dir->i_ino);
2323 BUG_ON(ret != 0 && ret != -ENOENT);
2324
2325 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2326 dir, index);
2327 BUG_ON(ret);
2328 err:
2329 btrfs_free_path(path);
2330 if (ret)
2331 goto out;
2332
2333 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2334 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2335 btrfs_update_inode(trans, root, dir);
2336 btrfs_drop_nlink(inode);
2337 ret = btrfs_update_inode(trans, root, inode);
2338 dir->i_sb->s_dirt = 1;
2339 out:
2340 return ret;
2341 }
2342
2343 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2344 {
2345 struct btrfs_root *root;
2346 struct btrfs_trans_handle *trans;
2347 struct inode *inode = dentry->d_inode;
2348 int ret;
2349 unsigned long nr = 0;
2350
2351 root = BTRFS_I(dir)->root;
2352
2353 trans = btrfs_start_transaction(root, 1);
2354
2355 btrfs_set_trans_block_group(trans, dir);
2356
2357 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2358
2359 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2360 dentry->d_name.name, dentry->d_name.len);
2361
2362 if (inode->i_nlink == 0)
2363 ret = btrfs_orphan_add(trans, inode);
2364
2365 nr = trans->blocks_used;
2366
2367 btrfs_end_transaction_throttle(trans, root);
2368 btrfs_btree_balance_dirty(root, nr);
2369 return ret;
2370 }
2371
2372 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2373 {
2374 struct inode *inode = dentry->d_inode;
2375 int err = 0;
2376 int ret;
2377 struct btrfs_root *root = BTRFS_I(dir)->root;
2378 struct btrfs_trans_handle *trans;
2379 unsigned long nr = 0;
2380
2381 /*
2382 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2383 * the root of a subvolume or snapshot
2384 */
2385 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2386 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2387 return -ENOTEMPTY;
2388 }
2389
2390 trans = btrfs_start_transaction(root, 1);
2391 btrfs_set_trans_block_group(trans, dir);
2392
2393 err = btrfs_orphan_add(trans, inode);
2394 if (err)
2395 goto fail_trans;
2396
2397 /* now the directory is empty */
2398 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2399 dentry->d_name.name, dentry->d_name.len);
2400 if (!err)
2401 btrfs_i_size_write(inode, 0);
2402
2403 fail_trans:
2404 nr = trans->blocks_used;
2405 ret = btrfs_end_transaction_throttle(trans, root);
2406 btrfs_btree_balance_dirty(root, nr);
2407
2408 if (ret && !err)
2409 err = ret;
2410 return err;
2411 }
2412
2413 #if 0
2414 /*
2415 * when truncating bytes in a file, it is possible to avoid reading
2416 * the leaves that contain only checksum items. This can be the
2417 * majority of the IO required to delete a large file, but it must
2418 * be done carefully.
2419 *
2420 * The keys in the level just above the leaves are checked to make sure
2421 * the lowest key in a given leaf is a csum key, and starts at an offset
2422 * after the new size.
2423 *
2424 * Then the key for the next leaf is checked to make sure it also has
2425 * a checksum item for the same file. If it does, we know our target leaf
2426 * contains only checksum items, and it can be safely freed without reading
2427 * it.
2428 *
2429 * This is just an optimization targeted at large files. It may do
2430 * nothing. It will return 0 unless things went badly.
2431 */
2432 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2433 struct btrfs_root *root,
2434 struct btrfs_path *path,
2435 struct inode *inode, u64 new_size)
2436 {
2437 struct btrfs_key key;
2438 int ret;
2439 int nritems;
2440 struct btrfs_key found_key;
2441 struct btrfs_key other_key;
2442 struct btrfs_leaf_ref *ref;
2443 u64 leaf_gen;
2444 u64 leaf_start;
2445
2446 path->lowest_level = 1;
2447 key.objectid = inode->i_ino;
2448 key.type = BTRFS_CSUM_ITEM_KEY;
2449 key.offset = new_size;
2450 again:
2451 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2452 if (ret < 0)
2453 goto out;
2454
2455 if (path->nodes[1] == NULL) {
2456 ret = 0;
2457 goto out;
2458 }
2459 ret = 0;
2460 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2461 nritems = btrfs_header_nritems(path->nodes[1]);
2462
2463 if (!nritems)
2464 goto out;
2465
2466 if (path->slots[1] >= nritems)
2467 goto next_node;
2468
2469 /* did we find a key greater than anything we want to delete? */
2470 if (found_key.objectid > inode->i_ino ||
2471 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2472 goto out;
2473
2474 /* we check the next key in the node to make sure the leave contains
2475 * only checksum items. This comparison doesn't work if our
2476 * leaf is the last one in the node
2477 */
2478 if (path->slots[1] + 1 >= nritems) {
2479 next_node:
2480 /* search forward from the last key in the node, this
2481 * will bring us into the next node in the tree
2482 */
2483 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2484
2485 /* unlikely, but we inc below, so check to be safe */
2486 if (found_key.offset == (u64)-1)
2487 goto out;
2488
2489 /* search_forward needs a path with locks held, do the
2490 * search again for the original key. It is possible
2491 * this will race with a balance and return a path that
2492 * we could modify, but this drop is just an optimization
2493 * and is allowed to miss some leaves.
2494 */
2495 btrfs_release_path(root, path);
2496 found_key.offset++;
2497
2498 /* setup a max key for search_forward */
2499 other_key.offset = (u64)-1;
2500 other_key.type = key.type;
2501 other_key.objectid = key.objectid;
2502
2503 path->keep_locks = 1;
2504 ret = btrfs_search_forward(root, &found_key, &other_key,
2505 path, 0, 0);
2506 path->keep_locks = 0;
2507 if (ret || found_key.objectid != key.objectid ||
2508 found_key.type != key.type) {
2509 ret = 0;
2510 goto out;
2511 }
2512
2513 key.offset = found_key.offset;
2514 btrfs_release_path(root, path);
2515 cond_resched();
2516 goto again;
2517 }
2518
2519 /* we know there's one more slot after us in the tree,
2520 * read that key so we can verify it is also a checksum item
2521 */
2522 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2523
2524 if (found_key.objectid < inode->i_ino)
2525 goto next_key;
2526
2527 if (found_key.type != key.type || found_key.offset < new_size)
2528 goto next_key;
2529
2530 /*
2531 * if the key for the next leaf isn't a csum key from this objectid,
2532 * we can't be sure there aren't good items inside this leaf.
2533 * Bail out
2534 */
2535 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2536 goto out;
2537
2538 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2539 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2540 /*
2541 * it is safe to delete this leaf, it contains only
2542 * csum items from this inode at an offset >= new_size
2543 */
2544 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2545 BUG_ON(ret);
2546
2547 if (root->ref_cows && leaf_gen < trans->transid) {
2548 ref = btrfs_alloc_leaf_ref(root, 0);
2549 if (ref) {
2550 ref->root_gen = root->root_key.offset;
2551 ref->bytenr = leaf_start;
2552 ref->owner = 0;
2553 ref->generation = leaf_gen;
2554 ref->nritems = 0;
2555
2556 btrfs_sort_leaf_ref(ref);
2557
2558 ret = btrfs_add_leaf_ref(root, ref, 0);
2559 WARN_ON(ret);
2560 btrfs_free_leaf_ref(root, ref);
2561 } else {
2562 WARN_ON(1);
2563 }
2564 }
2565 next_key:
2566 btrfs_release_path(root, path);
2567
2568 if (other_key.objectid == inode->i_ino &&
2569 other_key.type == key.type && other_key.offset > key.offset) {
2570 key.offset = other_key.offset;
2571 cond_resched();
2572 goto again;
2573 }
2574 ret = 0;
2575 out:
2576 /* fixup any changes we've made to the path */
2577 path->lowest_level = 0;
2578 path->keep_locks = 0;
2579 btrfs_release_path(root, path);
2580 return ret;
2581 }
2582
2583 #endif
2584
2585 /*
2586 * this can truncate away extent items, csum items and directory items.
2587 * It starts at a high offset and removes keys until it can't find
2588 * any higher than new_size
2589 *
2590 * csum items that cross the new i_size are truncated to the new size
2591 * as well.
2592 *
2593 * min_type is the minimum key type to truncate down to. If set to 0, this
2594 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2595 */
2596 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2597 struct btrfs_root *root,
2598 struct inode *inode,
2599 u64 new_size, u32 min_type)
2600 {
2601 int ret;
2602 struct btrfs_path *path;
2603 struct btrfs_key key;
2604 struct btrfs_key found_key;
2605 u32 found_type = (u8)-1;
2606 struct extent_buffer *leaf;
2607 struct btrfs_file_extent_item *fi;
2608 u64 extent_start = 0;
2609 u64 extent_num_bytes = 0;
2610 u64 extent_offset = 0;
2611 u64 item_end = 0;
2612 int found_extent;
2613 int del_item;
2614 int pending_del_nr = 0;
2615 int pending_del_slot = 0;
2616 int extent_type = -1;
2617 int encoding;
2618 u64 mask = root->sectorsize - 1;
2619
2620 if (root->ref_cows)
2621 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2622 path = btrfs_alloc_path();
2623 BUG_ON(!path);
2624 path->reada = -1;
2625
2626 /* FIXME, add redo link to tree so we don't leak on crash */
2627 key.objectid = inode->i_ino;
2628 key.offset = (u64)-1;
2629 key.type = (u8)-1;
2630
2631 search_again:
2632 path->leave_spinning = 1;
2633 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2634 if (ret < 0)
2635 goto error;
2636
2637 if (ret > 0) {
2638 /* there are no items in the tree for us to truncate, we're
2639 * done
2640 */
2641 if (path->slots[0] == 0) {
2642 ret = 0;
2643 goto error;
2644 }
2645 path->slots[0]--;
2646 }
2647
2648 while (1) {
2649 fi = NULL;
2650 leaf = path->nodes[0];
2651 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2652 found_type = btrfs_key_type(&found_key);
2653 encoding = 0;
2654
2655 if (found_key.objectid != inode->i_ino)
2656 break;
2657
2658 if (found_type < min_type)
2659 break;
2660
2661 item_end = found_key.offset;
2662 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2663 fi = btrfs_item_ptr(leaf, path->slots[0],
2664 struct btrfs_file_extent_item);
2665 extent_type = btrfs_file_extent_type(leaf, fi);
2666 encoding = btrfs_file_extent_compression(leaf, fi);
2667 encoding |= btrfs_file_extent_encryption(leaf, fi);
2668 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2669
2670 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2671 item_end +=
2672 btrfs_file_extent_num_bytes(leaf, fi);
2673 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2674 item_end += btrfs_file_extent_inline_len(leaf,
2675 fi);
2676 }
2677 item_end--;
2678 }
2679 if (item_end < new_size) {
2680 if (found_type == BTRFS_DIR_ITEM_KEY)
2681 found_type = BTRFS_INODE_ITEM_KEY;
2682 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2683 found_type = BTRFS_EXTENT_DATA_KEY;
2684 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2685 found_type = BTRFS_XATTR_ITEM_KEY;
2686 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2687 found_type = BTRFS_INODE_REF_KEY;
2688 else if (found_type)
2689 found_type--;
2690 else
2691 break;
2692 btrfs_set_key_type(&key, found_type);
2693 goto next;
2694 }
2695 if (found_key.offset >= new_size)
2696 del_item = 1;
2697 else
2698 del_item = 0;
2699 found_extent = 0;
2700
2701 /* FIXME, shrink the extent if the ref count is only 1 */
2702 if (found_type != BTRFS_EXTENT_DATA_KEY)
2703 goto delete;
2704
2705 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2706 u64 num_dec;
2707 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2708 if (!del_item && !encoding) {
2709 u64 orig_num_bytes =
2710 btrfs_file_extent_num_bytes(leaf, fi);
2711 extent_num_bytes = new_size -
2712 found_key.offset + root->sectorsize - 1;
2713 extent_num_bytes = extent_num_bytes &
2714 ~((u64)root->sectorsize - 1);
2715 btrfs_set_file_extent_num_bytes(leaf, fi,
2716 extent_num_bytes);
2717 num_dec = (orig_num_bytes -
2718 extent_num_bytes);
2719 if (root->ref_cows && extent_start != 0)
2720 inode_sub_bytes(inode, num_dec);
2721 btrfs_mark_buffer_dirty(leaf);
2722 } else {
2723 extent_num_bytes =
2724 btrfs_file_extent_disk_num_bytes(leaf,
2725 fi);
2726 extent_offset = found_key.offset -
2727 btrfs_file_extent_offset(leaf, fi);
2728
2729 /* FIXME blocksize != 4096 */
2730 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2731 if (extent_start != 0) {
2732 found_extent = 1;
2733 if (root->ref_cows)
2734 inode_sub_bytes(inode, num_dec);
2735 }
2736 }
2737 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2738 /*
2739 * we can't truncate inline items that have had
2740 * special encodings
2741 */
2742 if (!del_item &&
2743 btrfs_file_extent_compression(leaf, fi) == 0 &&
2744 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2745 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2746 u32 size = new_size - found_key.offset;
2747
2748 if (root->ref_cows) {
2749 inode_sub_bytes(inode, item_end + 1 -
2750 new_size);
2751 }
2752 size =
2753 btrfs_file_extent_calc_inline_size(size);
2754 ret = btrfs_truncate_item(trans, root, path,
2755 size, 1);
2756 BUG_ON(ret);
2757 } else if (root->ref_cows) {
2758 inode_sub_bytes(inode, item_end + 1 -
2759 found_key.offset);
2760 }
2761 }
2762 delete:
2763 if (del_item) {
2764 if (!pending_del_nr) {
2765 /* no pending yet, add ourselves */
2766 pending_del_slot = path->slots[0];
2767 pending_del_nr = 1;
2768 } else if (pending_del_nr &&
2769 path->slots[0] + 1 == pending_del_slot) {
2770 /* hop on the pending chunk */
2771 pending_del_nr++;
2772 pending_del_slot = path->slots[0];
2773 } else {
2774 BUG();
2775 }
2776 } else {
2777 break;
2778 }
2779 if (found_extent && root->ref_cows) {
2780 btrfs_set_path_blocking(path);
2781 ret = btrfs_free_extent(trans, root, extent_start,
2782 extent_num_bytes, 0,
2783 btrfs_header_owner(leaf),
2784 inode->i_ino, extent_offset);
2785 BUG_ON(ret);
2786 }
2787 next:
2788 if (path->slots[0] == 0) {
2789 if (pending_del_nr)
2790 goto del_pending;
2791 btrfs_release_path(root, path);
2792 if (found_type == BTRFS_INODE_ITEM_KEY)
2793 break;
2794 goto search_again;
2795 }
2796
2797 path->slots[0]--;
2798 if (pending_del_nr &&
2799 path->slots[0] + 1 != pending_del_slot) {
2800 struct btrfs_key debug;
2801 del_pending:
2802 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2803 pending_del_slot);
2804 ret = btrfs_del_items(trans, root, path,
2805 pending_del_slot,
2806 pending_del_nr);
2807 BUG_ON(ret);
2808 pending_del_nr = 0;
2809 btrfs_release_path(root, path);
2810 if (found_type == BTRFS_INODE_ITEM_KEY)
2811 break;
2812 goto search_again;
2813 }
2814 }
2815 ret = 0;
2816 error:
2817 if (pending_del_nr) {
2818 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2819 pending_del_nr);
2820 }
2821 btrfs_free_path(path);
2822 inode->i_sb->s_dirt = 1;
2823 return ret;
2824 }
2825
2826 /*
2827 * taken from block_truncate_page, but does cow as it zeros out
2828 * any bytes left in the last page in the file.
2829 */
2830 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2831 {
2832 struct inode *inode = mapping->host;
2833 struct btrfs_root *root = BTRFS_I(inode)->root;
2834 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2835 struct btrfs_ordered_extent *ordered;
2836 char *kaddr;
2837 u32 blocksize = root->sectorsize;
2838 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2839 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2840 struct page *page;
2841 int ret = 0;
2842 u64 page_start;
2843 u64 page_end;
2844
2845 if ((offset & (blocksize - 1)) == 0)
2846 goto out;
2847
2848 ret = -ENOMEM;
2849 again:
2850 page = grab_cache_page(mapping, index);
2851 if (!page)
2852 goto out;
2853
2854 page_start = page_offset(page);
2855 page_end = page_start + PAGE_CACHE_SIZE - 1;
2856
2857 if (!PageUptodate(page)) {
2858 ret = btrfs_readpage(NULL, page);
2859 lock_page(page);
2860 if (page->mapping != mapping) {
2861 unlock_page(page);
2862 page_cache_release(page);
2863 goto again;
2864 }
2865 if (!PageUptodate(page)) {
2866 ret = -EIO;
2867 goto out_unlock;
2868 }
2869 }
2870 wait_on_page_writeback(page);
2871
2872 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2873 set_page_extent_mapped(page);
2874
2875 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2876 if (ordered) {
2877 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2878 unlock_page(page);
2879 page_cache_release(page);
2880 btrfs_start_ordered_extent(inode, ordered, 1);
2881 btrfs_put_ordered_extent(ordered);
2882 goto again;
2883 }
2884
2885 btrfs_set_extent_delalloc(inode, page_start, page_end);
2886 ret = 0;
2887 if (offset != PAGE_CACHE_SIZE) {
2888 kaddr = kmap(page);
2889 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2890 flush_dcache_page(page);
2891 kunmap(page);
2892 }
2893 ClearPageChecked(page);
2894 set_page_dirty(page);
2895 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2896
2897 out_unlock:
2898 unlock_page(page);
2899 page_cache_release(page);
2900 out:
2901 return ret;
2902 }
2903
2904 int btrfs_cont_expand(struct inode *inode, loff_t size)
2905 {
2906 struct btrfs_trans_handle *trans;
2907 struct btrfs_root *root = BTRFS_I(inode)->root;
2908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2909 struct extent_map *em;
2910 u64 mask = root->sectorsize - 1;
2911 u64 hole_start = (inode->i_size + mask) & ~mask;
2912 u64 block_end = (size + mask) & ~mask;
2913 u64 last_byte;
2914 u64 cur_offset;
2915 u64 hole_size;
2916 int err;
2917
2918 if (size <= hole_start)
2919 return 0;
2920
2921 err = btrfs_check_metadata_free_space(root);
2922 if (err)
2923 return err;
2924
2925 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2926
2927 while (1) {
2928 struct btrfs_ordered_extent *ordered;
2929 btrfs_wait_ordered_range(inode, hole_start,
2930 block_end - hole_start);
2931 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2932 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2933 if (!ordered)
2934 break;
2935 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2936 btrfs_put_ordered_extent(ordered);
2937 }
2938
2939 trans = btrfs_start_transaction(root, 1);
2940 btrfs_set_trans_block_group(trans, inode);
2941
2942 cur_offset = hole_start;
2943 while (1) {
2944 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2945 block_end - cur_offset, 0);
2946 BUG_ON(IS_ERR(em) || !em);
2947 last_byte = min(extent_map_end(em), block_end);
2948 last_byte = (last_byte + mask) & ~mask;
2949 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2950 u64 hint_byte = 0;
2951 hole_size = last_byte - cur_offset;
2952 err = btrfs_drop_extents(trans, root, inode,
2953 cur_offset,
2954 cur_offset + hole_size,
2955 block_end,
2956 cur_offset, &hint_byte, 1);
2957 if (err)
2958 break;
2959 err = btrfs_insert_file_extent(trans, root,
2960 inode->i_ino, cur_offset, 0,
2961 0, hole_size, 0, hole_size,
2962 0, 0, 0);
2963 btrfs_drop_extent_cache(inode, hole_start,
2964 last_byte - 1, 0);
2965 }
2966 free_extent_map(em);
2967 cur_offset = last_byte;
2968 if (err || cur_offset >= block_end)
2969 break;
2970 }
2971
2972 btrfs_end_transaction(trans, root);
2973 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2974 return err;
2975 }
2976
2977 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2978 {
2979 struct inode *inode = dentry->d_inode;
2980 int err;
2981
2982 err = inode_change_ok(inode, attr);
2983 if (err)
2984 return err;
2985
2986 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2987 if (attr->ia_size > inode->i_size) {
2988 err = btrfs_cont_expand(inode, attr->ia_size);
2989 if (err)
2990 return err;
2991 } else if (inode->i_size > 0 &&
2992 attr->ia_size == 0) {
2993
2994 /* we're truncating a file that used to have good
2995 * data down to zero. Make sure it gets into
2996 * the ordered flush list so that any new writes
2997 * get down to disk quickly.
2998 */
2999 BTRFS_I(inode)->ordered_data_close = 1;
3000 }
3001 }
3002
3003 err = inode_setattr(inode, attr);
3004
3005 if (!err && ((attr->ia_valid & ATTR_MODE)))
3006 err = btrfs_acl_chmod(inode);
3007 return err;
3008 }
3009
3010 void btrfs_delete_inode(struct inode *inode)
3011 {
3012 struct btrfs_trans_handle *trans;
3013 struct btrfs_root *root = BTRFS_I(inode)->root;
3014 unsigned long nr;
3015 int ret;
3016
3017 truncate_inode_pages(&inode->i_data, 0);
3018 if (is_bad_inode(inode)) {
3019 btrfs_orphan_del(NULL, inode);
3020 goto no_delete;
3021 }
3022 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3023
3024 btrfs_i_size_write(inode, 0);
3025 trans = btrfs_join_transaction(root, 1);
3026
3027 btrfs_set_trans_block_group(trans, inode);
3028 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3029 if (ret) {
3030 btrfs_orphan_del(NULL, inode);
3031 goto no_delete_lock;
3032 }
3033
3034 btrfs_orphan_del(trans, inode);
3035
3036 nr = trans->blocks_used;
3037 clear_inode(inode);
3038
3039 btrfs_end_transaction(trans, root);
3040 btrfs_btree_balance_dirty(root, nr);
3041 return;
3042
3043 no_delete_lock:
3044 nr = trans->blocks_used;
3045 btrfs_end_transaction(trans, root);
3046 btrfs_btree_balance_dirty(root, nr);
3047 no_delete:
3048 clear_inode(inode);
3049 }
3050
3051 /*
3052 * this returns the key found in the dir entry in the location pointer.
3053 * If no dir entries were found, location->objectid is 0.
3054 */
3055 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3056 struct btrfs_key *location)
3057 {
3058 const char *name = dentry->d_name.name;
3059 int namelen = dentry->d_name.len;
3060 struct btrfs_dir_item *di;
3061 struct btrfs_path *path;
3062 struct btrfs_root *root = BTRFS_I(dir)->root;
3063 int ret = 0;
3064
3065 path = btrfs_alloc_path();
3066 BUG_ON(!path);
3067
3068 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3069 namelen, 0);
3070 if (IS_ERR(di))
3071 ret = PTR_ERR(di);
3072
3073 if (!di || IS_ERR(di))
3074 goto out_err;
3075
3076 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3077 out:
3078 btrfs_free_path(path);
3079 return ret;
3080 out_err:
3081 location->objectid = 0;
3082 goto out;
3083 }
3084
3085 /*
3086 * when we hit a tree root in a directory, the btrfs part of the inode
3087 * needs to be changed to reflect the root directory of the tree root. This
3088 * is kind of like crossing a mount point.
3089 */
3090 static int fixup_tree_root_location(struct btrfs_root *root,
3091 struct btrfs_key *location,
3092 struct btrfs_root **sub_root,
3093 struct dentry *dentry)
3094 {
3095 struct btrfs_root_item *ri;
3096
3097 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3098 return 0;
3099 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3100 return 0;
3101
3102 *sub_root = btrfs_read_fs_root(root->fs_info, location,
3103 dentry->d_name.name,
3104 dentry->d_name.len);
3105 if (IS_ERR(*sub_root))
3106 return PTR_ERR(*sub_root);
3107
3108 ri = &(*sub_root)->root_item;
3109 location->objectid = btrfs_root_dirid(ri);
3110 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3111 location->offset = 0;
3112
3113 return 0;
3114 }
3115
3116 static void inode_tree_add(struct inode *inode)
3117 {
3118 struct btrfs_root *root = BTRFS_I(inode)->root;
3119 struct btrfs_inode *entry;
3120 struct rb_node **p = &root->inode_tree.rb_node;
3121 struct rb_node *parent = NULL;
3122
3123 spin_lock(&root->inode_lock);
3124 while (*p) {
3125 parent = *p;
3126 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3127
3128 if (inode->i_ino < entry->vfs_inode.i_ino)
3129 p = &(*p)->rb_left;
3130 else if (inode->i_ino > entry->vfs_inode.i_ino)
3131 p = &(*p)->rb_right;
3132 else {
3133 WARN_ON(!(entry->vfs_inode.i_state &
3134 (I_WILL_FREE | I_FREEING | I_CLEAR)));
3135 break;
3136 }
3137 }
3138 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3139 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3140 spin_unlock(&root->inode_lock);
3141 }
3142
3143 static void inode_tree_del(struct inode *inode)
3144 {
3145 struct btrfs_root *root = BTRFS_I(inode)->root;
3146
3147 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3148 spin_lock(&root->inode_lock);
3149 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3150 spin_unlock(&root->inode_lock);
3151 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3152 }
3153 }
3154
3155 static noinline void init_btrfs_i(struct inode *inode)
3156 {
3157 struct btrfs_inode *bi = BTRFS_I(inode);
3158
3159 bi->i_acl = BTRFS_ACL_NOT_CACHED;
3160 bi->i_default_acl = BTRFS_ACL_NOT_CACHED;
3161
3162 bi->generation = 0;
3163 bi->sequence = 0;
3164 bi->last_trans = 0;
3165 bi->logged_trans = 0;
3166 bi->delalloc_bytes = 0;
3167 bi->reserved_bytes = 0;
3168 bi->disk_i_size = 0;
3169 bi->flags = 0;
3170 bi->index_cnt = (u64)-1;
3171 bi->last_unlink_trans = 0;
3172 bi->ordered_data_close = 0;
3173 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3174 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3175 inode->i_mapping, GFP_NOFS);
3176 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3177 inode->i_mapping, GFP_NOFS);
3178 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3179 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3180 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3181 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3182 mutex_init(&BTRFS_I(inode)->extent_mutex);
3183 mutex_init(&BTRFS_I(inode)->log_mutex);
3184 }
3185
3186 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3187 {
3188 struct btrfs_iget_args *args = p;
3189 inode->i_ino = args->ino;
3190 init_btrfs_i(inode);
3191 BTRFS_I(inode)->root = args->root;
3192 btrfs_set_inode_space_info(args->root, inode);
3193 return 0;
3194 }
3195
3196 static int btrfs_find_actor(struct inode *inode, void *opaque)
3197 {
3198 struct btrfs_iget_args *args = opaque;
3199 return args->ino == inode->i_ino &&
3200 args->root == BTRFS_I(inode)->root;
3201 }
3202
3203 static struct inode *btrfs_iget_locked(struct super_block *s,
3204 u64 objectid,
3205 struct btrfs_root *root)
3206 {
3207 struct inode *inode;
3208 struct btrfs_iget_args args;
3209 args.ino = objectid;
3210 args.root = root;
3211
3212 inode = iget5_locked(s, objectid, btrfs_find_actor,
3213 btrfs_init_locked_inode,
3214 (void *)&args);
3215 return inode;
3216 }
3217
3218 /* Get an inode object given its location and corresponding root.
3219 * Returns in *is_new if the inode was read from disk
3220 */
3221 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3222 struct btrfs_root *root)
3223 {
3224 struct inode *inode;
3225
3226 inode = btrfs_iget_locked(s, location->objectid, root);
3227 if (!inode)
3228 return ERR_PTR(-ENOMEM);
3229
3230 if (inode->i_state & I_NEW) {
3231 BTRFS_I(inode)->root = root;
3232 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3233 btrfs_read_locked_inode(inode);
3234
3235 inode_tree_add(inode);
3236 unlock_new_inode(inode);
3237 }
3238
3239 return inode;
3240 }
3241
3242 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3243 {
3244 struct inode *inode;
3245 struct btrfs_inode *bi = BTRFS_I(dir);
3246 struct btrfs_root *root = bi->root;
3247 struct btrfs_root *sub_root = root;
3248 struct btrfs_key location;
3249 int ret;
3250
3251 if (dentry->d_name.len > BTRFS_NAME_LEN)
3252 return ERR_PTR(-ENAMETOOLONG);
3253
3254 ret = btrfs_inode_by_name(dir, dentry, &location);
3255
3256 if (ret < 0)
3257 return ERR_PTR(ret);
3258
3259 inode = NULL;
3260 if (location.objectid) {
3261 ret = fixup_tree_root_location(root, &location, &sub_root,
3262 dentry);
3263 if (ret < 0)
3264 return ERR_PTR(ret);
3265 if (ret > 0)
3266 return ERR_PTR(-ENOENT);
3267 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3268 if (IS_ERR(inode))
3269 return ERR_CAST(inode);
3270 }
3271 return inode;
3272 }
3273
3274 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3275 struct nameidata *nd)
3276 {
3277 struct inode *inode;
3278
3279 if (dentry->d_name.len > BTRFS_NAME_LEN)
3280 return ERR_PTR(-ENAMETOOLONG);
3281
3282 inode = btrfs_lookup_dentry(dir, dentry);
3283 if (IS_ERR(inode))
3284 return ERR_CAST(inode);
3285
3286 return d_splice_alias(inode, dentry);
3287 }
3288
3289 static unsigned char btrfs_filetype_table[] = {
3290 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3291 };
3292
3293 static int btrfs_real_readdir(struct file *filp, void *dirent,
3294 filldir_t filldir)
3295 {
3296 struct inode *inode = filp->f_dentry->d_inode;
3297 struct btrfs_root *root = BTRFS_I(inode)->root;
3298 struct btrfs_item *item;
3299 struct btrfs_dir_item *di;
3300 struct btrfs_key key;
3301 struct btrfs_key found_key;
3302 struct btrfs_path *path;
3303 int ret;
3304 u32 nritems;
3305 struct extent_buffer *leaf;
3306 int slot;
3307 int advance;
3308 unsigned char d_type;
3309 int over = 0;
3310 u32 di_cur;
3311 u32 di_total;
3312 u32 di_len;
3313 int key_type = BTRFS_DIR_INDEX_KEY;
3314 char tmp_name[32];
3315 char *name_ptr;
3316 int name_len;
3317
3318 /* FIXME, use a real flag for deciding about the key type */
3319 if (root->fs_info->tree_root == root)
3320 key_type = BTRFS_DIR_ITEM_KEY;
3321
3322 /* special case for "." */
3323 if (filp->f_pos == 0) {
3324 over = filldir(dirent, ".", 1,
3325 1, inode->i_ino,
3326 DT_DIR);
3327 if (over)
3328 return 0;
3329 filp->f_pos = 1;
3330 }
3331 /* special case for .., just use the back ref */
3332 if (filp->f_pos == 1) {
3333 u64 pino = parent_ino(filp->f_path.dentry);
3334 over = filldir(dirent, "..", 2,
3335 2, pino, DT_DIR);
3336 if (over)
3337 return 0;
3338 filp->f_pos = 2;
3339 }
3340 path = btrfs_alloc_path();
3341 path->reada = 2;
3342
3343 btrfs_set_key_type(&key, key_type);
3344 key.offset = filp->f_pos;
3345 key.objectid = inode->i_ino;
3346
3347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348 if (ret < 0)
3349 goto err;
3350 advance = 0;
3351
3352 while (1) {
3353 leaf = path->nodes[0];
3354 nritems = btrfs_header_nritems(leaf);
3355 slot = path->slots[0];
3356 if (advance || slot >= nritems) {
3357 if (slot >= nritems - 1) {
3358 ret = btrfs_next_leaf(root, path);
3359 if (ret)
3360 break;
3361 leaf = path->nodes[0];
3362 nritems = btrfs_header_nritems(leaf);
3363 slot = path->slots[0];
3364 } else {
3365 slot++;
3366 path->slots[0]++;
3367 }
3368 }
3369
3370 advance = 1;
3371 item = btrfs_item_nr(leaf, slot);
3372 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3373
3374 if (found_key.objectid != key.objectid)
3375 break;
3376 if (btrfs_key_type(&found_key) != key_type)
3377 break;
3378 if (found_key.offset < filp->f_pos)
3379 continue;
3380
3381 filp->f_pos = found_key.offset;
3382
3383 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3384 di_cur = 0;
3385 di_total = btrfs_item_size(leaf, item);
3386
3387 while (di_cur < di_total) {
3388 struct btrfs_key location;
3389
3390 name_len = btrfs_dir_name_len(leaf, di);
3391 if (name_len <= sizeof(tmp_name)) {
3392 name_ptr = tmp_name;
3393 } else {
3394 name_ptr = kmalloc(name_len, GFP_NOFS);
3395 if (!name_ptr) {
3396 ret = -ENOMEM;
3397 goto err;
3398 }
3399 }
3400 read_extent_buffer(leaf, name_ptr,
3401 (unsigned long)(di + 1), name_len);
3402
3403 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3404 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3405
3406 /* is this a reference to our own snapshot? If so
3407 * skip it
3408 */
3409 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3410 location.objectid == root->root_key.objectid) {
3411 over = 0;
3412 goto skip;
3413 }
3414 over = filldir(dirent, name_ptr, name_len,
3415 found_key.offset, location.objectid,
3416 d_type);
3417
3418 skip:
3419 if (name_ptr != tmp_name)
3420 kfree(name_ptr);
3421
3422 if (over)
3423 goto nopos;
3424 di_len = btrfs_dir_name_len(leaf, di) +
3425 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3426 di_cur += di_len;
3427 di = (struct btrfs_dir_item *)((char *)di + di_len);
3428 }
3429 }
3430
3431 /* Reached end of directory/root. Bump pos past the last item. */
3432 if (key_type == BTRFS_DIR_INDEX_KEY)
3433 filp->f_pos = INT_LIMIT(off_t);
3434 else
3435 filp->f_pos++;
3436 nopos:
3437 ret = 0;
3438 err:
3439 btrfs_free_path(path);
3440 return ret;
3441 }
3442
3443 int btrfs_write_inode(struct inode *inode, int wait)
3444 {
3445 struct btrfs_root *root = BTRFS_I(inode)->root;
3446 struct btrfs_trans_handle *trans;
3447 int ret = 0;
3448
3449 if (root->fs_info->btree_inode == inode)
3450 return 0;
3451
3452 if (wait) {
3453 trans = btrfs_join_transaction(root, 1);
3454 btrfs_set_trans_block_group(trans, inode);
3455 ret = btrfs_commit_transaction(trans, root);
3456 }
3457 return ret;
3458 }
3459
3460 /*
3461 * This is somewhat expensive, updating the tree every time the
3462 * inode changes. But, it is most likely to find the inode in cache.
3463 * FIXME, needs more benchmarking...there are no reasons other than performance
3464 * to keep or drop this code.
3465 */
3466 void btrfs_dirty_inode(struct inode *inode)
3467 {
3468 struct btrfs_root *root = BTRFS_I(inode)->root;
3469 struct btrfs_trans_handle *trans;
3470
3471 trans = btrfs_join_transaction(root, 1);
3472 btrfs_set_trans_block_group(trans, inode);
3473 btrfs_update_inode(trans, root, inode);
3474 btrfs_end_transaction(trans, root);
3475 }
3476
3477 /*
3478 * find the highest existing sequence number in a directory
3479 * and then set the in-memory index_cnt variable to reflect
3480 * free sequence numbers
3481 */
3482 static int btrfs_set_inode_index_count(struct inode *inode)
3483 {
3484 struct btrfs_root *root = BTRFS_I(inode)->root;
3485 struct btrfs_key key, found_key;
3486 struct btrfs_path *path;
3487 struct extent_buffer *leaf;
3488 int ret;
3489
3490 key.objectid = inode->i_ino;
3491 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3492 key.offset = (u64)-1;
3493
3494 path = btrfs_alloc_path();
3495 if (!path)
3496 return -ENOMEM;
3497
3498 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3499 if (ret < 0)
3500 goto out;
3501 /* FIXME: we should be able to handle this */
3502 if (ret == 0)
3503 goto out;
3504 ret = 0;
3505
3506 /*
3507 * MAGIC NUMBER EXPLANATION:
3508 * since we search a directory based on f_pos we have to start at 2
3509 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3510 * else has to start at 2
3511 */
3512 if (path->slots[0] == 0) {
3513 BTRFS_I(inode)->index_cnt = 2;
3514 goto out;
3515 }
3516
3517 path->slots[0]--;
3518
3519 leaf = path->nodes[0];
3520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3521
3522 if (found_key.objectid != inode->i_ino ||
3523 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3524 BTRFS_I(inode)->index_cnt = 2;
3525 goto out;
3526 }
3527
3528 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3529 out:
3530 btrfs_free_path(path);
3531 return ret;
3532 }
3533
3534 /*
3535 * helper to find a free sequence number in a given directory. This current
3536 * code is very simple, later versions will do smarter things in the btree
3537 */
3538 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3539 {
3540 int ret = 0;
3541
3542 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3543 ret = btrfs_set_inode_index_count(dir);
3544 if (ret)
3545 return ret;
3546 }
3547
3548 *index = BTRFS_I(dir)->index_cnt;
3549 BTRFS_I(dir)->index_cnt++;
3550
3551 return ret;
3552 }
3553
3554 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3555 struct btrfs_root *root,
3556 struct inode *dir,
3557 const char *name, int name_len,
3558 u64 ref_objectid, u64 objectid,
3559 u64 alloc_hint, int mode, u64 *index)
3560 {
3561 struct inode *inode;
3562 struct btrfs_inode_item *inode_item;
3563 struct btrfs_key *location;
3564 struct btrfs_path *path;
3565 struct btrfs_inode_ref *ref;
3566 struct btrfs_key key[2];
3567 u32 sizes[2];
3568 unsigned long ptr;
3569 int ret;
3570 int owner;
3571
3572 path = btrfs_alloc_path();
3573 BUG_ON(!path);
3574
3575 inode = new_inode(root->fs_info->sb);
3576 if (!inode)
3577 return ERR_PTR(-ENOMEM);
3578
3579 if (dir) {
3580 ret = btrfs_set_inode_index(dir, index);
3581 if (ret) {
3582 iput(inode);
3583 return ERR_PTR(ret);
3584 }
3585 }
3586 /*
3587 * index_cnt is ignored for everything but a dir,
3588 * btrfs_get_inode_index_count has an explanation for the magic
3589 * number
3590 */
3591 init_btrfs_i(inode);
3592 BTRFS_I(inode)->index_cnt = 2;
3593 BTRFS_I(inode)->root = root;
3594 BTRFS_I(inode)->generation = trans->transid;
3595 btrfs_set_inode_space_info(root, inode);
3596
3597 if (mode & S_IFDIR)
3598 owner = 0;
3599 else
3600 owner = 1;
3601 BTRFS_I(inode)->block_group =
3602 btrfs_find_block_group(root, 0, alloc_hint, owner);
3603
3604 key[0].objectid = objectid;
3605 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3606 key[0].offset = 0;
3607
3608 key[1].objectid = objectid;
3609 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3610 key[1].offset = ref_objectid;
3611
3612 sizes[0] = sizeof(struct btrfs_inode_item);
3613 sizes[1] = name_len + sizeof(*ref);
3614
3615 path->leave_spinning = 1;
3616 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3617 if (ret != 0)
3618 goto fail;
3619
3620 if (objectid > root->highest_inode)
3621 root->highest_inode = objectid;
3622
3623 inode->i_uid = current_fsuid();
3624
3625 if (dir && (dir->i_mode & S_ISGID)) {
3626 inode->i_gid = dir->i_gid;
3627 if (S_ISDIR(mode))
3628 mode |= S_ISGID;
3629 } else
3630 inode->i_gid = current_fsgid();
3631
3632 inode->i_mode = mode;
3633 inode->i_ino = objectid;
3634 inode_set_bytes(inode, 0);
3635 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3636 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3637 struct btrfs_inode_item);
3638 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3639
3640 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3641 struct btrfs_inode_ref);
3642 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3643 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3644 ptr = (unsigned long)(ref + 1);
3645 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3646
3647 btrfs_mark_buffer_dirty(path->nodes[0]);
3648 btrfs_free_path(path);
3649
3650 location = &BTRFS_I(inode)->location;
3651 location->objectid = objectid;
3652 location->offset = 0;
3653 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3654
3655 btrfs_inherit_iflags(inode, dir);
3656
3657 if ((mode & S_IFREG)) {
3658 if (btrfs_test_opt(root, NODATASUM))
3659 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3660 if (btrfs_test_opt(root, NODATACOW))
3661 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3662 }
3663
3664 insert_inode_hash(inode);
3665 inode_tree_add(inode);
3666 return inode;
3667 fail:
3668 if (dir)
3669 BTRFS_I(dir)->index_cnt--;
3670 btrfs_free_path(path);
3671 iput(inode);
3672 return ERR_PTR(ret);
3673 }
3674
3675 static inline u8 btrfs_inode_type(struct inode *inode)
3676 {
3677 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3678 }
3679
3680 /*
3681 * utility function to add 'inode' into 'parent_inode' with
3682 * a give name and a given sequence number.
3683 * if 'add_backref' is true, also insert a backref from the
3684 * inode to the parent directory.
3685 */
3686 int btrfs_add_link(struct btrfs_trans_handle *trans,
3687 struct inode *parent_inode, struct inode *inode,
3688 const char *name, int name_len, int add_backref, u64 index)
3689 {
3690 int ret;
3691 struct btrfs_key key;
3692 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3693
3694 key.objectid = inode->i_ino;
3695 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3696 key.offset = 0;
3697
3698 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3699 parent_inode->i_ino,
3700 &key, btrfs_inode_type(inode),
3701 index);
3702 if (ret == 0) {
3703 if (add_backref) {
3704 ret = btrfs_insert_inode_ref(trans, root,
3705 name, name_len,
3706 inode->i_ino,
3707 parent_inode->i_ino,
3708 index);
3709 }
3710 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3711 name_len * 2);
3712 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3713 ret = btrfs_update_inode(trans, root, parent_inode);
3714 }
3715 return ret;
3716 }
3717
3718 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3719 struct dentry *dentry, struct inode *inode,
3720 int backref, u64 index)
3721 {
3722 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3723 inode, dentry->d_name.name,
3724 dentry->d_name.len, backref, index);
3725 if (!err) {
3726 d_instantiate(dentry, inode);
3727 return 0;
3728 }
3729 if (err > 0)
3730 err = -EEXIST;
3731 return err;
3732 }
3733
3734 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3735 int mode, dev_t rdev)
3736 {
3737 struct btrfs_trans_handle *trans;
3738 struct btrfs_root *root = BTRFS_I(dir)->root;
3739 struct inode *inode = NULL;
3740 int err;
3741 int drop_inode = 0;
3742 u64 objectid;
3743 unsigned long nr = 0;
3744 u64 index = 0;
3745
3746 if (!new_valid_dev(rdev))
3747 return -EINVAL;
3748
3749 err = btrfs_check_metadata_free_space(root);
3750 if (err)
3751 goto fail;
3752
3753 trans = btrfs_start_transaction(root, 1);
3754 btrfs_set_trans_block_group(trans, dir);
3755
3756 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3757 if (err) {
3758 err = -ENOSPC;
3759 goto out_unlock;
3760 }
3761
3762 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3763 dentry->d_name.len,
3764 dentry->d_parent->d_inode->i_ino, objectid,
3765 BTRFS_I(dir)->block_group, mode, &index);
3766 err = PTR_ERR(inode);
3767 if (IS_ERR(inode))
3768 goto out_unlock;
3769
3770 err = btrfs_init_inode_security(inode, dir);
3771 if (err) {
3772 drop_inode = 1;
3773 goto out_unlock;
3774 }
3775
3776 btrfs_set_trans_block_group(trans, inode);
3777 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3778 if (err)
3779 drop_inode = 1;
3780 else {
3781 inode->i_op = &btrfs_special_inode_operations;
3782 init_special_inode(inode, inode->i_mode, rdev);
3783 btrfs_update_inode(trans, root, inode);
3784 }
3785 dir->i_sb->s_dirt = 1;
3786 btrfs_update_inode_block_group(trans, inode);
3787 btrfs_update_inode_block_group(trans, dir);
3788 out_unlock:
3789 nr = trans->blocks_used;
3790 btrfs_end_transaction_throttle(trans, root);
3791 fail:
3792 if (drop_inode) {
3793 inode_dec_link_count(inode);
3794 iput(inode);
3795 }
3796 btrfs_btree_balance_dirty(root, nr);
3797 return err;
3798 }
3799
3800 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3801 int mode, struct nameidata *nd)
3802 {
3803 struct btrfs_trans_handle *trans;
3804 struct btrfs_root *root = BTRFS_I(dir)->root;
3805 struct inode *inode = NULL;
3806 int err;
3807 int drop_inode = 0;
3808 unsigned long nr = 0;
3809 u64 objectid;
3810 u64 index = 0;
3811
3812 err = btrfs_check_metadata_free_space(root);
3813 if (err)
3814 goto fail;
3815 trans = btrfs_start_transaction(root, 1);
3816 btrfs_set_trans_block_group(trans, dir);
3817
3818 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3819 if (err) {
3820 err = -ENOSPC;
3821 goto out_unlock;
3822 }
3823
3824 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3825 dentry->d_name.len,
3826 dentry->d_parent->d_inode->i_ino,
3827 objectid, BTRFS_I(dir)->block_group, mode,
3828 &index);
3829 err = PTR_ERR(inode);
3830 if (IS_ERR(inode))
3831 goto out_unlock;
3832
3833 err = btrfs_init_inode_security(inode, dir);
3834 if (err) {
3835 drop_inode = 1;
3836 goto out_unlock;
3837 }
3838
3839 btrfs_set_trans_block_group(trans, inode);
3840 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3841 if (err)
3842 drop_inode = 1;
3843 else {
3844 inode->i_mapping->a_ops = &btrfs_aops;
3845 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3846 inode->i_fop = &btrfs_file_operations;
3847 inode->i_op = &btrfs_file_inode_operations;
3848 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3849 }
3850 dir->i_sb->s_dirt = 1;
3851 btrfs_update_inode_block_group(trans, inode);
3852 btrfs_update_inode_block_group(trans, dir);
3853 out_unlock:
3854 nr = trans->blocks_used;
3855 btrfs_end_transaction_throttle(trans, root);
3856 fail:
3857 if (drop_inode) {
3858 inode_dec_link_count(inode);
3859 iput(inode);
3860 }
3861 btrfs_btree_balance_dirty(root, nr);
3862 return err;
3863 }
3864
3865 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3866 struct dentry *dentry)
3867 {
3868 struct btrfs_trans_handle *trans;
3869 struct btrfs_root *root = BTRFS_I(dir)->root;
3870 struct inode *inode = old_dentry->d_inode;
3871 u64 index;
3872 unsigned long nr = 0;
3873 int err;
3874 int drop_inode = 0;
3875
3876 if (inode->i_nlink == 0)
3877 return -ENOENT;
3878
3879 btrfs_inc_nlink(inode);
3880 err = btrfs_check_metadata_free_space(root);
3881 if (err)
3882 goto fail;
3883 err = btrfs_set_inode_index(dir, &index);
3884 if (err)
3885 goto fail;
3886
3887 trans = btrfs_start_transaction(root, 1);
3888
3889 btrfs_set_trans_block_group(trans, dir);
3890 atomic_inc(&inode->i_count);
3891
3892 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3893
3894 if (err)
3895 drop_inode = 1;
3896
3897 dir->i_sb->s_dirt = 1;
3898 btrfs_update_inode_block_group(trans, dir);
3899 err = btrfs_update_inode(trans, root, inode);
3900
3901 if (err)
3902 drop_inode = 1;
3903
3904 nr = trans->blocks_used;
3905
3906 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3907 btrfs_end_transaction_throttle(trans, root);
3908 fail:
3909 if (drop_inode) {
3910 inode_dec_link_count(inode);
3911 iput(inode);
3912 }
3913 btrfs_btree_balance_dirty(root, nr);
3914 return err;
3915 }
3916
3917 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3918 {
3919 struct inode *inode = NULL;
3920 struct btrfs_trans_handle *trans;
3921 struct btrfs_root *root = BTRFS_I(dir)->root;
3922 int err = 0;
3923 int drop_on_err = 0;
3924 u64 objectid = 0;
3925 u64 index = 0;
3926 unsigned long nr = 1;
3927
3928 err = btrfs_check_metadata_free_space(root);
3929 if (err)
3930 goto out_unlock;
3931
3932 trans = btrfs_start_transaction(root, 1);
3933 btrfs_set_trans_block_group(trans, dir);
3934
3935 if (IS_ERR(trans)) {
3936 err = PTR_ERR(trans);
3937 goto out_unlock;
3938 }
3939
3940 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3941 if (err) {
3942 err = -ENOSPC;
3943 goto out_unlock;
3944 }
3945
3946 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3947 dentry->d_name.len,
3948 dentry->d_parent->d_inode->i_ino, objectid,
3949 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3950 &index);
3951 if (IS_ERR(inode)) {
3952 err = PTR_ERR(inode);
3953 goto out_fail;
3954 }
3955
3956 drop_on_err = 1;
3957
3958 err = btrfs_init_inode_security(inode, dir);
3959 if (err)
3960 goto out_fail;
3961
3962 inode->i_op = &btrfs_dir_inode_operations;
3963 inode->i_fop = &btrfs_dir_file_operations;
3964 btrfs_set_trans_block_group(trans, inode);
3965
3966 btrfs_i_size_write(inode, 0);
3967 err = btrfs_update_inode(trans, root, inode);
3968 if (err)
3969 goto out_fail;
3970
3971 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3972 inode, dentry->d_name.name,
3973 dentry->d_name.len, 0, index);
3974 if (err)
3975 goto out_fail;
3976
3977 d_instantiate(dentry, inode);
3978 drop_on_err = 0;
3979 dir->i_sb->s_dirt = 1;
3980 btrfs_update_inode_block_group(trans, inode);
3981 btrfs_update_inode_block_group(trans, dir);
3982
3983 out_fail:
3984 nr = trans->blocks_used;
3985 btrfs_end_transaction_throttle(trans, root);
3986
3987 out_unlock:
3988 if (drop_on_err)
3989 iput(inode);
3990 btrfs_btree_balance_dirty(root, nr);
3991 return err;
3992 }
3993
3994 /* helper for btfs_get_extent. Given an existing extent in the tree,
3995 * and an extent that you want to insert, deal with overlap and insert
3996 * the new extent into the tree.
3997 */
3998 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3999 struct extent_map *existing,
4000 struct extent_map *em,
4001 u64 map_start, u64 map_len)
4002 {
4003 u64 start_diff;
4004
4005 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4006 start_diff = map_start - em->start;
4007 em->start = map_start;
4008 em->len = map_len;
4009 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4010 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4011 em->block_start += start_diff;
4012 em->block_len -= start_diff;
4013 }
4014 return add_extent_mapping(em_tree, em);
4015 }
4016
4017 static noinline int uncompress_inline(struct btrfs_path *path,
4018 struct inode *inode, struct page *page,
4019 size_t pg_offset, u64 extent_offset,
4020 struct btrfs_file_extent_item *item)
4021 {
4022 int ret;
4023 struct extent_buffer *leaf = path->nodes[0];
4024 char *tmp;
4025 size_t max_size;
4026 unsigned long inline_size;
4027 unsigned long ptr;
4028
4029 WARN_ON(pg_offset != 0);
4030 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4031 inline_size = btrfs_file_extent_inline_item_len(leaf,
4032 btrfs_item_nr(leaf, path->slots[0]));
4033 tmp = kmalloc(inline_size, GFP_NOFS);
4034 ptr = btrfs_file_extent_inline_start(item);
4035
4036 read_extent_buffer(leaf, tmp, ptr, inline_size);
4037
4038 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4039 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4040 inline_size, max_size);
4041 if (ret) {
4042 char *kaddr = kmap_atomic(page, KM_USER0);
4043 unsigned long copy_size = min_t(u64,
4044 PAGE_CACHE_SIZE - pg_offset,
4045 max_size - extent_offset);
4046 memset(kaddr + pg_offset, 0, copy_size);
4047 kunmap_atomic(kaddr, KM_USER0);
4048 }
4049 kfree(tmp);
4050 return 0;
4051 }
4052
4053 /*
4054 * a bit scary, this does extent mapping from logical file offset to the disk.
4055 * the ugly parts come from merging extents from the disk with the in-ram
4056 * representation. This gets more complex because of the data=ordered code,
4057 * where the in-ram extents might be locked pending data=ordered completion.
4058 *
4059 * This also copies inline extents directly into the page.
4060 */
4061
4062 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4063 size_t pg_offset, u64 start, u64 len,
4064 int create)
4065 {
4066 int ret;
4067 int err = 0;
4068 u64 bytenr;
4069 u64 extent_start = 0;
4070 u64 extent_end = 0;
4071 u64 objectid = inode->i_ino;
4072 u32 found_type;
4073 struct btrfs_path *path = NULL;
4074 struct btrfs_root *root = BTRFS_I(inode)->root;
4075 struct btrfs_file_extent_item *item;
4076 struct extent_buffer *leaf;
4077 struct btrfs_key found_key;
4078 struct extent_map *em = NULL;
4079 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4080 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4081 struct btrfs_trans_handle *trans = NULL;
4082 int compressed;
4083
4084 again:
4085 read_lock(&em_tree->lock);
4086 em = lookup_extent_mapping(em_tree, start, len);
4087 if (em)
4088 em->bdev = root->fs_info->fs_devices->latest_bdev;
4089 read_unlock(&em_tree->lock);
4090
4091 if (em) {
4092 if (em->start > start || em->start + em->len <= start)
4093 free_extent_map(em);
4094 else if (em->block_start == EXTENT_MAP_INLINE && page)
4095 free_extent_map(em);
4096 else
4097 goto out;
4098 }
4099 em = alloc_extent_map(GFP_NOFS);
4100 if (!em) {
4101 err = -ENOMEM;
4102 goto out;
4103 }
4104 em->bdev = root->fs_info->fs_devices->latest_bdev;
4105 em->start = EXTENT_MAP_HOLE;
4106 em->orig_start = EXTENT_MAP_HOLE;
4107 em->len = (u64)-1;
4108 em->block_len = (u64)-1;
4109
4110 if (!path) {
4111 path = btrfs_alloc_path();
4112 BUG_ON(!path);
4113 }
4114
4115 ret = btrfs_lookup_file_extent(trans, root, path,
4116 objectid, start, trans != NULL);
4117 if (ret < 0) {
4118 err = ret;
4119 goto out;
4120 }
4121
4122 if (ret != 0) {
4123 if (path->slots[0] == 0)
4124 goto not_found;
4125 path->slots[0]--;
4126 }
4127
4128 leaf = path->nodes[0];
4129 item = btrfs_item_ptr(leaf, path->slots[0],
4130 struct btrfs_file_extent_item);
4131 /* are we inside the extent that was found? */
4132 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4133 found_type = btrfs_key_type(&found_key);
4134 if (found_key.objectid != objectid ||
4135 found_type != BTRFS_EXTENT_DATA_KEY) {
4136 goto not_found;
4137 }
4138
4139 found_type = btrfs_file_extent_type(leaf, item);
4140 extent_start = found_key.offset;
4141 compressed = btrfs_file_extent_compression(leaf, item);
4142 if (found_type == BTRFS_FILE_EXTENT_REG ||
4143 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4144 extent_end = extent_start +
4145 btrfs_file_extent_num_bytes(leaf, item);
4146 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4147 size_t size;
4148 size = btrfs_file_extent_inline_len(leaf, item);
4149 extent_end = (extent_start + size + root->sectorsize - 1) &
4150 ~((u64)root->sectorsize - 1);
4151 }
4152
4153 if (start >= extent_end) {
4154 path->slots[0]++;
4155 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4156 ret = btrfs_next_leaf(root, path);
4157 if (ret < 0) {
4158 err = ret;
4159 goto out;
4160 }
4161 if (ret > 0)
4162 goto not_found;
4163 leaf = path->nodes[0];
4164 }
4165 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4166 if (found_key.objectid != objectid ||
4167 found_key.type != BTRFS_EXTENT_DATA_KEY)
4168 goto not_found;
4169 if (start + len <= found_key.offset)
4170 goto not_found;
4171 em->start = start;
4172 em->len = found_key.offset - start;
4173 goto not_found_em;
4174 }
4175
4176 if (found_type == BTRFS_FILE_EXTENT_REG ||
4177 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4178 em->start = extent_start;
4179 em->len = extent_end - extent_start;
4180 em->orig_start = extent_start -
4181 btrfs_file_extent_offset(leaf, item);
4182 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4183 if (bytenr == 0) {
4184 em->block_start = EXTENT_MAP_HOLE;
4185 goto insert;
4186 }
4187 if (compressed) {
4188 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4189 em->block_start = bytenr;
4190 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4191 item);
4192 } else {
4193 bytenr += btrfs_file_extent_offset(leaf, item);
4194 em->block_start = bytenr;
4195 em->block_len = em->len;
4196 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4197 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4198 }
4199 goto insert;
4200 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4201 unsigned long ptr;
4202 char *map;
4203 size_t size;
4204 size_t extent_offset;
4205 size_t copy_size;
4206
4207 em->block_start = EXTENT_MAP_INLINE;
4208 if (!page || create) {
4209 em->start = extent_start;
4210 em->len = extent_end - extent_start;
4211 goto out;
4212 }
4213
4214 size = btrfs_file_extent_inline_len(leaf, item);
4215 extent_offset = page_offset(page) + pg_offset - extent_start;
4216 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4217 size - extent_offset);
4218 em->start = extent_start + extent_offset;
4219 em->len = (copy_size + root->sectorsize - 1) &
4220 ~((u64)root->sectorsize - 1);
4221 em->orig_start = EXTENT_MAP_INLINE;
4222 if (compressed)
4223 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4224 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4225 if (create == 0 && !PageUptodate(page)) {
4226 if (btrfs_file_extent_compression(leaf, item) ==
4227 BTRFS_COMPRESS_ZLIB) {
4228 ret = uncompress_inline(path, inode, page,
4229 pg_offset,
4230 extent_offset, item);
4231 BUG_ON(ret);
4232 } else {
4233 map = kmap(page);
4234 read_extent_buffer(leaf, map + pg_offset, ptr,
4235 copy_size);
4236 kunmap(page);
4237 }
4238 flush_dcache_page(page);
4239 } else if (create && PageUptodate(page)) {
4240 if (!trans) {
4241 kunmap(page);
4242 free_extent_map(em);
4243 em = NULL;
4244 btrfs_release_path(root, path);
4245 trans = btrfs_join_transaction(root, 1);
4246 goto again;
4247 }
4248 map = kmap(page);
4249 write_extent_buffer(leaf, map + pg_offset, ptr,
4250 copy_size);
4251 kunmap(page);
4252 btrfs_mark_buffer_dirty(leaf);
4253 }
4254 set_extent_uptodate(io_tree, em->start,
4255 extent_map_end(em) - 1, GFP_NOFS);
4256 goto insert;
4257 } else {
4258 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4259 WARN_ON(1);
4260 }
4261 not_found:
4262 em->start = start;
4263 em->len = len;
4264 not_found_em:
4265 em->block_start = EXTENT_MAP_HOLE;
4266 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4267 insert:
4268 btrfs_release_path(root, path);
4269 if (em->start > start || extent_map_end(em) <= start) {
4270 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4271 "[%llu %llu]\n", (unsigned long long)em->start,
4272 (unsigned long long)em->len,
4273 (unsigned long long)start,
4274 (unsigned long long)len);
4275 err = -EIO;
4276 goto out;
4277 }
4278
4279 err = 0;
4280 write_lock(&em_tree->lock);
4281 ret = add_extent_mapping(em_tree, em);
4282 /* it is possible that someone inserted the extent into the tree
4283 * while we had the lock dropped. It is also possible that
4284 * an overlapping map exists in the tree
4285 */
4286 if (ret == -EEXIST) {
4287 struct extent_map *existing;
4288
4289 ret = 0;
4290
4291 existing = lookup_extent_mapping(em_tree, start, len);
4292 if (existing && (existing->start > start ||
4293 existing->start + existing->len <= start)) {
4294 free_extent_map(existing);
4295 existing = NULL;
4296 }
4297 if (!existing) {
4298 existing = lookup_extent_mapping(em_tree, em->start,
4299 em->len);
4300 if (existing) {
4301 err = merge_extent_mapping(em_tree, existing,
4302 em, start,
4303 root->sectorsize);
4304 free_extent_map(existing);
4305 if (err) {
4306 free_extent_map(em);
4307 em = NULL;
4308 }
4309 } else {
4310 err = -EIO;
4311 free_extent_map(em);
4312 em = NULL;
4313 }
4314 } else {
4315 free_extent_map(em);
4316 em = existing;
4317 err = 0;
4318 }
4319 }
4320 write_unlock(&em_tree->lock);
4321 out:
4322 if (path)
4323 btrfs_free_path(path);
4324 if (trans) {
4325 ret = btrfs_end_transaction(trans, root);
4326 if (!err)
4327 err = ret;
4328 }
4329 if (err) {
4330 free_extent_map(em);
4331 return ERR_PTR(err);
4332 }
4333 return em;
4334 }
4335
4336 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4337 const struct iovec *iov, loff_t offset,
4338 unsigned long nr_segs)
4339 {
4340 return -EINVAL;
4341 }
4342
4343 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4344 __u64 start, __u64 len)
4345 {
4346 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4347 }
4348
4349 int btrfs_readpage(struct file *file, struct page *page)
4350 {
4351 struct extent_io_tree *tree;
4352 tree = &BTRFS_I(page->mapping->host)->io_tree;
4353 return extent_read_full_page(tree, page, btrfs_get_extent);
4354 }
4355
4356 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4357 {
4358 struct extent_io_tree *tree;
4359
4360
4361 if (current->flags & PF_MEMALLOC) {
4362 redirty_page_for_writepage(wbc, page);
4363 unlock_page(page);
4364 return 0;
4365 }
4366 tree = &BTRFS_I(page->mapping->host)->io_tree;
4367 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4368 }
4369
4370 int btrfs_writepages(struct address_space *mapping,
4371 struct writeback_control *wbc)
4372 {
4373 struct extent_io_tree *tree;
4374
4375 tree = &BTRFS_I(mapping->host)->io_tree;
4376 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4377 }
4378
4379 static int
4380 btrfs_readpages(struct file *file, struct address_space *mapping,
4381 struct list_head *pages, unsigned nr_pages)
4382 {
4383 struct extent_io_tree *tree;
4384 tree = &BTRFS_I(mapping->host)->io_tree;
4385 return extent_readpages(tree, mapping, pages, nr_pages,
4386 btrfs_get_extent);
4387 }
4388 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4389 {
4390 struct extent_io_tree *tree;
4391 struct extent_map_tree *map;
4392 int ret;
4393
4394 tree = &BTRFS_I(page->mapping->host)->io_tree;
4395 map = &BTRFS_I(page->mapping->host)->extent_tree;
4396 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4397 if (ret == 1) {
4398 ClearPagePrivate(page);
4399 set_page_private(page, 0);
4400 page_cache_release(page);
4401 }
4402 return ret;
4403 }
4404
4405 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4406 {
4407 if (PageWriteback(page) || PageDirty(page))
4408 return 0;
4409 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4410 }
4411
4412 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4413 {
4414 struct extent_io_tree *tree;
4415 struct btrfs_ordered_extent *ordered;
4416 u64 page_start = page_offset(page);
4417 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4418
4419
4420 /*
4421 * we have the page locked, so new writeback can't start,
4422 * and the dirty bit won't be cleared while we are here.
4423 *
4424 * Wait for IO on this page so that we can safely clear
4425 * the PagePrivate2 bit and do ordered accounting
4426 */
4427 wait_on_page_writeback(page);
4428
4429 tree = &BTRFS_I(page->mapping->host)->io_tree;
4430 if (offset) {
4431 btrfs_releasepage(page, GFP_NOFS);
4432 return;
4433 }
4434 lock_extent(tree, page_start, page_end, GFP_NOFS);
4435 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4436 page_offset(page));
4437 if (ordered) {
4438 /*
4439 * IO on this page will never be started, so we need
4440 * to account for any ordered extents now
4441 */
4442 clear_extent_bit(tree, page_start, page_end,
4443 EXTENT_DIRTY | EXTENT_DELALLOC |
4444 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
4445 /*
4446 * whoever cleared the private bit is responsible
4447 * for the finish_ordered_io
4448 */
4449 if (TestClearPagePrivate2(page)) {
4450 btrfs_finish_ordered_io(page->mapping->host,
4451 page_start, page_end);
4452 }
4453 btrfs_put_ordered_extent(ordered);
4454 lock_extent(tree, page_start, page_end, GFP_NOFS);
4455 }
4456 clear_extent_bit(tree, page_start, page_end,
4457 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
4458 1, 1, NULL, GFP_NOFS);
4459 __btrfs_releasepage(page, GFP_NOFS);
4460
4461 ClearPageChecked(page);
4462 if (PagePrivate(page)) {
4463 ClearPagePrivate(page);
4464 set_page_private(page, 0);
4465 page_cache_release(page);
4466 }
4467 }
4468
4469 /*
4470 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4471 * called from a page fault handler when a page is first dirtied. Hence we must
4472 * be careful to check for EOF conditions here. We set the page up correctly
4473 * for a written page which means we get ENOSPC checking when writing into
4474 * holes and correct delalloc and unwritten extent mapping on filesystems that
4475 * support these features.
4476 *
4477 * We are not allowed to take the i_mutex here so we have to play games to
4478 * protect against truncate races as the page could now be beyond EOF. Because
4479 * vmtruncate() writes the inode size before removing pages, once we have the
4480 * page lock we can determine safely if the page is beyond EOF. If it is not
4481 * beyond EOF, then the page is guaranteed safe against truncation until we
4482 * unlock the page.
4483 */
4484 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4485 {
4486 struct page *page = vmf->page;
4487 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4488 struct btrfs_root *root = BTRFS_I(inode)->root;
4489 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4490 struct btrfs_ordered_extent *ordered;
4491 char *kaddr;
4492 unsigned long zero_start;
4493 loff_t size;
4494 int ret;
4495 u64 page_start;
4496 u64 page_end;
4497
4498 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4499 if (ret) {
4500 if (ret == -ENOMEM)
4501 ret = VM_FAULT_OOM;
4502 else /* -ENOSPC, -EIO, etc */
4503 ret = VM_FAULT_SIGBUS;
4504 goto out;
4505 }
4506
4507 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4508 again:
4509 lock_page(page);
4510 size = i_size_read(inode);
4511 page_start = page_offset(page);
4512 page_end = page_start + PAGE_CACHE_SIZE - 1;
4513
4514 if ((page->mapping != inode->i_mapping) ||
4515 (page_start >= size)) {
4516 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4517 /* page got truncated out from underneath us */
4518 goto out_unlock;
4519 }
4520 wait_on_page_writeback(page);
4521
4522 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4523 set_page_extent_mapped(page);
4524
4525 /*
4526 * we can't set the delalloc bits if there are pending ordered
4527 * extents. Drop our locks and wait for them to finish
4528 */
4529 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4530 if (ordered) {
4531 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4532 unlock_page(page);
4533 btrfs_start_ordered_extent(inode, ordered, 1);
4534 btrfs_put_ordered_extent(ordered);
4535 goto again;
4536 }
4537
4538 btrfs_set_extent_delalloc(inode, page_start, page_end);
4539 ret = 0;
4540
4541 /* page is wholly or partially inside EOF */
4542 if (page_start + PAGE_CACHE_SIZE > size)
4543 zero_start = size & ~PAGE_CACHE_MASK;
4544 else
4545 zero_start = PAGE_CACHE_SIZE;
4546
4547 if (zero_start != PAGE_CACHE_SIZE) {
4548 kaddr = kmap(page);
4549 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4550 flush_dcache_page(page);
4551 kunmap(page);
4552 }
4553 ClearPageChecked(page);
4554 set_page_dirty(page);
4555
4556 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4557 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4558
4559 out_unlock:
4560 unlock_page(page);
4561 out:
4562 return ret;
4563 }
4564
4565 static void btrfs_truncate(struct inode *inode)
4566 {
4567 struct btrfs_root *root = BTRFS_I(inode)->root;
4568 int ret;
4569 struct btrfs_trans_handle *trans;
4570 unsigned long nr;
4571 u64 mask = root->sectorsize - 1;
4572
4573 if (!S_ISREG(inode->i_mode))
4574 return;
4575 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4576 return;
4577
4578 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4579 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4580
4581 trans = btrfs_start_transaction(root, 1);
4582
4583 /*
4584 * setattr is responsible for setting the ordered_data_close flag,
4585 * but that is only tested during the last file release. That
4586 * could happen well after the next commit, leaving a great big
4587 * window where new writes may get lost if someone chooses to write
4588 * to this file after truncating to zero
4589 *
4590 * The inode doesn't have any dirty data here, and so if we commit
4591 * this is a noop. If someone immediately starts writing to the inode
4592 * it is very likely we'll catch some of their writes in this
4593 * transaction, and the commit will find this file on the ordered
4594 * data list with good things to send down.
4595 *
4596 * This is a best effort solution, there is still a window where
4597 * using truncate to replace the contents of the file will
4598 * end up with a zero length file after a crash.
4599 */
4600 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4601 btrfs_add_ordered_operation(trans, root, inode);
4602
4603 btrfs_set_trans_block_group(trans, inode);
4604 btrfs_i_size_write(inode, inode->i_size);
4605
4606 ret = btrfs_orphan_add(trans, inode);
4607 if (ret)
4608 goto out;
4609 /* FIXME, add redo link to tree so we don't leak on crash */
4610 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4611 BTRFS_EXTENT_DATA_KEY);
4612 btrfs_update_inode(trans, root, inode);
4613
4614 ret = btrfs_orphan_del(trans, inode);
4615 BUG_ON(ret);
4616
4617 out:
4618 nr = trans->blocks_used;
4619 ret = btrfs_end_transaction_throttle(trans, root);
4620 BUG_ON(ret);
4621 btrfs_btree_balance_dirty(root, nr);
4622 }
4623
4624 /*
4625 * create a new subvolume directory/inode (helper for the ioctl).
4626 */
4627 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4628 struct btrfs_root *new_root, struct dentry *dentry,
4629 u64 new_dirid, u64 alloc_hint)
4630 {
4631 struct inode *inode;
4632 int error;
4633 u64 index = 0;
4634
4635 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4636 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4637 if (IS_ERR(inode))
4638 return PTR_ERR(inode);
4639 inode->i_op = &btrfs_dir_inode_operations;
4640 inode->i_fop = &btrfs_dir_file_operations;
4641
4642 inode->i_nlink = 1;
4643 btrfs_i_size_write(inode, 0);
4644
4645 error = btrfs_update_inode(trans, new_root, inode);
4646 if (error)
4647 return error;
4648
4649 d_instantiate(dentry, inode);
4650 return 0;
4651 }
4652
4653 /* helper function for file defrag and space balancing. This
4654 * forces readahead on a given range of bytes in an inode
4655 */
4656 unsigned long btrfs_force_ra(struct address_space *mapping,
4657 struct file_ra_state *ra, struct file *file,
4658 pgoff_t offset, pgoff_t last_index)
4659 {
4660 pgoff_t req_size = last_index - offset + 1;
4661
4662 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4663 return offset + req_size;
4664 }
4665
4666 struct inode *btrfs_alloc_inode(struct super_block *sb)
4667 {
4668 struct btrfs_inode *ei;
4669
4670 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4671 if (!ei)
4672 return NULL;
4673 ei->last_trans = 0;
4674 ei->logged_trans = 0;
4675 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4676 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4677 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4678 INIT_LIST_HEAD(&ei->i_orphan);
4679 INIT_LIST_HEAD(&ei->ordered_operations);
4680 return &ei->vfs_inode;
4681 }
4682
4683 void btrfs_destroy_inode(struct inode *inode)
4684 {
4685 struct btrfs_ordered_extent *ordered;
4686 struct btrfs_root *root = BTRFS_I(inode)->root;
4687
4688 WARN_ON(!list_empty(&inode->i_dentry));
4689 WARN_ON(inode->i_data.nrpages);
4690
4691 if (BTRFS_I(inode)->i_acl &&
4692 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4693 posix_acl_release(BTRFS_I(inode)->i_acl);
4694 if (BTRFS_I(inode)->i_default_acl &&
4695 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4696 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4697
4698 /*
4699 * Make sure we're properly removed from the ordered operation
4700 * lists.
4701 */
4702 smp_mb();
4703 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4704 spin_lock(&root->fs_info->ordered_extent_lock);
4705 list_del_init(&BTRFS_I(inode)->ordered_operations);
4706 spin_unlock(&root->fs_info->ordered_extent_lock);
4707 }
4708
4709 spin_lock(&root->list_lock);
4710 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4711 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4712 " list\n", inode->i_ino);
4713 dump_stack();
4714 }
4715 spin_unlock(&root->list_lock);
4716
4717 while (1) {
4718 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4719 if (!ordered)
4720 break;
4721 else {
4722 printk(KERN_ERR "btrfs found ordered "
4723 "extent %llu %llu on inode cleanup\n",
4724 (unsigned long long)ordered->file_offset,
4725 (unsigned long long)ordered->len);
4726 btrfs_remove_ordered_extent(inode, ordered);
4727 btrfs_put_ordered_extent(ordered);
4728 btrfs_put_ordered_extent(ordered);
4729 }
4730 }
4731 inode_tree_del(inode);
4732 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4733 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4734 }
4735
4736 static void init_once(void *foo)
4737 {
4738 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4739
4740 inode_init_once(&ei->vfs_inode);
4741 }
4742
4743 void btrfs_destroy_cachep(void)
4744 {
4745 if (btrfs_inode_cachep)
4746 kmem_cache_destroy(btrfs_inode_cachep);
4747 if (btrfs_trans_handle_cachep)
4748 kmem_cache_destroy(btrfs_trans_handle_cachep);
4749 if (btrfs_transaction_cachep)
4750 kmem_cache_destroy(btrfs_transaction_cachep);
4751 if (btrfs_path_cachep)
4752 kmem_cache_destroy(btrfs_path_cachep);
4753 }
4754
4755 int btrfs_init_cachep(void)
4756 {
4757 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4758 sizeof(struct btrfs_inode), 0,
4759 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4760 if (!btrfs_inode_cachep)
4761 goto fail;
4762
4763 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4764 sizeof(struct btrfs_trans_handle), 0,
4765 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4766 if (!btrfs_trans_handle_cachep)
4767 goto fail;
4768
4769 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4770 sizeof(struct btrfs_transaction), 0,
4771 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4772 if (!btrfs_transaction_cachep)
4773 goto fail;
4774
4775 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4776 sizeof(struct btrfs_path), 0,
4777 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4778 if (!btrfs_path_cachep)
4779 goto fail;
4780
4781 return 0;
4782 fail:
4783 btrfs_destroy_cachep();
4784 return -ENOMEM;
4785 }
4786
4787 static int btrfs_getattr(struct vfsmount *mnt,
4788 struct dentry *dentry, struct kstat *stat)
4789 {
4790 struct inode *inode = dentry->d_inode;
4791 generic_fillattr(inode, stat);
4792 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4793 stat->blksize = PAGE_CACHE_SIZE;
4794 stat->blocks = (inode_get_bytes(inode) +
4795 BTRFS_I(inode)->delalloc_bytes) >> 9;
4796 return 0;
4797 }
4798
4799 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4800 struct inode *new_dir, struct dentry *new_dentry)
4801 {
4802 struct btrfs_trans_handle *trans;
4803 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4804 struct inode *new_inode = new_dentry->d_inode;
4805 struct inode *old_inode = old_dentry->d_inode;
4806 struct timespec ctime = CURRENT_TIME;
4807 u64 index = 0;
4808 int ret;
4809
4810 /* we're not allowed to rename between subvolumes */
4811 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4812 BTRFS_I(new_dir)->root->root_key.objectid)
4813 return -EXDEV;
4814
4815 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4816 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4817 return -ENOTEMPTY;
4818 }
4819
4820 /* to rename a snapshot or subvolume, we need to juggle the
4821 * backrefs. This isn't coded yet
4822 */
4823 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4824 return -EXDEV;
4825
4826 ret = btrfs_check_metadata_free_space(root);
4827 if (ret)
4828 goto out_unlock;
4829
4830 /*
4831 * we're using rename to replace one file with another.
4832 * and the replacement file is large. Start IO on it now so
4833 * we don't add too much work to the end of the transaction
4834 */
4835 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
4836 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4837 filemap_flush(old_inode->i_mapping);
4838
4839 trans = btrfs_start_transaction(root, 1);
4840
4841 /*
4842 * make sure the inode gets flushed if it is replacing
4843 * something.
4844 */
4845 if (new_inode && new_inode->i_size &&
4846 old_inode && S_ISREG(old_inode->i_mode)) {
4847 btrfs_add_ordered_operation(trans, root, old_inode);
4848 }
4849
4850 /*
4851 * this is an ugly little race, but the rename is required to make
4852 * sure that if we crash, the inode is either at the old name
4853 * or the new one. pinning the log transaction lets us make sure
4854 * we don't allow a log commit to come in after we unlink the
4855 * name but before we add the new name back in.
4856 */
4857 btrfs_pin_log_trans(root);
4858
4859 btrfs_set_trans_block_group(trans, new_dir);
4860
4861 btrfs_inc_nlink(old_dentry->d_inode);
4862 old_dir->i_ctime = old_dir->i_mtime = ctime;
4863 new_dir->i_ctime = new_dir->i_mtime = ctime;
4864 old_inode->i_ctime = ctime;
4865
4866 if (old_dentry->d_parent != new_dentry->d_parent)
4867 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4868
4869 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4870 old_dentry->d_name.name,
4871 old_dentry->d_name.len);
4872 if (ret)
4873 goto out_fail;
4874
4875 if (new_inode) {
4876 new_inode->i_ctime = CURRENT_TIME;
4877 ret = btrfs_unlink_inode(trans, root, new_dir,
4878 new_dentry->d_inode,
4879 new_dentry->d_name.name,
4880 new_dentry->d_name.len);
4881 if (ret)
4882 goto out_fail;
4883 if (new_inode->i_nlink == 0) {
4884 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4885 if (ret)
4886 goto out_fail;
4887 }
4888
4889 }
4890 ret = btrfs_set_inode_index(new_dir, &index);
4891 if (ret)
4892 goto out_fail;
4893
4894 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4895 old_inode, new_dentry->d_name.name,
4896 new_dentry->d_name.len, 1, index);
4897 if (ret)
4898 goto out_fail;
4899
4900 btrfs_log_new_name(trans, old_inode, old_dir,
4901 new_dentry->d_parent);
4902 out_fail:
4903
4904 /* this btrfs_end_log_trans just allows the current
4905 * log-sub transaction to complete
4906 */
4907 btrfs_end_log_trans(root);
4908 btrfs_end_transaction_throttle(trans, root);
4909 out_unlock:
4910 return ret;
4911 }
4912
4913 /*
4914 * some fairly slow code that needs optimization. This walks the list
4915 * of all the inodes with pending delalloc and forces them to disk.
4916 */
4917 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4918 {
4919 struct list_head *head = &root->fs_info->delalloc_inodes;
4920 struct btrfs_inode *binode;
4921 struct inode *inode;
4922
4923 if (root->fs_info->sb->s_flags & MS_RDONLY)
4924 return -EROFS;
4925
4926 spin_lock(&root->fs_info->delalloc_lock);
4927 while (!list_empty(head)) {
4928 binode = list_entry(head->next, struct btrfs_inode,
4929 delalloc_inodes);
4930 inode = igrab(&binode->vfs_inode);
4931 if (!inode)
4932 list_del_init(&binode->delalloc_inodes);
4933 spin_unlock(&root->fs_info->delalloc_lock);
4934 if (inode) {
4935 filemap_flush(inode->i_mapping);
4936 iput(inode);
4937 }
4938 cond_resched();
4939 spin_lock(&root->fs_info->delalloc_lock);
4940 }
4941 spin_unlock(&root->fs_info->delalloc_lock);
4942
4943 /* the filemap_flush will queue IO into the worker threads, but
4944 * we have to make sure the IO is actually started and that
4945 * ordered extents get created before we return
4946 */
4947 atomic_inc(&root->fs_info->async_submit_draining);
4948 while (atomic_read(&root->fs_info->nr_async_submits) ||
4949 atomic_read(&root->fs_info->async_delalloc_pages)) {
4950 wait_event(root->fs_info->async_submit_wait,
4951 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4952 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4953 }
4954 atomic_dec(&root->fs_info->async_submit_draining);
4955 return 0;
4956 }
4957
4958 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4959 const char *symname)
4960 {
4961 struct btrfs_trans_handle *trans;
4962 struct btrfs_root *root = BTRFS_I(dir)->root;
4963 struct btrfs_path *path;
4964 struct btrfs_key key;
4965 struct inode *inode = NULL;
4966 int err;
4967 int drop_inode = 0;
4968 u64 objectid;
4969 u64 index = 0 ;
4970 int name_len;
4971 int datasize;
4972 unsigned long ptr;
4973 struct btrfs_file_extent_item *ei;
4974 struct extent_buffer *leaf;
4975 unsigned long nr = 0;
4976
4977 name_len = strlen(symname) + 1;
4978 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4979 return -ENAMETOOLONG;
4980
4981 err = btrfs_check_metadata_free_space(root);
4982 if (err)
4983 goto out_fail;
4984
4985 trans = btrfs_start_transaction(root, 1);
4986 btrfs_set_trans_block_group(trans, dir);
4987
4988 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4989 if (err) {
4990 err = -ENOSPC;
4991 goto out_unlock;
4992 }
4993
4994 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4995 dentry->d_name.len,
4996 dentry->d_parent->d_inode->i_ino, objectid,
4997 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4998 &index);
4999 err = PTR_ERR(inode);
5000 if (IS_ERR(inode))
5001 goto out_unlock;
5002
5003 err = btrfs_init_inode_security(inode, dir);
5004 if (err) {
5005 drop_inode = 1;
5006 goto out_unlock;
5007 }
5008
5009 btrfs_set_trans_block_group(trans, inode);
5010 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5011 if (err)
5012 drop_inode = 1;
5013 else {
5014 inode->i_mapping->a_ops = &btrfs_aops;
5015 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5016 inode->i_fop = &btrfs_file_operations;
5017 inode->i_op = &btrfs_file_inode_operations;
5018 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5019 }
5020 dir->i_sb->s_dirt = 1;
5021 btrfs_update_inode_block_group(trans, inode);
5022 btrfs_update_inode_block_group(trans, dir);
5023 if (drop_inode)
5024 goto out_unlock;
5025
5026 path = btrfs_alloc_path();
5027 BUG_ON(!path);
5028 key.objectid = inode->i_ino;
5029 key.offset = 0;
5030 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5031 datasize = btrfs_file_extent_calc_inline_size(name_len);
5032 err = btrfs_insert_empty_item(trans, root, path, &key,
5033 datasize);
5034 if (err) {
5035 drop_inode = 1;
5036 goto out_unlock;
5037 }
5038 leaf = path->nodes[0];
5039 ei = btrfs_item_ptr(leaf, path->slots[0],
5040 struct btrfs_file_extent_item);
5041 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5042 btrfs_set_file_extent_type(leaf, ei,
5043 BTRFS_FILE_EXTENT_INLINE);
5044 btrfs_set_file_extent_encryption(leaf, ei, 0);
5045 btrfs_set_file_extent_compression(leaf, ei, 0);
5046 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5047 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5048
5049 ptr = btrfs_file_extent_inline_start(ei);
5050 write_extent_buffer(leaf, symname, ptr, name_len);
5051 btrfs_mark_buffer_dirty(leaf);
5052 btrfs_free_path(path);
5053
5054 inode->i_op = &btrfs_symlink_inode_operations;
5055 inode->i_mapping->a_ops = &btrfs_symlink_aops;
5056 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5057 inode_set_bytes(inode, name_len);
5058 btrfs_i_size_write(inode, name_len - 1);
5059 err = btrfs_update_inode(trans, root, inode);
5060 if (err)
5061 drop_inode = 1;
5062
5063 out_unlock:
5064 nr = trans->blocks_used;
5065 btrfs_end_transaction_throttle(trans, root);
5066 out_fail:
5067 if (drop_inode) {
5068 inode_dec_link_count(inode);
5069 iput(inode);
5070 }
5071 btrfs_btree_balance_dirty(root, nr);
5072 return err;
5073 }
5074
5075 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5076 struct inode *inode, u64 start, u64 end,
5077 u64 locked_end, u64 alloc_hint, int mode)
5078 {
5079 struct btrfs_root *root = BTRFS_I(inode)->root;
5080 struct btrfs_key ins;
5081 u64 alloc_size;
5082 u64 cur_offset = start;
5083 u64 num_bytes = end - start;
5084 int ret = 0;
5085
5086 while (num_bytes > 0) {
5087 alloc_size = min(num_bytes, root->fs_info->max_extent);
5088 ret = btrfs_reserve_extent(trans, root, alloc_size,
5089 root->sectorsize, 0, alloc_hint,
5090 (u64)-1, &ins, 1);
5091 if (ret) {
5092 WARN_ON(1);
5093 goto out;
5094 }
5095 ret = insert_reserved_file_extent(trans, inode,
5096 cur_offset, ins.objectid,
5097 ins.offset, ins.offset,
5098 ins.offset, locked_end,
5099 0, 0, 0,
5100 BTRFS_FILE_EXTENT_PREALLOC);
5101 BUG_ON(ret);
5102 btrfs_drop_extent_cache(inode, cur_offset,
5103 cur_offset + ins.offset -1, 0);
5104 num_bytes -= ins.offset;
5105 cur_offset += ins.offset;
5106 alloc_hint = ins.objectid + ins.offset;
5107 }
5108 out:
5109 if (cur_offset > start) {
5110 inode->i_ctime = CURRENT_TIME;
5111 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5112 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5113 cur_offset > i_size_read(inode))
5114 btrfs_i_size_write(inode, cur_offset);
5115 ret = btrfs_update_inode(trans, root, inode);
5116 BUG_ON(ret);
5117 }
5118
5119 return ret;
5120 }
5121
5122 static long btrfs_fallocate(struct inode *inode, int mode,
5123 loff_t offset, loff_t len)
5124 {
5125 u64 cur_offset;
5126 u64 last_byte;
5127 u64 alloc_start;
5128 u64 alloc_end;
5129 u64 alloc_hint = 0;
5130 u64 locked_end;
5131 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5132 struct extent_map *em;
5133 struct btrfs_trans_handle *trans;
5134 struct btrfs_root *root;
5135 int ret;
5136
5137 alloc_start = offset & ~mask;
5138 alloc_end = (offset + len + mask) & ~mask;
5139
5140 /*
5141 * wait for ordered IO before we have any locks. We'll loop again
5142 * below with the locks held.
5143 */
5144 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5145
5146 mutex_lock(&inode->i_mutex);
5147 if (alloc_start > inode->i_size) {
5148 ret = btrfs_cont_expand(inode, alloc_start);
5149 if (ret)
5150 goto out;
5151 }
5152
5153 root = BTRFS_I(inode)->root;
5154
5155 ret = btrfs_check_data_free_space(root, inode,
5156 alloc_end - alloc_start);
5157 if (ret)
5158 goto out;
5159
5160 locked_end = alloc_end - 1;
5161 while (1) {
5162 struct btrfs_ordered_extent *ordered;
5163
5164 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5165 if (!trans) {
5166 ret = -EIO;
5167 goto out_free;
5168 }
5169
5170 /* the extent lock is ordered inside the running
5171 * transaction
5172 */
5173 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5174 GFP_NOFS);
5175 ordered = btrfs_lookup_first_ordered_extent(inode,
5176 alloc_end - 1);
5177 if (ordered &&
5178 ordered->file_offset + ordered->len > alloc_start &&
5179 ordered->file_offset < alloc_end) {
5180 btrfs_put_ordered_extent(ordered);
5181 unlock_extent(&BTRFS_I(inode)->io_tree,
5182 alloc_start, locked_end, GFP_NOFS);
5183 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5184
5185 /*
5186 * we can't wait on the range with the transaction
5187 * running or with the extent lock held
5188 */
5189 btrfs_wait_ordered_range(inode, alloc_start,
5190 alloc_end - alloc_start);
5191 } else {
5192 if (ordered)
5193 btrfs_put_ordered_extent(ordered);
5194 break;
5195 }
5196 }
5197
5198 cur_offset = alloc_start;
5199 while (1) {
5200 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5201 alloc_end - cur_offset, 0);
5202 BUG_ON(IS_ERR(em) || !em);
5203 last_byte = min(extent_map_end(em), alloc_end);
5204 last_byte = (last_byte + mask) & ~mask;
5205 if (em->block_start == EXTENT_MAP_HOLE) {
5206 ret = prealloc_file_range(trans, inode, cur_offset,
5207 last_byte, locked_end + 1,
5208 alloc_hint, mode);
5209 if (ret < 0) {
5210 free_extent_map(em);
5211 break;
5212 }
5213 }
5214 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5215 alloc_hint = em->block_start;
5216 free_extent_map(em);
5217
5218 cur_offset = last_byte;
5219 if (cur_offset >= alloc_end) {
5220 ret = 0;
5221 break;
5222 }
5223 }
5224 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5225 GFP_NOFS);
5226
5227 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5228 out_free:
5229 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5230 out:
5231 mutex_unlock(&inode->i_mutex);
5232 return ret;
5233 }
5234
5235 static int btrfs_set_page_dirty(struct page *page)
5236 {
5237 return __set_page_dirty_nobuffers(page);
5238 }
5239
5240 static int btrfs_permission(struct inode *inode, int mask)
5241 {
5242 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5243 return -EACCES;
5244 return generic_permission(inode, mask, btrfs_check_acl);
5245 }
5246
5247 static struct inode_operations btrfs_dir_inode_operations = {
5248 .getattr = btrfs_getattr,
5249 .lookup = btrfs_lookup,
5250 .create = btrfs_create,
5251 .unlink = btrfs_unlink,
5252 .link = btrfs_link,
5253 .mkdir = btrfs_mkdir,
5254 .rmdir = btrfs_rmdir,
5255 .rename = btrfs_rename,
5256 .symlink = btrfs_symlink,
5257 .setattr = btrfs_setattr,
5258 .mknod = btrfs_mknod,
5259 .setxattr = btrfs_setxattr,
5260 .getxattr = btrfs_getxattr,
5261 .listxattr = btrfs_listxattr,
5262 .removexattr = btrfs_removexattr,
5263 .permission = btrfs_permission,
5264 };
5265 static struct inode_operations btrfs_dir_ro_inode_operations = {
5266 .lookup = btrfs_lookup,
5267 .permission = btrfs_permission,
5268 };
5269 static struct file_operations btrfs_dir_file_operations = {
5270 .llseek = generic_file_llseek,
5271 .read = generic_read_dir,
5272 .readdir = btrfs_real_readdir,
5273 .unlocked_ioctl = btrfs_ioctl,
5274 #ifdef CONFIG_COMPAT
5275 .compat_ioctl = btrfs_ioctl,
5276 #endif
5277 .release = btrfs_release_file,
5278 .fsync = btrfs_sync_file,
5279 };
5280
5281 static struct extent_io_ops btrfs_extent_io_ops = {
5282 .fill_delalloc = run_delalloc_range,
5283 .submit_bio_hook = btrfs_submit_bio_hook,
5284 .merge_bio_hook = btrfs_merge_bio_hook,
5285 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5286 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5287 .writepage_start_hook = btrfs_writepage_start_hook,
5288 .readpage_io_failed_hook = btrfs_io_failed_hook,
5289 .set_bit_hook = btrfs_set_bit_hook,
5290 .clear_bit_hook = btrfs_clear_bit_hook,
5291 };
5292
5293 /*
5294 * btrfs doesn't support the bmap operation because swapfiles
5295 * use bmap to make a mapping of extents in the file. They assume
5296 * these extents won't change over the life of the file and they
5297 * use the bmap result to do IO directly to the drive.
5298 *
5299 * the btrfs bmap call would return logical addresses that aren't
5300 * suitable for IO and they also will change frequently as COW
5301 * operations happen. So, swapfile + btrfs == corruption.
5302 *
5303 * For now we're avoiding this by dropping bmap.
5304 */
5305 static struct address_space_operations btrfs_aops = {
5306 .readpage = btrfs_readpage,
5307 .writepage = btrfs_writepage,
5308 .writepages = btrfs_writepages,
5309 .readpages = btrfs_readpages,
5310 .sync_page = block_sync_page,
5311 .direct_IO = btrfs_direct_IO,
5312 .invalidatepage = btrfs_invalidatepage,
5313 .releasepage = btrfs_releasepage,
5314 .set_page_dirty = btrfs_set_page_dirty,
5315 };
5316
5317 static struct address_space_operations btrfs_symlink_aops = {
5318 .readpage = btrfs_readpage,
5319 .writepage = btrfs_writepage,
5320 .invalidatepage = btrfs_invalidatepage,
5321 .releasepage = btrfs_releasepage,
5322 };
5323
5324 static struct inode_operations btrfs_file_inode_operations = {
5325 .truncate = btrfs_truncate,
5326 .getattr = btrfs_getattr,
5327 .setattr = btrfs_setattr,
5328 .setxattr = btrfs_setxattr,
5329 .getxattr = btrfs_getxattr,
5330 .listxattr = btrfs_listxattr,
5331 .removexattr = btrfs_removexattr,
5332 .permission = btrfs_permission,
5333 .fallocate = btrfs_fallocate,
5334 .fiemap = btrfs_fiemap,
5335 };
5336 static struct inode_operations btrfs_special_inode_operations = {
5337 .getattr = btrfs_getattr,
5338 .setattr = btrfs_setattr,
5339 .permission = btrfs_permission,
5340 .setxattr = btrfs_setxattr,
5341 .getxattr = btrfs_getxattr,
5342 .listxattr = btrfs_listxattr,
5343 .removexattr = btrfs_removexattr,
5344 };
5345 static struct inode_operations btrfs_symlink_inode_operations = {
5346 .readlink = generic_readlink,
5347 .follow_link = page_follow_link_light,
5348 .put_link = page_put_link,
5349 .permission = btrfs_permission,
5350 .setxattr = btrfs_setxattr,
5351 .getxattr = btrfs_getxattr,
5352 .listxattr = btrfs_listxattr,
5353 .removexattr = btrfs_removexattr,
5354 };
This page took 0.209114 seconds and 6 git commands to generate.