Btrfs: Count space allocated to file in bytes
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "compat.h"
50 #include "tree-log.h"
51
52 struct btrfs_iget_args {
53 u64 ino;
54 struct btrfs_root *root;
55 };
56
57 static struct inode_operations btrfs_dir_inode_operations;
58 static struct inode_operations btrfs_symlink_inode_operations;
59 static struct inode_operations btrfs_dir_ro_inode_operations;
60 static struct inode_operations btrfs_special_inode_operations;
61 static struct inode_operations btrfs_file_inode_operations;
62 static struct address_space_operations btrfs_aops;
63 static struct address_space_operations btrfs_symlink_aops;
64 static struct file_operations btrfs_dir_file_operations;
65 static struct extent_io_ops btrfs_extent_io_ops;
66
67 static struct kmem_cache *btrfs_inode_cachep;
68 struct kmem_cache *btrfs_trans_handle_cachep;
69 struct kmem_cache *btrfs_transaction_cachep;
70 struct kmem_cache *btrfs_bit_radix_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85
86 /*
87 * a very lame attempt at stopping writes when the FS is 85% full. There
88 * are countless ways this is incorrect, but it is better than nothing.
89 */
90 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
91 int for_del)
92 {
93 u64 total;
94 u64 used;
95 u64 thresh;
96 unsigned long flags;
97 int ret = 0;
98
99 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
100 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
101 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
102 if (for_del)
103 thresh = total * 90;
104 else
105 thresh = total * 85;
106
107 do_div(thresh, 100);
108
109 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
110 ret = -ENOSPC;
111 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
112 return ret;
113 }
114
115 /*
116 * when extent_io.c finds a delayed allocation range in the file,
117 * the call backs end up in this code. The basic idea is to
118 * allocate extents on disk for the range, and create ordered data structs
119 * in ram to track those extents.
120 */
121 static int cow_file_range(struct inode *inode, u64 start, u64 end)
122 {
123 struct btrfs_root *root = BTRFS_I(inode)->root;
124 struct btrfs_trans_handle *trans;
125 u64 alloc_hint = 0;
126 u64 num_bytes;
127 u64 cur_alloc_size;
128 u64 blocksize = root->sectorsize;
129 u64 orig_num_bytes;
130 struct btrfs_key ins;
131 struct extent_map *em;
132 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
133 int ret = 0;
134
135 trans = btrfs_join_transaction(root, 1);
136 BUG_ON(!trans);
137 btrfs_set_trans_block_group(trans, inode);
138
139 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
140 num_bytes = max(blocksize, num_bytes);
141 orig_num_bytes = num_bytes;
142
143 if (alloc_hint == EXTENT_MAP_INLINE)
144 goto out;
145
146 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
147 mutex_lock(&BTRFS_I(inode)->extent_mutex);
148 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
149 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
150
151 while(num_bytes > 0) {
152 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
153 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
154 root->sectorsize, 0, alloc_hint,
155 (u64)-1, &ins, 1);
156 if (ret) {
157 WARN_ON(1);
158 goto out;
159 }
160 em = alloc_extent_map(GFP_NOFS);
161 em->start = start;
162 em->len = ins.offset;
163 em->block_start = ins.objectid;
164 em->bdev = root->fs_info->fs_devices->latest_bdev;
165 mutex_lock(&BTRFS_I(inode)->extent_mutex);
166 set_bit(EXTENT_FLAG_PINNED, &em->flags);
167 while(1) {
168 spin_lock(&em_tree->lock);
169 ret = add_extent_mapping(em_tree, em);
170 spin_unlock(&em_tree->lock);
171 if (ret != -EEXIST) {
172 free_extent_map(em);
173 break;
174 }
175 btrfs_drop_extent_cache(inode, start,
176 start + ins.offset - 1, 0);
177 }
178 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
179
180 cur_alloc_size = ins.offset;
181 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
182 ins.offset, 0);
183 BUG_ON(ret);
184 if (num_bytes < cur_alloc_size) {
185 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
186 cur_alloc_size);
187 break;
188 }
189 num_bytes -= cur_alloc_size;
190 alloc_hint = ins.objectid + ins.offset;
191 start += cur_alloc_size;
192 }
193 out:
194 btrfs_end_transaction(trans, root);
195 return ret;
196 }
197
198 /*
199 * when nowcow writeback call back. This checks for snapshots or COW copies
200 * of the extents that exist in the file, and COWs the file as required.
201 *
202 * If no cow copies or snapshots exist, we write directly to the existing
203 * blocks on disk
204 */
205 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
206 {
207 u64 extent_start;
208 u64 extent_end;
209 u64 bytenr;
210 u64 loops = 0;
211 u64 total_fs_bytes;
212 struct btrfs_root *root = BTRFS_I(inode)->root;
213 struct btrfs_block_group_cache *block_group;
214 struct btrfs_trans_handle *trans;
215 struct extent_buffer *leaf;
216 int found_type;
217 struct btrfs_path *path;
218 struct btrfs_file_extent_item *item;
219 int ret;
220 int err = 0;
221 struct btrfs_key found_key;
222
223 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
224 path = btrfs_alloc_path();
225 BUG_ON(!path);
226 trans = btrfs_join_transaction(root, 1);
227 BUG_ON(!trans);
228 again:
229 ret = btrfs_lookup_file_extent(NULL, root, path,
230 inode->i_ino, start, 0);
231 if (ret < 0) {
232 err = ret;
233 goto out;
234 }
235
236 if (ret != 0) {
237 if (path->slots[0] == 0)
238 goto not_found;
239 path->slots[0]--;
240 }
241
242 leaf = path->nodes[0];
243 item = btrfs_item_ptr(leaf, path->slots[0],
244 struct btrfs_file_extent_item);
245
246 /* are we inside the extent that was found? */
247 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
248 found_type = btrfs_key_type(&found_key);
249 if (found_key.objectid != inode->i_ino ||
250 found_type != BTRFS_EXTENT_DATA_KEY)
251 goto not_found;
252
253 found_type = btrfs_file_extent_type(leaf, item);
254 extent_start = found_key.offset;
255 if (found_type == BTRFS_FILE_EXTENT_REG) {
256 u64 extent_num_bytes;
257
258 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
259 extent_end = extent_start + extent_num_bytes;
260 err = 0;
261
262 if (loops && start != extent_start)
263 goto not_found;
264
265 if (start < extent_start || start >= extent_end)
266 goto not_found;
267
268 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
269 if (bytenr == 0)
270 goto not_found;
271
272 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
273 goto not_found;
274 /*
275 * we may be called by the resizer, make sure we're inside
276 * the limits of the FS
277 */
278 block_group = btrfs_lookup_block_group(root->fs_info,
279 bytenr);
280 if (!block_group || block_group->ro)
281 goto not_found;
282
283 bytenr += btrfs_file_extent_offset(leaf, item);
284 extent_num_bytes = min(end + 1, extent_end) - start;
285 ret = btrfs_add_ordered_extent(inode, start, bytenr,
286 extent_num_bytes, 1);
287 if (ret) {
288 err = ret;
289 goto out;
290 }
291
292 btrfs_release_path(root, path);
293 start = extent_end;
294 if (start <= end) {
295 loops++;
296 goto again;
297 }
298 } else {
299 not_found:
300 btrfs_end_transaction(trans, root);
301 btrfs_free_path(path);
302 return cow_file_range(inode, start, end);
303 }
304 out:
305 WARN_ON(err);
306 btrfs_end_transaction(trans, root);
307 btrfs_free_path(path);
308 return err;
309 }
310
311 /*
312 * extent_io.c call back to do delayed allocation processing
313 */
314 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
315 {
316 struct btrfs_root *root = BTRFS_I(inode)->root;
317 int ret;
318
319 if (btrfs_test_opt(root, NODATACOW) ||
320 btrfs_test_flag(inode, NODATACOW))
321 ret = run_delalloc_nocow(inode, start, end);
322 else
323 ret = cow_file_range(inode, start, end);
324
325 return ret;
326 }
327
328 /*
329 * extent_io.c set_bit_hook, used to track delayed allocation
330 * bytes in this file, and to maintain the list of inodes that
331 * have pending delalloc work to be done.
332 */
333 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
334 unsigned long old, unsigned long bits)
335 {
336 unsigned long flags;
337 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
338 struct btrfs_root *root = BTRFS_I(inode)->root;
339 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
340 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
341 root->fs_info->delalloc_bytes += end - start + 1;
342 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
343 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
344 &root->fs_info->delalloc_inodes);
345 }
346 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
347 }
348 return 0;
349 }
350
351 /*
352 * extent_io.c clear_bit_hook, see set_bit_hook for why
353 */
354 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
355 unsigned long old, unsigned long bits)
356 {
357 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
358 struct btrfs_root *root = BTRFS_I(inode)->root;
359 unsigned long flags;
360
361 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
362 if (end - start + 1 > root->fs_info->delalloc_bytes) {
363 printk("warning: delalloc account %Lu %Lu\n",
364 end - start + 1, root->fs_info->delalloc_bytes);
365 root->fs_info->delalloc_bytes = 0;
366 BTRFS_I(inode)->delalloc_bytes = 0;
367 } else {
368 root->fs_info->delalloc_bytes -= end - start + 1;
369 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
370 }
371 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
372 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
373 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
374 }
375 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
376 }
377 return 0;
378 }
379
380 /*
381 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
382 * we don't create bios that span stripes or chunks
383 */
384 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
385 size_t size, struct bio *bio)
386 {
387 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
388 struct btrfs_mapping_tree *map_tree;
389 u64 logical = (u64)bio->bi_sector << 9;
390 u64 length = 0;
391 u64 map_length;
392 int ret;
393
394 length = bio->bi_size;
395 map_tree = &root->fs_info->mapping_tree;
396 map_length = length;
397 ret = btrfs_map_block(map_tree, READ, logical,
398 &map_length, NULL, 0);
399
400 if (map_length < length + size) {
401 return 1;
402 }
403 return 0;
404 }
405
406 /*
407 * in order to insert checksums into the metadata in large chunks,
408 * we wait until bio submission time. All the pages in the bio are
409 * checksummed and sums are attached onto the ordered extent record.
410 *
411 * At IO completion time the cums attached on the ordered extent record
412 * are inserted into the btree
413 */
414 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
415 int mirror_num)
416 {
417 struct btrfs_root *root = BTRFS_I(inode)->root;
418 int ret = 0;
419
420 ret = btrfs_csum_one_bio(root, inode, bio);
421 BUG_ON(ret);
422
423 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
424 }
425
426 /*
427 * extent_io.c submission hook. This does the right thing for csum calculation on write,
428 * or reading the csums from the tree before a read
429 */
430 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
431 int mirror_num)
432 {
433 struct btrfs_root *root = BTRFS_I(inode)->root;
434 int ret = 0;
435
436 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
437 BUG_ON(ret);
438
439 if (btrfs_test_opt(root, NODATASUM) ||
440 btrfs_test_flag(inode, NODATASUM)) {
441 goto mapit;
442 }
443
444 if (!(rw & (1 << BIO_RW))) {
445 btrfs_lookup_bio_sums(root, inode, bio);
446 goto mapit;
447 }
448 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
449 inode, rw, bio, mirror_num,
450 __btrfs_submit_bio_hook);
451 mapit:
452 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
453 }
454
455 /*
456 * given a list of ordered sums record them in the inode. This happens
457 * at IO completion time based on sums calculated at bio submission time.
458 */
459 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
460 struct inode *inode, u64 file_offset,
461 struct list_head *list)
462 {
463 struct list_head *cur;
464 struct btrfs_ordered_sum *sum;
465
466 btrfs_set_trans_block_group(trans, inode);
467 list_for_each(cur, list) {
468 sum = list_entry(cur, struct btrfs_ordered_sum, list);
469 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
470 inode, sum);
471 }
472 return 0;
473 }
474
475 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
476 {
477 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
478 GFP_NOFS);
479 }
480
481 /* see btrfs_writepage_start_hook for details on why this is required */
482 struct btrfs_writepage_fixup {
483 struct page *page;
484 struct btrfs_work work;
485 };
486
487 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
488 {
489 struct btrfs_writepage_fixup *fixup;
490 struct btrfs_ordered_extent *ordered;
491 struct page *page;
492 struct inode *inode;
493 u64 page_start;
494 u64 page_end;
495
496 fixup = container_of(work, struct btrfs_writepage_fixup, work);
497 page = fixup->page;
498 again:
499 lock_page(page);
500 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
501 ClearPageChecked(page);
502 goto out_page;
503 }
504
505 inode = page->mapping->host;
506 page_start = page_offset(page);
507 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
508
509 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
510
511 /* already ordered? We're done */
512 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
513 EXTENT_ORDERED, 0)) {
514 goto out;
515 }
516
517 ordered = btrfs_lookup_ordered_extent(inode, page_start);
518 if (ordered) {
519 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
520 page_end, GFP_NOFS);
521 unlock_page(page);
522 btrfs_start_ordered_extent(inode, ordered, 1);
523 goto again;
524 }
525
526 btrfs_set_extent_delalloc(inode, page_start, page_end);
527 ClearPageChecked(page);
528 out:
529 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
530 out_page:
531 unlock_page(page);
532 page_cache_release(page);
533 }
534
535 /*
536 * There are a few paths in the higher layers of the kernel that directly
537 * set the page dirty bit without asking the filesystem if it is a
538 * good idea. This causes problems because we want to make sure COW
539 * properly happens and the data=ordered rules are followed.
540 *
541 * In our case any range that doesn't have the EXTENT_ORDERED bit set
542 * hasn't been properly setup for IO. We kick off an async process
543 * to fix it up. The async helper will wait for ordered extents, set
544 * the delalloc bit and make it safe to write the page.
545 */
546 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
547 {
548 struct inode *inode = page->mapping->host;
549 struct btrfs_writepage_fixup *fixup;
550 struct btrfs_root *root = BTRFS_I(inode)->root;
551 int ret;
552
553 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
554 EXTENT_ORDERED, 0);
555 if (ret)
556 return 0;
557
558 if (PageChecked(page))
559 return -EAGAIN;
560
561 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
562 if (!fixup)
563 return -EAGAIN;
564
565 SetPageChecked(page);
566 page_cache_get(page);
567 fixup->work.func = btrfs_writepage_fixup_worker;
568 fixup->page = page;
569 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
570 return -EAGAIN;
571 }
572
573 /* as ordered data IO finishes, this gets called so we can finish
574 * an ordered extent if the range of bytes in the file it covers are
575 * fully written.
576 */
577 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
578 {
579 struct btrfs_root *root = BTRFS_I(inode)->root;
580 struct btrfs_trans_handle *trans;
581 struct btrfs_ordered_extent *ordered_extent;
582 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
583 struct btrfs_file_extent_item *extent_item;
584 struct btrfs_path *path = NULL;
585 struct extent_buffer *leaf;
586 u64 alloc_hint = 0;
587 struct list_head list;
588 struct btrfs_key ins;
589 int ret;
590
591 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
592 if (!ret)
593 return 0;
594
595 trans = btrfs_join_transaction(root, 1);
596
597 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
598 BUG_ON(!ordered_extent);
599 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
600 goto nocow;
601
602 path = btrfs_alloc_path();
603 BUG_ON(!path);
604
605 lock_extent(io_tree, ordered_extent->file_offset,
606 ordered_extent->file_offset + ordered_extent->len - 1,
607 GFP_NOFS);
608
609 INIT_LIST_HEAD(&list);
610
611 mutex_lock(&BTRFS_I(inode)->extent_mutex);
612
613 ret = btrfs_drop_extents(trans, root, inode,
614 ordered_extent->file_offset,
615 ordered_extent->file_offset +
616 ordered_extent->len,
617 ordered_extent->file_offset, &alloc_hint);
618 BUG_ON(ret);
619
620 ins.objectid = inode->i_ino;
621 ins.offset = ordered_extent->file_offset;
622 ins.type = BTRFS_EXTENT_DATA_KEY;
623 ret = btrfs_insert_empty_item(trans, root, path, &ins,
624 sizeof(*extent_item));
625 BUG_ON(ret);
626 leaf = path->nodes[0];
627 extent_item = btrfs_item_ptr(leaf, path->slots[0],
628 struct btrfs_file_extent_item);
629 btrfs_set_file_extent_generation(leaf, extent_item, trans->transid);
630 btrfs_set_file_extent_type(leaf, extent_item, BTRFS_FILE_EXTENT_REG);
631 btrfs_set_file_extent_disk_bytenr(leaf, extent_item,
632 ordered_extent->start);
633 btrfs_set_file_extent_disk_num_bytes(leaf, extent_item,
634 ordered_extent->len);
635 btrfs_set_file_extent_offset(leaf, extent_item, 0);
636 btrfs_set_file_extent_num_bytes(leaf, extent_item,
637 ordered_extent->len);
638 btrfs_mark_buffer_dirty(leaf);
639
640 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
641 ordered_extent->file_offset +
642 ordered_extent->len - 1, 0);
643 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
644
645 ins.objectid = ordered_extent->start;
646 ins.offset = ordered_extent->len;
647 ins.type = BTRFS_EXTENT_ITEM_KEY;
648 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
649 root->root_key.objectid,
650 trans->transid, inode->i_ino,
651 ordered_extent->file_offset, &ins);
652 BUG_ON(ret);
653 btrfs_release_path(root, path);
654
655 inode_add_bytes(inode, ordered_extent->len);
656 unlock_extent(io_tree, ordered_extent->file_offset,
657 ordered_extent->file_offset + ordered_extent->len - 1,
658 GFP_NOFS);
659 nocow:
660 add_pending_csums(trans, inode, ordered_extent->file_offset,
661 &ordered_extent->list);
662
663 mutex_lock(&BTRFS_I(inode)->extent_mutex);
664 btrfs_ordered_update_i_size(inode, ordered_extent);
665 btrfs_update_inode(trans, root, inode);
666 btrfs_remove_ordered_extent(inode, ordered_extent);
667 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
668
669 /* once for us */
670 btrfs_put_ordered_extent(ordered_extent);
671 /* once for the tree */
672 btrfs_put_ordered_extent(ordered_extent);
673
674 btrfs_end_transaction(trans, root);
675 if (path)
676 btrfs_free_path(path);
677 return 0;
678 }
679
680 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
681 struct extent_state *state, int uptodate)
682 {
683 return btrfs_finish_ordered_io(page->mapping->host, start, end);
684 }
685
686 /*
687 * When IO fails, either with EIO or csum verification fails, we
688 * try other mirrors that might have a good copy of the data. This
689 * io_failure_record is used to record state as we go through all the
690 * mirrors. If another mirror has good data, the page is set up to date
691 * and things continue. If a good mirror can't be found, the original
692 * bio end_io callback is called to indicate things have failed.
693 */
694 struct io_failure_record {
695 struct page *page;
696 u64 start;
697 u64 len;
698 u64 logical;
699 int last_mirror;
700 };
701
702 int btrfs_io_failed_hook(struct bio *failed_bio,
703 struct page *page, u64 start, u64 end,
704 struct extent_state *state)
705 {
706 struct io_failure_record *failrec = NULL;
707 u64 private;
708 struct extent_map *em;
709 struct inode *inode = page->mapping->host;
710 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
711 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
712 struct bio *bio;
713 int num_copies;
714 int ret;
715 int rw;
716 u64 logical;
717
718 ret = get_state_private(failure_tree, start, &private);
719 if (ret) {
720 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
721 if (!failrec)
722 return -ENOMEM;
723 failrec->start = start;
724 failrec->len = end - start + 1;
725 failrec->last_mirror = 0;
726
727 spin_lock(&em_tree->lock);
728 em = lookup_extent_mapping(em_tree, start, failrec->len);
729 if (em->start > start || em->start + em->len < start) {
730 free_extent_map(em);
731 em = NULL;
732 }
733 spin_unlock(&em_tree->lock);
734
735 if (!em || IS_ERR(em)) {
736 kfree(failrec);
737 return -EIO;
738 }
739 logical = start - em->start;
740 logical = em->block_start + logical;
741 failrec->logical = logical;
742 free_extent_map(em);
743 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
744 EXTENT_DIRTY, GFP_NOFS);
745 set_state_private(failure_tree, start,
746 (u64)(unsigned long)failrec);
747 } else {
748 failrec = (struct io_failure_record *)(unsigned long)private;
749 }
750 num_copies = btrfs_num_copies(
751 &BTRFS_I(inode)->root->fs_info->mapping_tree,
752 failrec->logical, failrec->len);
753 failrec->last_mirror++;
754 if (!state) {
755 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
756 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
757 failrec->start,
758 EXTENT_LOCKED);
759 if (state && state->start != failrec->start)
760 state = NULL;
761 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
762 }
763 if (!state || failrec->last_mirror > num_copies) {
764 set_state_private(failure_tree, failrec->start, 0);
765 clear_extent_bits(failure_tree, failrec->start,
766 failrec->start + failrec->len - 1,
767 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
768 kfree(failrec);
769 return -EIO;
770 }
771 bio = bio_alloc(GFP_NOFS, 1);
772 bio->bi_private = state;
773 bio->bi_end_io = failed_bio->bi_end_io;
774 bio->bi_sector = failrec->logical >> 9;
775 bio->bi_bdev = failed_bio->bi_bdev;
776 bio->bi_size = 0;
777 bio_add_page(bio, page, failrec->len, start - page_offset(page));
778 if (failed_bio->bi_rw & (1 << BIO_RW))
779 rw = WRITE;
780 else
781 rw = READ;
782
783 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
784 failrec->last_mirror);
785 return 0;
786 }
787
788 /*
789 * each time an IO finishes, we do a fast check in the IO failure tree
790 * to see if we need to process or clean up an io_failure_record
791 */
792 int btrfs_clean_io_failures(struct inode *inode, u64 start)
793 {
794 u64 private;
795 u64 private_failure;
796 struct io_failure_record *failure;
797 int ret;
798
799 private = 0;
800 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
801 (u64)-1, 1, EXTENT_DIRTY)) {
802 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
803 start, &private_failure);
804 if (ret == 0) {
805 failure = (struct io_failure_record *)(unsigned long)
806 private_failure;
807 set_state_private(&BTRFS_I(inode)->io_failure_tree,
808 failure->start, 0);
809 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
810 failure->start,
811 failure->start + failure->len - 1,
812 EXTENT_DIRTY | EXTENT_LOCKED,
813 GFP_NOFS);
814 kfree(failure);
815 }
816 }
817 return 0;
818 }
819
820 /*
821 * when reads are done, we need to check csums to verify the data is correct
822 * if there's a match, we allow the bio to finish. If not, we go through
823 * the io_failure_record routines to find good copies
824 */
825 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
826 struct extent_state *state)
827 {
828 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
829 struct inode *inode = page->mapping->host;
830 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
831 char *kaddr;
832 u64 private = ~(u32)0;
833 int ret;
834 struct btrfs_root *root = BTRFS_I(inode)->root;
835 u32 csum = ~(u32)0;
836 unsigned long flags;
837
838 if (btrfs_test_opt(root, NODATASUM) ||
839 btrfs_test_flag(inode, NODATASUM))
840 return 0;
841 if (state && state->start == start) {
842 private = state->private;
843 ret = 0;
844 } else {
845 ret = get_state_private(io_tree, start, &private);
846 }
847 local_irq_save(flags);
848 kaddr = kmap_atomic(page, KM_IRQ0);
849 if (ret) {
850 goto zeroit;
851 }
852 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
853 btrfs_csum_final(csum, (char *)&csum);
854 if (csum != private) {
855 goto zeroit;
856 }
857 kunmap_atomic(kaddr, KM_IRQ0);
858 local_irq_restore(flags);
859
860 /* if the io failure tree for this inode is non-empty,
861 * check to see if we've recovered from a failed IO
862 */
863 btrfs_clean_io_failures(inode, start);
864 return 0;
865
866 zeroit:
867 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
868 page->mapping->host->i_ino, (unsigned long long)start, csum,
869 private);
870 memset(kaddr + offset, 1, end - start + 1);
871 flush_dcache_page(page);
872 kunmap_atomic(kaddr, KM_IRQ0);
873 local_irq_restore(flags);
874 if (private == 0)
875 return 0;
876 return -EIO;
877 }
878
879 /*
880 * This creates an orphan entry for the given inode in case something goes
881 * wrong in the middle of an unlink/truncate.
882 */
883 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
884 {
885 struct btrfs_root *root = BTRFS_I(inode)->root;
886 int ret = 0;
887
888 spin_lock(&root->list_lock);
889
890 /* already on the orphan list, we're good */
891 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
892 spin_unlock(&root->list_lock);
893 return 0;
894 }
895
896 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
897
898 spin_unlock(&root->list_lock);
899
900 /*
901 * insert an orphan item to track this unlinked/truncated file
902 */
903 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
904
905 return ret;
906 }
907
908 /*
909 * We have done the truncate/delete so we can go ahead and remove the orphan
910 * item for this particular inode.
911 */
912 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
913 {
914 struct btrfs_root *root = BTRFS_I(inode)->root;
915 int ret = 0;
916
917 spin_lock(&root->list_lock);
918
919 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
920 spin_unlock(&root->list_lock);
921 return 0;
922 }
923
924 list_del_init(&BTRFS_I(inode)->i_orphan);
925 if (!trans) {
926 spin_unlock(&root->list_lock);
927 return 0;
928 }
929
930 spin_unlock(&root->list_lock);
931
932 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
933
934 return ret;
935 }
936
937 /*
938 * this cleans up any orphans that may be left on the list from the last use
939 * of this root.
940 */
941 void btrfs_orphan_cleanup(struct btrfs_root *root)
942 {
943 struct btrfs_path *path;
944 struct extent_buffer *leaf;
945 struct btrfs_item *item;
946 struct btrfs_key key, found_key;
947 struct btrfs_trans_handle *trans;
948 struct inode *inode;
949 int ret = 0, nr_unlink = 0, nr_truncate = 0;
950
951 /* don't do orphan cleanup if the fs is readonly. */
952 if (root->fs_info->sb->s_flags & MS_RDONLY)
953 return;
954
955 path = btrfs_alloc_path();
956 if (!path)
957 return;
958 path->reada = -1;
959
960 key.objectid = BTRFS_ORPHAN_OBJECTID;
961 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
962 key.offset = (u64)-1;
963
964
965 while (1) {
966 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
967 if (ret < 0) {
968 printk(KERN_ERR "Error searching slot for orphan: %d"
969 "\n", ret);
970 break;
971 }
972
973 /*
974 * if ret == 0 means we found what we were searching for, which
975 * is weird, but possible, so only screw with path if we didnt
976 * find the key and see if we have stuff that matches
977 */
978 if (ret > 0) {
979 if (path->slots[0] == 0)
980 break;
981 path->slots[0]--;
982 }
983
984 /* pull out the item */
985 leaf = path->nodes[0];
986 item = btrfs_item_nr(leaf, path->slots[0]);
987 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
988
989 /* make sure the item matches what we want */
990 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
991 break;
992 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
993 break;
994
995 /* release the path since we're done with it */
996 btrfs_release_path(root, path);
997
998 /*
999 * this is where we are basically btrfs_lookup, without the
1000 * crossing root thing. we store the inode number in the
1001 * offset of the orphan item.
1002 */
1003 inode = btrfs_iget_locked(root->fs_info->sb,
1004 found_key.offset, root);
1005 if (!inode)
1006 break;
1007
1008 if (inode->i_state & I_NEW) {
1009 BTRFS_I(inode)->root = root;
1010
1011 /* have to set the location manually */
1012 BTRFS_I(inode)->location.objectid = inode->i_ino;
1013 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1014 BTRFS_I(inode)->location.offset = 0;
1015
1016 btrfs_read_locked_inode(inode);
1017 unlock_new_inode(inode);
1018 }
1019
1020 /*
1021 * add this inode to the orphan list so btrfs_orphan_del does
1022 * the proper thing when we hit it
1023 */
1024 spin_lock(&root->list_lock);
1025 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1026 spin_unlock(&root->list_lock);
1027
1028 /*
1029 * if this is a bad inode, means we actually succeeded in
1030 * removing the inode, but not the orphan record, which means
1031 * we need to manually delete the orphan since iput will just
1032 * do a destroy_inode
1033 */
1034 if (is_bad_inode(inode)) {
1035 trans = btrfs_start_transaction(root, 1);
1036 btrfs_orphan_del(trans, inode);
1037 btrfs_end_transaction(trans, root);
1038 iput(inode);
1039 continue;
1040 }
1041
1042 /* if we have links, this was a truncate, lets do that */
1043 if (inode->i_nlink) {
1044 nr_truncate++;
1045 btrfs_truncate(inode);
1046 } else {
1047 nr_unlink++;
1048 }
1049
1050 /* this will do delete_inode and everything for us */
1051 iput(inode);
1052 }
1053
1054 if (nr_unlink)
1055 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1056 if (nr_truncate)
1057 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1058
1059 btrfs_free_path(path);
1060 }
1061
1062 /*
1063 * read an inode from the btree into the in-memory inode
1064 */
1065 void btrfs_read_locked_inode(struct inode *inode)
1066 {
1067 struct btrfs_path *path;
1068 struct extent_buffer *leaf;
1069 struct btrfs_inode_item *inode_item;
1070 struct btrfs_timespec *tspec;
1071 struct btrfs_root *root = BTRFS_I(inode)->root;
1072 struct btrfs_key location;
1073 u64 alloc_group_block;
1074 u32 rdev;
1075 int ret;
1076
1077 path = btrfs_alloc_path();
1078 BUG_ON(!path);
1079 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1080
1081 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1082 if (ret)
1083 goto make_bad;
1084
1085 leaf = path->nodes[0];
1086 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_inode_item);
1088
1089 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1090 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1091 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1092 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1093 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1094
1095 tspec = btrfs_inode_atime(inode_item);
1096 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1097 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1098
1099 tspec = btrfs_inode_mtime(inode_item);
1100 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1101 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1102
1103 tspec = btrfs_inode_ctime(inode_item);
1104 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1105 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1106
1107 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1108 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1109 inode->i_generation = BTRFS_I(inode)->generation;
1110 inode->i_rdev = 0;
1111 rdev = btrfs_inode_rdev(leaf, inode_item);
1112
1113 BTRFS_I(inode)->index_cnt = (u64)-1;
1114
1115 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1116 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1117 alloc_group_block);
1118 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1119 if (!BTRFS_I(inode)->block_group) {
1120 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1121 NULL, 0,
1122 BTRFS_BLOCK_GROUP_METADATA, 0);
1123 }
1124 btrfs_free_path(path);
1125 inode_item = NULL;
1126
1127 switch (inode->i_mode & S_IFMT) {
1128 case S_IFREG:
1129 inode->i_mapping->a_ops = &btrfs_aops;
1130 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1131 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1132 inode->i_fop = &btrfs_file_operations;
1133 inode->i_op = &btrfs_file_inode_operations;
1134 break;
1135 case S_IFDIR:
1136 inode->i_fop = &btrfs_dir_file_operations;
1137 if (root == root->fs_info->tree_root)
1138 inode->i_op = &btrfs_dir_ro_inode_operations;
1139 else
1140 inode->i_op = &btrfs_dir_inode_operations;
1141 break;
1142 case S_IFLNK:
1143 inode->i_op = &btrfs_symlink_inode_operations;
1144 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1145 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1146 break;
1147 default:
1148 init_special_inode(inode, inode->i_mode, rdev);
1149 break;
1150 }
1151 return;
1152
1153 make_bad:
1154 btrfs_free_path(path);
1155 make_bad_inode(inode);
1156 }
1157
1158 /*
1159 * given a leaf and an inode, copy the inode fields into the leaf
1160 */
1161 static void fill_inode_item(struct btrfs_trans_handle *trans,
1162 struct extent_buffer *leaf,
1163 struct btrfs_inode_item *item,
1164 struct inode *inode)
1165 {
1166 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1167 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1168 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1169 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1170 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1171
1172 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1173 inode->i_atime.tv_sec);
1174 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1175 inode->i_atime.tv_nsec);
1176
1177 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1178 inode->i_mtime.tv_sec);
1179 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1180 inode->i_mtime.tv_nsec);
1181
1182 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1183 inode->i_ctime.tv_sec);
1184 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1185 inode->i_ctime.tv_nsec);
1186
1187 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
1188 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1189 btrfs_set_inode_transid(leaf, item, trans->transid);
1190 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1191 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1192 btrfs_set_inode_block_group(leaf, item,
1193 BTRFS_I(inode)->block_group->key.objectid);
1194 }
1195
1196 /*
1197 * copy everything in the in-memory inode into the btree.
1198 */
1199 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1200 struct btrfs_root *root,
1201 struct inode *inode)
1202 {
1203 struct btrfs_inode_item *inode_item;
1204 struct btrfs_path *path;
1205 struct extent_buffer *leaf;
1206 int ret;
1207
1208 path = btrfs_alloc_path();
1209 BUG_ON(!path);
1210 ret = btrfs_lookup_inode(trans, root, path,
1211 &BTRFS_I(inode)->location, 1);
1212 if (ret) {
1213 if (ret > 0)
1214 ret = -ENOENT;
1215 goto failed;
1216 }
1217
1218 leaf = path->nodes[0];
1219 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1220 struct btrfs_inode_item);
1221
1222 fill_inode_item(trans, leaf, inode_item, inode);
1223 btrfs_mark_buffer_dirty(leaf);
1224 btrfs_set_inode_last_trans(trans, inode);
1225 ret = 0;
1226 failed:
1227 btrfs_free_path(path);
1228 return ret;
1229 }
1230
1231
1232 /*
1233 * unlink helper that gets used here in inode.c and in the tree logging
1234 * recovery code. It remove a link in a directory with a given name, and
1235 * also drops the back refs in the inode to the directory
1236 */
1237 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root,
1239 struct inode *dir, struct inode *inode,
1240 const char *name, int name_len)
1241 {
1242 struct btrfs_path *path;
1243 int ret = 0;
1244 struct extent_buffer *leaf;
1245 struct btrfs_dir_item *di;
1246 struct btrfs_key key;
1247 u64 index;
1248
1249 path = btrfs_alloc_path();
1250 if (!path) {
1251 ret = -ENOMEM;
1252 goto err;
1253 }
1254
1255 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1256 name, name_len, -1);
1257 if (IS_ERR(di)) {
1258 ret = PTR_ERR(di);
1259 goto err;
1260 }
1261 if (!di) {
1262 ret = -ENOENT;
1263 goto err;
1264 }
1265 leaf = path->nodes[0];
1266 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1267 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1268 if (ret)
1269 goto err;
1270 btrfs_release_path(root, path);
1271
1272 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1273 inode->i_ino,
1274 dir->i_ino, &index);
1275 if (ret) {
1276 printk("failed to delete reference to %.*s, "
1277 "inode %lu parent %lu\n", name_len, name,
1278 inode->i_ino, dir->i_ino);
1279 goto err;
1280 }
1281
1282 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1283 index, name, name_len, -1);
1284 if (IS_ERR(di)) {
1285 ret = PTR_ERR(di);
1286 goto err;
1287 }
1288 if (!di) {
1289 ret = -ENOENT;
1290 goto err;
1291 }
1292 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1293 btrfs_release_path(root, path);
1294
1295 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1296 inode, dir->i_ino);
1297 BUG_ON(ret != 0 && ret != -ENOENT);
1298 if (ret != -ENOENT)
1299 BTRFS_I(dir)->log_dirty_trans = trans->transid;
1300
1301 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1302 dir, index);
1303 BUG_ON(ret);
1304 err:
1305 btrfs_free_path(path);
1306 if (ret)
1307 goto out;
1308
1309 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1310 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1311 btrfs_update_inode(trans, root, dir);
1312 btrfs_drop_nlink(inode);
1313 ret = btrfs_update_inode(trans, root, inode);
1314 dir->i_sb->s_dirt = 1;
1315 out:
1316 return ret;
1317 }
1318
1319 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1320 {
1321 struct btrfs_root *root;
1322 struct btrfs_trans_handle *trans;
1323 struct inode *inode = dentry->d_inode;
1324 int ret;
1325 unsigned long nr = 0;
1326
1327 root = BTRFS_I(dir)->root;
1328
1329 ret = btrfs_check_free_space(root, 1, 1);
1330 if (ret)
1331 goto fail;
1332
1333 trans = btrfs_start_transaction(root, 1);
1334
1335 btrfs_set_trans_block_group(trans, dir);
1336 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1337 dentry->d_name.name, dentry->d_name.len);
1338
1339 if (inode->i_nlink == 0)
1340 ret = btrfs_orphan_add(trans, inode);
1341
1342 nr = trans->blocks_used;
1343
1344 btrfs_end_transaction_throttle(trans, root);
1345 fail:
1346 btrfs_btree_balance_dirty(root, nr);
1347 return ret;
1348 }
1349
1350 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1351 {
1352 struct inode *inode = dentry->d_inode;
1353 int err = 0;
1354 int ret;
1355 struct btrfs_root *root = BTRFS_I(dir)->root;
1356 struct btrfs_trans_handle *trans;
1357 unsigned long nr = 0;
1358
1359 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1360 return -ENOTEMPTY;
1361 }
1362
1363 ret = btrfs_check_free_space(root, 1, 1);
1364 if (ret)
1365 goto fail;
1366
1367 trans = btrfs_start_transaction(root, 1);
1368 btrfs_set_trans_block_group(trans, dir);
1369
1370 err = btrfs_orphan_add(trans, inode);
1371 if (err)
1372 goto fail_trans;
1373
1374 /* now the directory is empty */
1375 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1376 dentry->d_name.name, dentry->d_name.len);
1377 if (!err) {
1378 btrfs_i_size_write(inode, 0);
1379 }
1380
1381 fail_trans:
1382 nr = trans->blocks_used;
1383 ret = btrfs_end_transaction_throttle(trans, root);
1384 fail:
1385 btrfs_btree_balance_dirty(root, nr);
1386
1387 if (ret && !err)
1388 err = ret;
1389 return err;
1390 }
1391
1392 /*
1393 * when truncating bytes in a file, it is possible to avoid reading
1394 * the leaves that contain only checksum items. This can be the
1395 * majority of the IO required to delete a large file, but it must
1396 * be done carefully.
1397 *
1398 * The keys in the level just above the leaves are checked to make sure
1399 * the lowest key in a given leaf is a csum key, and starts at an offset
1400 * after the new size.
1401 *
1402 * Then the key for the next leaf is checked to make sure it also has
1403 * a checksum item for the same file. If it does, we know our target leaf
1404 * contains only checksum items, and it can be safely freed without reading
1405 * it.
1406 *
1407 * This is just an optimization targeted at large files. It may do
1408 * nothing. It will return 0 unless things went badly.
1409 */
1410 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
1411 struct btrfs_root *root,
1412 struct btrfs_path *path,
1413 struct inode *inode, u64 new_size)
1414 {
1415 struct btrfs_key key;
1416 int ret;
1417 int nritems;
1418 struct btrfs_key found_key;
1419 struct btrfs_key other_key;
1420
1421 path->lowest_level = 1;
1422 key.objectid = inode->i_ino;
1423 key.type = BTRFS_CSUM_ITEM_KEY;
1424 key.offset = new_size;
1425 again:
1426 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1427 if (ret < 0)
1428 goto out;
1429
1430 if (path->nodes[1] == NULL) {
1431 ret = 0;
1432 goto out;
1433 }
1434 ret = 0;
1435 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
1436 nritems = btrfs_header_nritems(path->nodes[1]);
1437
1438 if (!nritems)
1439 goto out;
1440
1441 if (path->slots[1] >= nritems)
1442 goto next_node;
1443
1444 /* did we find a key greater than anything we want to delete? */
1445 if (found_key.objectid > inode->i_ino ||
1446 (found_key.objectid == inode->i_ino && found_key.type > key.type))
1447 goto out;
1448
1449 /* we check the next key in the node to make sure the leave contains
1450 * only checksum items. This comparison doesn't work if our
1451 * leaf is the last one in the node
1452 */
1453 if (path->slots[1] + 1 >= nritems) {
1454 next_node:
1455 /* search forward from the last key in the node, this
1456 * will bring us into the next node in the tree
1457 */
1458 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
1459
1460 /* unlikely, but we inc below, so check to be safe */
1461 if (found_key.offset == (u64)-1)
1462 goto out;
1463
1464 /* search_forward needs a path with locks held, do the
1465 * search again for the original key. It is possible
1466 * this will race with a balance and return a path that
1467 * we could modify, but this drop is just an optimization
1468 * and is allowed to miss some leaves.
1469 */
1470 btrfs_release_path(root, path);
1471 found_key.offset++;
1472
1473 /* setup a max key for search_forward */
1474 other_key.offset = (u64)-1;
1475 other_key.type = key.type;
1476 other_key.objectid = key.objectid;
1477
1478 path->keep_locks = 1;
1479 ret = btrfs_search_forward(root, &found_key, &other_key,
1480 path, 0, 0);
1481 path->keep_locks = 0;
1482 if (ret || found_key.objectid != key.objectid ||
1483 found_key.type != key.type) {
1484 ret = 0;
1485 goto out;
1486 }
1487
1488 key.offset = found_key.offset;
1489 btrfs_release_path(root, path);
1490 cond_resched();
1491 goto again;
1492 }
1493
1494 /* we know there's one more slot after us in the tree,
1495 * read that key so we can verify it is also a checksum item
1496 */
1497 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
1498
1499 if (found_key.objectid < inode->i_ino)
1500 goto next_key;
1501
1502 if (found_key.type != key.type || found_key.offset < new_size)
1503 goto next_key;
1504
1505 /*
1506 * if the key for the next leaf isn't a csum key from this objectid,
1507 * we can't be sure there aren't good items inside this leaf.
1508 * Bail out
1509 */
1510 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
1511 goto out;
1512
1513 /*
1514 * it is safe to delete this leaf, it contains only
1515 * csum items from this inode at an offset >= new_size
1516 */
1517 ret = btrfs_del_leaf(trans, root, path,
1518 btrfs_node_blockptr(path->nodes[1],
1519 path->slots[1]));
1520 BUG_ON(ret);
1521
1522 next_key:
1523 btrfs_release_path(root, path);
1524
1525 if (other_key.objectid == inode->i_ino &&
1526 other_key.type == key.type && other_key.offset > key.offset) {
1527 key.offset = other_key.offset;
1528 cond_resched();
1529 goto again;
1530 }
1531 ret = 0;
1532 out:
1533 /* fixup any changes we've made to the path */
1534 path->lowest_level = 0;
1535 path->keep_locks = 0;
1536 btrfs_release_path(root, path);
1537 return ret;
1538 }
1539
1540 /*
1541 * this can truncate away extent items, csum items and directory items.
1542 * It starts at a high offset and removes keys until it can't find
1543 * any higher than new_size
1544 *
1545 * csum items that cross the new i_size are truncated to the new size
1546 * as well.
1547 *
1548 * min_type is the minimum key type to truncate down to. If set to 0, this
1549 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1550 */
1551 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1552 struct btrfs_root *root,
1553 struct inode *inode,
1554 u64 new_size, u32 min_type)
1555 {
1556 int ret;
1557 struct btrfs_path *path;
1558 struct btrfs_key key;
1559 struct btrfs_key found_key;
1560 u32 found_type;
1561 struct extent_buffer *leaf;
1562 struct btrfs_file_extent_item *fi;
1563 u64 extent_start = 0;
1564 u64 extent_num_bytes = 0;
1565 u64 item_end = 0;
1566 u64 root_gen = 0;
1567 u64 root_owner = 0;
1568 int found_extent;
1569 int del_item;
1570 int pending_del_nr = 0;
1571 int pending_del_slot = 0;
1572 int extent_type = -1;
1573 u64 mask = root->sectorsize - 1;
1574
1575 if (root->ref_cows)
1576 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
1577 path = btrfs_alloc_path();
1578 path->reada = -1;
1579 BUG_ON(!path);
1580
1581 /* FIXME, add redo link to tree so we don't leak on crash */
1582 key.objectid = inode->i_ino;
1583 key.offset = (u64)-1;
1584 key.type = (u8)-1;
1585
1586 btrfs_init_path(path);
1587
1588 ret = drop_csum_leaves(trans, root, path, inode, new_size);
1589 BUG_ON(ret);
1590
1591 search_again:
1592 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1593 if (ret < 0) {
1594 goto error;
1595 }
1596 if (ret > 0) {
1597 /* there are no items in the tree for us to truncate, we're
1598 * done
1599 */
1600 if (path->slots[0] == 0) {
1601 ret = 0;
1602 goto error;
1603 }
1604 path->slots[0]--;
1605 }
1606
1607 while(1) {
1608 fi = NULL;
1609 leaf = path->nodes[0];
1610 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1611 found_type = btrfs_key_type(&found_key);
1612
1613 if (found_key.objectid != inode->i_ino)
1614 break;
1615
1616 if (found_type < min_type)
1617 break;
1618
1619 item_end = found_key.offset;
1620 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1621 fi = btrfs_item_ptr(leaf, path->slots[0],
1622 struct btrfs_file_extent_item);
1623 extent_type = btrfs_file_extent_type(leaf, fi);
1624 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1625 item_end +=
1626 btrfs_file_extent_num_bytes(leaf, fi);
1627 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1628 struct btrfs_item *item = btrfs_item_nr(leaf,
1629 path->slots[0]);
1630 item_end += btrfs_file_extent_inline_len(leaf,
1631 item);
1632 }
1633 item_end--;
1634 }
1635 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1636 ret = btrfs_csum_truncate(trans, root, path,
1637 new_size);
1638 BUG_ON(ret);
1639 }
1640 if (item_end < new_size) {
1641 if (found_type == BTRFS_DIR_ITEM_KEY) {
1642 found_type = BTRFS_INODE_ITEM_KEY;
1643 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1644 found_type = BTRFS_CSUM_ITEM_KEY;
1645 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1646 found_type = BTRFS_XATTR_ITEM_KEY;
1647 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1648 found_type = BTRFS_INODE_REF_KEY;
1649 } else if (found_type) {
1650 found_type--;
1651 } else {
1652 break;
1653 }
1654 btrfs_set_key_type(&key, found_type);
1655 goto next;
1656 }
1657 if (found_key.offset >= new_size)
1658 del_item = 1;
1659 else
1660 del_item = 0;
1661 found_extent = 0;
1662
1663 /* FIXME, shrink the extent if the ref count is only 1 */
1664 if (found_type != BTRFS_EXTENT_DATA_KEY)
1665 goto delete;
1666
1667 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1668 u64 num_dec;
1669 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1670 if (!del_item) {
1671 u64 orig_num_bytes =
1672 btrfs_file_extent_num_bytes(leaf, fi);
1673 extent_num_bytes = new_size -
1674 found_key.offset + root->sectorsize - 1;
1675 extent_num_bytes = extent_num_bytes &
1676 ~((u64)root->sectorsize - 1);
1677 btrfs_set_file_extent_num_bytes(leaf, fi,
1678 extent_num_bytes);
1679 num_dec = (orig_num_bytes -
1680 extent_num_bytes);
1681 if (root->ref_cows && extent_start != 0)
1682 inode_sub_bytes(inode, num_dec);
1683 btrfs_mark_buffer_dirty(leaf);
1684 } else {
1685 extent_num_bytes =
1686 btrfs_file_extent_disk_num_bytes(leaf,
1687 fi);
1688 /* FIXME blocksize != 4096 */
1689 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1690 if (extent_start != 0) {
1691 found_extent = 1;
1692 if (root->ref_cows)
1693 inode_sub_bytes(inode, num_dec);
1694 }
1695 root_gen = btrfs_header_generation(leaf);
1696 root_owner = btrfs_header_owner(leaf);
1697 }
1698 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1699 if (!del_item) {
1700 u32 size = new_size - found_key.offset;
1701
1702 if (root->ref_cows) {
1703 inode_sub_bytes(inode, item_end + 1 -
1704 new_size);
1705 }
1706 size =
1707 btrfs_file_extent_calc_inline_size(size);
1708 ret = btrfs_truncate_item(trans, root, path,
1709 size, 1);
1710 BUG_ON(ret);
1711 } else if (root->ref_cows) {
1712 inode_sub_bytes(inode, item_end + 1 -
1713 found_key.offset);
1714 }
1715 }
1716 delete:
1717 if (del_item) {
1718 if (!pending_del_nr) {
1719 /* no pending yet, add ourselves */
1720 pending_del_slot = path->slots[0];
1721 pending_del_nr = 1;
1722 } else if (pending_del_nr &&
1723 path->slots[0] + 1 == pending_del_slot) {
1724 /* hop on the pending chunk */
1725 pending_del_nr++;
1726 pending_del_slot = path->slots[0];
1727 } else {
1728 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1729 }
1730 } else {
1731 break;
1732 }
1733 if (found_extent) {
1734 ret = btrfs_free_extent(trans, root, extent_start,
1735 extent_num_bytes,
1736 leaf->start, root_owner,
1737 root_gen, inode->i_ino,
1738 found_key.offset, 0);
1739 BUG_ON(ret);
1740 }
1741 next:
1742 if (path->slots[0] == 0) {
1743 if (pending_del_nr)
1744 goto del_pending;
1745 btrfs_release_path(root, path);
1746 goto search_again;
1747 }
1748
1749 path->slots[0]--;
1750 if (pending_del_nr &&
1751 path->slots[0] + 1 != pending_del_slot) {
1752 struct btrfs_key debug;
1753 del_pending:
1754 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1755 pending_del_slot);
1756 ret = btrfs_del_items(trans, root, path,
1757 pending_del_slot,
1758 pending_del_nr);
1759 BUG_ON(ret);
1760 pending_del_nr = 0;
1761 btrfs_release_path(root, path);
1762 goto search_again;
1763 }
1764 }
1765 ret = 0;
1766 error:
1767 if (pending_del_nr) {
1768 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1769 pending_del_nr);
1770 }
1771 btrfs_free_path(path);
1772 inode->i_sb->s_dirt = 1;
1773 return ret;
1774 }
1775
1776 /*
1777 * taken from block_truncate_page, but does cow as it zeros out
1778 * any bytes left in the last page in the file.
1779 */
1780 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1781 {
1782 struct inode *inode = mapping->host;
1783 struct btrfs_root *root = BTRFS_I(inode)->root;
1784 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1785 struct btrfs_ordered_extent *ordered;
1786 char *kaddr;
1787 u32 blocksize = root->sectorsize;
1788 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1789 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1790 struct page *page;
1791 int ret = 0;
1792 u64 page_start;
1793 u64 page_end;
1794
1795 if ((offset & (blocksize - 1)) == 0)
1796 goto out;
1797
1798 ret = -ENOMEM;
1799 again:
1800 page = grab_cache_page(mapping, index);
1801 if (!page)
1802 goto out;
1803
1804 page_start = page_offset(page);
1805 page_end = page_start + PAGE_CACHE_SIZE - 1;
1806
1807 if (!PageUptodate(page)) {
1808 ret = btrfs_readpage(NULL, page);
1809 lock_page(page);
1810 if (page->mapping != mapping) {
1811 unlock_page(page);
1812 page_cache_release(page);
1813 goto again;
1814 }
1815 if (!PageUptodate(page)) {
1816 ret = -EIO;
1817 goto out_unlock;
1818 }
1819 }
1820 wait_on_page_writeback(page);
1821
1822 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1823 set_page_extent_mapped(page);
1824
1825 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1826 if (ordered) {
1827 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1828 unlock_page(page);
1829 page_cache_release(page);
1830 btrfs_start_ordered_extent(inode, ordered, 1);
1831 btrfs_put_ordered_extent(ordered);
1832 goto again;
1833 }
1834
1835 btrfs_set_extent_delalloc(inode, page_start, page_end);
1836 ret = 0;
1837 if (offset != PAGE_CACHE_SIZE) {
1838 kaddr = kmap(page);
1839 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1840 flush_dcache_page(page);
1841 kunmap(page);
1842 }
1843 ClearPageChecked(page);
1844 set_page_dirty(page);
1845 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1846
1847 out_unlock:
1848 unlock_page(page);
1849 page_cache_release(page);
1850 out:
1851 return ret;
1852 }
1853
1854 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1855 {
1856 struct inode *inode = dentry->d_inode;
1857 int err;
1858
1859 err = inode_change_ok(inode, attr);
1860 if (err)
1861 return err;
1862
1863 if (S_ISREG(inode->i_mode) &&
1864 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1865 struct btrfs_trans_handle *trans;
1866 struct btrfs_root *root = BTRFS_I(inode)->root;
1867 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1868
1869 u64 mask = root->sectorsize - 1;
1870 u64 hole_start = (inode->i_size + mask) & ~mask;
1871 u64 block_end = (attr->ia_size + mask) & ~mask;
1872 u64 hole_size;
1873 u64 alloc_hint = 0;
1874
1875 if (attr->ia_size <= hole_start)
1876 goto out;
1877
1878 err = btrfs_check_free_space(root, 1, 0);
1879 if (err)
1880 goto fail;
1881
1882 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1883
1884 hole_size = block_end - hole_start;
1885 while(1) {
1886 struct btrfs_ordered_extent *ordered;
1887 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1888
1889 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1890 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
1891 if (ordered) {
1892 unlock_extent(io_tree, hole_start,
1893 block_end - 1, GFP_NOFS);
1894 btrfs_put_ordered_extent(ordered);
1895 } else {
1896 break;
1897 }
1898 }
1899
1900 trans = btrfs_start_transaction(root, 1);
1901 btrfs_set_trans_block_group(trans, inode);
1902 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1903 err = btrfs_drop_extents(trans, root, inode,
1904 hole_start, block_end, hole_start,
1905 &alloc_hint);
1906
1907 if (alloc_hint != EXTENT_MAP_INLINE) {
1908 err = btrfs_insert_file_extent(trans, root,
1909 inode->i_ino,
1910 hole_start, 0, 0,
1911 hole_size, 0);
1912 btrfs_drop_extent_cache(inode, hole_start,
1913 (u64)-1, 0);
1914 btrfs_check_file(root, inode);
1915 }
1916 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1917 btrfs_end_transaction(trans, root);
1918 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1919 if (err)
1920 return err;
1921 }
1922 out:
1923 err = inode_setattr(inode, attr);
1924
1925 if (!err && ((attr->ia_valid & ATTR_MODE)))
1926 err = btrfs_acl_chmod(inode);
1927 fail:
1928 return err;
1929 }
1930
1931 void btrfs_delete_inode(struct inode *inode)
1932 {
1933 struct btrfs_trans_handle *trans;
1934 struct btrfs_root *root = BTRFS_I(inode)->root;
1935 unsigned long nr;
1936 int ret;
1937
1938 truncate_inode_pages(&inode->i_data, 0);
1939 if (is_bad_inode(inode)) {
1940 btrfs_orphan_del(NULL, inode);
1941 goto no_delete;
1942 }
1943 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1944
1945 btrfs_i_size_write(inode, 0);
1946 trans = btrfs_start_transaction(root, 1);
1947
1948 btrfs_set_trans_block_group(trans, inode);
1949 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
1950 if (ret) {
1951 btrfs_orphan_del(NULL, inode);
1952 goto no_delete_lock;
1953 }
1954
1955 btrfs_orphan_del(trans, inode);
1956
1957 nr = trans->blocks_used;
1958 clear_inode(inode);
1959
1960 btrfs_end_transaction(trans, root);
1961 btrfs_btree_balance_dirty(root, nr);
1962 return;
1963
1964 no_delete_lock:
1965 nr = trans->blocks_used;
1966 btrfs_end_transaction(trans, root);
1967 btrfs_btree_balance_dirty(root, nr);
1968 no_delete:
1969 clear_inode(inode);
1970 }
1971
1972 /*
1973 * this returns the key found in the dir entry in the location pointer.
1974 * If no dir entries were found, location->objectid is 0.
1975 */
1976 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1977 struct btrfs_key *location)
1978 {
1979 const char *name = dentry->d_name.name;
1980 int namelen = dentry->d_name.len;
1981 struct btrfs_dir_item *di;
1982 struct btrfs_path *path;
1983 struct btrfs_root *root = BTRFS_I(dir)->root;
1984 int ret = 0;
1985
1986 path = btrfs_alloc_path();
1987 BUG_ON(!path);
1988
1989 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1990 namelen, 0);
1991 if (IS_ERR(di))
1992 ret = PTR_ERR(di);
1993 if (!di || IS_ERR(di)) {
1994 goto out_err;
1995 }
1996 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1997 out:
1998 btrfs_free_path(path);
1999 return ret;
2000 out_err:
2001 location->objectid = 0;
2002 goto out;
2003 }
2004
2005 /*
2006 * when we hit a tree root in a directory, the btrfs part of the inode
2007 * needs to be changed to reflect the root directory of the tree root. This
2008 * is kind of like crossing a mount point.
2009 */
2010 static int fixup_tree_root_location(struct btrfs_root *root,
2011 struct btrfs_key *location,
2012 struct btrfs_root **sub_root,
2013 struct dentry *dentry)
2014 {
2015 struct btrfs_root_item *ri;
2016
2017 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2018 return 0;
2019 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2020 return 0;
2021
2022 *sub_root = btrfs_read_fs_root(root->fs_info, location,
2023 dentry->d_name.name,
2024 dentry->d_name.len);
2025 if (IS_ERR(*sub_root))
2026 return PTR_ERR(*sub_root);
2027
2028 ri = &(*sub_root)->root_item;
2029 location->objectid = btrfs_root_dirid(ri);
2030 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2031 location->offset = 0;
2032
2033 return 0;
2034 }
2035
2036 static noinline void init_btrfs_i(struct inode *inode)
2037 {
2038 struct btrfs_inode *bi = BTRFS_I(inode);
2039
2040 bi->i_acl = NULL;
2041 bi->i_default_acl = NULL;
2042
2043 bi->generation = 0;
2044 bi->last_trans = 0;
2045 bi->logged_trans = 0;
2046 bi->delalloc_bytes = 0;
2047 bi->disk_i_size = 0;
2048 bi->flags = 0;
2049 bi->index_cnt = (u64)-1;
2050 bi->log_dirty_trans = 0;
2051 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2052 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2053 inode->i_mapping, GFP_NOFS);
2054 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2055 inode->i_mapping, GFP_NOFS);
2056 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2057 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2058 mutex_init(&BTRFS_I(inode)->csum_mutex);
2059 mutex_init(&BTRFS_I(inode)->extent_mutex);
2060 mutex_init(&BTRFS_I(inode)->log_mutex);
2061 }
2062
2063 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2064 {
2065 struct btrfs_iget_args *args = p;
2066 inode->i_ino = args->ino;
2067 init_btrfs_i(inode);
2068 BTRFS_I(inode)->root = args->root;
2069 return 0;
2070 }
2071
2072 static int btrfs_find_actor(struct inode *inode, void *opaque)
2073 {
2074 struct btrfs_iget_args *args = opaque;
2075 return (args->ino == inode->i_ino &&
2076 args->root == BTRFS_I(inode)->root);
2077 }
2078
2079 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2080 struct btrfs_root *root, int wait)
2081 {
2082 struct inode *inode;
2083 struct btrfs_iget_args args;
2084 args.ino = objectid;
2085 args.root = root;
2086
2087 if (wait) {
2088 inode = ilookup5(s, objectid, btrfs_find_actor,
2089 (void *)&args);
2090 } else {
2091 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
2092 (void *)&args);
2093 }
2094 return inode;
2095 }
2096
2097 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
2098 struct btrfs_root *root)
2099 {
2100 struct inode *inode;
2101 struct btrfs_iget_args args;
2102 args.ino = objectid;
2103 args.root = root;
2104
2105 inode = iget5_locked(s, objectid, btrfs_find_actor,
2106 btrfs_init_locked_inode,
2107 (void *)&args);
2108 return inode;
2109 }
2110
2111 /* Get an inode object given its location and corresponding root.
2112 * Returns in *is_new if the inode was read from disk
2113 */
2114 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
2115 struct btrfs_root *root, int *is_new)
2116 {
2117 struct inode *inode;
2118
2119 inode = btrfs_iget_locked(s, location->objectid, root);
2120 if (!inode)
2121 return ERR_PTR(-EACCES);
2122
2123 if (inode->i_state & I_NEW) {
2124 BTRFS_I(inode)->root = root;
2125 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
2126 btrfs_read_locked_inode(inode);
2127 unlock_new_inode(inode);
2128 if (is_new)
2129 *is_new = 1;
2130 } else {
2131 if (is_new)
2132 *is_new = 0;
2133 }
2134
2135 return inode;
2136 }
2137
2138 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
2139 struct nameidata *nd)
2140 {
2141 struct inode * inode;
2142 struct btrfs_inode *bi = BTRFS_I(dir);
2143 struct btrfs_root *root = bi->root;
2144 struct btrfs_root *sub_root = root;
2145 struct btrfs_key location;
2146 int ret, new, do_orphan = 0;
2147
2148 if (dentry->d_name.len > BTRFS_NAME_LEN)
2149 return ERR_PTR(-ENAMETOOLONG);
2150
2151 ret = btrfs_inode_by_name(dir, dentry, &location);
2152
2153 if (ret < 0)
2154 return ERR_PTR(ret);
2155
2156 inode = NULL;
2157 if (location.objectid) {
2158 ret = fixup_tree_root_location(root, &location, &sub_root,
2159 dentry);
2160 if (ret < 0)
2161 return ERR_PTR(ret);
2162 if (ret > 0)
2163 return ERR_PTR(-ENOENT);
2164 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
2165 if (IS_ERR(inode))
2166 return ERR_CAST(inode);
2167
2168 /* the inode and parent dir are two different roots */
2169 if (new && root != sub_root) {
2170 igrab(inode);
2171 sub_root->inode = inode;
2172 do_orphan = 1;
2173 }
2174 }
2175
2176 if (unlikely(do_orphan))
2177 btrfs_orphan_cleanup(sub_root);
2178
2179 return d_splice_alias(inode, dentry);
2180 }
2181
2182 static unsigned char btrfs_filetype_table[] = {
2183 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
2184 };
2185
2186 static int btrfs_real_readdir(struct file *filp, void *dirent,
2187 filldir_t filldir)
2188 {
2189 struct inode *inode = filp->f_dentry->d_inode;
2190 struct btrfs_root *root = BTRFS_I(inode)->root;
2191 struct btrfs_item *item;
2192 struct btrfs_dir_item *di;
2193 struct btrfs_key key;
2194 struct btrfs_key found_key;
2195 struct btrfs_path *path;
2196 int ret;
2197 u32 nritems;
2198 struct extent_buffer *leaf;
2199 int slot;
2200 int advance;
2201 unsigned char d_type;
2202 int over = 0;
2203 u32 di_cur;
2204 u32 di_total;
2205 u32 di_len;
2206 int key_type = BTRFS_DIR_INDEX_KEY;
2207 char tmp_name[32];
2208 char *name_ptr;
2209 int name_len;
2210
2211 /* FIXME, use a real flag for deciding about the key type */
2212 if (root->fs_info->tree_root == root)
2213 key_type = BTRFS_DIR_ITEM_KEY;
2214
2215 /* special case for "." */
2216 if (filp->f_pos == 0) {
2217 over = filldir(dirent, ".", 1,
2218 1, inode->i_ino,
2219 DT_DIR);
2220 if (over)
2221 return 0;
2222 filp->f_pos = 1;
2223 }
2224 /* special case for .., just use the back ref */
2225 if (filp->f_pos == 1) {
2226 u64 pino = parent_ino(filp->f_path.dentry);
2227 over = filldir(dirent, "..", 2,
2228 2, pino, DT_DIR);
2229 if (over)
2230 return 0;
2231 filp->f_pos = 2;
2232 }
2233
2234 path = btrfs_alloc_path();
2235 path->reada = 2;
2236
2237 btrfs_set_key_type(&key, key_type);
2238 key.offset = filp->f_pos;
2239 key.objectid = inode->i_ino;
2240
2241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2242 if (ret < 0)
2243 goto err;
2244 advance = 0;
2245
2246 while (1) {
2247 leaf = path->nodes[0];
2248 nritems = btrfs_header_nritems(leaf);
2249 slot = path->slots[0];
2250 if (advance || slot >= nritems) {
2251 if (slot >= nritems - 1) {
2252 ret = btrfs_next_leaf(root, path);
2253 if (ret)
2254 break;
2255 leaf = path->nodes[0];
2256 nritems = btrfs_header_nritems(leaf);
2257 slot = path->slots[0];
2258 } else {
2259 slot++;
2260 path->slots[0]++;
2261 }
2262 }
2263 advance = 1;
2264 item = btrfs_item_nr(leaf, slot);
2265 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2266
2267 if (found_key.objectid != key.objectid)
2268 break;
2269 if (btrfs_key_type(&found_key) != key_type)
2270 break;
2271 if (found_key.offset < filp->f_pos)
2272 continue;
2273
2274 filp->f_pos = found_key.offset;
2275
2276 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2277 di_cur = 0;
2278 di_total = btrfs_item_size(leaf, item);
2279
2280 while (di_cur < di_total) {
2281 struct btrfs_key location;
2282
2283 name_len = btrfs_dir_name_len(leaf, di);
2284 if (name_len <= sizeof(tmp_name)) {
2285 name_ptr = tmp_name;
2286 } else {
2287 name_ptr = kmalloc(name_len, GFP_NOFS);
2288 if (!name_ptr) {
2289 ret = -ENOMEM;
2290 goto err;
2291 }
2292 }
2293 read_extent_buffer(leaf, name_ptr,
2294 (unsigned long)(di + 1), name_len);
2295
2296 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2297 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2298 over = filldir(dirent, name_ptr, name_len,
2299 found_key.offset, location.objectid,
2300 d_type);
2301
2302 if (name_ptr != tmp_name)
2303 kfree(name_ptr);
2304
2305 if (over)
2306 goto nopos;
2307
2308 di_len = btrfs_dir_name_len(leaf, di) +
2309 btrfs_dir_data_len(leaf, di) + sizeof(*di);
2310 di_cur += di_len;
2311 di = (struct btrfs_dir_item *)((char *)di + di_len);
2312 }
2313 }
2314
2315 /* Reached end of directory/root. Bump pos past the last item. */
2316 if (key_type == BTRFS_DIR_INDEX_KEY)
2317 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2318 else
2319 filp->f_pos++;
2320 nopos:
2321 ret = 0;
2322 err:
2323 btrfs_free_path(path);
2324 return ret;
2325 }
2326
2327 int btrfs_write_inode(struct inode *inode, int wait)
2328 {
2329 struct btrfs_root *root = BTRFS_I(inode)->root;
2330 struct btrfs_trans_handle *trans;
2331 int ret = 0;
2332
2333 if (root->fs_info->closing > 1)
2334 return 0;
2335
2336 if (wait) {
2337 trans = btrfs_join_transaction(root, 1);
2338 btrfs_set_trans_block_group(trans, inode);
2339 ret = btrfs_commit_transaction(trans, root);
2340 }
2341 return ret;
2342 }
2343
2344 /*
2345 * This is somewhat expensive, updating the tree every time the
2346 * inode changes. But, it is most likely to find the inode in cache.
2347 * FIXME, needs more benchmarking...there are no reasons other than performance
2348 * to keep or drop this code.
2349 */
2350 void btrfs_dirty_inode(struct inode *inode)
2351 {
2352 struct btrfs_root *root = BTRFS_I(inode)->root;
2353 struct btrfs_trans_handle *trans;
2354
2355 trans = btrfs_join_transaction(root, 1);
2356 btrfs_set_trans_block_group(trans, inode);
2357 btrfs_update_inode(trans, root, inode);
2358 btrfs_end_transaction(trans, root);
2359 }
2360
2361 /*
2362 * find the highest existing sequence number in a directory
2363 * and then set the in-memory index_cnt variable to reflect
2364 * free sequence numbers
2365 */
2366 static int btrfs_set_inode_index_count(struct inode *inode)
2367 {
2368 struct btrfs_root *root = BTRFS_I(inode)->root;
2369 struct btrfs_key key, found_key;
2370 struct btrfs_path *path;
2371 struct extent_buffer *leaf;
2372 int ret;
2373
2374 key.objectid = inode->i_ino;
2375 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2376 key.offset = (u64)-1;
2377
2378 path = btrfs_alloc_path();
2379 if (!path)
2380 return -ENOMEM;
2381
2382 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2383 if (ret < 0)
2384 goto out;
2385 /* FIXME: we should be able to handle this */
2386 if (ret == 0)
2387 goto out;
2388 ret = 0;
2389
2390 /*
2391 * MAGIC NUMBER EXPLANATION:
2392 * since we search a directory based on f_pos we have to start at 2
2393 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2394 * else has to start at 2
2395 */
2396 if (path->slots[0] == 0) {
2397 BTRFS_I(inode)->index_cnt = 2;
2398 goto out;
2399 }
2400
2401 path->slots[0]--;
2402
2403 leaf = path->nodes[0];
2404 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2405
2406 if (found_key.objectid != inode->i_ino ||
2407 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2408 BTRFS_I(inode)->index_cnt = 2;
2409 goto out;
2410 }
2411
2412 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2413 out:
2414 btrfs_free_path(path);
2415 return ret;
2416 }
2417
2418 /*
2419 * helper to find a free sequence number in a given directory. This current
2420 * code is very simple, later versions will do smarter things in the btree
2421 */
2422 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2423 u64 *index)
2424 {
2425 int ret = 0;
2426
2427 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2428 ret = btrfs_set_inode_index_count(dir);
2429 if (ret) {
2430 return ret;
2431 }
2432 }
2433
2434 *index = BTRFS_I(dir)->index_cnt;
2435 BTRFS_I(dir)->index_cnt++;
2436
2437 return ret;
2438 }
2439
2440 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2441 struct btrfs_root *root,
2442 struct inode *dir,
2443 const char *name, int name_len,
2444 u64 ref_objectid,
2445 u64 objectid,
2446 struct btrfs_block_group_cache *group,
2447 int mode, u64 *index)
2448 {
2449 struct inode *inode;
2450 struct btrfs_inode_item *inode_item;
2451 struct btrfs_block_group_cache *new_inode_group;
2452 struct btrfs_key *location;
2453 struct btrfs_path *path;
2454 struct btrfs_inode_ref *ref;
2455 struct btrfs_key key[2];
2456 u32 sizes[2];
2457 unsigned long ptr;
2458 int ret;
2459 int owner;
2460
2461 path = btrfs_alloc_path();
2462 BUG_ON(!path);
2463
2464 inode = new_inode(root->fs_info->sb);
2465 if (!inode)
2466 return ERR_PTR(-ENOMEM);
2467
2468 if (dir) {
2469 ret = btrfs_set_inode_index(dir, inode, index);
2470 if (ret)
2471 return ERR_PTR(ret);
2472 }
2473 /*
2474 * index_cnt is ignored for everything but a dir,
2475 * btrfs_get_inode_index_count has an explanation for the magic
2476 * number
2477 */
2478 init_btrfs_i(inode);
2479 BTRFS_I(inode)->index_cnt = 2;
2480 BTRFS_I(inode)->root = root;
2481 BTRFS_I(inode)->generation = trans->transid;
2482
2483 if (mode & S_IFDIR)
2484 owner = 0;
2485 else
2486 owner = 1;
2487 new_inode_group = btrfs_find_block_group(root, group, 0,
2488 BTRFS_BLOCK_GROUP_METADATA, owner);
2489 if (!new_inode_group) {
2490 printk("find_block group failed\n");
2491 new_inode_group = group;
2492 }
2493 BTRFS_I(inode)->block_group = new_inode_group;
2494
2495 key[0].objectid = objectid;
2496 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2497 key[0].offset = 0;
2498
2499 key[1].objectid = objectid;
2500 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2501 key[1].offset = ref_objectid;
2502
2503 sizes[0] = sizeof(struct btrfs_inode_item);
2504 sizes[1] = name_len + sizeof(*ref);
2505
2506 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2507 if (ret != 0)
2508 goto fail;
2509
2510 if (objectid > root->highest_inode)
2511 root->highest_inode = objectid;
2512
2513 inode->i_uid = current->fsuid;
2514 inode->i_gid = current->fsgid;
2515 inode->i_mode = mode;
2516 inode->i_ino = objectid;
2517 inode_set_bytes(inode, 0);
2518 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2519 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2520 struct btrfs_inode_item);
2521 fill_inode_item(trans, path->nodes[0], inode_item, inode);
2522
2523 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2524 struct btrfs_inode_ref);
2525 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2526 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2527 ptr = (unsigned long)(ref + 1);
2528 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2529
2530 btrfs_mark_buffer_dirty(path->nodes[0]);
2531 btrfs_free_path(path);
2532
2533 location = &BTRFS_I(inode)->location;
2534 location->objectid = objectid;
2535 location->offset = 0;
2536 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2537
2538 insert_inode_hash(inode);
2539 return inode;
2540 fail:
2541 if (dir)
2542 BTRFS_I(dir)->index_cnt--;
2543 btrfs_free_path(path);
2544 return ERR_PTR(ret);
2545 }
2546
2547 static inline u8 btrfs_inode_type(struct inode *inode)
2548 {
2549 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2550 }
2551
2552 /*
2553 * utility function to add 'inode' into 'parent_inode' with
2554 * a give name and a given sequence number.
2555 * if 'add_backref' is true, also insert a backref from the
2556 * inode to the parent directory.
2557 */
2558 int btrfs_add_link(struct btrfs_trans_handle *trans,
2559 struct inode *parent_inode, struct inode *inode,
2560 const char *name, int name_len, int add_backref, u64 index)
2561 {
2562 int ret;
2563 struct btrfs_key key;
2564 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
2565
2566 key.objectid = inode->i_ino;
2567 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2568 key.offset = 0;
2569
2570 ret = btrfs_insert_dir_item(trans, root, name, name_len,
2571 parent_inode->i_ino,
2572 &key, btrfs_inode_type(inode),
2573 index);
2574 if (ret == 0) {
2575 if (add_backref) {
2576 ret = btrfs_insert_inode_ref(trans, root,
2577 name, name_len,
2578 inode->i_ino,
2579 parent_inode->i_ino,
2580 index);
2581 }
2582 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2583 name_len * 2);
2584 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2585 ret = btrfs_update_inode(trans, root, parent_inode);
2586 }
2587 return ret;
2588 }
2589
2590 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2591 struct dentry *dentry, struct inode *inode,
2592 int backref, u64 index)
2593 {
2594 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2595 inode, dentry->d_name.name,
2596 dentry->d_name.len, backref, index);
2597 if (!err) {
2598 d_instantiate(dentry, inode);
2599 return 0;
2600 }
2601 if (err > 0)
2602 err = -EEXIST;
2603 return err;
2604 }
2605
2606 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2607 int mode, dev_t rdev)
2608 {
2609 struct btrfs_trans_handle *trans;
2610 struct btrfs_root *root = BTRFS_I(dir)->root;
2611 struct inode *inode = NULL;
2612 int err;
2613 int drop_inode = 0;
2614 u64 objectid;
2615 unsigned long nr = 0;
2616 u64 index = 0;
2617
2618 if (!new_valid_dev(rdev))
2619 return -EINVAL;
2620
2621 err = btrfs_check_free_space(root, 1, 0);
2622 if (err)
2623 goto fail;
2624
2625 trans = btrfs_start_transaction(root, 1);
2626 btrfs_set_trans_block_group(trans, dir);
2627
2628 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2629 if (err) {
2630 err = -ENOSPC;
2631 goto out_unlock;
2632 }
2633
2634 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2635 dentry->d_name.len,
2636 dentry->d_parent->d_inode->i_ino, objectid,
2637 BTRFS_I(dir)->block_group, mode, &index);
2638 err = PTR_ERR(inode);
2639 if (IS_ERR(inode))
2640 goto out_unlock;
2641
2642 err = btrfs_init_acl(inode, dir);
2643 if (err) {
2644 drop_inode = 1;
2645 goto out_unlock;
2646 }
2647
2648 btrfs_set_trans_block_group(trans, inode);
2649 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2650 if (err)
2651 drop_inode = 1;
2652 else {
2653 inode->i_op = &btrfs_special_inode_operations;
2654 init_special_inode(inode, inode->i_mode, rdev);
2655 btrfs_update_inode(trans, root, inode);
2656 }
2657 dir->i_sb->s_dirt = 1;
2658 btrfs_update_inode_block_group(trans, inode);
2659 btrfs_update_inode_block_group(trans, dir);
2660 out_unlock:
2661 nr = trans->blocks_used;
2662 btrfs_end_transaction_throttle(trans, root);
2663 fail:
2664 if (drop_inode) {
2665 inode_dec_link_count(inode);
2666 iput(inode);
2667 }
2668 btrfs_btree_balance_dirty(root, nr);
2669 return err;
2670 }
2671
2672 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2673 int mode, struct nameidata *nd)
2674 {
2675 struct btrfs_trans_handle *trans;
2676 struct btrfs_root *root = BTRFS_I(dir)->root;
2677 struct inode *inode = NULL;
2678 int err;
2679 int drop_inode = 0;
2680 unsigned long nr = 0;
2681 u64 objectid;
2682 u64 index = 0;
2683
2684 err = btrfs_check_free_space(root, 1, 0);
2685 if (err)
2686 goto fail;
2687 trans = btrfs_start_transaction(root, 1);
2688 btrfs_set_trans_block_group(trans, dir);
2689
2690 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2691 if (err) {
2692 err = -ENOSPC;
2693 goto out_unlock;
2694 }
2695
2696 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2697 dentry->d_name.len,
2698 dentry->d_parent->d_inode->i_ino,
2699 objectid, BTRFS_I(dir)->block_group, mode,
2700 &index);
2701 err = PTR_ERR(inode);
2702 if (IS_ERR(inode))
2703 goto out_unlock;
2704
2705 err = btrfs_init_acl(inode, dir);
2706 if (err) {
2707 drop_inode = 1;
2708 goto out_unlock;
2709 }
2710
2711 btrfs_set_trans_block_group(trans, inode);
2712 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2713 if (err)
2714 drop_inode = 1;
2715 else {
2716 inode->i_mapping->a_ops = &btrfs_aops;
2717 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2718 inode->i_fop = &btrfs_file_operations;
2719 inode->i_op = &btrfs_file_inode_operations;
2720 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2721 }
2722 dir->i_sb->s_dirt = 1;
2723 btrfs_update_inode_block_group(trans, inode);
2724 btrfs_update_inode_block_group(trans, dir);
2725 out_unlock:
2726 nr = trans->blocks_used;
2727 btrfs_end_transaction_throttle(trans, root);
2728 fail:
2729 if (drop_inode) {
2730 inode_dec_link_count(inode);
2731 iput(inode);
2732 }
2733 btrfs_btree_balance_dirty(root, nr);
2734 return err;
2735 }
2736
2737 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2738 struct dentry *dentry)
2739 {
2740 struct btrfs_trans_handle *trans;
2741 struct btrfs_root *root = BTRFS_I(dir)->root;
2742 struct inode *inode = old_dentry->d_inode;
2743 u64 index;
2744 unsigned long nr = 0;
2745 int err;
2746 int drop_inode = 0;
2747
2748 if (inode->i_nlink == 0)
2749 return -ENOENT;
2750
2751 btrfs_inc_nlink(inode);
2752 err = btrfs_check_free_space(root, 1, 0);
2753 if (err)
2754 goto fail;
2755 err = btrfs_set_inode_index(dir, inode, &index);
2756 if (err)
2757 goto fail;
2758
2759 trans = btrfs_start_transaction(root, 1);
2760
2761 btrfs_set_trans_block_group(trans, dir);
2762 atomic_inc(&inode->i_count);
2763
2764 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2765
2766 if (err)
2767 drop_inode = 1;
2768
2769 dir->i_sb->s_dirt = 1;
2770 btrfs_update_inode_block_group(trans, dir);
2771 err = btrfs_update_inode(trans, root, inode);
2772
2773 if (err)
2774 drop_inode = 1;
2775
2776 nr = trans->blocks_used;
2777 btrfs_end_transaction_throttle(trans, root);
2778 fail:
2779 if (drop_inode) {
2780 inode_dec_link_count(inode);
2781 iput(inode);
2782 }
2783 btrfs_btree_balance_dirty(root, nr);
2784 return err;
2785 }
2786
2787 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2788 {
2789 struct inode *inode = NULL;
2790 struct btrfs_trans_handle *trans;
2791 struct btrfs_root *root = BTRFS_I(dir)->root;
2792 int err = 0;
2793 int drop_on_err = 0;
2794 u64 objectid = 0;
2795 u64 index = 0;
2796 unsigned long nr = 1;
2797
2798 err = btrfs_check_free_space(root, 1, 0);
2799 if (err)
2800 goto out_unlock;
2801
2802 trans = btrfs_start_transaction(root, 1);
2803 btrfs_set_trans_block_group(trans, dir);
2804
2805 if (IS_ERR(trans)) {
2806 err = PTR_ERR(trans);
2807 goto out_unlock;
2808 }
2809
2810 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2811 if (err) {
2812 err = -ENOSPC;
2813 goto out_unlock;
2814 }
2815
2816 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2817 dentry->d_name.len,
2818 dentry->d_parent->d_inode->i_ino, objectid,
2819 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2820 &index);
2821 if (IS_ERR(inode)) {
2822 err = PTR_ERR(inode);
2823 goto out_fail;
2824 }
2825
2826 drop_on_err = 1;
2827
2828 err = btrfs_init_acl(inode, dir);
2829 if (err)
2830 goto out_fail;
2831
2832 inode->i_op = &btrfs_dir_inode_operations;
2833 inode->i_fop = &btrfs_dir_file_operations;
2834 btrfs_set_trans_block_group(trans, inode);
2835
2836 btrfs_i_size_write(inode, 0);
2837 err = btrfs_update_inode(trans, root, inode);
2838 if (err)
2839 goto out_fail;
2840
2841 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2842 inode, dentry->d_name.name,
2843 dentry->d_name.len, 0, index);
2844 if (err)
2845 goto out_fail;
2846
2847 d_instantiate(dentry, inode);
2848 drop_on_err = 0;
2849 dir->i_sb->s_dirt = 1;
2850 btrfs_update_inode_block_group(trans, inode);
2851 btrfs_update_inode_block_group(trans, dir);
2852
2853 out_fail:
2854 nr = trans->blocks_used;
2855 btrfs_end_transaction_throttle(trans, root);
2856
2857 out_unlock:
2858 if (drop_on_err)
2859 iput(inode);
2860 btrfs_btree_balance_dirty(root, nr);
2861 return err;
2862 }
2863
2864 /* helper for btfs_get_extent. Given an existing extent in the tree,
2865 * and an extent that you want to insert, deal with overlap and insert
2866 * the new extent into the tree.
2867 */
2868 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2869 struct extent_map *existing,
2870 struct extent_map *em,
2871 u64 map_start, u64 map_len)
2872 {
2873 u64 start_diff;
2874
2875 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2876 start_diff = map_start - em->start;
2877 em->start = map_start;
2878 em->len = map_len;
2879 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2880 em->block_start += start_diff;
2881 return add_extent_mapping(em_tree, em);
2882 }
2883
2884 /*
2885 * a bit scary, this does extent mapping from logical file offset to the disk.
2886 * the ugly parts come from merging extents from the disk with the
2887 * in-ram representation. This gets more complex because of the data=ordered code,
2888 * where the in-ram extents might be locked pending data=ordered completion.
2889 *
2890 * This also copies inline extents directly into the page.
2891 */
2892 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2893 size_t pg_offset, u64 start, u64 len,
2894 int create)
2895 {
2896 int ret;
2897 int err = 0;
2898 u64 bytenr;
2899 u64 extent_start = 0;
2900 u64 extent_end = 0;
2901 u64 objectid = inode->i_ino;
2902 u32 found_type;
2903 struct btrfs_path *path = NULL;
2904 struct btrfs_root *root = BTRFS_I(inode)->root;
2905 struct btrfs_file_extent_item *item;
2906 struct extent_buffer *leaf;
2907 struct btrfs_key found_key;
2908 struct extent_map *em = NULL;
2909 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2910 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2911 struct btrfs_trans_handle *trans = NULL;
2912
2913 again:
2914 spin_lock(&em_tree->lock);
2915 em = lookup_extent_mapping(em_tree, start, len);
2916 if (em)
2917 em->bdev = root->fs_info->fs_devices->latest_bdev;
2918 spin_unlock(&em_tree->lock);
2919
2920 if (em) {
2921 if (em->start > start || em->start + em->len <= start)
2922 free_extent_map(em);
2923 else if (em->block_start == EXTENT_MAP_INLINE && page)
2924 free_extent_map(em);
2925 else
2926 goto out;
2927 }
2928 em = alloc_extent_map(GFP_NOFS);
2929 if (!em) {
2930 err = -ENOMEM;
2931 goto out;
2932 }
2933 em->bdev = root->fs_info->fs_devices->latest_bdev;
2934 em->start = EXTENT_MAP_HOLE;
2935 em->len = (u64)-1;
2936
2937 if (!path) {
2938 path = btrfs_alloc_path();
2939 BUG_ON(!path);
2940 }
2941
2942 ret = btrfs_lookup_file_extent(trans, root, path,
2943 objectid, start, trans != NULL);
2944 if (ret < 0) {
2945 err = ret;
2946 goto out;
2947 }
2948
2949 if (ret != 0) {
2950 if (path->slots[0] == 0)
2951 goto not_found;
2952 path->slots[0]--;
2953 }
2954
2955 leaf = path->nodes[0];
2956 item = btrfs_item_ptr(leaf, path->slots[0],
2957 struct btrfs_file_extent_item);
2958 /* are we inside the extent that was found? */
2959 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2960 found_type = btrfs_key_type(&found_key);
2961 if (found_key.objectid != objectid ||
2962 found_type != BTRFS_EXTENT_DATA_KEY) {
2963 goto not_found;
2964 }
2965
2966 found_type = btrfs_file_extent_type(leaf, item);
2967 extent_start = found_key.offset;
2968 if (found_type == BTRFS_FILE_EXTENT_REG) {
2969 extent_end = extent_start +
2970 btrfs_file_extent_num_bytes(leaf, item);
2971 err = 0;
2972 if (start < extent_start || start >= extent_end) {
2973 em->start = start;
2974 if (start < extent_start) {
2975 if (start + len <= extent_start)
2976 goto not_found;
2977 em->len = extent_end - extent_start;
2978 } else {
2979 em->len = len;
2980 }
2981 goto not_found_em;
2982 }
2983 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2984 if (bytenr == 0) {
2985 em->start = extent_start;
2986 em->len = extent_end - extent_start;
2987 em->block_start = EXTENT_MAP_HOLE;
2988 goto insert;
2989 }
2990 bytenr += btrfs_file_extent_offset(leaf, item);
2991 em->block_start = bytenr;
2992 em->start = extent_start;
2993 em->len = extent_end - extent_start;
2994 goto insert;
2995 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2996 u64 page_start;
2997 unsigned long ptr;
2998 char *map;
2999 size_t size;
3000 size_t extent_offset;
3001 size_t copy_size;
3002
3003 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
3004 path->slots[0]));
3005 extent_end = (extent_start + size + root->sectorsize - 1) &
3006 ~((u64)root->sectorsize - 1);
3007 if (start < extent_start || start >= extent_end) {
3008 em->start = start;
3009 if (start < extent_start) {
3010 if (start + len <= extent_start)
3011 goto not_found;
3012 em->len = extent_end - extent_start;
3013 } else {
3014 em->len = len;
3015 }
3016 goto not_found_em;
3017 }
3018 em->block_start = EXTENT_MAP_INLINE;
3019
3020 if (!page) {
3021 em->start = extent_start;
3022 em->len = size;
3023 goto out;
3024 }
3025
3026 page_start = page_offset(page) + pg_offset;
3027 extent_offset = page_start - extent_start;
3028 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3029 size - extent_offset);
3030 em->start = extent_start + extent_offset;
3031 em->len = (copy_size + root->sectorsize - 1) &
3032 ~((u64)root->sectorsize - 1);
3033 map = kmap(page);
3034 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
3035 if (create == 0 && !PageUptodate(page)) {
3036 read_extent_buffer(leaf, map + pg_offset, ptr,
3037 copy_size);
3038 flush_dcache_page(page);
3039 } else if (create && PageUptodate(page)) {
3040 if (!trans) {
3041 kunmap(page);
3042 free_extent_map(em);
3043 em = NULL;
3044 btrfs_release_path(root, path);
3045 trans = btrfs_join_transaction(root, 1);
3046 goto again;
3047 }
3048 write_extent_buffer(leaf, map + pg_offset, ptr,
3049 copy_size);
3050 btrfs_mark_buffer_dirty(leaf);
3051 }
3052 kunmap(page);
3053 set_extent_uptodate(io_tree, em->start,
3054 extent_map_end(em) - 1, GFP_NOFS);
3055 goto insert;
3056 } else {
3057 printk("unkknown found_type %d\n", found_type);
3058 WARN_ON(1);
3059 }
3060 not_found:
3061 em->start = start;
3062 em->len = len;
3063 not_found_em:
3064 em->block_start = EXTENT_MAP_HOLE;
3065 insert:
3066 btrfs_release_path(root, path);
3067 if (em->start > start || extent_map_end(em) <= start) {
3068 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
3069 err = -EIO;
3070 goto out;
3071 }
3072
3073 err = 0;
3074 spin_lock(&em_tree->lock);
3075 ret = add_extent_mapping(em_tree, em);
3076 /* it is possible that someone inserted the extent into the tree
3077 * while we had the lock dropped. It is also possible that
3078 * an overlapping map exists in the tree
3079 */
3080 if (ret == -EEXIST) {
3081 struct extent_map *existing;
3082
3083 ret = 0;
3084
3085 existing = lookup_extent_mapping(em_tree, start, len);
3086 if (existing && (existing->start > start ||
3087 existing->start + existing->len <= start)) {
3088 free_extent_map(existing);
3089 existing = NULL;
3090 }
3091 if (!existing) {
3092 existing = lookup_extent_mapping(em_tree, em->start,
3093 em->len);
3094 if (existing) {
3095 err = merge_extent_mapping(em_tree, existing,
3096 em, start,
3097 root->sectorsize);
3098 free_extent_map(existing);
3099 if (err) {
3100 free_extent_map(em);
3101 em = NULL;
3102 }
3103 } else {
3104 err = -EIO;
3105 printk("failing to insert %Lu %Lu\n",
3106 start, len);
3107 free_extent_map(em);
3108 em = NULL;
3109 }
3110 } else {
3111 free_extent_map(em);
3112 em = existing;
3113 err = 0;
3114 }
3115 }
3116 spin_unlock(&em_tree->lock);
3117 out:
3118 if (path)
3119 btrfs_free_path(path);
3120 if (trans) {
3121 ret = btrfs_end_transaction(trans, root);
3122 if (!err) {
3123 err = ret;
3124 }
3125 }
3126 if (err) {
3127 free_extent_map(em);
3128 WARN_ON(1);
3129 return ERR_PTR(err);
3130 }
3131 return em;
3132 }
3133
3134 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
3135 const struct iovec *iov, loff_t offset,
3136 unsigned long nr_segs)
3137 {
3138 return -EINVAL;
3139 }
3140
3141 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3142 {
3143 return extent_bmap(mapping, iblock, btrfs_get_extent);
3144 }
3145
3146 int btrfs_readpage(struct file *file, struct page *page)
3147 {
3148 struct extent_io_tree *tree;
3149 tree = &BTRFS_I(page->mapping->host)->io_tree;
3150 return extent_read_full_page(tree, page, btrfs_get_extent);
3151 }
3152
3153 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3154 {
3155 struct extent_io_tree *tree;
3156
3157
3158 if (current->flags & PF_MEMALLOC) {
3159 redirty_page_for_writepage(wbc, page);
3160 unlock_page(page);
3161 return 0;
3162 }
3163 tree = &BTRFS_I(page->mapping->host)->io_tree;
3164 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3165 }
3166
3167 int btrfs_writepages(struct address_space *mapping,
3168 struct writeback_control *wbc)
3169 {
3170 struct extent_io_tree *tree;
3171 tree = &BTRFS_I(mapping->host)->io_tree;
3172 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3173 }
3174
3175 static int
3176 btrfs_readpages(struct file *file, struct address_space *mapping,
3177 struct list_head *pages, unsigned nr_pages)
3178 {
3179 struct extent_io_tree *tree;
3180 tree = &BTRFS_I(mapping->host)->io_tree;
3181 return extent_readpages(tree, mapping, pages, nr_pages,
3182 btrfs_get_extent);
3183 }
3184 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3185 {
3186 struct extent_io_tree *tree;
3187 struct extent_map_tree *map;
3188 int ret;
3189
3190 tree = &BTRFS_I(page->mapping->host)->io_tree;
3191 map = &BTRFS_I(page->mapping->host)->extent_tree;
3192 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3193 if (ret == 1) {
3194 ClearPagePrivate(page);
3195 set_page_private(page, 0);
3196 page_cache_release(page);
3197 }
3198 return ret;
3199 }
3200
3201 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3202 {
3203 if (PageWriteback(page) || PageDirty(page))
3204 return 0;
3205 return __btrfs_releasepage(page, gfp_flags);
3206 }
3207
3208 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3209 {
3210 struct extent_io_tree *tree;
3211 struct btrfs_ordered_extent *ordered;
3212 u64 page_start = page_offset(page);
3213 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3214
3215 wait_on_page_writeback(page);
3216 tree = &BTRFS_I(page->mapping->host)->io_tree;
3217 if (offset) {
3218 btrfs_releasepage(page, GFP_NOFS);
3219 return;
3220 }
3221
3222 lock_extent(tree, page_start, page_end, GFP_NOFS);
3223 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3224 page_offset(page));
3225 if (ordered) {
3226 /*
3227 * IO on this page will never be started, so we need
3228 * to account for any ordered extents now
3229 */
3230 clear_extent_bit(tree, page_start, page_end,
3231 EXTENT_DIRTY | EXTENT_DELALLOC |
3232 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3233 btrfs_finish_ordered_io(page->mapping->host,
3234 page_start, page_end);
3235 btrfs_put_ordered_extent(ordered);
3236 lock_extent(tree, page_start, page_end, GFP_NOFS);
3237 }
3238 clear_extent_bit(tree, page_start, page_end,
3239 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3240 EXTENT_ORDERED,
3241 1, 1, GFP_NOFS);
3242 __btrfs_releasepage(page, GFP_NOFS);
3243
3244 ClearPageChecked(page);
3245 if (PagePrivate(page)) {
3246 ClearPagePrivate(page);
3247 set_page_private(page, 0);
3248 page_cache_release(page);
3249 }
3250 }
3251
3252 /*
3253 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3254 * called from a page fault handler when a page is first dirtied. Hence we must
3255 * be careful to check for EOF conditions here. We set the page up correctly
3256 * for a written page which means we get ENOSPC checking when writing into
3257 * holes and correct delalloc and unwritten extent mapping on filesystems that
3258 * support these features.
3259 *
3260 * We are not allowed to take the i_mutex here so we have to play games to
3261 * protect against truncate races as the page could now be beyond EOF. Because
3262 * vmtruncate() writes the inode size before removing pages, once we have the
3263 * page lock we can determine safely if the page is beyond EOF. If it is not
3264 * beyond EOF, then the page is guaranteed safe against truncation until we
3265 * unlock the page.
3266 */
3267 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3268 {
3269 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3270 struct btrfs_root *root = BTRFS_I(inode)->root;
3271 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3272 struct btrfs_ordered_extent *ordered;
3273 char *kaddr;
3274 unsigned long zero_start;
3275 loff_t size;
3276 int ret;
3277 u64 page_start;
3278 u64 page_end;
3279
3280 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3281 if (ret)
3282 goto out;
3283
3284 ret = -EINVAL;
3285 again:
3286 lock_page(page);
3287 size = i_size_read(inode);
3288 page_start = page_offset(page);
3289 page_end = page_start + PAGE_CACHE_SIZE - 1;
3290
3291 if ((page->mapping != inode->i_mapping) ||
3292 (page_start >= size)) {
3293 /* page got truncated out from underneath us */
3294 goto out_unlock;
3295 }
3296 wait_on_page_writeback(page);
3297
3298 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3299 set_page_extent_mapped(page);
3300
3301 /*
3302 * we can't set the delalloc bits if there are pending ordered
3303 * extents. Drop our locks and wait for them to finish
3304 */
3305 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3306 if (ordered) {
3307 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3308 unlock_page(page);
3309 btrfs_start_ordered_extent(inode, ordered, 1);
3310 btrfs_put_ordered_extent(ordered);
3311 goto again;
3312 }
3313
3314 btrfs_set_extent_delalloc(inode, page_start, page_end);
3315 ret = 0;
3316
3317 /* page is wholly or partially inside EOF */
3318 if (page_start + PAGE_CACHE_SIZE > size)
3319 zero_start = size & ~PAGE_CACHE_MASK;
3320 else
3321 zero_start = PAGE_CACHE_SIZE;
3322
3323 if (zero_start != PAGE_CACHE_SIZE) {
3324 kaddr = kmap(page);
3325 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3326 flush_dcache_page(page);
3327 kunmap(page);
3328 }
3329 ClearPageChecked(page);
3330 set_page_dirty(page);
3331 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3332
3333 out_unlock:
3334 unlock_page(page);
3335 out:
3336 return ret;
3337 }
3338
3339 static void btrfs_truncate(struct inode *inode)
3340 {
3341 struct btrfs_root *root = BTRFS_I(inode)->root;
3342 int ret;
3343 struct btrfs_trans_handle *trans;
3344 unsigned long nr;
3345 u64 mask = root->sectorsize - 1;
3346
3347 if (!S_ISREG(inode->i_mode))
3348 return;
3349 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3350 return;
3351
3352 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3353 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3354
3355 trans = btrfs_start_transaction(root, 1);
3356 btrfs_set_trans_block_group(trans, inode);
3357 btrfs_i_size_write(inode, inode->i_size);
3358
3359 ret = btrfs_orphan_add(trans, inode);
3360 if (ret)
3361 goto out;
3362 /* FIXME, add redo link to tree so we don't leak on crash */
3363 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3364 BTRFS_EXTENT_DATA_KEY);
3365 btrfs_update_inode(trans, root, inode);
3366
3367 ret = btrfs_orphan_del(trans, inode);
3368 BUG_ON(ret);
3369
3370 out:
3371 nr = trans->blocks_used;
3372 ret = btrfs_end_transaction_throttle(trans, root);
3373 BUG_ON(ret);
3374 btrfs_btree_balance_dirty(root, nr);
3375 }
3376
3377 /*
3378 * Invalidate a single dcache entry at the root of the filesystem.
3379 * Needed after creation of snapshot or subvolume.
3380 */
3381 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3382 int namelen)
3383 {
3384 struct dentry *alias, *entry;
3385 struct qstr qstr;
3386
3387 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3388 if (alias) {
3389 qstr.name = name;
3390 qstr.len = namelen;
3391 /* change me if btrfs ever gets a d_hash operation */
3392 qstr.hash = full_name_hash(qstr.name, qstr.len);
3393 entry = d_lookup(alias, &qstr);
3394 dput(alias);
3395 if (entry) {
3396 d_invalidate(entry);
3397 dput(entry);
3398 }
3399 }
3400 }
3401
3402 /*
3403 * create a new subvolume directory/inode (helper for the ioctl).
3404 */
3405 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3406 struct btrfs_trans_handle *trans, u64 new_dirid,
3407 struct btrfs_block_group_cache *block_group)
3408 {
3409 struct inode *inode;
3410 u64 index = 0;
3411
3412 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3413 new_dirid, block_group, S_IFDIR | 0700, &index);
3414 if (IS_ERR(inode))
3415 return PTR_ERR(inode);
3416 inode->i_op = &btrfs_dir_inode_operations;
3417 inode->i_fop = &btrfs_dir_file_operations;
3418 new_root->inode = inode;
3419
3420 inode->i_nlink = 1;
3421 btrfs_i_size_write(inode, 0);
3422
3423 return btrfs_update_inode(trans, new_root, inode);
3424 }
3425
3426 /* helper function for file defrag and space balancing. This
3427 * forces readahead on a given range of bytes in an inode
3428 */
3429 unsigned long btrfs_force_ra(struct address_space *mapping,
3430 struct file_ra_state *ra, struct file *file,
3431 pgoff_t offset, pgoff_t last_index)
3432 {
3433 pgoff_t req_size = last_index - offset + 1;
3434
3435 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3436 return offset + req_size;
3437 }
3438
3439 struct inode *btrfs_alloc_inode(struct super_block *sb)
3440 {
3441 struct btrfs_inode *ei;
3442
3443 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3444 if (!ei)
3445 return NULL;
3446 ei->last_trans = 0;
3447 ei->logged_trans = 0;
3448 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3449 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3450 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3451 INIT_LIST_HEAD(&ei->i_orphan);
3452 return &ei->vfs_inode;
3453 }
3454
3455 void btrfs_destroy_inode(struct inode *inode)
3456 {
3457 struct btrfs_ordered_extent *ordered;
3458 WARN_ON(!list_empty(&inode->i_dentry));
3459 WARN_ON(inode->i_data.nrpages);
3460
3461 if (BTRFS_I(inode)->i_acl &&
3462 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3463 posix_acl_release(BTRFS_I(inode)->i_acl);
3464 if (BTRFS_I(inode)->i_default_acl &&
3465 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3466 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3467
3468 spin_lock(&BTRFS_I(inode)->root->list_lock);
3469 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3470 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3471 " list\n", inode->i_ino);
3472 dump_stack();
3473 }
3474 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3475
3476 while(1) {
3477 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3478 if (!ordered)
3479 break;
3480 else {
3481 printk("found ordered extent %Lu %Lu\n",
3482 ordered->file_offset, ordered->len);
3483 btrfs_remove_ordered_extent(inode, ordered);
3484 btrfs_put_ordered_extent(ordered);
3485 btrfs_put_ordered_extent(ordered);
3486 }
3487 }
3488 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
3489 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3490 }
3491
3492 static void init_once(void *foo)
3493 {
3494 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3495
3496 inode_init_once(&ei->vfs_inode);
3497 }
3498
3499 void btrfs_destroy_cachep(void)
3500 {
3501 if (btrfs_inode_cachep)
3502 kmem_cache_destroy(btrfs_inode_cachep);
3503 if (btrfs_trans_handle_cachep)
3504 kmem_cache_destroy(btrfs_trans_handle_cachep);
3505 if (btrfs_transaction_cachep)
3506 kmem_cache_destroy(btrfs_transaction_cachep);
3507 if (btrfs_bit_radix_cachep)
3508 kmem_cache_destroy(btrfs_bit_radix_cachep);
3509 if (btrfs_path_cachep)
3510 kmem_cache_destroy(btrfs_path_cachep);
3511 }
3512
3513 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3514 unsigned long extra_flags,
3515 void (*ctor)(void *))
3516 {
3517 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3518 SLAB_MEM_SPREAD | extra_flags), ctor);
3519 }
3520
3521 int btrfs_init_cachep(void)
3522 {
3523 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3524 sizeof(struct btrfs_inode),
3525 0, init_once);
3526 if (!btrfs_inode_cachep)
3527 goto fail;
3528 btrfs_trans_handle_cachep =
3529 btrfs_cache_create("btrfs_trans_handle_cache",
3530 sizeof(struct btrfs_trans_handle),
3531 0, NULL);
3532 if (!btrfs_trans_handle_cachep)
3533 goto fail;
3534 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3535 sizeof(struct btrfs_transaction),
3536 0, NULL);
3537 if (!btrfs_transaction_cachep)
3538 goto fail;
3539 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3540 sizeof(struct btrfs_path),
3541 0, NULL);
3542 if (!btrfs_path_cachep)
3543 goto fail;
3544 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3545 SLAB_DESTROY_BY_RCU, NULL);
3546 if (!btrfs_bit_radix_cachep)
3547 goto fail;
3548 return 0;
3549 fail:
3550 btrfs_destroy_cachep();
3551 return -ENOMEM;
3552 }
3553
3554 static int btrfs_getattr(struct vfsmount *mnt,
3555 struct dentry *dentry, struct kstat *stat)
3556 {
3557 struct inode *inode = dentry->d_inode;
3558 generic_fillattr(inode, stat);
3559 stat->blksize = PAGE_CACHE_SIZE;
3560 stat->blocks = (inode_get_bytes(inode) +
3561 BTRFS_I(inode)->delalloc_bytes) >> 9;
3562 return 0;
3563 }
3564
3565 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3566 struct inode * new_dir,struct dentry *new_dentry)
3567 {
3568 struct btrfs_trans_handle *trans;
3569 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3570 struct inode *new_inode = new_dentry->d_inode;
3571 struct inode *old_inode = old_dentry->d_inode;
3572 struct timespec ctime = CURRENT_TIME;
3573 u64 index = 0;
3574 int ret;
3575
3576 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3577 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3578 return -ENOTEMPTY;
3579 }
3580
3581 ret = btrfs_check_free_space(root, 1, 0);
3582 if (ret)
3583 goto out_unlock;
3584
3585 trans = btrfs_start_transaction(root, 1);
3586
3587 btrfs_set_trans_block_group(trans, new_dir);
3588
3589 btrfs_inc_nlink(old_dentry->d_inode);
3590 old_dir->i_ctime = old_dir->i_mtime = ctime;
3591 new_dir->i_ctime = new_dir->i_mtime = ctime;
3592 old_inode->i_ctime = ctime;
3593
3594 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
3595 old_dentry->d_name.name,
3596 old_dentry->d_name.len);
3597 if (ret)
3598 goto out_fail;
3599
3600 if (new_inode) {
3601 new_inode->i_ctime = CURRENT_TIME;
3602 ret = btrfs_unlink_inode(trans, root, new_dir,
3603 new_dentry->d_inode,
3604 new_dentry->d_name.name,
3605 new_dentry->d_name.len);
3606 if (ret)
3607 goto out_fail;
3608 if (new_inode->i_nlink == 0) {
3609 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
3610 if (ret)
3611 goto out_fail;
3612 }
3613
3614 }
3615 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3616 if (ret)
3617 goto out_fail;
3618
3619 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
3620 old_inode, new_dentry->d_name.name,
3621 new_dentry->d_name.len, 1, index);
3622 if (ret)
3623 goto out_fail;
3624
3625 out_fail:
3626 btrfs_end_transaction_throttle(trans, root);
3627 out_unlock:
3628 return ret;
3629 }
3630
3631 /*
3632 * some fairly slow code that needs optimization. This walks the list
3633 * of all the inodes with pending delalloc and forces them to disk.
3634 */
3635 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3636 {
3637 struct list_head *head = &root->fs_info->delalloc_inodes;
3638 struct btrfs_inode *binode;
3639 struct inode *inode;
3640 unsigned long flags;
3641
3642 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3643 while(!list_empty(head)) {
3644 binode = list_entry(head->next, struct btrfs_inode,
3645 delalloc_inodes);
3646 inode = igrab(&binode->vfs_inode);
3647 if (!inode)
3648 list_del_init(&binode->delalloc_inodes);
3649 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3650 if (inode) {
3651 filemap_flush(inode->i_mapping);
3652 iput(inode);
3653 }
3654 cond_resched();
3655 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3656 }
3657 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3658
3659 /* the filemap_flush will queue IO into the worker threads, but
3660 * we have to make sure the IO is actually started and that
3661 * ordered extents get created before we return
3662 */
3663 atomic_inc(&root->fs_info->async_submit_draining);
3664 while(atomic_read(&root->fs_info->nr_async_submits)) {
3665 wait_event(root->fs_info->async_submit_wait,
3666 (atomic_read(&root->fs_info->nr_async_submits) == 0));
3667 }
3668 atomic_dec(&root->fs_info->async_submit_draining);
3669 return 0;
3670 }
3671
3672 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3673 const char *symname)
3674 {
3675 struct btrfs_trans_handle *trans;
3676 struct btrfs_root *root = BTRFS_I(dir)->root;
3677 struct btrfs_path *path;
3678 struct btrfs_key key;
3679 struct inode *inode = NULL;
3680 int err;
3681 int drop_inode = 0;
3682 u64 objectid;
3683 u64 index = 0 ;
3684 int name_len;
3685 int datasize;
3686 unsigned long ptr;
3687 struct btrfs_file_extent_item *ei;
3688 struct extent_buffer *leaf;
3689 unsigned long nr = 0;
3690
3691 name_len = strlen(symname) + 1;
3692 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3693 return -ENAMETOOLONG;
3694
3695 err = btrfs_check_free_space(root, 1, 0);
3696 if (err)
3697 goto out_fail;
3698
3699 trans = btrfs_start_transaction(root, 1);
3700 btrfs_set_trans_block_group(trans, dir);
3701
3702 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3703 if (err) {
3704 err = -ENOSPC;
3705 goto out_unlock;
3706 }
3707
3708 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3709 dentry->d_name.len,
3710 dentry->d_parent->d_inode->i_ino, objectid,
3711 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3712 &index);
3713 err = PTR_ERR(inode);
3714 if (IS_ERR(inode))
3715 goto out_unlock;
3716
3717 err = btrfs_init_acl(inode, dir);
3718 if (err) {
3719 drop_inode = 1;
3720 goto out_unlock;
3721 }
3722
3723 btrfs_set_trans_block_group(trans, inode);
3724 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3725 if (err)
3726 drop_inode = 1;
3727 else {
3728 inode->i_mapping->a_ops = &btrfs_aops;
3729 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3730 inode->i_fop = &btrfs_file_operations;
3731 inode->i_op = &btrfs_file_inode_operations;
3732 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3733 }
3734 dir->i_sb->s_dirt = 1;
3735 btrfs_update_inode_block_group(trans, inode);
3736 btrfs_update_inode_block_group(trans, dir);
3737 if (drop_inode)
3738 goto out_unlock;
3739
3740 path = btrfs_alloc_path();
3741 BUG_ON(!path);
3742 key.objectid = inode->i_ino;
3743 key.offset = 0;
3744 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3745 datasize = btrfs_file_extent_calc_inline_size(name_len);
3746 err = btrfs_insert_empty_item(trans, root, path, &key,
3747 datasize);
3748 if (err) {
3749 drop_inode = 1;
3750 goto out_unlock;
3751 }
3752 leaf = path->nodes[0];
3753 ei = btrfs_item_ptr(leaf, path->slots[0],
3754 struct btrfs_file_extent_item);
3755 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3756 btrfs_set_file_extent_type(leaf, ei,
3757 BTRFS_FILE_EXTENT_INLINE);
3758 ptr = btrfs_file_extent_inline_start(ei);
3759 write_extent_buffer(leaf, symname, ptr, name_len);
3760 btrfs_mark_buffer_dirty(leaf);
3761 btrfs_free_path(path);
3762
3763 inode->i_op = &btrfs_symlink_inode_operations;
3764 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3765 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3766 btrfs_i_size_write(inode, name_len - 1);
3767 err = btrfs_update_inode(trans, root, inode);
3768 if (err)
3769 drop_inode = 1;
3770
3771 out_unlock:
3772 nr = trans->blocks_used;
3773 btrfs_end_transaction_throttle(trans, root);
3774 out_fail:
3775 if (drop_inode) {
3776 inode_dec_link_count(inode);
3777 iput(inode);
3778 }
3779 btrfs_btree_balance_dirty(root, nr);
3780 return err;
3781 }
3782
3783 static int btrfs_set_page_dirty(struct page *page)
3784 {
3785 return __set_page_dirty_nobuffers(page);
3786 }
3787
3788 static int btrfs_permission(struct inode *inode, int mask)
3789 {
3790 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3791 return -EACCES;
3792 return generic_permission(inode, mask, btrfs_check_acl);
3793 }
3794
3795 static struct inode_operations btrfs_dir_inode_operations = {
3796 .lookup = btrfs_lookup,
3797 .create = btrfs_create,
3798 .unlink = btrfs_unlink,
3799 .link = btrfs_link,
3800 .mkdir = btrfs_mkdir,
3801 .rmdir = btrfs_rmdir,
3802 .rename = btrfs_rename,
3803 .symlink = btrfs_symlink,
3804 .setattr = btrfs_setattr,
3805 .mknod = btrfs_mknod,
3806 .setxattr = btrfs_setxattr,
3807 .getxattr = btrfs_getxattr,
3808 .listxattr = btrfs_listxattr,
3809 .removexattr = btrfs_removexattr,
3810 .permission = btrfs_permission,
3811 };
3812 static struct inode_operations btrfs_dir_ro_inode_operations = {
3813 .lookup = btrfs_lookup,
3814 .permission = btrfs_permission,
3815 };
3816 static struct file_operations btrfs_dir_file_operations = {
3817 .llseek = generic_file_llseek,
3818 .read = generic_read_dir,
3819 .readdir = btrfs_real_readdir,
3820 .unlocked_ioctl = btrfs_ioctl,
3821 #ifdef CONFIG_COMPAT
3822 .compat_ioctl = btrfs_ioctl,
3823 #endif
3824 .release = btrfs_release_file,
3825 .fsync = btrfs_sync_file,
3826 };
3827
3828 static struct extent_io_ops btrfs_extent_io_ops = {
3829 .fill_delalloc = run_delalloc_range,
3830 .submit_bio_hook = btrfs_submit_bio_hook,
3831 .merge_bio_hook = btrfs_merge_bio_hook,
3832 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3833 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3834 .writepage_start_hook = btrfs_writepage_start_hook,
3835 .readpage_io_failed_hook = btrfs_io_failed_hook,
3836 .set_bit_hook = btrfs_set_bit_hook,
3837 .clear_bit_hook = btrfs_clear_bit_hook,
3838 };
3839
3840 static struct address_space_operations btrfs_aops = {
3841 .readpage = btrfs_readpage,
3842 .writepage = btrfs_writepage,
3843 .writepages = btrfs_writepages,
3844 .readpages = btrfs_readpages,
3845 .sync_page = block_sync_page,
3846 .bmap = btrfs_bmap,
3847 .direct_IO = btrfs_direct_IO,
3848 .invalidatepage = btrfs_invalidatepage,
3849 .releasepage = btrfs_releasepage,
3850 .set_page_dirty = btrfs_set_page_dirty,
3851 };
3852
3853 static struct address_space_operations btrfs_symlink_aops = {
3854 .readpage = btrfs_readpage,
3855 .writepage = btrfs_writepage,
3856 .invalidatepage = btrfs_invalidatepage,
3857 .releasepage = btrfs_releasepage,
3858 };
3859
3860 static struct inode_operations btrfs_file_inode_operations = {
3861 .truncate = btrfs_truncate,
3862 .getattr = btrfs_getattr,
3863 .setattr = btrfs_setattr,
3864 .setxattr = btrfs_setxattr,
3865 .getxattr = btrfs_getxattr,
3866 .listxattr = btrfs_listxattr,
3867 .removexattr = btrfs_removexattr,
3868 .permission = btrfs_permission,
3869 };
3870 static struct inode_operations btrfs_special_inode_operations = {
3871 .getattr = btrfs_getattr,
3872 .setattr = btrfs_setattr,
3873 .permission = btrfs_permission,
3874 .setxattr = btrfs_setxattr,
3875 .getxattr = btrfs_getxattr,
3876 .listxattr = btrfs_listxattr,
3877 .removexattr = btrfs_removexattr,
3878 };
3879 static struct inode_operations btrfs_symlink_inode_operations = {
3880 .readlink = generic_readlink,
3881 .follow_link = page_follow_link_light,
3882 .put_link = page_put_link,
3883 .permission = btrfs_permission,
3884 };
This page took 0.149415 seconds and 6 git commands to generate.