Btrfs: account merges/splits properly
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62
63 struct btrfs_iget_args {
64 struct btrfs_key *location;
65 struct btrfs_root *root;
66 };
67
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
77
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
84
85 #define S_SHIFT 12
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94 };
95
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
108
109 static int btrfs_dirty_inode(struct inode *inode);
110
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
114 {
115 int err;
116
117 err = btrfs_init_acl(trans, inode, dir);
118 if (!err)
119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
120 return err;
121 }
122
123 /*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129 struct btrfs_path *path, int extent_inserted,
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
132 int compress_type,
133 struct page **compressed_pages)
134 {
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
143 unsigned long offset;
144
145 if (compressed_size && compressed_pages)
146 cur_size = compressed_size;
147
148 inode_add_bytes(inode, size);
149
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
153
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
156 key.type = BTRFS_EXTENT_DATA_KEY;
157
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
177 if (compress_type != BTRFS_COMPRESS_NONE) {
178 struct page *cpage;
179 int i = 0;
180 while (compressed_size > 0) {
181 cpage = compressed_pages[i];
182 cur_size = min_t(unsigned long, compressed_size,
183 PAGE_CACHE_SIZE);
184
185 kaddr = kmap_atomic(cpage);
186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 kunmap_atomic(kaddr);
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
194 compress_type);
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
199 kaddr = kmap_atomic(page);
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 kunmap_atomic(kaddr);
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_release_path(path);
207
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
217 BTRFS_I(inode)->disk_i_size = inode->i_size;
218 ret = btrfs_update_inode(trans, root, inode);
219
220 return ret;
221 fail:
222 return err;
223 }
224
225
226 /*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
236 {
237 struct btrfs_trans_handle *trans;
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
241 u64 aligned_end = ALIGN(end, root->sectorsize);
242 u64 data_len = inline_len;
243 int ret;
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
252 actual_end > PAGE_CACHE_SIZE ||
253 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
265 trans = btrfs_join_transaction(root);
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
268 return PTR_ERR(trans);
269 }
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
291 inline_len, compressed_size,
292 compress_type, compressed_pages);
293 if (ret && ret != -ENOSPC) {
294 btrfs_abort_transaction(trans, root, ret);
295 goto out;
296 } else if (ret == -ENOSPC) {
297 ret = 1;
298 goto out;
299 }
300
301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
304 out:
305 btrfs_free_path(path);
306 btrfs_end_transaction(trans, root);
307 return ret;
308 }
309
310 struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
316 int compress_type;
317 struct list_head list;
318 };
319
320 struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328 };
329
330 static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
334 unsigned long nr_pages,
335 int compress_type)
336 {
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340 BUG_ON(!async_extent); /* -ENOMEM */
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
346 async_extent->compress_type = compress_type;
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349 }
350
351 static inline int inode_need_compress(struct inode *inode)
352 {
353 struct btrfs_root *root = BTRFS_I(inode)->root;
354
355 /* force compress */
356 if (btrfs_test_opt(root, FORCE_COMPRESS))
357 return 1;
358 /* bad compression ratios */
359 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360 return 0;
361 if (btrfs_test_opt(root, COMPRESS) ||
362 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363 BTRFS_I(inode)->force_compress)
364 return 1;
365 return 0;
366 }
367
368 /*
369 * we create compressed extents in two phases. The first
370 * phase compresses a range of pages that have already been
371 * locked (both pages and state bits are locked).
372 *
373 * This is done inside an ordered work queue, and the compression
374 * is spread across many cpus. The actual IO submission is step
375 * two, and the ordered work queue takes care of making sure that
376 * happens in the same order things were put onto the queue by
377 * writepages and friends.
378 *
379 * If this code finds it can't get good compression, it puts an
380 * entry onto the work queue to write the uncompressed bytes. This
381 * makes sure that both compressed inodes and uncompressed inodes
382 * are written in the same order that the flusher thread sent them
383 * down.
384 */
385 static noinline void compress_file_range(struct inode *inode,
386 struct page *locked_page,
387 u64 start, u64 end,
388 struct async_cow *async_cow,
389 int *num_added)
390 {
391 struct btrfs_root *root = BTRFS_I(inode)->root;
392 u64 num_bytes;
393 u64 blocksize = root->sectorsize;
394 u64 actual_end;
395 u64 isize = i_size_read(inode);
396 int ret = 0;
397 struct page **pages = NULL;
398 unsigned long nr_pages;
399 unsigned long nr_pages_ret = 0;
400 unsigned long total_compressed = 0;
401 unsigned long total_in = 0;
402 unsigned long max_compressed = 128 * 1024;
403 unsigned long max_uncompressed = 128 * 1024;
404 int i;
405 int will_compress;
406 int compress_type = root->fs_info->compress_type;
407 int redirty = 0;
408
409 /* if this is a small write inside eof, kick off a defrag */
410 if ((end - start + 1) < 16 * 1024 &&
411 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
412 btrfs_add_inode_defrag(NULL, inode);
413
414 actual_end = min_t(u64, isize, end + 1);
415 again:
416 will_compress = 0;
417 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
418 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
419
420 /*
421 * we don't want to send crud past the end of i_size through
422 * compression, that's just a waste of CPU time. So, if the
423 * end of the file is before the start of our current
424 * requested range of bytes, we bail out to the uncompressed
425 * cleanup code that can deal with all of this.
426 *
427 * It isn't really the fastest way to fix things, but this is a
428 * very uncommon corner.
429 */
430 if (actual_end <= start)
431 goto cleanup_and_bail_uncompressed;
432
433 total_compressed = actual_end - start;
434
435 /*
436 * skip compression for a small file range(<=blocksize) that
437 * isn't an inline extent, since it dosen't save disk space at all.
438 */
439 if (total_compressed <= blocksize &&
440 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
441 goto cleanup_and_bail_uncompressed;
442
443 /* we want to make sure that amount of ram required to uncompress
444 * an extent is reasonable, so we limit the total size in ram
445 * of a compressed extent to 128k. This is a crucial number
446 * because it also controls how easily we can spread reads across
447 * cpus for decompression.
448 *
449 * We also want to make sure the amount of IO required to do
450 * a random read is reasonably small, so we limit the size of
451 * a compressed extent to 128k.
452 */
453 total_compressed = min(total_compressed, max_uncompressed);
454 num_bytes = ALIGN(end - start + 1, blocksize);
455 num_bytes = max(blocksize, num_bytes);
456 total_in = 0;
457 ret = 0;
458
459 /*
460 * we do compression for mount -o compress and when the
461 * inode has not been flagged as nocompress. This flag can
462 * change at any time if we discover bad compression ratios.
463 */
464 if (inode_need_compress(inode)) {
465 WARN_ON(pages);
466 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
467 if (!pages) {
468 /* just bail out to the uncompressed code */
469 goto cont;
470 }
471
472 if (BTRFS_I(inode)->force_compress)
473 compress_type = BTRFS_I(inode)->force_compress;
474
475 /*
476 * we need to call clear_page_dirty_for_io on each
477 * page in the range. Otherwise applications with the file
478 * mmap'd can wander in and change the page contents while
479 * we are compressing them.
480 *
481 * If the compression fails for any reason, we set the pages
482 * dirty again later on.
483 */
484 extent_range_clear_dirty_for_io(inode, start, end);
485 redirty = 1;
486 ret = btrfs_compress_pages(compress_type,
487 inode->i_mapping, start,
488 total_compressed, pages,
489 nr_pages, &nr_pages_ret,
490 &total_in,
491 &total_compressed,
492 max_compressed);
493
494 if (!ret) {
495 unsigned long offset = total_compressed &
496 (PAGE_CACHE_SIZE - 1);
497 struct page *page = pages[nr_pages_ret - 1];
498 char *kaddr;
499
500 /* zero the tail end of the last page, we might be
501 * sending it down to disk
502 */
503 if (offset) {
504 kaddr = kmap_atomic(page);
505 memset(kaddr + offset, 0,
506 PAGE_CACHE_SIZE - offset);
507 kunmap_atomic(kaddr);
508 }
509 will_compress = 1;
510 }
511 }
512 cont:
513 if (start == 0) {
514 /* lets try to make an inline extent */
515 if (ret || total_in < (actual_end - start)) {
516 /* we didn't compress the entire range, try
517 * to make an uncompressed inline extent.
518 */
519 ret = cow_file_range_inline(root, inode, start, end,
520 0, 0, NULL);
521 } else {
522 /* try making a compressed inline extent */
523 ret = cow_file_range_inline(root, inode, start, end,
524 total_compressed,
525 compress_type, pages);
526 }
527 if (ret <= 0) {
528 unsigned long clear_flags = EXTENT_DELALLOC |
529 EXTENT_DEFRAG;
530 unsigned long page_error_op;
531
532 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
533 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
534
535 /*
536 * inline extent creation worked or returned error,
537 * we don't need to create any more async work items.
538 * Unlock and free up our temp pages.
539 */
540 extent_clear_unlock_delalloc(inode, start, end, NULL,
541 clear_flags, PAGE_UNLOCK |
542 PAGE_CLEAR_DIRTY |
543 PAGE_SET_WRITEBACK |
544 page_error_op |
545 PAGE_END_WRITEBACK);
546 goto free_pages_out;
547 }
548 }
549
550 if (will_compress) {
551 /*
552 * we aren't doing an inline extent round the compressed size
553 * up to a block size boundary so the allocator does sane
554 * things
555 */
556 total_compressed = ALIGN(total_compressed, blocksize);
557
558 /*
559 * one last check to make sure the compression is really a
560 * win, compare the page count read with the blocks on disk
561 */
562 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
563 if (total_compressed >= total_in) {
564 will_compress = 0;
565 } else {
566 num_bytes = total_in;
567 }
568 }
569 if (!will_compress && pages) {
570 /*
571 * the compression code ran but failed to make things smaller,
572 * free any pages it allocated and our page pointer array
573 */
574 for (i = 0; i < nr_pages_ret; i++) {
575 WARN_ON(pages[i]->mapping);
576 page_cache_release(pages[i]);
577 }
578 kfree(pages);
579 pages = NULL;
580 total_compressed = 0;
581 nr_pages_ret = 0;
582
583 /* flag the file so we don't compress in the future */
584 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
585 !(BTRFS_I(inode)->force_compress)) {
586 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
587 }
588 }
589 if (will_compress) {
590 *num_added += 1;
591
592 /* the async work queues will take care of doing actual
593 * allocation on disk for these compressed pages,
594 * and will submit them to the elevator.
595 */
596 add_async_extent(async_cow, start, num_bytes,
597 total_compressed, pages, nr_pages_ret,
598 compress_type);
599
600 if (start + num_bytes < end) {
601 start += num_bytes;
602 pages = NULL;
603 cond_resched();
604 goto again;
605 }
606 } else {
607 cleanup_and_bail_uncompressed:
608 /*
609 * No compression, but we still need to write the pages in
610 * the file we've been given so far. redirty the locked
611 * page if it corresponds to our extent and set things up
612 * for the async work queue to run cow_file_range to do
613 * the normal delalloc dance
614 */
615 if (page_offset(locked_page) >= start &&
616 page_offset(locked_page) <= end) {
617 __set_page_dirty_nobuffers(locked_page);
618 /* unlocked later on in the async handlers */
619 }
620 if (redirty)
621 extent_range_redirty_for_io(inode, start, end);
622 add_async_extent(async_cow, start, end - start + 1,
623 0, NULL, 0, BTRFS_COMPRESS_NONE);
624 *num_added += 1;
625 }
626
627 return;
628
629 free_pages_out:
630 for (i = 0; i < nr_pages_ret; i++) {
631 WARN_ON(pages[i]->mapping);
632 page_cache_release(pages[i]);
633 }
634 kfree(pages);
635 }
636
637 static void free_async_extent_pages(struct async_extent *async_extent)
638 {
639 int i;
640
641 if (!async_extent->pages)
642 return;
643
644 for (i = 0; i < async_extent->nr_pages; i++) {
645 WARN_ON(async_extent->pages[i]->mapping);
646 page_cache_release(async_extent->pages[i]);
647 }
648 kfree(async_extent->pages);
649 async_extent->nr_pages = 0;
650 async_extent->pages = NULL;
651 }
652
653 /*
654 * phase two of compressed writeback. This is the ordered portion
655 * of the code, which only gets called in the order the work was
656 * queued. We walk all the async extents created by compress_file_range
657 * and send them down to the disk.
658 */
659 static noinline void submit_compressed_extents(struct inode *inode,
660 struct async_cow *async_cow)
661 {
662 struct async_extent *async_extent;
663 u64 alloc_hint = 0;
664 struct btrfs_key ins;
665 struct extent_map *em;
666 struct btrfs_root *root = BTRFS_I(inode)->root;
667 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
668 struct extent_io_tree *io_tree;
669 int ret = 0;
670
671 again:
672 while (!list_empty(&async_cow->extents)) {
673 async_extent = list_entry(async_cow->extents.next,
674 struct async_extent, list);
675 list_del(&async_extent->list);
676
677 io_tree = &BTRFS_I(inode)->io_tree;
678
679 retry:
680 /* did the compression code fall back to uncompressed IO? */
681 if (!async_extent->pages) {
682 int page_started = 0;
683 unsigned long nr_written = 0;
684
685 lock_extent(io_tree, async_extent->start,
686 async_extent->start +
687 async_extent->ram_size - 1);
688
689 /* allocate blocks */
690 ret = cow_file_range(inode, async_cow->locked_page,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 &page_started, &nr_written, 0);
695
696 /* JDM XXX */
697
698 /*
699 * if page_started, cow_file_range inserted an
700 * inline extent and took care of all the unlocking
701 * and IO for us. Otherwise, we need to submit
702 * all those pages down to the drive.
703 */
704 if (!page_started && !ret)
705 extent_write_locked_range(io_tree,
706 inode, async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1,
709 btrfs_get_extent,
710 WB_SYNC_ALL);
711 else if (ret)
712 unlock_page(async_cow->locked_page);
713 kfree(async_extent);
714 cond_resched();
715 continue;
716 }
717
718 lock_extent(io_tree, async_extent->start,
719 async_extent->start + async_extent->ram_size - 1);
720
721 ret = btrfs_reserve_extent(root,
722 async_extent->compressed_size,
723 async_extent->compressed_size,
724 0, alloc_hint, &ins, 1, 1);
725 if (ret) {
726 free_async_extent_pages(async_extent);
727
728 if (ret == -ENOSPC) {
729 unlock_extent(io_tree, async_extent->start,
730 async_extent->start +
731 async_extent->ram_size - 1);
732
733 /*
734 * we need to redirty the pages if we decide to
735 * fallback to uncompressed IO, otherwise we
736 * will not submit these pages down to lower
737 * layers.
738 */
739 extent_range_redirty_for_io(inode,
740 async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1);
743
744 goto retry;
745 }
746 goto out_free;
747 }
748
749 /*
750 * here we're doing allocation and writeback of the
751 * compressed pages
752 */
753 btrfs_drop_extent_cache(inode, async_extent->start,
754 async_extent->start +
755 async_extent->ram_size - 1, 0);
756
757 em = alloc_extent_map();
758 if (!em) {
759 ret = -ENOMEM;
760 goto out_free_reserve;
761 }
762 em->start = async_extent->start;
763 em->len = async_extent->ram_size;
764 em->orig_start = em->start;
765 em->mod_start = em->start;
766 em->mod_len = em->len;
767
768 em->block_start = ins.objectid;
769 em->block_len = ins.offset;
770 em->orig_block_len = ins.offset;
771 em->ram_bytes = async_extent->ram_size;
772 em->bdev = root->fs_info->fs_devices->latest_bdev;
773 em->compress_type = async_extent->compress_type;
774 set_bit(EXTENT_FLAG_PINNED, &em->flags);
775 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
776 em->generation = -1;
777
778 while (1) {
779 write_lock(&em_tree->lock);
780 ret = add_extent_mapping(em_tree, em, 1);
781 write_unlock(&em_tree->lock);
782 if (ret != -EEXIST) {
783 free_extent_map(em);
784 break;
785 }
786 btrfs_drop_extent_cache(inode, async_extent->start,
787 async_extent->start +
788 async_extent->ram_size - 1, 0);
789 }
790
791 if (ret)
792 goto out_free_reserve;
793
794 ret = btrfs_add_ordered_extent_compress(inode,
795 async_extent->start,
796 ins.objectid,
797 async_extent->ram_size,
798 ins.offset,
799 BTRFS_ORDERED_COMPRESSED,
800 async_extent->compress_type);
801 if (ret) {
802 btrfs_drop_extent_cache(inode, async_extent->start,
803 async_extent->start +
804 async_extent->ram_size - 1, 0);
805 goto out_free_reserve;
806 }
807
808 /*
809 * clear dirty, set writeback and unlock the pages.
810 */
811 extent_clear_unlock_delalloc(inode, async_extent->start,
812 async_extent->start +
813 async_extent->ram_size - 1,
814 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
815 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
816 PAGE_SET_WRITEBACK);
817 ret = btrfs_submit_compressed_write(inode,
818 async_extent->start,
819 async_extent->ram_size,
820 ins.objectid,
821 ins.offset, async_extent->pages,
822 async_extent->nr_pages);
823 if (ret) {
824 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
825 struct page *p = async_extent->pages[0];
826 const u64 start = async_extent->start;
827 const u64 end = start + async_extent->ram_size - 1;
828
829 p->mapping = inode->i_mapping;
830 tree->ops->writepage_end_io_hook(p, start, end,
831 NULL, 0);
832 p->mapping = NULL;
833 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
834 PAGE_END_WRITEBACK |
835 PAGE_SET_ERROR);
836 free_async_extent_pages(async_extent);
837 }
838 alloc_hint = ins.objectid + ins.offset;
839 kfree(async_extent);
840 cond_resched();
841 }
842 return;
843 out_free_reserve:
844 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
845 out_free:
846 extent_clear_unlock_delalloc(inode, async_extent->start,
847 async_extent->start +
848 async_extent->ram_size - 1,
849 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
850 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
852 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
853 PAGE_SET_ERROR);
854 free_async_extent_pages(async_extent);
855 kfree(async_extent);
856 goto again;
857 }
858
859 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
860 u64 num_bytes)
861 {
862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863 struct extent_map *em;
864 u64 alloc_hint = 0;
865
866 read_lock(&em_tree->lock);
867 em = search_extent_mapping(em_tree, start, num_bytes);
868 if (em) {
869 /*
870 * if block start isn't an actual block number then find the
871 * first block in this inode and use that as a hint. If that
872 * block is also bogus then just don't worry about it.
873 */
874 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
875 free_extent_map(em);
876 em = search_extent_mapping(em_tree, 0, 0);
877 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
878 alloc_hint = em->block_start;
879 if (em)
880 free_extent_map(em);
881 } else {
882 alloc_hint = em->block_start;
883 free_extent_map(em);
884 }
885 }
886 read_unlock(&em_tree->lock);
887
888 return alloc_hint;
889 }
890
891 /*
892 * when extent_io.c finds a delayed allocation range in the file,
893 * the call backs end up in this code. The basic idea is to
894 * allocate extents on disk for the range, and create ordered data structs
895 * in ram to track those extents.
896 *
897 * locked_page is the page that writepage had locked already. We use
898 * it to make sure we don't do extra locks or unlocks.
899 *
900 * *page_started is set to one if we unlock locked_page and do everything
901 * required to start IO on it. It may be clean and already done with
902 * IO when we return.
903 */
904 static noinline int cow_file_range(struct inode *inode,
905 struct page *locked_page,
906 u64 start, u64 end, int *page_started,
907 unsigned long *nr_written,
908 int unlock)
909 {
910 struct btrfs_root *root = BTRFS_I(inode)->root;
911 u64 alloc_hint = 0;
912 u64 num_bytes;
913 unsigned long ram_size;
914 u64 disk_num_bytes;
915 u64 cur_alloc_size;
916 u64 blocksize = root->sectorsize;
917 struct btrfs_key ins;
918 struct extent_map *em;
919 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
920 int ret = 0;
921
922 if (btrfs_is_free_space_inode(inode)) {
923 WARN_ON_ONCE(1);
924 ret = -EINVAL;
925 goto out_unlock;
926 }
927
928 num_bytes = ALIGN(end - start + 1, blocksize);
929 num_bytes = max(blocksize, num_bytes);
930 disk_num_bytes = num_bytes;
931
932 /* if this is a small write inside eof, kick off defrag */
933 if (num_bytes < 64 * 1024 &&
934 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
935 btrfs_add_inode_defrag(NULL, inode);
936
937 if (start == 0) {
938 /* lets try to make an inline extent */
939 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
940 NULL);
941 if (ret == 0) {
942 extent_clear_unlock_delalloc(inode, start, end, NULL,
943 EXTENT_LOCKED | EXTENT_DELALLOC |
944 EXTENT_DEFRAG, PAGE_UNLOCK |
945 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
946 PAGE_END_WRITEBACK);
947
948 *nr_written = *nr_written +
949 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
950 *page_started = 1;
951 goto out;
952 } else if (ret < 0) {
953 goto out_unlock;
954 }
955 }
956
957 BUG_ON(disk_num_bytes >
958 btrfs_super_total_bytes(root->fs_info->super_copy));
959
960 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
961 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
962
963 while (disk_num_bytes > 0) {
964 unsigned long op;
965
966 cur_alloc_size = disk_num_bytes;
967 ret = btrfs_reserve_extent(root, cur_alloc_size,
968 root->sectorsize, 0, alloc_hint,
969 &ins, 1, 1);
970 if (ret < 0)
971 goto out_unlock;
972
973 em = alloc_extent_map();
974 if (!em) {
975 ret = -ENOMEM;
976 goto out_reserve;
977 }
978 em->start = start;
979 em->orig_start = em->start;
980 ram_size = ins.offset;
981 em->len = ins.offset;
982 em->mod_start = em->start;
983 em->mod_len = em->len;
984
985 em->block_start = ins.objectid;
986 em->block_len = ins.offset;
987 em->orig_block_len = ins.offset;
988 em->ram_bytes = ram_size;
989 em->bdev = root->fs_info->fs_devices->latest_bdev;
990 set_bit(EXTENT_FLAG_PINNED, &em->flags);
991 em->generation = -1;
992
993 while (1) {
994 write_lock(&em_tree->lock);
995 ret = add_extent_mapping(em_tree, em, 1);
996 write_unlock(&em_tree->lock);
997 if (ret != -EEXIST) {
998 free_extent_map(em);
999 break;
1000 }
1001 btrfs_drop_extent_cache(inode, start,
1002 start + ram_size - 1, 0);
1003 }
1004 if (ret)
1005 goto out_reserve;
1006
1007 cur_alloc_size = ins.offset;
1008 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1009 ram_size, cur_alloc_size, 0);
1010 if (ret)
1011 goto out_drop_extent_cache;
1012
1013 if (root->root_key.objectid ==
1014 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1015 ret = btrfs_reloc_clone_csums(inode, start,
1016 cur_alloc_size);
1017 if (ret)
1018 goto out_drop_extent_cache;
1019 }
1020
1021 if (disk_num_bytes < cur_alloc_size)
1022 break;
1023
1024 /* we're not doing compressed IO, don't unlock the first
1025 * page (which the caller expects to stay locked), don't
1026 * clear any dirty bits and don't set any writeback bits
1027 *
1028 * Do set the Private2 bit so we know this page was properly
1029 * setup for writepage
1030 */
1031 op = unlock ? PAGE_UNLOCK : 0;
1032 op |= PAGE_SET_PRIVATE2;
1033
1034 extent_clear_unlock_delalloc(inode, start,
1035 start + ram_size - 1, locked_page,
1036 EXTENT_LOCKED | EXTENT_DELALLOC,
1037 op);
1038 disk_num_bytes -= cur_alloc_size;
1039 num_bytes -= cur_alloc_size;
1040 alloc_hint = ins.objectid + ins.offset;
1041 start += cur_alloc_size;
1042 }
1043 out:
1044 return ret;
1045
1046 out_drop_extent_cache:
1047 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1048 out_reserve:
1049 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1050 out_unlock:
1051 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1052 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1053 EXTENT_DELALLOC | EXTENT_DEFRAG,
1054 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1055 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1056 goto out;
1057 }
1058
1059 /*
1060 * work queue call back to started compression on a file and pages
1061 */
1062 static noinline void async_cow_start(struct btrfs_work *work)
1063 {
1064 struct async_cow *async_cow;
1065 int num_added = 0;
1066 async_cow = container_of(work, struct async_cow, work);
1067
1068 compress_file_range(async_cow->inode, async_cow->locked_page,
1069 async_cow->start, async_cow->end, async_cow,
1070 &num_added);
1071 if (num_added == 0) {
1072 btrfs_add_delayed_iput(async_cow->inode);
1073 async_cow->inode = NULL;
1074 }
1075 }
1076
1077 /*
1078 * work queue call back to submit previously compressed pages
1079 */
1080 static noinline void async_cow_submit(struct btrfs_work *work)
1081 {
1082 struct async_cow *async_cow;
1083 struct btrfs_root *root;
1084 unsigned long nr_pages;
1085
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 root = async_cow->root;
1089 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1090 PAGE_CACHE_SHIFT;
1091
1092 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1093 5 * 1024 * 1024 &&
1094 waitqueue_active(&root->fs_info->async_submit_wait))
1095 wake_up(&root->fs_info->async_submit_wait);
1096
1097 if (async_cow->inode)
1098 submit_compressed_extents(async_cow->inode, async_cow);
1099 }
1100
1101 static noinline void async_cow_free(struct btrfs_work *work)
1102 {
1103 struct async_cow *async_cow;
1104 async_cow = container_of(work, struct async_cow, work);
1105 if (async_cow->inode)
1106 btrfs_add_delayed_iput(async_cow->inode);
1107 kfree(async_cow);
1108 }
1109
1110 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1111 u64 start, u64 end, int *page_started,
1112 unsigned long *nr_written)
1113 {
1114 struct async_cow *async_cow;
1115 struct btrfs_root *root = BTRFS_I(inode)->root;
1116 unsigned long nr_pages;
1117 u64 cur_end;
1118 int limit = 10 * 1024 * 1024;
1119
1120 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1121 1, 0, NULL, GFP_NOFS);
1122 while (start < end) {
1123 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1124 BUG_ON(!async_cow); /* -ENOMEM */
1125 async_cow->inode = igrab(inode);
1126 async_cow->root = root;
1127 async_cow->locked_page = locked_page;
1128 async_cow->start = start;
1129
1130 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1131 !btrfs_test_opt(root, FORCE_COMPRESS))
1132 cur_end = end;
1133 else
1134 cur_end = min(end, start + 512 * 1024 - 1);
1135
1136 async_cow->end = cur_end;
1137 INIT_LIST_HEAD(&async_cow->extents);
1138
1139 btrfs_init_work(&async_cow->work,
1140 btrfs_delalloc_helper,
1141 async_cow_start, async_cow_submit,
1142 async_cow_free);
1143
1144 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1145 PAGE_CACHE_SHIFT;
1146 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1147
1148 btrfs_queue_work(root->fs_info->delalloc_workers,
1149 &async_cow->work);
1150
1151 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1152 wait_event(root->fs_info->async_submit_wait,
1153 (atomic_read(&root->fs_info->async_delalloc_pages) <
1154 limit));
1155 }
1156
1157 while (atomic_read(&root->fs_info->async_submit_draining) &&
1158 atomic_read(&root->fs_info->async_delalloc_pages)) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1161 0));
1162 }
1163
1164 *nr_written += nr_pages;
1165 start = cur_end + 1;
1166 }
1167 *page_started = 1;
1168 return 0;
1169 }
1170
1171 static noinline int csum_exist_in_range(struct btrfs_root *root,
1172 u64 bytenr, u64 num_bytes)
1173 {
1174 int ret;
1175 struct btrfs_ordered_sum *sums;
1176 LIST_HEAD(list);
1177
1178 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1179 bytenr + num_bytes - 1, &list, 0);
1180 if (ret == 0 && list_empty(&list))
1181 return 0;
1182
1183 while (!list_empty(&list)) {
1184 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1185 list_del(&sums->list);
1186 kfree(sums);
1187 }
1188 return 1;
1189 }
1190
1191 /*
1192 * when nowcow writeback call back. This checks for snapshots or COW copies
1193 * of the extents that exist in the file, and COWs the file as required.
1194 *
1195 * If no cow copies or snapshots exist, we write directly to the existing
1196 * blocks on disk
1197 */
1198 static noinline int run_delalloc_nocow(struct inode *inode,
1199 struct page *locked_page,
1200 u64 start, u64 end, int *page_started, int force,
1201 unsigned long *nr_written)
1202 {
1203 struct btrfs_root *root = BTRFS_I(inode)->root;
1204 struct btrfs_trans_handle *trans;
1205 struct extent_buffer *leaf;
1206 struct btrfs_path *path;
1207 struct btrfs_file_extent_item *fi;
1208 struct btrfs_key found_key;
1209 u64 cow_start;
1210 u64 cur_offset;
1211 u64 extent_end;
1212 u64 extent_offset;
1213 u64 disk_bytenr;
1214 u64 num_bytes;
1215 u64 disk_num_bytes;
1216 u64 ram_bytes;
1217 int extent_type;
1218 int ret, err;
1219 int type;
1220 int nocow;
1221 int check_prev = 1;
1222 bool nolock;
1223 u64 ino = btrfs_ino(inode);
1224
1225 path = btrfs_alloc_path();
1226 if (!path) {
1227 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1228 EXTENT_LOCKED | EXTENT_DELALLOC |
1229 EXTENT_DO_ACCOUNTING |
1230 EXTENT_DEFRAG, PAGE_UNLOCK |
1231 PAGE_CLEAR_DIRTY |
1232 PAGE_SET_WRITEBACK |
1233 PAGE_END_WRITEBACK);
1234 return -ENOMEM;
1235 }
1236
1237 nolock = btrfs_is_free_space_inode(inode);
1238
1239 if (nolock)
1240 trans = btrfs_join_transaction_nolock(root);
1241 else
1242 trans = btrfs_join_transaction(root);
1243
1244 if (IS_ERR(trans)) {
1245 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1246 EXTENT_LOCKED | EXTENT_DELALLOC |
1247 EXTENT_DO_ACCOUNTING |
1248 EXTENT_DEFRAG, PAGE_UNLOCK |
1249 PAGE_CLEAR_DIRTY |
1250 PAGE_SET_WRITEBACK |
1251 PAGE_END_WRITEBACK);
1252 btrfs_free_path(path);
1253 return PTR_ERR(trans);
1254 }
1255
1256 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1257
1258 cow_start = (u64)-1;
1259 cur_offset = start;
1260 while (1) {
1261 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1262 cur_offset, 0);
1263 if (ret < 0)
1264 goto error;
1265 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1266 leaf = path->nodes[0];
1267 btrfs_item_key_to_cpu(leaf, &found_key,
1268 path->slots[0] - 1);
1269 if (found_key.objectid == ino &&
1270 found_key.type == BTRFS_EXTENT_DATA_KEY)
1271 path->slots[0]--;
1272 }
1273 check_prev = 0;
1274 next_slot:
1275 leaf = path->nodes[0];
1276 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1277 ret = btrfs_next_leaf(root, path);
1278 if (ret < 0)
1279 goto error;
1280 if (ret > 0)
1281 break;
1282 leaf = path->nodes[0];
1283 }
1284
1285 nocow = 0;
1286 disk_bytenr = 0;
1287 num_bytes = 0;
1288 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1289
1290 if (found_key.objectid > ino ||
1291 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1292 found_key.offset > end)
1293 break;
1294
1295 if (found_key.offset > cur_offset) {
1296 extent_end = found_key.offset;
1297 extent_type = 0;
1298 goto out_check;
1299 }
1300
1301 fi = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_file_extent_item);
1303 extent_type = btrfs_file_extent_type(leaf, fi);
1304
1305 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1306 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1307 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1308 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1309 extent_offset = btrfs_file_extent_offset(leaf, fi);
1310 extent_end = found_key.offset +
1311 btrfs_file_extent_num_bytes(leaf, fi);
1312 disk_num_bytes =
1313 btrfs_file_extent_disk_num_bytes(leaf, fi);
1314 if (extent_end <= start) {
1315 path->slots[0]++;
1316 goto next_slot;
1317 }
1318 if (disk_bytenr == 0)
1319 goto out_check;
1320 if (btrfs_file_extent_compression(leaf, fi) ||
1321 btrfs_file_extent_encryption(leaf, fi) ||
1322 btrfs_file_extent_other_encoding(leaf, fi))
1323 goto out_check;
1324 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1325 goto out_check;
1326 if (btrfs_extent_readonly(root, disk_bytenr))
1327 goto out_check;
1328 if (btrfs_cross_ref_exist(trans, root, ino,
1329 found_key.offset -
1330 extent_offset, disk_bytenr))
1331 goto out_check;
1332 disk_bytenr += extent_offset;
1333 disk_bytenr += cur_offset - found_key.offset;
1334 num_bytes = min(end + 1, extent_end) - cur_offset;
1335 /*
1336 * if there are pending snapshots for this root,
1337 * we fall into common COW way.
1338 */
1339 if (!nolock) {
1340 err = btrfs_start_write_no_snapshoting(root);
1341 if (!err)
1342 goto out_check;
1343 }
1344 /*
1345 * force cow if csum exists in the range.
1346 * this ensure that csum for a given extent are
1347 * either valid or do not exist.
1348 */
1349 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1350 goto out_check;
1351 nocow = 1;
1352 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353 extent_end = found_key.offset +
1354 btrfs_file_extent_inline_len(leaf,
1355 path->slots[0], fi);
1356 extent_end = ALIGN(extent_end, root->sectorsize);
1357 } else {
1358 BUG_ON(1);
1359 }
1360 out_check:
1361 if (extent_end <= start) {
1362 path->slots[0]++;
1363 if (!nolock && nocow)
1364 btrfs_end_write_no_snapshoting(root);
1365 goto next_slot;
1366 }
1367 if (!nocow) {
1368 if (cow_start == (u64)-1)
1369 cow_start = cur_offset;
1370 cur_offset = extent_end;
1371 if (cur_offset > end)
1372 break;
1373 path->slots[0]++;
1374 goto next_slot;
1375 }
1376
1377 btrfs_release_path(path);
1378 if (cow_start != (u64)-1) {
1379 ret = cow_file_range(inode, locked_page,
1380 cow_start, found_key.offset - 1,
1381 page_started, nr_written, 1);
1382 if (ret) {
1383 if (!nolock && nocow)
1384 btrfs_end_write_no_snapshoting(root);
1385 goto error;
1386 }
1387 cow_start = (u64)-1;
1388 }
1389
1390 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1391 struct extent_map *em;
1392 struct extent_map_tree *em_tree;
1393 em_tree = &BTRFS_I(inode)->extent_tree;
1394 em = alloc_extent_map();
1395 BUG_ON(!em); /* -ENOMEM */
1396 em->start = cur_offset;
1397 em->orig_start = found_key.offset - extent_offset;
1398 em->len = num_bytes;
1399 em->block_len = num_bytes;
1400 em->block_start = disk_bytenr;
1401 em->orig_block_len = disk_num_bytes;
1402 em->ram_bytes = ram_bytes;
1403 em->bdev = root->fs_info->fs_devices->latest_bdev;
1404 em->mod_start = em->start;
1405 em->mod_len = em->len;
1406 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1407 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1408 em->generation = -1;
1409 while (1) {
1410 write_lock(&em_tree->lock);
1411 ret = add_extent_mapping(em_tree, em, 1);
1412 write_unlock(&em_tree->lock);
1413 if (ret != -EEXIST) {
1414 free_extent_map(em);
1415 break;
1416 }
1417 btrfs_drop_extent_cache(inode, em->start,
1418 em->start + em->len - 1, 0);
1419 }
1420 type = BTRFS_ORDERED_PREALLOC;
1421 } else {
1422 type = BTRFS_ORDERED_NOCOW;
1423 }
1424
1425 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1426 num_bytes, num_bytes, type);
1427 BUG_ON(ret); /* -ENOMEM */
1428
1429 if (root->root_key.objectid ==
1430 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1431 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1432 num_bytes);
1433 if (ret) {
1434 if (!nolock && nocow)
1435 btrfs_end_write_no_snapshoting(root);
1436 goto error;
1437 }
1438 }
1439
1440 extent_clear_unlock_delalloc(inode, cur_offset,
1441 cur_offset + num_bytes - 1,
1442 locked_page, EXTENT_LOCKED |
1443 EXTENT_DELALLOC, PAGE_UNLOCK |
1444 PAGE_SET_PRIVATE2);
1445 if (!nolock && nocow)
1446 btrfs_end_write_no_snapshoting(root);
1447 cur_offset = extent_end;
1448 if (cur_offset > end)
1449 break;
1450 }
1451 btrfs_release_path(path);
1452
1453 if (cur_offset <= end && cow_start == (u64)-1) {
1454 cow_start = cur_offset;
1455 cur_offset = end;
1456 }
1457
1458 if (cow_start != (u64)-1) {
1459 ret = cow_file_range(inode, locked_page, cow_start, end,
1460 page_started, nr_written, 1);
1461 if (ret)
1462 goto error;
1463 }
1464
1465 error:
1466 err = btrfs_end_transaction(trans, root);
1467 if (!ret)
1468 ret = err;
1469
1470 if (ret && cur_offset < end)
1471 extent_clear_unlock_delalloc(inode, cur_offset, end,
1472 locked_page, EXTENT_LOCKED |
1473 EXTENT_DELALLOC | EXTENT_DEFRAG |
1474 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1475 PAGE_CLEAR_DIRTY |
1476 PAGE_SET_WRITEBACK |
1477 PAGE_END_WRITEBACK);
1478 btrfs_free_path(path);
1479 return ret;
1480 }
1481
1482 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1483 {
1484
1485 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1486 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1487 return 0;
1488
1489 /*
1490 * @defrag_bytes is a hint value, no spinlock held here,
1491 * if is not zero, it means the file is defragging.
1492 * Force cow if given extent needs to be defragged.
1493 */
1494 if (BTRFS_I(inode)->defrag_bytes &&
1495 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1496 EXTENT_DEFRAG, 0, NULL))
1497 return 1;
1498
1499 return 0;
1500 }
1501
1502 /*
1503 * extent_io.c call back to do delayed allocation processing
1504 */
1505 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1506 u64 start, u64 end, int *page_started,
1507 unsigned long *nr_written)
1508 {
1509 int ret;
1510 int force_cow = need_force_cow(inode, start, end);
1511
1512 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1513 ret = run_delalloc_nocow(inode, locked_page, start, end,
1514 page_started, 1, nr_written);
1515 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1516 ret = run_delalloc_nocow(inode, locked_page, start, end,
1517 page_started, 0, nr_written);
1518 } else if (!inode_need_compress(inode)) {
1519 ret = cow_file_range(inode, locked_page, start, end,
1520 page_started, nr_written, 1);
1521 } else {
1522 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1523 &BTRFS_I(inode)->runtime_flags);
1524 ret = cow_file_range_async(inode, locked_page, start, end,
1525 page_started, nr_written);
1526 }
1527 return ret;
1528 }
1529
1530 static void btrfs_split_extent_hook(struct inode *inode,
1531 struct extent_state *orig, u64 split)
1532 {
1533 u64 size;
1534
1535 /* not delalloc, ignore it */
1536 if (!(orig->state & EXTENT_DELALLOC))
1537 return;
1538
1539 size = orig->end - orig->start + 1;
1540 if (size > BTRFS_MAX_EXTENT_SIZE) {
1541 u64 num_extents;
1542 u64 new_size;
1543
1544 /*
1545 * See the explanation in btrfs_merge_extent_hook, the same
1546 * applies here, just in reverse.
1547 */
1548 new_size = orig->end - split + 1;
1549 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1550 BTRFS_MAX_EXTENT_SIZE);
1551 new_size = split - orig->start;
1552 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1553 BTRFS_MAX_EXTENT_SIZE);
1554 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1555 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1556 return;
1557 }
1558
1559 spin_lock(&BTRFS_I(inode)->lock);
1560 BTRFS_I(inode)->outstanding_extents++;
1561 spin_unlock(&BTRFS_I(inode)->lock);
1562 }
1563
1564 /*
1565 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1566 * extents so we can keep track of new extents that are just merged onto old
1567 * extents, such as when we are doing sequential writes, so we can properly
1568 * account for the metadata space we'll need.
1569 */
1570 static void btrfs_merge_extent_hook(struct inode *inode,
1571 struct extent_state *new,
1572 struct extent_state *other)
1573 {
1574 u64 new_size, old_size;
1575 u64 num_extents;
1576
1577 /* not delalloc, ignore it */
1578 if (!(other->state & EXTENT_DELALLOC))
1579 return;
1580
1581 if (new->start > other->start)
1582 new_size = new->end - other->start + 1;
1583 else
1584 new_size = other->end - new->start + 1;
1585
1586 /* we're not bigger than the max, unreserve the space and go */
1587 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1588 spin_lock(&BTRFS_I(inode)->lock);
1589 BTRFS_I(inode)->outstanding_extents--;
1590 spin_unlock(&BTRFS_I(inode)->lock);
1591 return;
1592 }
1593
1594 /*
1595 * We have to add up either side to figure out how many extents were
1596 * accounted for before we merged into one big extent. If the number of
1597 * extents we accounted for is <= the amount we need for the new range
1598 * then we can return, otherwise drop. Think of it like this
1599 *
1600 * [ 4k][MAX_SIZE]
1601 *
1602 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1603 * need 2 outstanding extents, on one side we have 1 and the other side
1604 * we have 1 so they are == and we can return. But in this case
1605 *
1606 * [MAX_SIZE+4k][MAX_SIZE+4k]
1607 *
1608 * Each range on their own accounts for 2 extents, but merged together
1609 * they are only 3 extents worth of accounting, so we need to drop in
1610 * this case.
1611 */
1612 old_size = other->end - other->start + 1;
1613 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1614 BTRFS_MAX_EXTENT_SIZE);
1615 old_size = new->end - new->start + 1;
1616 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1617 BTRFS_MAX_EXTENT_SIZE);
1618
1619 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1620 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1621 return;
1622
1623 spin_lock(&BTRFS_I(inode)->lock);
1624 BTRFS_I(inode)->outstanding_extents--;
1625 spin_unlock(&BTRFS_I(inode)->lock);
1626 }
1627
1628 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1629 struct inode *inode)
1630 {
1631 spin_lock(&root->delalloc_lock);
1632 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1633 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1634 &root->delalloc_inodes);
1635 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1636 &BTRFS_I(inode)->runtime_flags);
1637 root->nr_delalloc_inodes++;
1638 if (root->nr_delalloc_inodes == 1) {
1639 spin_lock(&root->fs_info->delalloc_root_lock);
1640 BUG_ON(!list_empty(&root->delalloc_root));
1641 list_add_tail(&root->delalloc_root,
1642 &root->fs_info->delalloc_roots);
1643 spin_unlock(&root->fs_info->delalloc_root_lock);
1644 }
1645 }
1646 spin_unlock(&root->delalloc_lock);
1647 }
1648
1649 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1650 struct inode *inode)
1651 {
1652 spin_lock(&root->delalloc_lock);
1653 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1654 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1655 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1656 &BTRFS_I(inode)->runtime_flags);
1657 root->nr_delalloc_inodes--;
1658 if (!root->nr_delalloc_inodes) {
1659 spin_lock(&root->fs_info->delalloc_root_lock);
1660 BUG_ON(list_empty(&root->delalloc_root));
1661 list_del_init(&root->delalloc_root);
1662 spin_unlock(&root->fs_info->delalloc_root_lock);
1663 }
1664 }
1665 spin_unlock(&root->delalloc_lock);
1666 }
1667
1668 /*
1669 * extent_io.c set_bit_hook, used to track delayed allocation
1670 * bytes in this file, and to maintain the list of inodes that
1671 * have pending delalloc work to be done.
1672 */
1673 static void btrfs_set_bit_hook(struct inode *inode,
1674 struct extent_state *state, unsigned *bits)
1675 {
1676
1677 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1678 WARN_ON(1);
1679 /*
1680 * set_bit and clear bit hooks normally require _irqsave/restore
1681 * but in this case, we are only testing for the DELALLOC
1682 * bit, which is only set or cleared with irqs on
1683 */
1684 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1685 struct btrfs_root *root = BTRFS_I(inode)->root;
1686 u64 len = state->end + 1 - state->start;
1687 bool do_list = !btrfs_is_free_space_inode(inode);
1688
1689 if (*bits & EXTENT_FIRST_DELALLOC) {
1690 *bits &= ~EXTENT_FIRST_DELALLOC;
1691 } else {
1692 spin_lock(&BTRFS_I(inode)->lock);
1693 BTRFS_I(inode)->outstanding_extents++;
1694 spin_unlock(&BTRFS_I(inode)->lock);
1695 }
1696
1697 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1698 root->fs_info->delalloc_batch);
1699 spin_lock(&BTRFS_I(inode)->lock);
1700 BTRFS_I(inode)->delalloc_bytes += len;
1701 if (*bits & EXTENT_DEFRAG)
1702 BTRFS_I(inode)->defrag_bytes += len;
1703 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1704 &BTRFS_I(inode)->runtime_flags))
1705 btrfs_add_delalloc_inodes(root, inode);
1706 spin_unlock(&BTRFS_I(inode)->lock);
1707 }
1708 }
1709
1710 /*
1711 * extent_io.c clear_bit_hook, see set_bit_hook for why
1712 */
1713 static void btrfs_clear_bit_hook(struct inode *inode,
1714 struct extent_state *state,
1715 unsigned *bits)
1716 {
1717 u64 len = state->end + 1 - state->start;
1718 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1719 BTRFS_MAX_EXTENT_SIZE);
1720
1721 spin_lock(&BTRFS_I(inode)->lock);
1722 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1723 BTRFS_I(inode)->defrag_bytes -= len;
1724 spin_unlock(&BTRFS_I(inode)->lock);
1725
1726 /*
1727 * set_bit and clear bit hooks normally require _irqsave/restore
1728 * but in this case, we are only testing for the DELALLOC
1729 * bit, which is only set or cleared with irqs on
1730 */
1731 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1732 struct btrfs_root *root = BTRFS_I(inode)->root;
1733 bool do_list = !btrfs_is_free_space_inode(inode);
1734
1735 if (*bits & EXTENT_FIRST_DELALLOC) {
1736 *bits &= ~EXTENT_FIRST_DELALLOC;
1737 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1738 spin_lock(&BTRFS_I(inode)->lock);
1739 BTRFS_I(inode)->outstanding_extents -= num_extents;
1740 spin_unlock(&BTRFS_I(inode)->lock);
1741 }
1742
1743 /*
1744 * We don't reserve metadata space for space cache inodes so we
1745 * don't need to call dellalloc_release_metadata if there is an
1746 * error.
1747 */
1748 if (*bits & EXTENT_DO_ACCOUNTING &&
1749 root != root->fs_info->tree_root)
1750 btrfs_delalloc_release_metadata(inode, len);
1751
1752 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1753 && do_list && !(state->state & EXTENT_NORESERVE))
1754 btrfs_free_reserved_data_space(inode, len);
1755
1756 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1757 root->fs_info->delalloc_batch);
1758 spin_lock(&BTRFS_I(inode)->lock);
1759 BTRFS_I(inode)->delalloc_bytes -= len;
1760 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1761 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1762 &BTRFS_I(inode)->runtime_flags))
1763 btrfs_del_delalloc_inode(root, inode);
1764 spin_unlock(&BTRFS_I(inode)->lock);
1765 }
1766 }
1767
1768 /*
1769 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1770 * we don't create bios that span stripes or chunks
1771 */
1772 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1773 size_t size, struct bio *bio,
1774 unsigned long bio_flags)
1775 {
1776 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1777 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1778 u64 length = 0;
1779 u64 map_length;
1780 int ret;
1781
1782 if (bio_flags & EXTENT_BIO_COMPRESSED)
1783 return 0;
1784
1785 length = bio->bi_iter.bi_size;
1786 map_length = length;
1787 ret = btrfs_map_block(root->fs_info, rw, logical,
1788 &map_length, NULL, 0);
1789 /* Will always return 0 with map_multi == NULL */
1790 BUG_ON(ret < 0);
1791 if (map_length < length + size)
1792 return 1;
1793 return 0;
1794 }
1795
1796 /*
1797 * in order to insert checksums into the metadata in large chunks,
1798 * we wait until bio submission time. All the pages in the bio are
1799 * checksummed and sums are attached onto the ordered extent record.
1800 *
1801 * At IO completion time the cums attached on the ordered extent record
1802 * are inserted into the btree
1803 */
1804 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1805 struct bio *bio, int mirror_num,
1806 unsigned long bio_flags,
1807 u64 bio_offset)
1808 {
1809 struct btrfs_root *root = BTRFS_I(inode)->root;
1810 int ret = 0;
1811
1812 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1813 BUG_ON(ret); /* -ENOMEM */
1814 return 0;
1815 }
1816
1817 /*
1818 * in order to insert checksums into the metadata in large chunks,
1819 * we wait until bio submission time. All the pages in the bio are
1820 * checksummed and sums are attached onto the ordered extent record.
1821 *
1822 * At IO completion time the cums attached on the ordered extent record
1823 * are inserted into the btree
1824 */
1825 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1826 int mirror_num, unsigned long bio_flags,
1827 u64 bio_offset)
1828 {
1829 struct btrfs_root *root = BTRFS_I(inode)->root;
1830 int ret;
1831
1832 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1833 if (ret)
1834 bio_endio(bio, ret);
1835 return ret;
1836 }
1837
1838 /*
1839 * extent_io.c submission hook. This does the right thing for csum calculation
1840 * on write, or reading the csums from the tree before a read
1841 */
1842 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1843 int mirror_num, unsigned long bio_flags,
1844 u64 bio_offset)
1845 {
1846 struct btrfs_root *root = BTRFS_I(inode)->root;
1847 int ret = 0;
1848 int skip_sum;
1849 int metadata = 0;
1850 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1851
1852 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1853
1854 if (btrfs_is_free_space_inode(inode))
1855 metadata = 2;
1856
1857 if (!(rw & REQ_WRITE)) {
1858 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1859 if (ret)
1860 goto out;
1861
1862 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1863 ret = btrfs_submit_compressed_read(inode, bio,
1864 mirror_num,
1865 bio_flags);
1866 goto out;
1867 } else if (!skip_sum) {
1868 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1869 if (ret)
1870 goto out;
1871 }
1872 goto mapit;
1873 } else if (async && !skip_sum) {
1874 /* csum items have already been cloned */
1875 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1876 goto mapit;
1877 /* we're doing a write, do the async checksumming */
1878 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1879 inode, rw, bio, mirror_num,
1880 bio_flags, bio_offset,
1881 __btrfs_submit_bio_start,
1882 __btrfs_submit_bio_done);
1883 goto out;
1884 } else if (!skip_sum) {
1885 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1886 if (ret)
1887 goto out;
1888 }
1889
1890 mapit:
1891 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1892
1893 out:
1894 if (ret < 0)
1895 bio_endio(bio, ret);
1896 return ret;
1897 }
1898
1899 /*
1900 * given a list of ordered sums record them in the inode. This happens
1901 * at IO completion time based on sums calculated at bio submission time.
1902 */
1903 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1904 struct inode *inode, u64 file_offset,
1905 struct list_head *list)
1906 {
1907 struct btrfs_ordered_sum *sum;
1908
1909 list_for_each_entry(sum, list, list) {
1910 trans->adding_csums = 1;
1911 btrfs_csum_file_blocks(trans,
1912 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1913 trans->adding_csums = 0;
1914 }
1915 return 0;
1916 }
1917
1918 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1919 struct extent_state **cached_state)
1920 {
1921 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1922 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1923 cached_state, GFP_NOFS);
1924 }
1925
1926 /* see btrfs_writepage_start_hook for details on why this is required */
1927 struct btrfs_writepage_fixup {
1928 struct page *page;
1929 struct btrfs_work work;
1930 };
1931
1932 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1933 {
1934 struct btrfs_writepage_fixup *fixup;
1935 struct btrfs_ordered_extent *ordered;
1936 struct extent_state *cached_state = NULL;
1937 struct page *page;
1938 struct inode *inode;
1939 u64 page_start;
1940 u64 page_end;
1941 int ret;
1942
1943 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1944 page = fixup->page;
1945 again:
1946 lock_page(page);
1947 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1948 ClearPageChecked(page);
1949 goto out_page;
1950 }
1951
1952 inode = page->mapping->host;
1953 page_start = page_offset(page);
1954 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1955
1956 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1957 &cached_state);
1958
1959 /* already ordered? We're done */
1960 if (PagePrivate2(page))
1961 goto out;
1962
1963 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1964 if (ordered) {
1965 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1966 page_end, &cached_state, GFP_NOFS);
1967 unlock_page(page);
1968 btrfs_start_ordered_extent(inode, ordered, 1);
1969 btrfs_put_ordered_extent(ordered);
1970 goto again;
1971 }
1972
1973 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1974 if (ret) {
1975 mapping_set_error(page->mapping, ret);
1976 end_extent_writepage(page, ret, page_start, page_end);
1977 ClearPageChecked(page);
1978 goto out;
1979 }
1980
1981 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1982 ClearPageChecked(page);
1983 set_page_dirty(page);
1984 out:
1985 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1986 &cached_state, GFP_NOFS);
1987 out_page:
1988 unlock_page(page);
1989 page_cache_release(page);
1990 kfree(fixup);
1991 }
1992
1993 /*
1994 * There are a few paths in the higher layers of the kernel that directly
1995 * set the page dirty bit without asking the filesystem if it is a
1996 * good idea. This causes problems because we want to make sure COW
1997 * properly happens and the data=ordered rules are followed.
1998 *
1999 * In our case any range that doesn't have the ORDERED bit set
2000 * hasn't been properly setup for IO. We kick off an async process
2001 * to fix it up. The async helper will wait for ordered extents, set
2002 * the delalloc bit and make it safe to write the page.
2003 */
2004 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2005 {
2006 struct inode *inode = page->mapping->host;
2007 struct btrfs_writepage_fixup *fixup;
2008 struct btrfs_root *root = BTRFS_I(inode)->root;
2009
2010 /* this page is properly in the ordered list */
2011 if (TestClearPagePrivate2(page))
2012 return 0;
2013
2014 if (PageChecked(page))
2015 return -EAGAIN;
2016
2017 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2018 if (!fixup)
2019 return -EAGAIN;
2020
2021 SetPageChecked(page);
2022 page_cache_get(page);
2023 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2024 btrfs_writepage_fixup_worker, NULL, NULL);
2025 fixup->page = page;
2026 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2027 return -EBUSY;
2028 }
2029
2030 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2031 struct inode *inode, u64 file_pos,
2032 u64 disk_bytenr, u64 disk_num_bytes,
2033 u64 num_bytes, u64 ram_bytes,
2034 u8 compression, u8 encryption,
2035 u16 other_encoding, int extent_type)
2036 {
2037 struct btrfs_root *root = BTRFS_I(inode)->root;
2038 struct btrfs_file_extent_item *fi;
2039 struct btrfs_path *path;
2040 struct extent_buffer *leaf;
2041 struct btrfs_key ins;
2042 int extent_inserted = 0;
2043 int ret;
2044
2045 path = btrfs_alloc_path();
2046 if (!path)
2047 return -ENOMEM;
2048
2049 /*
2050 * we may be replacing one extent in the tree with another.
2051 * The new extent is pinned in the extent map, and we don't want
2052 * to drop it from the cache until it is completely in the btree.
2053 *
2054 * So, tell btrfs_drop_extents to leave this extent in the cache.
2055 * the caller is expected to unpin it and allow it to be merged
2056 * with the others.
2057 */
2058 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2059 file_pos + num_bytes, NULL, 0,
2060 1, sizeof(*fi), &extent_inserted);
2061 if (ret)
2062 goto out;
2063
2064 if (!extent_inserted) {
2065 ins.objectid = btrfs_ino(inode);
2066 ins.offset = file_pos;
2067 ins.type = BTRFS_EXTENT_DATA_KEY;
2068
2069 path->leave_spinning = 1;
2070 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2071 sizeof(*fi));
2072 if (ret)
2073 goto out;
2074 }
2075 leaf = path->nodes[0];
2076 fi = btrfs_item_ptr(leaf, path->slots[0],
2077 struct btrfs_file_extent_item);
2078 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2079 btrfs_set_file_extent_type(leaf, fi, extent_type);
2080 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2081 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2082 btrfs_set_file_extent_offset(leaf, fi, 0);
2083 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2084 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2085 btrfs_set_file_extent_compression(leaf, fi, compression);
2086 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2087 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2088
2089 btrfs_mark_buffer_dirty(leaf);
2090 btrfs_release_path(path);
2091
2092 inode_add_bytes(inode, num_bytes);
2093
2094 ins.objectid = disk_bytenr;
2095 ins.offset = disk_num_bytes;
2096 ins.type = BTRFS_EXTENT_ITEM_KEY;
2097 ret = btrfs_alloc_reserved_file_extent(trans, root,
2098 root->root_key.objectid,
2099 btrfs_ino(inode), file_pos, &ins);
2100 out:
2101 btrfs_free_path(path);
2102
2103 return ret;
2104 }
2105
2106 /* snapshot-aware defrag */
2107 struct sa_defrag_extent_backref {
2108 struct rb_node node;
2109 struct old_sa_defrag_extent *old;
2110 u64 root_id;
2111 u64 inum;
2112 u64 file_pos;
2113 u64 extent_offset;
2114 u64 num_bytes;
2115 u64 generation;
2116 };
2117
2118 struct old_sa_defrag_extent {
2119 struct list_head list;
2120 struct new_sa_defrag_extent *new;
2121
2122 u64 extent_offset;
2123 u64 bytenr;
2124 u64 offset;
2125 u64 len;
2126 int count;
2127 };
2128
2129 struct new_sa_defrag_extent {
2130 struct rb_root root;
2131 struct list_head head;
2132 struct btrfs_path *path;
2133 struct inode *inode;
2134 u64 file_pos;
2135 u64 len;
2136 u64 bytenr;
2137 u64 disk_len;
2138 u8 compress_type;
2139 };
2140
2141 static int backref_comp(struct sa_defrag_extent_backref *b1,
2142 struct sa_defrag_extent_backref *b2)
2143 {
2144 if (b1->root_id < b2->root_id)
2145 return -1;
2146 else if (b1->root_id > b2->root_id)
2147 return 1;
2148
2149 if (b1->inum < b2->inum)
2150 return -1;
2151 else if (b1->inum > b2->inum)
2152 return 1;
2153
2154 if (b1->file_pos < b2->file_pos)
2155 return -1;
2156 else if (b1->file_pos > b2->file_pos)
2157 return 1;
2158
2159 /*
2160 * [------------------------------] ===> (a range of space)
2161 * |<--->| |<---->| =============> (fs/file tree A)
2162 * |<---------------------------->| ===> (fs/file tree B)
2163 *
2164 * A range of space can refer to two file extents in one tree while
2165 * refer to only one file extent in another tree.
2166 *
2167 * So we may process a disk offset more than one time(two extents in A)
2168 * and locate at the same extent(one extent in B), then insert two same
2169 * backrefs(both refer to the extent in B).
2170 */
2171 return 0;
2172 }
2173
2174 static void backref_insert(struct rb_root *root,
2175 struct sa_defrag_extent_backref *backref)
2176 {
2177 struct rb_node **p = &root->rb_node;
2178 struct rb_node *parent = NULL;
2179 struct sa_defrag_extent_backref *entry;
2180 int ret;
2181
2182 while (*p) {
2183 parent = *p;
2184 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2185
2186 ret = backref_comp(backref, entry);
2187 if (ret < 0)
2188 p = &(*p)->rb_left;
2189 else
2190 p = &(*p)->rb_right;
2191 }
2192
2193 rb_link_node(&backref->node, parent, p);
2194 rb_insert_color(&backref->node, root);
2195 }
2196
2197 /*
2198 * Note the backref might has changed, and in this case we just return 0.
2199 */
2200 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2201 void *ctx)
2202 {
2203 struct btrfs_file_extent_item *extent;
2204 struct btrfs_fs_info *fs_info;
2205 struct old_sa_defrag_extent *old = ctx;
2206 struct new_sa_defrag_extent *new = old->new;
2207 struct btrfs_path *path = new->path;
2208 struct btrfs_key key;
2209 struct btrfs_root *root;
2210 struct sa_defrag_extent_backref *backref;
2211 struct extent_buffer *leaf;
2212 struct inode *inode = new->inode;
2213 int slot;
2214 int ret;
2215 u64 extent_offset;
2216 u64 num_bytes;
2217
2218 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2219 inum == btrfs_ino(inode))
2220 return 0;
2221
2222 key.objectid = root_id;
2223 key.type = BTRFS_ROOT_ITEM_KEY;
2224 key.offset = (u64)-1;
2225
2226 fs_info = BTRFS_I(inode)->root->fs_info;
2227 root = btrfs_read_fs_root_no_name(fs_info, &key);
2228 if (IS_ERR(root)) {
2229 if (PTR_ERR(root) == -ENOENT)
2230 return 0;
2231 WARN_ON(1);
2232 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2233 inum, offset, root_id);
2234 return PTR_ERR(root);
2235 }
2236
2237 key.objectid = inum;
2238 key.type = BTRFS_EXTENT_DATA_KEY;
2239 if (offset > (u64)-1 << 32)
2240 key.offset = 0;
2241 else
2242 key.offset = offset;
2243
2244 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2245 if (WARN_ON(ret < 0))
2246 return ret;
2247 ret = 0;
2248
2249 while (1) {
2250 cond_resched();
2251
2252 leaf = path->nodes[0];
2253 slot = path->slots[0];
2254
2255 if (slot >= btrfs_header_nritems(leaf)) {
2256 ret = btrfs_next_leaf(root, path);
2257 if (ret < 0) {
2258 goto out;
2259 } else if (ret > 0) {
2260 ret = 0;
2261 goto out;
2262 }
2263 continue;
2264 }
2265
2266 path->slots[0]++;
2267
2268 btrfs_item_key_to_cpu(leaf, &key, slot);
2269
2270 if (key.objectid > inum)
2271 goto out;
2272
2273 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2274 continue;
2275
2276 extent = btrfs_item_ptr(leaf, slot,
2277 struct btrfs_file_extent_item);
2278
2279 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2280 continue;
2281
2282 /*
2283 * 'offset' refers to the exact key.offset,
2284 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2285 * (key.offset - extent_offset).
2286 */
2287 if (key.offset != offset)
2288 continue;
2289
2290 extent_offset = btrfs_file_extent_offset(leaf, extent);
2291 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2292
2293 if (extent_offset >= old->extent_offset + old->offset +
2294 old->len || extent_offset + num_bytes <=
2295 old->extent_offset + old->offset)
2296 continue;
2297 break;
2298 }
2299
2300 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2301 if (!backref) {
2302 ret = -ENOENT;
2303 goto out;
2304 }
2305
2306 backref->root_id = root_id;
2307 backref->inum = inum;
2308 backref->file_pos = offset;
2309 backref->num_bytes = num_bytes;
2310 backref->extent_offset = extent_offset;
2311 backref->generation = btrfs_file_extent_generation(leaf, extent);
2312 backref->old = old;
2313 backref_insert(&new->root, backref);
2314 old->count++;
2315 out:
2316 btrfs_release_path(path);
2317 WARN_ON(ret);
2318 return ret;
2319 }
2320
2321 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2322 struct new_sa_defrag_extent *new)
2323 {
2324 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2325 struct old_sa_defrag_extent *old, *tmp;
2326 int ret;
2327
2328 new->path = path;
2329
2330 list_for_each_entry_safe(old, tmp, &new->head, list) {
2331 ret = iterate_inodes_from_logical(old->bytenr +
2332 old->extent_offset, fs_info,
2333 path, record_one_backref,
2334 old);
2335 if (ret < 0 && ret != -ENOENT)
2336 return false;
2337
2338 /* no backref to be processed for this extent */
2339 if (!old->count) {
2340 list_del(&old->list);
2341 kfree(old);
2342 }
2343 }
2344
2345 if (list_empty(&new->head))
2346 return false;
2347
2348 return true;
2349 }
2350
2351 static int relink_is_mergable(struct extent_buffer *leaf,
2352 struct btrfs_file_extent_item *fi,
2353 struct new_sa_defrag_extent *new)
2354 {
2355 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2356 return 0;
2357
2358 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2359 return 0;
2360
2361 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2362 return 0;
2363
2364 if (btrfs_file_extent_encryption(leaf, fi) ||
2365 btrfs_file_extent_other_encoding(leaf, fi))
2366 return 0;
2367
2368 return 1;
2369 }
2370
2371 /*
2372 * Note the backref might has changed, and in this case we just return 0.
2373 */
2374 static noinline int relink_extent_backref(struct btrfs_path *path,
2375 struct sa_defrag_extent_backref *prev,
2376 struct sa_defrag_extent_backref *backref)
2377 {
2378 struct btrfs_file_extent_item *extent;
2379 struct btrfs_file_extent_item *item;
2380 struct btrfs_ordered_extent *ordered;
2381 struct btrfs_trans_handle *trans;
2382 struct btrfs_fs_info *fs_info;
2383 struct btrfs_root *root;
2384 struct btrfs_key key;
2385 struct extent_buffer *leaf;
2386 struct old_sa_defrag_extent *old = backref->old;
2387 struct new_sa_defrag_extent *new = old->new;
2388 struct inode *src_inode = new->inode;
2389 struct inode *inode;
2390 struct extent_state *cached = NULL;
2391 int ret = 0;
2392 u64 start;
2393 u64 len;
2394 u64 lock_start;
2395 u64 lock_end;
2396 bool merge = false;
2397 int index;
2398
2399 if (prev && prev->root_id == backref->root_id &&
2400 prev->inum == backref->inum &&
2401 prev->file_pos + prev->num_bytes == backref->file_pos)
2402 merge = true;
2403
2404 /* step 1: get root */
2405 key.objectid = backref->root_id;
2406 key.type = BTRFS_ROOT_ITEM_KEY;
2407 key.offset = (u64)-1;
2408
2409 fs_info = BTRFS_I(src_inode)->root->fs_info;
2410 index = srcu_read_lock(&fs_info->subvol_srcu);
2411
2412 root = btrfs_read_fs_root_no_name(fs_info, &key);
2413 if (IS_ERR(root)) {
2414 srcu_read_unlock(&fs_info->subvol_srcu, index);
2415 if (PTR_ERR(root) == -ENOENT)
2416 return 0;
2417 return PTR_ERR(root);
2418 }
2419
2420 if (btrfs_root_readonly(root)) {
2421 srcu_read_unlock(&fs_info->subvol_srcu, index);
2422 return 0;
2423 }
2424
2425 /* step 2: get inode */
2426 key.objectid = backref->inum;
2427 key.type = BTRFS_INODE_ITEM_KEY;
2428 key.offset = 0;
2429
2430 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2431 if (IS_ERR(inode)) {
2432 srcu_read_unlock(&fs_info->subvol_srcu, index);
2433 return 0;
2434 }
2435
2436 srcu_read_unlock(&fs_info->subvol_srcu, index);
2437
2438 /* step 3: relink backref */
2439 lock_start = backref->file_pos;
2440 lock_end = backref->file_pos + backref->num_bytes - 1;
2441 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2442 0, &cached);
2443
2444 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2445 if (ordered) {
2446 btrfs_put_ordered_extent(ordered);
2447 goto out_unlock;
2448 }
2449
2450 trans = btrfs_join_transaction(root);
2451 if (IS_ERR(trans)) {
2452 ret = PTR_ERR(trans);
2453 goto out_unlock;
2454 }
2455
2456 key.objectid = backref->inum;
2457 key.type = BTRFS_EXTENT_DATA_KEY;
2458 key.offset = backref->file_pos;
2459
2460 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2461 if (ret < 0) {
2462 goto out_free_path;
2463 } else if (ret > 0) {
2464 ret = 0;
2465 goto out_free_path;
2466 }
2467
2468 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2469 struct btrfs_file_extent_item);
2470
2471 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2472 backref->generation)
2473 goto out_free_path;
2474
2475 btrfs_release_path(path);
2476
2477 start = backref->file_pos;
2478 if (backref->extent_offset < old->extent_offset + old->offset)
2479 start += old->extent_offset + old->offset -
2480 backref->extent_offset;
2481
2482 len = min(backref->extent_offset + backref->num_bytes,
2483 old->extent_offset + old->offset + old->len);
2484 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2485
2486 ret = btrfs_drop_extents(trans, root, inode, start,
2487 start + len, 1);
2488 if (ret)
2489 goto out_free_path;
2490 again:
2491 key.objectid = btrfs_ino(inode);
2492 key.type = BTRFS_EXTENT_DATA_KEY;
2493 key.offset = start;
2494
2495 path->leave_spinning = 1;
2496 if (merge) {
2497 struct btrfs_file_extent_item *fi;
2498 u64 extent_len;
2499 struct btrfs_key found_key;
2500
2501 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2502 if (ret < 0)
2503 goto out_free_path;
2504
2505 path->slots[0]--;
2506 leaf = path->nodes[0];
2507 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2508
2509 fi = btrfs_item_ptr(leaf, path->slots[0],
2510 struct btrfs_file_extent_item);
2511 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2512
2513 if (extent_len + found_key.offset == start &&
2514 relink_is_mergable(leaf, fi, new)) {
2515 btrfs_set_file_extent_num_bytes(leaf, fi,
2516 extent_len + len);
2517 btrfs_mark_buffer_dirty(leaf);
2518 inode_add_bytes(inode, len);
2519
2520 ret = 1;
2521 goto out_free_path;
2522 } else {
2523 merge = false;
2524 btrfs_release_path(path);
2525 goto again;
2526 }
2527 }
2528
2529 ret = btrfs_insert_empty_item(trans, root, path, &key,
2530 sizeof(*extent));
2531 if (ret) {
2532 btrfs_abort_transaction(trans, root, ret);
2533 goto out_free_path;
2534 }
2535
2536 leaf = path->nodes[0];
2537 item = btrfs_item_ptr(leaf, path->slots[0],
2538 struct btrfs_file_extent_item);
2539 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2540 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2541 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2542 btrfs_set_file_extent_num_bytes(leaf, item, len);
2543 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2544 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2545 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2546 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2547 btrfs_set_file_extent_encryption(leaf, item, 0);
2548 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2549
2550 btrfs_mark_buffer_dirty(leaf);
2551 inode_add_bytes(inode, len);
2552 btrfs_release_path(path);
2553
2554 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2555 new->disk_len, 0,
2556 backref->root_id, backref->inum,
2557 new->file_pos, 0); /* start - extent_offset */
2558 if (ret) {
2559 btrfs_abort_transaction(trans, root, ret);
2560 goto out_free_path;
2561 }
2562
2563 ret = 1;
2564 out_free_path:
2565 btrfs_release_path(path);
2566 path->leave_spinning = 0;
2567 btrfs_end_transaction(trans, root);
2568 out_unlock:
2569 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2570 &cached, GFP_NOFS);
2571 iput(inode);
2572 return ret;
2573 }
2574
2575 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2576 {
2577 struct old_sa_defrag_extent *old, *tmp;
2578
2579 if (!new)
2580 return;
2581
2582 list_for_each_entry_safe(old, tmp, &new->head, list) {
2583 list_del(&old->list);
2584 kfree(old);
2585 }
2586 kfree(new);
2587 }
2588
2589 static void relink_file_extents(struct new_sa_defrag_extent *new)
2590 {
2591 struct btrfs_path *path;
2592 struct sa_defrag_extent_backref *backref;
2593 struct sa_defrag_extent_backref *prev = NULL;
2594 struct inode *inode;
2595 struct btrfs_root *root;
2596 struct rb_node *node;
2597 int ret;
2598
2599 inode = new->inode;
2600 root = BTRFS_I(inode)->root;
2601
2602 path = btrfs_alloc_path();
2603 if (!path)
2604 return;
2605
2606 if (!record_extent_backrefs(path, new)) {
2607 btrfs_free_path(path);
2608 goto out;
2609 }
2610 btrfs_release_path(path);
2611
2612 while (1) {
2613 node = rb_first(&new->root);
2614 if (!node)
2615 break;
2616 rb_erase(node, &new->root);
2617
2618 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2619
2620 ret = relink_extent_backref(path, prev, backref);
2621 WARN_ON(ret < 0);
2622
2623 kfree(prev);
2624
2625 if (ret == 1)
2626 prev = backref;
2627 else
2628 prev = NULL;
2629 cond_resched();
2630 }
2631 kfree(prev);
2632
2633 btrfs_free_path(path);
2634 out:
2635 free_sa_defrag_extent(new);
2636
2637 atomic_dec(&root->fs_info->defrag_running);
2638 wake_up(&root->fs_info->transaction_wait);
2639 }
2640
2641 static struct new_sa_defrag_extent *
2642 record_old_file_extents(struct inode *inode,
2643 struct btrfs_ordered_extent *ordered)
2644 {
2645 struct btrfs_root *root = BTRFS_I(inode)->root;
2646 struct btrfs_path *path;
2647 struct btrfs_key key;
2648 struct old_sa_defrag_extent *old;
2649 struct new_sa_defrag_extent *new;
2650 int ret;
2651
2652 new = kmalloc(sizeof(*new), GFP_NOFS);
2653 if (!new)
2654 return NULL;
2655
2656 new->inode = inode;
2657 new->file_pos = ordered->file_offset;
2658 new->len = ordered->len;
2659 new->bytenr = ordered->start;
2660 new->disk_len = ordered->disk_len;
2661 new->compress_type = ordered->compress_type;
2662 new->root = RB_ROOT;
2663 INIT_LIST_HEAD(&new->head);
2664
2665 path = btrfs_alloc_path();
2666 if (!path)
2667 goto out_kfree;
2668
2669 key.objectid = btrfs_ino(inode);
2670 key.type = BTRFS_EXTENT_DATA_KEY;
2671 key.offset = new->file_pos;
2672
2673 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2674 if (ret < 0)
2675 goto out_free_path;
2676 if (ret > 0 && path->slots[0] > 0)
2677 path->slots[0]--;
2678
2679 /* find out all the old extents for the file range */
2680 while (1) {
2681 struct btrfs_file_extent_item *extent;
2682 struct extent_buffer *l;
2683 int slot;
2684 u64 num_bytes;
2685 u64 offset;
2686 u64 end;
2687 u64 disk_bytenr;
2688 u64 extent_offset;
2689
2690 l = path->nodes[0];
2691 slot = path->slots[0];
2692
2693 if (slot >= btrfs_header_nritems(l)) {
2694 ret = btrfs_next_leaf(root, path);
2695 if (ret < 0)
2696 goto out_free_path;
2697 else if (ret > 0)
2698 break;
2699 continue;
2700 }
2701
2702 btrfs_item_key_to_cpu(l, &key, slot);
2703
2704 if (key.objectid != btrfs_ino(inode))
2705 break;
2706 if (key.type != BTRFS_EXTENT_DATA_KEY)
2707 break;
2708 if (key.offset >= new->file_pos + new->len)
2709 break;
2710
2711 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2712
2713 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2714 if (key.offset + num_bytes < new->file_pos)
2715 goto next;
2716
2717 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2718 if (!disk_bytenr)
2719 goto next;
2720
2721 extent_offset = btrfs_file_extent_offset(l, extent);
2722
2723 old = kmalloc(sizeof(*old), GFP_NOFS);
2724 if (!old)
2725 goto out_free_path;
2726
2727 offset = max(new->file_pos, key.offset);
2728 end = min(new->file_pos + new->len, key.offset + num_bytes);
2729
2730 old->bytenr = disk_bytenr;
2731 old->extent_offset = extent_offset;
2732 old->offset = offset - key.offset;
2733 old->len = end - offset;
2734 old->new = new;
2735 old->count = 0;
2736 list_add_tail(&old->list, &new->head);
2737 next:
2738 path->slots[0]++;
2739 cond_resched();
2740 }
2741
2742 btrfs_free_path(path);
2743 atomic_inc(&root->fs_info->defrag_running);
2744
2745 return new;
2746
2747 out_free_path:
2748 btrfs_free_path(path);
2749 out_kfree:
2750 free_sa_defrag_extent(new);
2751 return NULL;
2752 }
2753
2754 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2755 u64 start, u64 len)
2756 {
2757 struct btrfs_block_group_cache *cache;
2758
2759 cache = btrfs_lookup_block_group(root->fs_info, start);
2760 ASSERT(cache);
2761
2762 spin_lock(&cache->lock);
2763 cache->delalloc_bytes -= len;
2764 spin_unlock(&cache->lock);
2765
2766 btrfs_put_block_group(cache);
2767 }
2768
2769 /* as ordered data IO finishes, this gets called so we can finish
2770 * an ordered extent if the range of bytes in the file it covers are
2771 * fully written.
2772 */
2773 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2774 {
2775 struct inode *inode = ordered_extent->inode;
2776 struct btrfs_root *root = BTRFS_I(inode)->root;
2777 struct btrfs_trans_handle *trans = NULL;
2778 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2779 struct extent_state *cached_state = NULL;
2780 struct new_sa_defrag_extent *new = NULL;
2781 int compress_type = 0;
2782 int ret = 0;
2783 u64 logical_len = ordered_extent->len;
2784 bool nolock;
2785 bool truncated = false;
2786
2787 nolock = btrfs_is_free_space_inode(inode);
2788
2789 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2790 ret = -EIO;
2791 goto out;
2792 }
2793
2794 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2795 ordered_extent->file_offset +
2796 ordered_extent->len - 1);
2797
2798 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2799 truncated = true;
2800 logical_len = ordered_extent->truncated_len;
2801 /* Truncated the entire extent, don't bother adding */
2802 if (!logical_len)
2803 goto out;
2804 }
2805
2806 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2807 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2808 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2809 if (nolock)
2810 trans = btrfs_join_transaction_nolock(root);
2811 else
2812 trans = btrfs_join_transaction(root);
2813 if (IS_ERR(trans)) {
2814 ret = PTR_ERR(trans);
2815 trans = NULL;
2816 goto out;
2817 }
2818 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2819 ret = btrfs_update_inode_fallback(trans, root, inode);
2820 if (ret) /* -ENOMEM or corruption */
2821 btrfs_abort_transaction(trans, root, ret);
2822 goto out;
2823 }
2824
2825 lock_extent_bits(io_tree, ordered_extent->file_offset,
2826 ordered_extent->file_offset + ordered_extent->len - 1,
2827 0, &cached_state);
2828
2829 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2830 ordered_extent->file_offset + ordered_extent->len - 1,
2831 EXTENT_DEFRAG, 1, cached_state);
2832 if (ret) {
2833 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2834 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2835 /* the inode is shared */
2836 new = record_old_file_extents(inode, ordered_extent);
2837
2838 clear_extent_bit(io_tree, ordered_extent->file_offset,
2839 ordered_extent->file_offset + ordered_extent->len - 1,
2840 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2841 }
2842
2843 if (nolock)
2844 trans = btrfs_join_transaction_nolock(root);
2845 else
2846 trans = btrfs_join_transaction(root);
2847 if (IS_ERR(trans)) {
2848 ret = PTR_ERR(trans);
2849 trans = NULL;
2850 goto out_unlock;
2851 }
2852
2853 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2854
2855 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2856 compress_type = ordered_extent->compress_type;
2857 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2858 BUG_ON(compress_type);
2859 ret = btrfs_mark_extent_written(trans, inode,
2860 ordered_extent->file_offset,
2861 ordered_extent->file_offset +
2862 logical_len);
2863 } else {
2864 BUG_ON(root == root->fs_info->tree_root);
2865 ret = insert_reserved_file_extent(trans, inode,
2866 ordered_extent->file_offset,
2867 ordered_extent->start,
2868 ordered_extent->disk_len,
2869 logical_len, logical_len,
2870 compress_type, 0, 0,
2871 BTRFS_FILE_EXTENT_REG);
2872 if (!ret)
2873 btrfs_release_delalloc_bytes(root,
2874 ordered_extent->start,
2875 ordered_extent->disk_len);
2876 }
2877 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2878 ordered_extent->file_offset, ordered_extent->len,
2879 trans->transid);
2880 if (ret < 0) {
2881 btrfs_abort_transaction(trans, root, ret);
2882 goto out_unlock;
2883 }
2884
2885 add_pending_csums(trans, inode, ordered_extent->file_offset,
2886 &ordered_extent->list);
2887
2888 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2889 ret = btrfs_update_inode_fallback(trans, root, inode);
2890 if (ret) { /* -ENOMEM or corruption */
2891 btrfs_abort_transaction(trans, root, ret);
2892 goto out_unlock;
2893 }
2894 ret = 0;
2895 out_unlock:
2896 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2897 ordered_extent->file_offset +
2898 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2899 out:
2900 if (root != root->fs_info->tree_root)
2901 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2902 if (trans)
2903 btrfs_end_transaction(trans, root);
2904
2905 if (ret || truncated) {
2906 u64 start, end;
2907
2908 if (truncated)
2909 start = ordered_extent->file_offset + logical_len;
2910 else
2911 start = ordered_extent->file_offset;
2912 end = ordered_extent->file_offset + ordered_extent->len - 1;
2913 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2914
2915 /* Drop the cache for the part of the extent we didn't write. */
2916 btrfs_drop_extent_cache(inode, start, end, 0);
2917
2918 /*
2919 * If the ordered extent had an IOERR or something else went
2920 * wrong we need to return the space for this ordered extent
2921 * back to the allocator. We only free the extent in the
2922 * truncated case if we didn't write out the extent at all.
2923 */
2924 if ((ret || !logical_len) &&
2925 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2926 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2927 btrfs_free_reserved_extent(root, ordered_extent->start,
2928 ordered_extent->disk_len, 1);
2929 }
2930
2931
2932 /*
2933 * This needs to be done to make sure anybody waiting knows we are done
2934 * updating everything for this ordered extent.
2935 */
2936 btrfs_remove_ordered_extent(inode, ordered_extent);
2937
2938 /* for snapshot-aware defrag */
2939 if (new) {
2940 if (ret) {
2941 free_sa_defrag_extent(new);
2942 atomic_dec(&root->fs_info->defrag_running);
2943 } else {
2944 relink_file_extents(new);
2945 }
2946 }
2947
2948 /* once for us */
2949 btrfs_put_ordered_extent(ordered_extent);
2950 /* once for the tree */
2951 btrfs_put_ordered_extent(ordered_extent);
2952
2953 return ret;
2954 }
2955
2956 static void finish_ordered_fn(struct btrfs_work *work)
2957 {
2958 struct btrfs_ordered_extent *ordered_extent;
2959 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2960 btrfs_finish_ordered_io(ordered_extent);
2961 }
2962
2963 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2964 struct extent_state *state, int uptodate)
2965 {
2966 struct inode *inode = page->mapping->host;
2967 struct btrfs_root *root = BTRFS_I(inode)->root;
2968 struct btrfs_ordered_extent *ordered_extent = NULL;
2969 struct btrfs_workqueue *wq;
2970 btrfs_work_func_t func;
2971
2972 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2973
2974 ClearPagePrivate2(page);
2975 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2976 end - start + 1, uptodate))
2977 return 0;
2978
2979 if (btrfs_is_free_space_inode(inode)) {
2980 wq = root->fs_info->endio_freespace_worker;
2981 func = btrfs_freespace_write_helper;
2982 } else {
2983 wq = root->fs_info->endio_write_workers;
2984 func = btrfs_endio_write_helper;
2985 }
2986
2987 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2988 NULL);
2989 btrfs_queue_work(wq, &ordered_extent->work);
2990
2991 return 0;
2992 }
2993
2994 static int __readpage_endio_check(struct inode *inode,
2995 struct btrfs_io_bio *io_bio,
2996 int icsum, struct page *page,
2997 int pgoff, u64 start, size_t len)
2998 {
2999 char *kaddr;
3000 u32 csum_expected;
3001 u32 csum = ~(u32)0;
3002 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3003 DEFAULT_RATELIMIT_BURST);
3004
3005 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3006
3007 kaddr = kmap_atomic(page);
3008 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3009 btrfs_csum_final(csum, (char *)&csum);
3010 if (csum != csum_expected)
3011 goto zeroit;
3012
3013 kunmap_atomic(kaddr);
3014 return 0;
3015 zeroit:
3016 if (__ratelimit(&_rs))
3017 btrfs_warn(BTRFS_I(inode)->root->fs_info,
3018 "csum failed ino %llu off %llu csum %u expected csum %u",
3019 btrfs_ino(inode), start, csum, csum_expected);
3020 memset(kaddr + pgoff, 1, len);
3021 flush_dcache_page(page);
3022 kunmap_atomic(kaddr);
3023 if (csum_expected == 0)
3024 return 0;
3025 return -EIO;
3026 }
3027
3028 /*
3029 * when reads are done, we need to check csums to verify the data is correct
3030 * if there's a match, we allow the bio to finish. If not, the code in
3031 * extent_io.c will try to find good copies for us.
3032 */
3033 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3034 u64 phy_offset, struct page *page,
3035 u64 start, u64 end, int mirror)
3036 {
3037 size_t offset = start - page_offset(page);
3038 struct inode *inode = page->mapping->host;
3039 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3040 struct btrfs_root *root = BTRFS_I(inode)->root;
3041
3042 if (PageChecked(page)) {
3043 ClearPageChecked(page);
3044 return 0;
3045 }
3046
3047 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3048 return 0;
3049
3050 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3051 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3052 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3053 GFP_NOFS);
3054 return 0;
3055 }
3056
3057 phy_offset >>= inode->i_sb->s_blocksize_bits;
3058 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3059 start, (size_t)(end - start + 1));
3060 }
3061
3062 struct delayed_iput {
3063 struct list_head list;
3064 struct inode *inode;
3065 };
3066
3067 /* JDM: If this is fs-wide, why can't we add a pointer to
3068 * btrfs_inode instead and avoid the allocation? */
3069 void btrfs_add_delayed_iput(struct inode *inode)
3070 {
3071 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3072 struct delayed_iput *delayed;
3073
3074 if (atomic_add_unless(&inode->i_count, -1, 1))
3075 return;
3076
3077 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3078 delayed->inode = inode;
3079
3080 spin_lock(&fs_info->delayed_iput_lock);
3081 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3082 spin_unlock(&fs_info->delayed_iput_lock);
3083 }
3084
3085 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3086 {
3087 LIST_HEAD(list);
3088 struct btrfs_fs_info *fs_info = root->fs_info;
3089 struct delayed_iput *delayed;
3090 int empty;
3091
3092 spin_lock(&fs_info->delayed_iput_lock);
3093 empty = list_empty(&fs_info->delayed_iputs);
3094 spin_unlock(&fs_info->delayed_iput_lock);
3095 if (empty)
3096 return;
3097
3098 spin_lock(&fs_info->delayed_iput_lock);
3099 list_splice_init(&fs_info->delayed_iputs, &list);
3100 spin_unlock(&fs_info->delayed_iput_lock);
3101
3102 while (!list_empty(&list)) {
3103 delayed = list_entry(list.next, struct delayed_iput, list);
3104 list_del(&delayed->list);
3105 iput(delayed->inode);
3106 kfree(delayed);
3107 }
3108 }
3109
3110 /*
3111 * This is called in transaction commit time. If there are no orphan
3112 * files in the subvolume, it removes orphan item and frees block_rsv
3113 * structure.
3114 */
3115 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3116 struct btrfs_root *root)
3117 {
3118 struct btrfs_block_rsv *block_rsv;
3119 int ret;
3120
3121 if (atomic_read(&root->orphan_inodes) ||
3122 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3123 return;
3124
3125 spin_lock(&root->orphan_lock);
3126 if (atomic_read(&root->orphan_inodes)) {
3127 spin_unlock(&root->orphan_lock);
3128 return;
3129 }
3130
3131 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3132 spin_unlock(&root->orphan_lock);
3133 return;
3134 }
3135
3136 block_rsv = root->orphan_block_rsv;
3137 root->orphan_block_rsv = NULL;
3138 spin_unlock(&root->orphan_lock);
3139
3140 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3141 btrfs_root_refs(&root->root_item) > 0) {
3142 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3143 root->root_key.objectid);
3144 if (ret)
3145 btrfs_abort_transaction(trans, root, ret);
3146 else
3147 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3148 &root->state);
3149 }
3150
3151 if (block_rsv) {
3152 WARN_ON(block_rsv->size > 0);
3153 btrfs_free_block_rsv(root, block_rsv);
3154 }
3155 }
3156
3157 /*
3158 * This creates an orphan entry for the given inode in case something goes
3159 * wrong in the middle of an unlink/truncate.
3160 *
3161 * NOTE: caller of this function should reserve 5 units of metadata for
3162 * this function.
3163 */
3164 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3165 {
3166 struct btrfs_root *root = BTRFS_I(inode)->root;
3167 struct btrfs_block_rsv *block_rsv = NULL;
3168 int reserve = 0;
3169 int insert = 0;
3170 int ret;
3171
3172 if (!root->orphan_block_rsv) {
3173 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3174 if (!block_rsv)
3175 return -ENOMEM;
3176 }
3177
3178 spin_lock(&root->orphan_lock);
3179 if (!root->orphan_block_rsv) {
3180 root->orphan_block_rsv = block_rsv;
3181 } else if (block_rsv) {
3182 btrfs_free_block_rsv(root, block_rsv);
3183 block_rsv = NULL;
3184 }
3185
3186 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3187 &BTRFS_I(inode)->runtime_flags)) {
3188 #if 0
3189 /*
3190 * For proper ENOSPC handling, we should do orphan
3191 * cleanup when mounting. But this introduces backward
3192 * compatibility issue.
3193 */
3194 if (!xchg(&root->orphan_item_inserted, 1))
3195 insert = 2;
3196 else
3197 insert = 1;
3198 #endif
3199 insert = 1;
3200 atomic_inc(&root->orphan_inodes);
3201 }
3202
3203 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3204 &BTRFS_I(inode)->runtime_flags))
3205 reserve = 1;
3206 spin_unlock(&root->orphan_lock);
3207
3208 /* grab metadata reservation from transaction handle */
3209 if (reserve) {
3210 ret = btrfs_orphan_reserve_metadata(trans, inode);
3211 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3212 }
3213
3214 /* insert an orphan item to track this unlinked/truncated file */
3215 if (insert >= 1) {
3216 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3217 if (ret) {
3218 atomic_dec(&root->orphan_inodes);
3219 if (reserve) {
3220 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3221 &BTRFS_I(inode)->runtime_flags);
3222 btrfs_orphan_release_metadata(inode);
3223 }
3224 if (ret != -EEXIST) {
3225 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3226 &BTRFS_I(inode)->runtime_flags);
3227 btrfs_abort_transaction(trans, root, ret);
3228 return ret;
3229 }
3230 }
3231 ret = 0;
3232 }
3233
3234 /* insert an orphan item to track subvolume contains orphan files */
3235 if (insert >= 2) {
3236 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3237 root->root_key.objectid);
3238 if (ret && ret != -EEXIST) {
3239 btrfs_abort_transaction(trans, root, ret);
3240 return ret;
3241 }
3242 }
3243 return 0;
3244 }
3245
3246 /*
3247 * We have done the truncate/delete so we can go ahead and remove the orphan
3248 * item for this particular inode.
3249 */
3250 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3251 struct inode *inode)
3252 {
3253 struct btrfs_root *root = BTRFS_I(inode)->root;
3254 int delete_item = 0;
3255 int release_rsv = 0;
3256 int ret = 0;
3257
3258 spin_lock(&root->orphan_lock);
3259 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3260 &BTRFS_I(inode)->runtime_flags))
3261 delete_item = 1;
3262
3263 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3264 &BTRFS_I(inode)->runtime_flags))
3265 release_rsv = 1;
3266 spin_unlock(&root->orphan_lock);
3267
3268 if (delete_item) {
3269 atomic_dec(&root->orphan_inodes);
3270 if (trans)
3271 ret = btrfs_del_orphan_item(trans, root,
3272 btrfs_ino(inode));
3273 }
3274
3275 if (release_rsv)
3276 btrfs_orphan_release_metadata(inode);
3277
3278 return ret;
3279 }
3280
3281 /*
3282 * this cleans up any orphans that may be left on the list from the last use
3283 * of this root.
3284 */
3285 int btrfs_orphan_cleanup(struct btrfs_root *root)
3286 {
3287 struct btrfs_path *path;
3288 struct extent_buffer *leaf;
3289 struct btrfs_key key, found_key;
3290 struct btrfs_trans_handle *trans;
3291 struct inode *inode;
3292 u64 last_objectid = 0;
3293 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3294
3295 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3296 return 0;
3297
3298 path = btrfs_alloc_path();
3299 if (!path) {
3300 ret = -ENOMEM;
3301 goto out;
3302 }
3303 path->reada = -1;
3304
3305 key.objectid = BTRFS_ORPHAN_OBJECTID;
3306 key.type = BTRFS_ORPHAN_ITEM_KEY;
3307 key.offset = (u64)-1;
3308
3309 while (1) {
3310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3311 if (ret < 0)
3312 goto out;
3313
3314 /*
3315 * if ret == 0 means we found what we were searching for, which
3316 * is weird, but possible, so only screw with path if we didn't
3317 * find the key and see if we have stuff that matches
3318 */
3319 if (ret > 0) {
3320 ret = 0;
3321 if (path->slots[0] == 0)
3322 break;
3323 path->slots[0]--;
3324 }
3325
3326 /* pull out the item */
3327 leaf = path->nodes[0];
3328 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3329
3330 /* make sure the item matches what we want */
3331 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3332 break;
3333 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3334 break;
3335
3336 /* release the path since we're done with it */
3337 btrfs_release_path(path);
3338
3339 /*
3340 * this is where we are basically btrfs_lookup, without the
3341 * crossing root thing. we store the inode number in the
3342 * offset of the orphan item.
3343 */
3344
3345 if (found_key.offset == last_objectid) {
3346 btrfs_err(root->fs_info,
3347 "Error removing orphan entry, stopping orphan cleanup");
3348 ret = -EINVAL;
3349 goto out;
3350 }
3351
3352 last_objectid = found_key.offset;
3353
3354 found_key.objectid = found_key.offset;
3355 found_key.type = BTRFS_INODE_ITEM_KEY;
3356 found_key.offset = 0;
3357 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3358 ret = PTR_ERR_OR_ZERO(inode);
3359 if (ret && ret != -ESTALE)
3360 goto out;
3361
3362 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3363 struct btrfs_root *dead_root;
3364 struct btrfs_fs_info *fs_info = root->fs_info;
3365 int is_dead_root = 0;
3366
3367 /*
3368 * this is an orphan in the tree root. Currently these
3369 * could come from 2 sources:
3370 * a) a snapshot deletion in progress
3371 * b) a free space cache inode
3372 * We need to distinguish those two, as the snapshot
3373 * orphan must not get deleted.
3374 * find_dead_roots already ran before us, so if this
3375 * is a snapshot deletion, we should find the root
3376 * in the dead_roots list
3377 */
3378 spin_lock(&fs_info->trans_lock);
3379 list_for_each_entry(dead_root, &fs_info->dead_roots,
3380 root_list) {
3381 if (dead_root->root_key.objectid ==
3382 found_key.objectid) {
3383 is_dead_root = 1;
3384 break;
3385 }
3386 }
3387 spin_unlock(&fs_info->trans_lock);
3388 if (is_dead_root) {
3389 /* prevent this orphan from being found again */
3390 key.offset = found_key.objectid - 1;
3391 continue;
3392 }
3393 }
3394 /*
3395 * Inode is already gone but the orphan item is still there,
3396 * kill the orphan item.
3397 */
3398 if (ret == -ESTALE) {
3399 trans = btrfs_start_transaction(root, 1);
3400 if (IS_ERR(trans)) {
3401 ret = PTR_ERR(trans);
3402 goto out;
3403 }
3404 btrfs_debug(root->fs_info, "auto deleting %Lu",
3405 found_key.objectid);
3406 ret = btrfs_del_orphan_item(trans, root,
3407 found_key.objectid);
3408 btrfs_end_transaction(trans, root);
3409 if (ret)
3410 goto out;
3411 continue;
3412 }
3413
3414 /*
3415 * add this inode to the orphan list so btrfs_orphan_del does
3416 * the proper thing when we hit it
3417 */
3418 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3419 &BTRFS_I(inode)->runtime_flags);
3420 atomic_inc(&root->orphan_inodes);
3421
3422 /* if we have links, this was a truncate, lets do that */
3423 if (inode->i_nlink) {
3424 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3425 iput(inode);
3426 continue;
3427 }
3428 nr_truncate++;
3429
3430 /* 1 for the orphan item deletion. */
3431 trans = btrfs_start_transaction(root, 1);
3432 if (IS_ERR(trans)) {
3433 iput(inode);
3434 ret = PTR_ERR(trans);
3435 goto out;
3436 }
3437 ret = btrfs_orphan_add(trans, inode);
3438 btrfs_end_transaction(trans, root);
3439 if (ret) {
3440 iput(inode);
3441 goto out;
3442 }
3443
3444 ret = btrfs_truncate(inode);
3445 if (ret)
3446 btrfs_orphan_del(NULL, inode);
3447 } else {
3448 nr_unlink++;
3449 }
3450
3451 /* this will do delete_inode and everything for us */
3452 iput(inode);
3453 if (ret)
3454 goto out;
3455 }
3456 /* release the path since we're done with it */
3457 btrfs_release_path(path);
3458
3459 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3460
3461 if (root->orphan_block_rsv)
3462 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3463 (u64)-1);
3464
3465 if (root->orphan_block_rsv ||
3466 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3467 trans = btrfs_join_transaction(root);
3468 if (!IS_ERR(trans))
3469 btrfs_end_transaction(trans, root);
3470 }
3471
3472 if (nr_unlink)
3473 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3474 if (nr_truncate)
3475 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3476
3477 out:
3478 if (ret)
3479 btrfs_err(root->fs_info,
3480 "could not do orphan cleanup %d", ret);
3481 btrfs_free_path(path);
3482 return ret;
3483 }
3484
3485 /*
3486 * very simple check to peek ahead in the leaf looking for xattrs. If we
3487 * don't find any xattrs, we know there can't be any acls.
3488 *
3489 * slot is the slot the inode is in, objectid is the objectid of the inode
3490 */
3491 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3492 int slot, u64 objectid,
3493 int *first_xattr_slot)
3494 {
3495 u32 nritems = btrfs_header_nritems(leaf);
3496 struct btrfs_key found_key;
3497 static u64 xattr_access = 0;
3498 static u64 xattr_default = 0;
3499 int scanned = 0;
3500
3501 if (!xattr_access) {
3502 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3503 strlen(POSIX_ACL_XATTR_ACCESS));
3504 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3505 strlen(POSIX_ACL_XATTR_DEFAULT));
3506 }
3507
3508 slot++;
3509 *first_xattr_slot = -1;
3510 while (slot < nritems) {
3511 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3512
3513 /* we found a different objectid, there must not be acls */
3514 if (found_key.objectid != objectid)
3515 return 0;
3516
3517 /* we found an xattr, assume we've got an acl */
3518 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3519 if (*first_xattr_slot == -1)
3520 *first_xattr_slot = slot;
3521 if (found_key.offset == xattr_access ||
3522 found_key.offset == xattr_default)
3523 return 1;
3524 }
3525
3526 /*
3527 * we found a key greater than an xattr key, there can't
3528 * be any acls later on
3529 */
3530 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3531 return 0;
3532
3533 slot++;
3534 scanned++;
3535
3536 /*
3537 * it goes inode, inode backrefs, xattrs, extents,
3538 * so if there are a ton of hard links to an inode there can
3539 * be a lot of backrefs. Don't waste time searching too hard,
3540 * this is just an optimization
3541 */
3542 if (scanned >= 8)
3543 break;
3544 }
3545 /* we hit the end of the leaf before we found an xattr or
3546 * something larger than an xattr. We have to assume the inode
3547 * has acls
3548 */
3549 if (*first_xattr_slot == -1)
3550 *first_xattr_slot = slot;
3551 return 1;
3552 }
3553
3554 /*
3555 * read an inode from the btree into the in-memory inode
3556 */
3557 static void btrfs_read_locked_inode(struct inode *inode)
3558 {
3559 struct btrfs_path *path;
3560 struct extent_buffer *leaf;
3561 struct btrfs_inode_item *inode_item;
3562 struct btrfs_root *root = BTRFS_I(inode)->root;
3563 struct btrfs_key location;
3564 unsigned long ptr;
3565 int maybe_acls;
3566 u32 rdev;
3567 int ret;
3568 bool filled = false;
3569 int first_xattr_slot;
3570
3571 ret = btrfs_fill_inode(inode, &rdev);
3572 if (!ret)
3573 filled = true;
3574
3575 path = btrfs_alloc_path();
3576 if (!path)
3577 goto make_bad;
3578
3579 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3580
3581 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3582 if (ret)
3583 goto make_bad;
3584
3585 leaf = path->nodes[0];
3586
3587 if (filled)
3588 goto cache_index;
3589
3590 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3591 struct btrfs_inode_item);
3592 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3593 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3594 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3595 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3596 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3597
3598 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3599 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3600
3601 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3602 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3603
3604 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3605 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3606
3607 BTRFS_I(inode)->i_otime.tv_sec =
3608 btrfs_timespec_sec(leaf, &inode_item->otime);
3609 BTRFS_I(inode)->i_otime.tv_nsec =
3610 btrfs_timespec_nsec(leaf, &inode_item->otime);
3611
3612 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3613 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3614 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3615
3616 /*
3617 * If we were modified in the current generation and evicted from memory
3618 * and then re-read we need to do a full sync since we don't have any
3619 * idea about which extents were modified before we were evicted from
3620 * cache.
3621 */
3622 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3623 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3624 &BTRFS_I(inode)->runtime_flags);
3625
3626 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3627 inode->i_generation = BTRFS_I(inode)->generation;
3628 inode->i_rdev = 0;
3629 rdev = btrfs_inode_rdev(leaf, inode_item);
3630
3631 BTRFS_I(inode)->index_cnt = (u64)-1;
3632 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3633
3634 cache_index:
3635 path->slots[0]++;
3636 if (inode->i_nlink != 1 ||
3637 path->slots[0] >= btrfs_header_nritems(leaf))
3638 goto cache_acl;
3639
3640 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3641 if (location.objectid != btrfs_ino(inode))
3642 goto cache_acl;
3643
3644 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3645 if (location.type == BTRFS_INODE_REF_KEY) {
3646 struct btrfs_inode_ref *ref;
3647
3648 ref = (struct btrfs_inode_ref *)ptr;
3649 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3650 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3651 struct btrfs_inode_extref *extref;
3652
3653 extref = (struct btrfs_inode_extref *)ptr;
3654 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3655 extref);
3656 }
3657 cache_acl:
3658 /*
3659 * try to precache a NULL acl entry for files that don't have
3660 * any xattrs or acls
3661 */
3662 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3663 btrfs_ino(inode), &first_xattr_slot);
3664 if (first_xattr_slot != -1) {
3665 path->slots[0] = first_xattr_slot;
3666 ret = btrfs_load_inode_props(inode, path);
3667 if (ret)
3668 btrfs_err(root->fs_info,
3669 "error loading props for ino %llu (root %llu): %d",
3670 btrfs_ino(inode),
3671 root->root_key.objectid, ret);
3672 }
3673 btrfs_free_path(path);
3674
3675 if (!maybe_acls)
3676 cache_no_acl(inode);
3677
3678 switch (inode->i_mode & S_IFMT) {
3679 case S_IFREG:
3680 inode->i_mapping->a_ops = &btrfs_aops;
3681 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3682 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3683 inode->i_fop = &btrfs_file_operations;
3684 inode->i_op = &btrfs_file_inode_operations;
3685 break;
3686 case S_IFDIR:
3687 inode->i_fop = &btrfs_dir_file_operations;
3688 if (root == root->fs_info->tree_root)
3689 inode->i_op = &btrfs_dir_ro_inode_operations;
3690 else
3691 inode->i_op = &btrfs_dir_inode_operations;
3692 break;
3693 case S_IFLNK:
3694 inode->i_op = &btrfs_symlink_inode_operations;
3695 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3696 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3697 break;
3698 default:
3699 inode->i_op = &btrfs_special_inode_operations;
3700 init_special_inode(inode, inode->i_mode, rdev);
3701 break;
3702 }
3703
3704 btrfs_update_iflags(inode);
3705 return;
3706
3707 make_bad:
3708 btrfs_free_path(path);
3709 make_bad_inode(inode);
3710 }
3711
3712 /*
3713 * given a leaf and an inode, copy the inode fields into the leaf
3714 */
3715 static void fill_inode_item(struct btrfs_trans_handle *trans,
3716 struct extent_buffer *leaf,
3717 struct btrfs_inode_item *item,
3718 struct inode *inode)
3719 {
3720 struct btrfs_map_token token;
3721
3722 btrfs_init_map_token(&token);
3723
3724 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3725 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3726 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3727 &token);
3728 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3729 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3730
3731 btrfs_set_token_timespec_sec(leaf, &item->atime,
3732 inode->i_atime.tv_sec, &token);
3733 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3734 inode->i_atime.tv_nsec, &token);
3735
3736 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3737 inode->i_mtime.tv_sec, &token);
3738 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3739 inode->i_mtime.tv_nsec, &token);
3740
3741 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3742 inode->i_ctime.tv_sec, &token);
3743 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3744 inode->i_ctime.tv_nsec, &token);
3745
3746 btrfs_set_token_timespec_sec(leaf, &item->otime,
3747 BTRFS_I(inode)->i_otime.tv_sec, &token);
3748 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3749 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3750
3751 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3752 &token);
3753 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3754 &token);
3755 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3756 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3757 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3758 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3759 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3760 }
3761
3762 /*
3763 * copy everything in the in-memory inode into the btree.
3764 */
3765 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3766 struct btrfs_root *root, struct inode *inode)
3767 {
3768 struct btrfs_inode_item *inode_item;
3769 struct btrfs_path *path;
3770 struct extent_buffer *leaf;
3771 int ret;
3772
3773 path = btrfs_alloc_path();
3774 if (!path)
3775 return -ENOMEM;
3776
3777 path->leave_spinning = 1;
3778 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3779 1);
3780 if (ret) {
3781 if (ret > 0)
3782 ret = -ENOENT;
3783 goto failed;
3784 }
3785
3786 leaf = path->nodes[0];
3787 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3788 struct btrfs_inode_item);
3789
3790 fill_inode_item(trans, leaf, inode_item, inode);
3791 btrfs_mark_buffer_dirty(leaf);
3792 btrfs_set_inode_last_trans(trans, inode);
3793 ret = 0;
3794 failed:
3795 btrfs_free_path(path);
3796 return ret;
3797 }
3798
3799 /*
3800 * copy everything in the in-memory inode into the btree.
3801 */
3802 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3803 struct btrfs_root *root, struct inode *inode)
3804 {
3805 int ret;
3806
3807 /*
3808 * If the inode is a free space inode, we can deadlock during commit
3809 * if we put it into the delayed code.
3810 *
3811 * The data relocation inode should also be directly updated
3812 * without delay
3813 */
3814 if (!btrfs_is_free_space_inode(inode)
3815 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3816 && !root->fs_info->log_root_recovering) {
3817 btrfs_update_root_times(trans, root);
3818
3819 ret = btrfs_delayed_update_inode(trans, root, inode);
3820 if (!ret)
3821 btrfs_set_inode_last_trans(trans, inode);
3822 return ret;
3823 }
3824
3825 return btrfs_update_inode_item(trans, root, inode);
3826 }
3827
3828 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3829 struct btrfs_root *root,
3830 struct inode *inode)
3831 {
3832 int ret;
3833
3834 ret = btrfs_update_inode(trans, root, inode);
3835 if (ret == -ENOSPC)
3836 return btrfs_update_inode_item(trans, root, inode);
3837 return ret;
3838 }
3839
3840 /*
3841 * unlink helper that gets used here in inode.c and in the tree logging
3842 * recovery code. It remove a link in a directory with a given name, and
3843 * also drops the back refs in the inode to the directory
3844 */
3845 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3846 struct btrfs_root *root,
3847 struct inode *dir, struct inode *inode,
3848 const char *name, int name_len)
3849 {
3850 struct btrfs_path *path;
3851 int ret = 0;
3852 struct extent_buffer *leaf;
3853 struct btrfs_dir_item *di;
3854 struct btrfs_key key;
3855 u64 index;
3856 u64 ino = btrfs_ino(inode);
3857 u64 dir_ino = btrfs_ino(dir);
3858
3859 path = btrfs_alloc_path();
3860 if (!path) {
3861 ret = -ENOMEM;
3862 goto out;
3863 }
3864
3865 path->leave_spinning = 1;
3866 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3867 name, name_len, -1);
3868 if (IS_ERR(di)) {
3869 ret = PTR_ERR(di);
3870 goto err;
3871 }
3872 if (!di) {
3873 ret = -ENOENT;
3874 goto err;
3875 }
3876 leaf = path->nodes[0];
3877 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3878 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3879 if (ret)
3880 goto err;
3881 btrfs_release_path(path);
3882
3883 /*
3884 * If we don't have dir index, we have to get it by looking up
3885 * the inode ref, since we get the inode ref, remove it directly,
3886 * it is unnecessary to do delayed deletion.
3887 *
3888 * But if we have dir index, needn't search inode ref to get it.
3889 * Since the inode ref is close to the inode item, it is better
3890 * that we delay to delete it, and just do this deletion when
3891 * we update the inode item.
3892 */
3893 if (BTRFS_I(inode)->dir_index) {
3894 ret = btrfs_delayed_delete_inode_ref(inode);
3895 if (!ret) {
3896 index = BTRFS_I(inode)->dir_index;
3897 goto skip_backref;
3898 }
3899 }
3900
3901 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3902 dir_ino, &index);
3903 if (ret) {
3904 btrfs_info(root->fs_info,
3905 "failed to delete reference to %.*s, inode %llu parent %llu",
3906 name_len, name, ino, dir_ino);
3907 btrfs_abort_transaction(trans, root, ret);
3908 goto err;
3909 }
3910 skip_backref:
3911 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3912 if (ret) {
3913 btrfs_abort_transaction(trans, root, ret);
3914 goto err;
3915 }
3916
3917 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3918 inode, dir_ino);
3919 if (ret != 0 && ret != -ENOENT) {
3920 btrfs_abort_transaction(trans, root, ret);
3921 goto err;
3922 }
3923
3924 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3925 dir, index);
3926 if (ret == -ENOENT)
3927 ret = 0;
3928 else if (ret)
3929 btrfs_abort_transaction(trans, root, ret);
3930 err:
3931 btrfs_free_path(path);
3932 if (ret)
3933 goto out;
3934
3935 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3936 inode_inc_iversion(inode);
3937 inode_inc_iversion(dir);
3938 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3939 ret = btrfs_update_inode(trans, root, dir);
3940 out:
3941 return ret;
3942 }
3943
3944 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3945 struct btrfs_root *root,
3946 struct inode *dir, struct inode *inode,
3947 const char *name, int name_len)
3948 {
3949 int ret;
3950 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3951 if (!ret) {
3952 drop_nlink(inode);
3953 ret = btrfs_update_inode(trans, root, inode);
3954 }
3955 return ret;
3956 }
3957
3958 /*
3959 * helper to start transaction for unlink and rmdir.
3960 *
3961 * unlink and rmdir are special in btrfs, they do not always free space, so
3962 * if we cannot make our reservations the normal way try and see if there is
3963 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3964 * allow the unlink to occur.
3965 */
3966 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3967 {
3968 struct btrfs_trans_handle *trans;
3969 struct btrfs_root *root = BTRFS_I(dir)->root;
3970 int ret;
3971
3972 /*
3973 * 1 for the possible orphan item
3974 * 1 for the dir item
3975 * 1 for the dir index
3976 * 1 for the inode ref
3977 * 1 for the inode
3978 */
3979 trans = btrfs_start_transaction(root, 5);
3980 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3981 return trans;
3982
3983 if (PTR_ERR(trans) == -ENOSPC) {
3984 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3985
3986 trans = btrfs_start_transaction(root, 0);
3987 if (IS_ERR(trans))
3988 return trans;
3989 ret = btrfs_cond_migrate_bytes(root->fs_info,
3990 &root->fs_info->trans_block_rsv,
3991 num_bytes, 5);
3992 if (ret) {
3993 btrfs_end_transaction(trans, root);
3994 return ERR_PTR(ret);
3995 }
3996 trans->block_rsv = &root->fs_info->trans_block_rsv;
3997 trans->bytes_reserved = num_bytes;
3998 }
3999 return trans;
4000 }
4001
4002 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4003 {
4004 struct btrfs_root *root = BTRFS_I(dir)->root;
4005 struct btrfs_trans_handle *trans;
4006 struct inode *inode = dentry->d_inode;
4007 int ret;
4008
4009 trans = __unlink_start_trans(dir);
4010 if (IS_ERR(trans))
4011 return PTR_ERR(trans);
4012
4013 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
4014
4015 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4016 dentry->d_name.name, dentry->d_name.len);
4017 if (ret)
4018 goto out;
4019
4020 if (inode->i_nlink == 0) {
4021 ret = btrfs_orphan_add(trans, inode);
4022 if (ret)
4023 goto out;
4024 }
4025
4026 out:
4027 btrfs_end_transaction(trans, root);
4028 btrfs_btree_balance_dirty(root);
4029 return ret;
4030 }
4031
4032 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4033 struct btrfs_root *root,
4034 struct inode *dir, u64 objectid,
4035 const char *name, int name_len)
4036 {
4037 struct btrfs_path *path;
4038 struct extent_buffer *leaf;
4039 struct btrfs_dir_item *di;
4040 struct btrfs_key key;
4041 u64 index;
4042 int ret;
4043 u64 dir_ino = btrfs_ino(dir);
4044
4045 path = btrfs_alloc_path();
4046 if (!path)
4047 return -ENOMEM;
4048
4049 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4050 name, name_len, -1);
4051 if (IS_ERR_OR_NULL(di)) {
4052 if (!di)
4053 ret = -ENOENT;
4054 else
4055 ret = PTR_ERR(di);
4056 goto out;
4057 }
4058
4059 leaf = path->nodes[0];
4060 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4061 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4062 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4063 if (ret) {
4064 btrfs_abort_transaction(trans, root, ret);
4065 goto out;
4066 }
4067 btrfs_release_path(path);
4068
4069 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4070 objectid, root->root_key.objectid,
4071 dir_ino, &index, name, name_len);
4072 if (ret < 0) {
4073 if (ret != -ENOENT) {
4074 btrfs_abort_transaction(trans, root, ret);
4075 goto out;
4076 }
4077 di = btrfs_search_dir_index_item(root, path, dir_ino,
4078 name, name_len);
4079 if (IS_ERR_OR_NULL(di)) {
4080 if (!di)
4081 ret = -ENOENT;
4082 else
4083 ret = PTR_ERR(di);
4084 btrfs_abort_transaction(trans, root, ret);
4085 goto out;
4086 }
4087
4088 leaf = path->nodes[0];
4089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4090 btrfs_release_path(path);
4091 index = key.offset;
4092 }
4093 btrfs_release_path(path);
4094
4095 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4096 if (ret) {
4097 btrfs_abort_transaction(trans, root, ret);
4098 goto out;
4099 }
4100
4101 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4102 inode_inc_iversion(dir);
4103 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4104 ret = btrfs_update_inode_fallback(trans, root, dir);
4105 if (ret)
4106 btrfs_abort_transaction(trans, root, ret);
4107 out:
4108 btrfs_free_path(path);
4109 return ret;
4110 }
4111
4112 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4113 {
4114 struct inode *inode = dentry->d_inode;
4115 int err = 0;
4116 struct btrfs_root *root = BTRFS_I(dir)->root;
4117 struct btrfs_trans_handle *trans;
4118
4119 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4120 return -ENOTEMPTY;
4121 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4122 return -EPERM;
4123
4124 trans = __unlink_start_trans(dir);
4125 if (IS_ERR(trans))
4126 return PTR_ERR(trans);
4127
4128 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4129 err = btrfs_unlink_subvol(trans, root, dir,
4130 BTRFS_I(inode)->location.objectid,
4131 dentry->d_name.name,
4132 dentry->d_name.len);
4133 goto out;
4134 }
4135
4136 err = btrfs_orphan_add(trans, inode);
4137 if (err)
4138 goto out;
4139
4140 /* now the directory is empty */
4141 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4142 dentry->d_name.name, dentry->d_name.len);
4143 if (!err)
4144 btrfs_i_size_write(inode, 0);
4145 out:
4146 btrfs_end_transaction(trans, root);
4147 btrfs_btree_balance_dirty(root);
4148
4149 return err;
4150 }
4151
4152 /*
4153 * this can truncate away extent items, csum items and directory items.
4154 * It starts at a high offset and removes keys until it can't find
4155 * any higher than new_size
4156 *
4157 * csum items that cross the new i_size are truncated to the new size
4158 * as well.
4159 *
4160 * min_type is the minimum key type to truncate down to. If set to 0, this
4161 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4162 */
4163 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4164 struct btrfs_root *root,
4165 struct inode *inode,
4166 u64 new_size, u32 min_type)
4167 {
4168 struct btrfs_path *path;
4169 struct extent_buffer *leaf;
4170 struct btrfs_file_extent_item *fi;
4171 struct btrfs_key key;
4172 struct btrfs_key found_key;
4173 u64 extent_start = 0;
4174 u64 extent_num_bytes = 0;
4175 u64 extent_offset = 0;
4176 u64 item_end = 0;
4177 u64 last_size = (u64)-1;
4178 u32 found_type = (u8)-1;
4179 int found_extent;
4180 int del_item;
4181 int pending_del_nr = 0;
4182 int pending_del_slot = 0;
4183 int extent_type = -1;
4184 int ret;
4185 int err = 0;
4186 u64 ino = btrfs_ino(inode);
4187
4188 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4189
4190 path = btrfs_alloc_path();
4191 if (!path)
4192 return -ENOMEM;
4193 path->reada = -1;
4194
4195 /*
4196 * We want to drop from the next block forward in case this new size is
4197 * not block aligned since we will be keeping the last block of the
4198 * extent just the way it is.
4199 */
4200 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4201 root == root->fs_info->tree_root)
4202 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4203 root->sectorsize), (u64)-1, 0);
4204
4205 /*
4206 * This function is also used to drop the items in the log tree before
4207 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4208 * it is used to drop the loged items. So we shouldn't kill the delayed
4209 * items.
4210 */
4211 if (min_type == 0 && root == BTRFS_I(inode)->root)
4212 btrfs_kill_delayed_inode_items(inode);
4213
4214 key.objectid = ino;
4215 key.offset = (u64)-1;
4216 key.type = (u8)-1;
4217
4218 search_again:
4219 path->leave_spinning = 1;
4220 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4221 if (ret < 0) {
4222 err = ret;
4223 goto out;
4224 }
4225
4226 if (ret > 0) {
4227 /* there are no items in the tree for us to truncate, we're
4228 * done
4229 */
4230 if (path->slots[0] == 0)
4231 goto out;
4232 path->slots[0]--;
4233 }
4234
4235 while (1) {
4236 fi = NULL;
4237 leaf = path->nodes[0];
4238 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4239 found_type = found_key.type;
4240
4241 if (found_key.objectid != ino)
4242 break;
4243
4244 if (found_type < min_type)
4245 break;
4246
4247 item_end = found_key.offset;
4248 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4249 fi = btrfs_item_ptr(leaf, path->slots[0],
4250 struct btrfs_file_extent_item);
4251 extent_type = btrfs_file_extent_type(leaf, fi);
4252 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4253 item_end +=
4254 btrfs_file_extent_num_bytes(leaf, fi);
4255 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4256 item_end += btrfs_file_extent_inline_len(leaf,
4257 path->slots[0], fi);
4258 }
4259 item_end--;
4260 }
4261 if (found_type > min_type) {
4262 del_item = 1;
4263 } else {
4264 if (item_end < new_size)
4265 break;
4266 if (found_key.offset >= new_size)
4267 del_item = 1;
4268 else
4269 del_item = 0;
4270 }
4271 found_extent = 0;
4272 /* FIXME, shrink the extent if the ref count is only 1 */
4273 if (found_type != BTRFS_EXTENT_DATA_KEY)
4274 goto delete;
4275
4276 if (del_item)
4277 last_size = found_key.offset;
4278 else
4279 last_size = new_size;
4280
4281 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4282 u64 num_dec;
4283 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4284 if (!del_item) {
4285 u64 orig_num_bytes =
4286 btrfs_file_extent_num_bytes(leaf, fi);
4287 extent_num_bytes = ALIGN(new_size -
4288 found_key.offset,
4289 root->sectorsize);
4290 btrfs_set_file_extent_num_bytes(leaf, fi,
4291 extent_num_bytes);
4292 num_dec = (orig_num_bytes -
4293 extent_num_bytes);
4294 if (test_bit(BTRFS_ROOT_REF_COWS,
4295 &root->state) &&
4296 extent_start != 0)
4297 inode_sub_bytes(inode, num_dec);
4298 btrfs_mark_buffer_dirty(leaf);
4299 } else {
4300 extent_num_bytes =
4301 btrfs_file_extent_disk_num_bytes(leaf,
4302 fi);
4303 extent_offset = found_key.offset -
4304 btrfs_file_extent_offset(leaf, fi);
4305
4306 /* FIXME blocksize != 4096 */
4307 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4308 if (extent_start != 0) {
4309 found_extent = 1;
4310 if (test_bit(BTRFS_ROOT_REF_COWS,
4311 &root->state))
4312 inode_sub_bytes(inode, num_dec);
4313 }
4314 }
4315 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4316 /*
4317 * we can't truncate inline items that have had
4318 * special encodings
4319 */
4320 if (!del_item &&
4321 btrfs_file_extent_compression(leaf, fi) == 0 &&
4322 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4323 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4324 u32 size = new_size - found_key.offset;
4325
4326 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4327 inode_sub_bytes(inode, item_end + 1 -
4328 new_size);
4329
4330 /*
4331 * update the ram bytes to properly reflect
4332 * the new size of our item
4333 */
4334 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4335 size =
4336 btrfs_file_extent_calc_inline_size(size);
4337 btrfs_truncate_item(root, path, size, 1);
4338 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4339 &root->state)) {
4340 inode_sub_bytes(inode, item_end + 1 -
4341 found_key.offset);
4342 }
4343 }
4344 delete:
4345 if (del_item) {
4346 if (!pending_del_nr) {
4347 /* no pending yet, add ourselves */
4348 pending_del_slot = path->slots[0];
4349 pending_del_nr = 1;
4350 } else if (pending_del_nr &&
4351 path->slots[0] + 1 == pending_del_slot) {
4352 /* hop on the pending chunk */
4353 pending_del_nr++;
4354 pending_del_slot = path->slots[0];
4355 } else {
4356 BUG();
4357 }
4358 } else {
4359 break;
4360 }
4361 if (found_extent &&
4362 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4363 root == root->fs_info->tree_root)) {
4364 btrfs_set_path_blocking(path);
4365 ret = btrfs_free_extent(trans, root, extent_start,
4366 extent_num_bytes, 0,
4367 btrfs_header_owner(leaf),
4368 ino, extent_offset, 0);
4369 BUG_ON(ret);
4370 }
4371
4372 if (found_type == BTRFS_INODE_ITEM_KEY)
4373 break;
4374
4375 if (path->slots[0] == 0 ||
4376 path->slots[0] != pending_del_slot) {
4377 if (pending_del_nr) {
4378 ret = btrfs_del_items(trans, root, path,
4379 pending_del_slot,
4380 pending_del_nr);
4381 if (ret) {
4382 btrfs_abort_transaction(trans,
4383 root, ret);
4384 goto error;
4385 }
4386 pending_del_nr = 0;
4387 }
4388 btrfs_release_path(path);
4389 goto search_again;
4390 } else {
4391 path->slots[0]--;
4392 }
4393 }
4394 out:
4395 if (pending_del_nr) {
4396 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4397 pending_del_nr);
4398 if (ret)
4399 btrfs_abort_transaction(trans, root, ret);
4400 }
4401 error:
4402 if (last_size != (u64)-1 &&
4403 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4404 btrfs_ordered_update_i_size(inode, last_size, NULL);
4405 btrfs_free_path(path);
4406 return err;
4407 }
4408
4409 /*
4410 * btrfs_truncate_page - read, zero a chunk and write a page
4411 * @inode - inode that we're zeroing
4412 * @from - the offset to start zeroing
4413 * @len - the length to zero, 0 to zero the entire range respective to the
4414 * offset
4415 * @front - zero up to the offset instead of from the offset on
4416 *
4417 * This will find the page for the "from" offset and cow the page and zero the
4418 * part we want to zero. This is used with truncate and hole punching.
4419 */
4420 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4421 int front)
4422 {
4423 struct address_space *mapping = inode->i_mapping;
4424 struct btrfs_root *root = BTRFS_I(inode)->root;
4425 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4426 struct btrfs_ordered_extent *ordered;
4427 struct extent_state *cached_state = NULL;
4428 char *kaddr;
4429 u32 blocksize = root->sectorsize;
4430 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4431 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4432 struct page *page;
4433 gfp_t mask = btrfs_alloc_write_mask(mapping);
4434 int ret = 0;
4435 u64 page_start;
4436 u64 page_end;
4437
4438 if ((offset & (blocksize - 1)) == 0 &&
4439 (!len || ((len & (blocksize - 1)) == 0)))
4440 goto out;
4441 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4442 if (ret)
4443 goto out;
4444
4445 again:
4446 page = find_or_create_page(mapping, index, mask);
4447 if (!page) {
4448 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4449 ret = -ENOMEM;
4450 goto out;
4451 }
4452
4453 page_start = page_offset(page);
4454 page_end = page_start + PAGE_CACHE_SIZE - 1;
4455
4456 if (!PageUptodate(page)) {
4457 ret = btrfs_readpage(NULL, page);
4458 lock_page(page);
4459 if (page->mapping != mapping) {
4460 unlock_page(page);
4461 page_cache_release(page);
4462 goto again;
4463 }
4464 if (!PageUptodate(page)) {
4465 ret = -EIO;
4466 goto out_unlock;
4467 }
4468 }
4469 wait_on_page_writeback(page);
4470
4471 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4472 set_page_extent_mapped(page);
4473
4474 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4475 if (ordered) {
4476 unlock_extent_cached(io_tree, page_start, page_end,
4477 &cached_state, GFP_NOFS);
4478 unlock_page(page);
4479 page_cache_release(page);
4480 btrfs_start_ordered_extent(inode, ordered, 1);
4481 btrfs_put_ordered_extent(ordered);
4482 goto again;
4483 }
4484
4485 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4486 EXTENT_DIRTY | EXTENT_DELALLOC |
4487 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4488 0, 0, &cached_state, GFP_NOFS);
4489
4490 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4491 &cached_state);
4492 if (ret) {
4493 unlock_extent_cached(io_tree, page_start, page_end,
4494 &cached_state, GFP_NOFS);
4495 goto out_unlock;
4496 }
4497
4498 if (offset != PAGE_CACHE_SIZE) {
4499 if (!len)
4500 len = PAGE_CACHE_SIZE - offset;
4501 kaddr = kmap(page);
4502 if (front)
4503 memset(kaddr, 0, offset);
4504 else
4505 memset(kaddr + offset, 0, len);
4506 flush_dcache_page(page);
4507 kunmap(page);
4508 }
4509 ClearPageChecked(page);
4510 set_page_dirty(page);
4511 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4512 GFP_NOFS);
4513
4514 out_unlock:
4515 if (ret)
4516 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4517 unlock_page(page);
4518 page_cache_release(page);
4519 out:
4520 return ret;
4521 }
4522
4523 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4524 u64 offset, u64 len)
4525 {
4526 struct btrfs_trans_handle *trans;
4527 int ret;
4528
4529 /*
4530 * Still need to make sure the inode looks like it's been updated so
4531 * that any holes get logged if we fsync.
4532 */
4533 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4534 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4535 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4536 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4537 return 0;
4538 }
4539
4540 /*
4541 * 1 - for the one we're dropping
4542 * 1 - for the one we're adding
4543 * 1 - for updating the inode.
4544 */
4545 trans = btrfs_start_transaction(root, 3);
4546 if (IS_ERR(trans))
4547 return PTR_ERR(trans);
4548
4549 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4550 if (ret) {
4551 btrfs_abort_transaction(trans, root, ret);
4552 btrfs_end_transaction(trans, root);
4553 return ret;
4554 }
4555
4556 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4557 0, 0, len, 0, len, 0, 0, 0);
4558 if (ret)
4559 btrfs_abort_transaction(trans, root, ret);
4560 else
4561 btrfs_update_inode(trans, root, inode);
4562 btrfs_end_transaction(trans, root);
4563 return ret;
4564 }
4565
4566 /*
4567 * This function puts in dummy file extents for the area we're creating a hole
4568 * for. So if we are truncating this file to a larger size we need to insert
4569 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4570 * the range between oldsize and size
4571 */
4572 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4573 {
4574 struct btrfs_root *root = BTRFS_I(inode)->root;
4575 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4576 struct extent_map *em = NULL;
4577 struct extent_state *cached_state = NULL;
4578 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4579 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4580 u64 block_end = ALIGN(size, root->sectorsize);
4581 u64 last_byte;
4582 u64 cur_offset;
4583 u64 hole_size;
4584 int err = 0;
4585
4586 /*
4587 * If our size started in the middle of a page we need to zero out the
4588 * rest of the page before we expand the i_size, otherwise we could
4589 * expose stale data.
4590 */
4591 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4592 if (err)
4593 return err;
4594
4595 if (size <= hole_start)
4596 return 0;
4597
4598 while (1) {
4599 struct btrfs_ordered_extent *ordered;
4600
4601 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4602 &cached_state);
4603 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4604 block_end - hole_start);
4605 if (!ordered)
4606 break;
4607 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4608 &cached_state, GFP_NOFS);
4609 btrfs_start_ordered_extent(inode, ordered, 1);
4610 btrfs_put_ordered_extent(ordered);
4611 }
4612
4613 cur_offset = hole_start;
4614 while (1) {
4615 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4616 block_end - cur_offset, 0);
4617 if (IS_ERR(em)) {
4618 err = PTR_ERR(em);
4619 em = NULL;
4620 break;
4621 }
4622 last_byte = min(extent_map_end(em), block_end);
4623 last_byte = ALIGN(last_byte , root->sectorsize);
4624 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4625 struct extent_map *hole_em;
4626 hole_size = last_byte - cur_offset;
4627
4628 err = maybe_insert_hole(root, inode, cur_offset,
4629 hole_size);
4630 if (err)
4631 break;
4632 btrfs_drop_extent_cache(inode, cur_offset,
4633 cur_offset + hole_size - 1, 0);
4634 hole_em = alloc_extent_map();
4635 if (!hole_em) {
4636 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4637 &BTRFS_I(inode)->runtime_flags);
4638 goto next;
4639 }
4640 hole_em->start = cur_offset;
4641 hole_em->len = hole_size;
4642 hole_em->orig_start = cur_offset;
4643
4644 hole_em->block_start = EXTENT_MAP_HOLE;
4645 hole_em->block_len = 0;
4646 hole_em->orig_block_len = 0;
4647 hole_em->ram_bytes = hole_size;
4648 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4649 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4650 hole_em->generation = root->fs_info->generation;
4651
4652 while (1) {
4653 write_lock(&em_tree->lock);
4654 err = add_extent_mapping(em_tree, hole_em, 1);
4655 write_unlock(&em_tree->lock);
4656 if (err != -EEXIST)
4657 break;
4658 btrfs_drop_extent_cache(inode, cur_offset,
4659 cur_offset +
4660 hole_size - 1, 0);
4661 }
4662 free_extent_map(hole_em);
4663 }
4664 next:
4665 free_extent_map(em);
4666 em = NULL;
4667 cur_offset = last_byte;
4668 if (cur_offset >= block_end)
4669 break;
4670 }
4671 free_extent_map(em);
4672 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4673 GFP_NOFS);
4674 return err;
4675 }
4676
4677 static int wait_snapshoting_atomic_t(atomic_t *a)
4678 {
4679 schedule();
4680 return 0;
4681 }
4682
4683 static void wait_for_snapshot_creation(struct btrfs_root *root)
4684 {
4685 while (true) {
4686 int ret;
4687
4688 ret = btrfs_start_write_no_snapshoting(root);
4689 if (ret)
4690 break;
4691 wait_on_atomic_t(&root->will_be_snapshoted,
4692 wait_snapshoting_atomic_t,
4693 TASK_UNINTERRUPTIBLE);
4694 }
4695 }
4696
4697 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4698 {
4699 struct btrfs_root *root = BTRFS_I(inode)->root;
4700 struct btrfs_trans_handle *trans;
4701 loff_t oldsize = i_size_read(inode);
4702 loff_t newsize = attr->ia_size;
4703 int mask = attr->ia_valid;
4704 int ret;
4705
4706 /*
4707 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4708 * special case where we need to update the times despite not having
4709 * these flags set. For all other operations the VFS set these flags
4710 * explicitly if it wants a timestamp update.
4711 */
4712 if (newsize != oldsize) {
4713 inode_inc_iversion(inode);
4714 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4715 inode->i_ctime = inode->i_mtime =
4716 current_fs_time(inode->i_sb);
4717 }
4718
4719 if (newsize > oldsize) {
4720 truncate_pagecache(inode, newsize);
4721 /*
4722 * Don't do an expanding truncate while snapshoting is ongoing.
4723 * This is to ensure the snapshot captures a fully consistent
4724 * state of this file - if the snapshot captures this expanding
4725 * truncation, it must capture all writes that happened before
4726 * this truncation.
4727 */
4728 wait_for_snapshot_creation(root);
4729 ret = btrfs_cont_expand(inode, oldsize, newsize);
4730 if (ret) {
4731 btrfs_end_write_no_snapshoting(root);
4732 return ret;
4733 }
4734
4735 trans = btrfs_start_transaction(root, 1);
4736 if (IS_ERR(trans)) {
4737 btrfs_end_write_no_snapshoting(root);
4738 return PTR_ERR(trans);
4739 }
4740
4741 i_size_write(inode, newsize);
4742 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4743 ret = btrfs_update_inode(trans, root, inode);
4744 btrfs_end_write_no_snapshoting(root);
4745 btrfs_end_transaction(trans, root);
4746 } else {
4747
4748 /*
4749 * We're truncating a file that used to have good data down to
4750 * zero. Make sure it gets into the ordered flush list so that
4751 * any new writes get down to disk quickly.
4752 */
4753 if (newsize == 0)
4754 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4755 &BTRFS_I(inode)->runtime_flags);
4756
4757 /*
4758 * 1 for the orphan item we're going to add
4759 * 1 for the orphan item deletion.
4760 */
4761 trans = btrfs_start_transaction(root, 2);
4762 if (IS_ERR(trans))
4763 return PTR_ERR(trans);
4764
4765 /*
4766 * We need to do this in case we fail at _any_ point during the
4767 * actual truncate. Once we do the truncate_setsize we could
4768 * invalidate pages which forces any outstanding ordered io to
4769 * be instantly completed which will give us extents that need
4770 * to be truncated. If we fail to get an orphan inode down we
4771 * could have left over extents that were never meant to live,
4772 * so we need to garuntee from this point on that everything
4773 * will be consistent.
4774 */
4775 ret = btrfs_orphan_add(trans, inode);
4776 btrfs_end_transaction(trans, root);
4777 if (ret)
4778 return ret;
4779
4780 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4781 truncate_setsize(inode, newsize);
4782
4783 /* Disable nonlocked read DIO to avoid the end less truncate */
4784 btrfs_inode_block_unlocked_dio(inode);
4785 inode_dio_wait(inode);
4786 btrfs_inode_resume_unlocked_dio(inode);
4787
4788 ret = btrfs_truncate(inode);
4789 if (ret && inode->i_nlink) {
4790 int err;
4791
4792 /*
4793 * failed to truncate, disk_i_size is only adjusted down
4794 * as we remove extents, so it should represent the true
4795 * size of the inode, so reset the in memory size and
4796 * delete our orphan entry.
4797 */
4798 trans = btrfs_join_transaction(root);
4799 if (IS_ERR(trans)) {
4800 btrfs_orphan_del(NULL, inode);
4801 return ret;
4802 }
4803 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4804 err = btrfs_orphan_del(trans, inode);
4805 if (err)
4806 btrfs_abort_transaction(trans, root, err);
4807 btrfs_end_transaction(trans, root);
4808 }
4809 }
4810
4811 return ret;
4812 }
4813
4814 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4815 {
4816 struct inode *inode = dentry->d_inode;
4817 struct btrfs_root *root = BTRFS_I(inode)->root;
4818 int err;
4819
4820 if (btrfs_root_readonly(root))
4821 return -EROFS;
4822
4823 err = inode_change_ok(inode, attr);
4824 if (err)
4825 return err;
4826
4827 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4828 err = btrfs_setsize(inode, attr);
4829 if (err)
4830 return err;
4831 }
4832
4833 if (attr->ia_valid) {
4834 setattr_copy(inode, attr);
4835 inode_inc_iversion(inode);
4836 err = btrfs_dirty_inode(inode);
4837
4838 if (!err && attr->ia_valid & ATTR_MODE)
4839 err = posix_acl_chmod(inode, inode->i_mode);
4840 }
4841
4842 return err;
4843 }
4844
4845 /*
4846 * While truncating the inode pages during eviction, we get the VFS calling
4847 * btrfs_invalidatepage() against each page of the inode. This is slow because
4848 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4849 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4850 * extent_state structures over and over, wasting lots of time.
4851 *
4852 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4853 * those expensive operations on a per page basis and do only the ordered io
4854 * finishing, while we release here the extent_map and extent_state structures,
4855 * without the excessive merging and splitting.
4856 */
4857 static void evict_inode_truncate_pages(struct inode *inode)
4858 {
4859 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4860 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4861 struct rb_node *node;
4862
4863 ASSERT(inode->i_state & I_FREEING);
4864 truncate_inode_pages_final(&inode->i_data);
4865
4866 write_lock(&map_tree->lock);
4867 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4868 struct extent_map *em;
4869
4870 node = rb_first(&map_tree->map);
4871 em = rb_entry(node, struct extent_map, rb_node);
4872 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4873 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4874 remove_extent_mapping(map_tree, em);
4875 free_extent_map(em);
4876 if (need_resched()) {
4877 write_unlock(&map_tree->lock);
4878 cond_resched();
4879 write_lock(&map_tree->lock);
4880 }
4881 }
4882 write_unlock(&map_tree->lock);
4883
4884 spin_lock(&io_tree->lock);
4885 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4886 struct extent_state *state;
4887 struct extent_state *cached_state = NULL;
4888
4889 node = rb_first(&io_tree->state);
4890 state = rb_entry(node, struct extent_state, rb_node);
4891 atomic_inc(&state->refs);
4892 spin_unlock(&io_tree->lock);
4893
4894 lock_extent_bits(io_tree, state->start, state->end,
4895 0, &cached_state);
4896 clear_extent_bit(io_tree, state->start, state->end,
4897 EXTENT_LOCKED | EXTENT_DIRTY |
4898 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4899 EXTENT_DEFRAG, 1, 1,
4900 &cached_state, GFP_NOFS);
4901 free_extent_state(state);
4902
4903 cond_resched();
4904 spin_lock(&io_tree->lock);
4905 }
4906 spin_unlock(&io_tree->lock);
4907 }
4908
4909 void btrfs_evict_inode(struct inode *inode)
4910 {
4911 struct btrfs_trans_handle *trans;
4912 struct btrfs_root *root = BTRFS_I(inode)->root;
4913 struct btrfs_block_rsv *rsv, *global_rsv;
4914 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4915 int ret;
4916
4917 trace_btrfs_inode_evict(inode);
4918
4919 evict_inode_truncate_pages(inode);
4920
4921 if (inode->i_nlink &&
4922 ((btrfs_root_refs(&root->root_item) != 0 &&
4923 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4924 btrfs_is_free_space_inode(inode)))
4925 goto no_delete;
4926
4927 if (is_bad_inode(inode)) {
4928 btrfs_orphan_del(NULL, inode);
4929 goto no_delete;
4930 }
4931 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4932 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4933
4934 btrfs_free_io_failure_record(inode, 0, (u64)-1);
4935
4936 if (root->fs_info->log_root_recovering) {
4937 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4938 &BTRFS_I(inode)->runtime_flags));
4939 goto no_delete;
4940 }
4941
4942 if (inode->i_nlink > 0) {
4943 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4944 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4945 goto no_delete;
4946 }
4947
4948 ret = btrfs_commit_inode_delayed_inode(inode);
4949 if (ret) {
4950 btrfs_orphan_del(NULL, inode);
4951 goto no_delete;
4952 }
4953
4954 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4955 if (!rsv) {
4956 btrfs_orphan_del(NULL, inode);
4957 goto no_delete;
4958 }
4959 rsv->size = min_size;
4960 rsv->failfast = 1;
4961 global_rsv = &root->fs_info->global_block_rsv;
4962
4963 btrfs_i_size_write(inode, 0);
4964
4965 /*
4966 * This is a bit simpler than btrfs_truncate since we've already
4967 * reserved our space for our orphan item in the unlink, so we just
4968 * need to reserve some slack space in case we add bytes and update
4969 * inode item when doing the truncate.
4970 */
4971 while (1) {
4972 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4973 BTRFS_RESERVE_FLUSH_LIMIT);
4974
4975 /*
4976 * Try and steal from the global reserve since we will
4977 * likely not use this space anyway, we want to try as
4978 * hard as possible to get this to work.
4979 */
4980 if (ret)
4981 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4982
4983 if (ret) {
4984 btrfs_warn(root->fs_info,
4985 "Could not get space for a delete, will truncate on mount %d",
4986 ret);
4987 btrfs_orphan_del(NULL, inode);
4988 btrfs_free_block_rsv(root, rsv);
4989 goto no_delete;
4990 }
4991
4992 trans = btrfs_join_transaction(root);
4993 if (IS_ERR(trans)) {
4994 btrfs_orphan_del(NULL, inode);
4995 btrfs_free_block_rsv(root, rsv);
4996 goto no_delete;
4997 }
4998
4999 trans->block_rsv = rsv;
5000
5001 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5002 if (ret != -ENOSPC)
5003 break;
5004
5005 trans->block_rsv = &root->fs_info->trans_block_rsv;
5006 btrfs_end_transaction(trans, root);
5007 trans = NULL;
5008 btrfs_btree_balance_dirty(root);
5009 }
5010
5011 btrfs_free_block_rsv(root, rsv);
5012
5013 /*
5014 * Errors here aren't a big deal, it just means we leave orphan items
5015 * in the tree. They will be cleaned up on the next mount.
5016 */
5017 if (ret == 0) {
5018 trans->block_rsv = root->orphan_block_rsv;
5019 btrfs_orphan_del(trans, inode);
5020 } else {
5021 btrfs_orphan_del(NULL, inode);
5022 }
5023
5024 trans->block_rsv = &root->fs_info->trans_block_rsv;
5025 if (!(root == root->fs_info->tree_root ||
5026 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5027 btrfs_return_ino(root, btrfs_ino(inode));
5028
5029 btrfs_end_transaction(trans, root);
5030 btrfs_btree_balance_dirty(root);
5031 no_delete:
5032 btrfs_remove_delayed_node(inode);
5033 clear_inode(inode);
5034 return;
5035 }
5036
5037 /*
5038 * this returns the key found in the dir entry in the location pointer.
5039 * If no dir entries were found, location->objectid is 0.
5040 */
5041 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5042 struct btrfs_key *location)
5043 {
5044 const char *name = dentry->d_name.name;
5045 int namelen = dentry->d_name.len;
5046 struct btrfs_dir_item *di;
5047 struct btrfs_path *path;
5048 struct btrfs_root *root = BTRFS_I(dir)->root;
5049 int ret = 0;
5050
5051 path = btrfs_alloc_path();
5052 if (!path)
5053 return -ENOMEM;
5054
5055 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5056 namelen, 0);
5057 if (IS_ERR(di))
5058 ret = PTR_ERR(di);
5059
5060 if (IS_ERR_OR_NULL(di))
5061 goto out_err;
5062
5063 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5064 out:
5065 btrfs_free_path(path);
5066 return ret;
5067 out_err:
5068 location->objectid = 0;
5069 goto out;
5070 }
5071
5072 /*
5073 * when we hit a tree root in a directory, the btrfs part of the inode
5074 * needs to be changed to reflect the root directory of the tree root. This
5075 * is kind of like crossing a mount point.
5076 */
5077 static int fixup_tree_root_location(struct btrfs_root *root,
5078 struct inode *dir,
5079 struct dentry *dentry,
5080 struct btrfs_key *location,
5081 struct btrfs_root **sub_root)
5082 {
5083 struct btrfs_path *path;
5084 struct btrfs_root *new_root;
5085 struct btrfs_root_ref *ref;
5086 struct extent_buffer *leaf;
5087 struct btrfs_key key;
5088 int ret;
5089 int err = 0;
5090
5091 path = btrfs_alloc_path();
5092 if (!path) {
5093 err = -ENOMEM;
5094 goto out;
5095 }
5096
5097 err = -ENOENT;
5098 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5099 key.type = BTRFS_ROOT_REF_KEY;
5100 key.offset = location->objectid;
5101
5102 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5103 0, 0);
5104 if (ret) {
5105 if (ret < 0)
5106 err = ret;
5107 goto out;
5108 }
5109
5110 leaf = path->nodes[0];
5111 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5112 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5113 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5114 goto out;
5115
5116 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5117 (unsigned long)(ref + 1),
5118 dentry->d_name.len);
5119 if (ret)
5120 goto out;
5121
5122 btrfs_release_path(path);
5123
5124 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5125 if (IS_ERR(new_root)) {
5126 err = PTR_ERR(new_root);
5127 goto out;
5128 }
5129
5130 *sub_root = new_root;
5131 location->objectid = btrfs_root_dirid(&new_root->root_item);
5132 location->type = BTRFS_INODE_ITEM_KEY;
5133 location->offset = 0;
5134 err = 0;
5135 out:
5136 btrfs_free_path(path);
5137 return err;
5138 }
5139
5140 static void inode_tree_add(struct inode *inode)
5141 {
5142 struct btrfs_root *root = BTRFS_I(inode)->root;
5143 struct btrfs_inode *entry;
5144 struct rb_node **p;
5145 struct rb_node *parent;
5146 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5147 u64 ino = btrfs_ino(inode);
5148
5149 if (inode_unhashed(inode))
5150 return;
5151 parent = NULL;
5152 spin_lock(&root->inode_lock);
5153 p = &root->inode_tree.rb_node;
5154 while (*p) {
5155 parent = *p;
5156 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5157
5158 if (ino < btrfs_ino(&entry->vfs_inode))
5159 p = &parent->rb_left;
5160 else if (ino > btrfs_ino(&entry->vfs_inode))
5161 p = &parent->rb_right;
5162 else {
5163 WARN_ON(!(entry->vfs_inode.i_state &
5164 (I_WILL_FREE | I_FREEING)));
5165 rb_replace_node(parent, new, &root->inode_tree);
5166 RB_CLEAR_NODE(parent);
5167 spin_unlock(&root->inode_lock);
5168 return;
5169 }
5170 }
5171 rb_link_node(new, parent, p);
5172 rb_insert_color(new, &root->inode_tree);
5173 spin_unlock(&root->inode_lock);
5174 }
5175
5176 static void inode_tree_del(struct inode *inode)
5177 {
5178 struct btrfs_root *root = BTRFS_I(inode)->root;
5179 int empty = 0;
5180
5181 spin_lock(&root->inode_lock);
5182 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5183 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5184 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5185 empty = RB_EMPTY_ROOT(&root->inode_tree);
5186 }
5187 spin_unlock(&root->inode_lock);
5188
5189 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5190 synchronize_srcu(&root->fs_info->subvol_srcu);
5191 spin_lock(&root->inode_lock);
5192 empty = RB_EMPTY_ROOT(&root->inode_tree);
5193 spin_unlock(&root->inode_lock);
5194 if (empty)
5195 btrfs_add_dead_root(root);
5196 }
5197 }
5198
5199 void btrfs_invalidate_inodes(struct btrfs_root *root)
5200 {
5201 struct rb_node *node;
5202 struct rb_node *prev;
5203 struct btrfs_inode *entry;
5204 struct inode *inode;
5205 u64 objectid = 0;
5206
5207 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5208 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5209
5210 spin_lock(&root->inode_lock);
5211 again:
5212 node = root->inode_tree.rb_node;
5213 prev = NULL;
5214 while (node) {
5215 prev = node;
5216 entry = rb_entry(node, struct btrfs_inode, rb_node);
5217
5218 if (objectid < btrfs_ino(&entry->vfs_inode))
5219 node = node->rb_left;
5220 else if (objectid > btrfs_ino(&entry->vfs_inode))
5221 node = node->rb_right;
5222 else
5223 break;
5224 }
5225 if (!node) {
5226 while (prev) {
5227 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5228 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5229 node = prev;
5230 break;
5231 }
5232 prev = rb_next(prev);
5233 }
5234 }
5235 while (node) {
5236 entry = rb_entry(node, struct btrfs_inode, rb_node);
5237 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5238 inode = igrab(&entry->vfs_inode);
5239 if (inode) {
5240 spin_unlock(&root->inode_lock);
5241 if (atomic_read(&inode->i_count) > 1)
5242 d_prune_aliases(inode);
5243 /*
5244 * btrfs_drop_inode will have it removed from
5245 * the inode cache when its usage count
5246 * hits zero.
5247 */
5248 iput(inode);
5249 cond_resched();
5250 spin_lock(&root->inode_lock);
5251 goto again;
5252 }
5253
5254 if (cond_resched_lock(&root->inode_lock))
5255 goto again;
5256
5257 node = rb_next(node);
5258 }
5259 spin_unlock(&root->inode_lock);
5260 }
5261
5262 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5263 {
5264 struct btrfs_iget_args *args = p;
5265 inode->i_ino = args->location->objectid;
5266 memcpy(&BTRFS_I(inode)->location, args->location,
5267 sizeof(*args->location));
5268 BTRFS_I(inode)->root = args->root;
5269 return 0;
5270 }
5271
5272 static int btrfs_find_actor(struct inode *inode, void *opaque)
5273 {
5274 struct btrfs_iget_args *args = opaque;
5275 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5276 args->root == BTRFS_I(inode)->root;
5277 }
5278
5279 static struct inode *btrfs_iget_locked(struct super_block *s,
5280 struct btrfs_key *location,
5281 struct btrfs_root *root)
5282 {
5283 struct inode *inode;
5284 struct btrfs_iget_args args;
5285 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5286
5287 args.location = location;
5288 args.root = root;
5289
5290 inode = iget5_locked(s, hashval, btrfs_find_actor,
5291 btrfs_init_locked_inode,
5292 (void *)&args);
5293 return inode;
5294 }
5295
5296 /* Get an inode object given its location and corresponding root.
5297 * Returns in *is_new if the inode was read from disk
5298 */
5299 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5300 struct btrfs_root *root, int *new)
5301 {
5302 struct inode *inode;
5303
5304 inode = btrfs_iget_locked(s, location, root);
5305 if (!inode)
5306 return ERR_PTR(-ENOMEM);
5307
5308 if (inode->i_state & I_NEW) {
5309 btrfs_read_locked_inode(inode);
5310 if (!is_bad_inode(inode)) {
5311 inode_tree_add(inode);
5312 unlock_new_inode(inode);
5313 if (new)
5314 *new = 1;
5315 } else {
5316 unlock_new_inode(inode);
5317 iput(inode);
5318 inode = ERR_PTR(-ESTALE);
5319 }
5320 }
5321
5322 return inode;
5323 }
5324
5325 static struct inode *new_simple_dir(struct super_block *s,
5326 struct btrfs_key *key,
5327 struct btrfs_root *root)
5328 {
5329 struct inode *inode = new_inode(s);
5330
5331 if (!inode)
5332 return ERR_PTR(-ENOMEM);
5333
5334 BTRFS_I(inode)->root = root;
5335 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5336 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5337
5338 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5339 inode->i_op = &btrfs_dir_ro_inode_operations;
5340 inode->i_fop = &simple_dir_operations;
5341 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5342 inode->i_mtime = CURRENT_TIME;
5343 inode->i_atime = inode->i_mtime;
5344 inode->i_ctime = inode->i_mtime;
5345 BTRFS_I(inode)->i_otime = inode->i_mtime;
5346
5347 return inode;
5348 }
5349
5350 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5351 {
5352 struct inode *inode;
5353 struct btrfs_root *root = BTRFS_I(dir)->root;
5354 struct btrfs_root *sub_root = root;
5355 struct btrfs_key location;
5356 int index;
5357 int ret = 0;
5358
5359 if (dentry->d_name.len > BTRFS_NAME_LEN)
5360 return ERR_PTR(-ENAMETOOLONG);
5361
5362 ret = btrfs_inode_by_name(dir, dentry, &location);
5363 if (ret < 0)
5364 return ERR_PTR(ret);
5365
5366 if (location.objectid == 0)
5367 return ERR_PTR(-ENOENT);
5368
5369 if (location.type == BTRFS_INODE_ITEM_KEY) {
5370 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5371 return inode;
5372 }
5373
5374 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5375
5376 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5377 ret = fixup_tree_root_location(root, dir, dentry,
5378 &location, &sub_root);
5379 if (ret < 0) {
5380 if (ret != -ENOENT)
5381 inode = ERR_PTR(ret);
5382 else
5383 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5384 } else {
5385 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5386 }
5387 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5388
5389 if (!IS_ERR(inode) && root != sub_root) {
5390 down_read(&root->fs_info->cleanup_work_sem);
5391 if (!(inode->i_sb->s_flags & MS_RDONLY))
5392 ret = btrfs_orphan_cleanup(sub_root);
5393 up_read(&root->fs_info->cleanup_work_sem);
5394 if (ret) {
5395 iput(inode);
5396 inode = ERR_PTR(ret);
5397 }
5398 }
5399
5400 return inode;
5401 }
5402
5403 static int btrfs_dentry_delete(const struct dentry *dentry)
5404 {
5405 struct btrfs_root *root;
5406 struct inode *inode = dentry->d_inode;
5407
5408 if (!inode && !IS_ROOT(dentry))
5409 inode = dentry->d_parent->d_inode;
5410
5411 if (inode) {
5412 root = BTRFS_I(inode)->root;
5413 if (btrfs_root_refs(&root->root_item) == 0)
5414 return 1;
5415
5416 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5417 return 1;
5418 }
5419 return 0;
5420 }
5421
5422 static void btrfs_dentry_release(struct dentry *dentry)
5423 {
5424 kfree(dentry->d_fsdata);
5425 }
5426
5427 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5428 unsigned int flags)
5429 {
5430 struct inode *inode;
5431
5432 inode = btrfs_lookup_dentry(dir, dentry);
5433 if (IS_ERR(inode)) {
5434 if (PTR_ERR(inode) == -ENOENT)
5435 inode = NULL;
5436 else
5437 return ERR_CAST(inode);
5438 }
5439
5440 return d_splice_alias(inode, dentry);
5441 }
5442
5443 unsigned char btrfs_filetype_table[] = {
5444 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5445 };
5446
5447 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5448 {
5449 struct inode *inode = file_inode(file);
5450 struct btrfs_root *root = BTRFS_I(inode)->root;
5451 struct btrfs_item *item;
5452 struct btrfs_dir_item *di;
5453 struct btrfs_key key;
5454 struct btrfs_key found_key;
5455 struct btrfs_path *path;
5456 struct list_head ins_list;
5457 struct list_head del_list;
5458 int ret;
5459 struct extent_buffer *leaf;
5460 int slot;
5461 unsigned char d_type;
5462 int over = 0;
5463 u32 di_cur;
5464 u32 di_total;
5465 u32 di_len;
5466 int key_type = BTRFS_DIR_INDEX_KEY;
5467 char tmp_name[32];
5468 char *name_ptr;
5469 int name_len;
5470 int is_curr = 0; /* ctx->pos points to the current index? */
5471
5472 /* FIXME, use a real flag for deciding about the key type */
5473 if (root->fs_info->tree_root == root)
5474 key_type = BTRFS_DIR_ITEM_KEY;
5475
5476 if (!dir_emit_dots(file, ctx))
5477 return 0;
5478
5479 path = btrfs_alloc_path();
5480 if (!path)
5481 return -ENOMEM;
5482
5483 path->reada = 1;
5484
5485 if (key_type == BTRFS_DIR_INDEX_KEY) {
5486 INIT_LIST_HEAD(&ins_list);
5487 INIT_LIST_HEAD(&del_list);
5488 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5489 }
5490
5491 key.type = key_type;
5492 key.offset = ctx->pos;
5493 key.objectid = btrfs_ino(inode);
5494
5495 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5496 if (ret < 0)
5497 goto err;
5498
5499 while (1) {
5500 leaf = path->nodes[0];
5501 slot = path->slots[0];
5502 if (slot >= btrfs_header_nritems(leaf)) {
5503 ret = btrfs_next_leaf(root, path);
5504 if (ret < 0)
5505 goto err;
5506 else if (ret > 0)
5507 break;
5508 continue;
5509 }
5510
5511 item = btrfs_item_nr(slot);
5512 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5513
5514 if (found_key.objectid != key.objectid)
5515 break;
5516 if (found_key.type != key_type)
5517 break;
5518 if (found_key.offset < ctx->pos)
5519 goto next;
5520 if (key_type == BTRFS_DIR_INDEX_KEY &&
5521 btrfs_should_delete_dir_index(&del_list,
5522 found_key.offset))
5523 goto next;
5524
5525 ctx->pos = found_key.offset;
5526 is_curr = 1;
5527
5528 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5529 di_cur = 0;
5530 di_total = btrfs_item_size(leaf, item);
5531
5532 while (di_cur < di_total) {
5533 struct btrfs_key location;
5534
5535 if (verify_dir_item(root, leaf, di))
5536 break;
5537
5538 name_len = btrfs_dir_name_len(leaf, di);
5539 if (name_len <= sizeof(tmp_name)) {
5540 name_ptr = tmp_name;
5541 } else {
5542 name_ptr = kmalloc(name_len, GFP_NOFS);
5543 if (!name_ptr) {
5544 ret = -ENOMEM;
5545 goto err;
5546 }
5547 }
5548 read_extent_buffer(leaf, name_ptr,
5549 (unsigned long)(di + 1), name_len);
5550
5551 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5552 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5553
5554
5555 /* is this a reference to our own snapshot? If so
5556 * skip it.
5557 *
5558 * In contrast to old kernels, we insert the snapshot's
5559 * dir item and dir index after it has been created, so
5560 * we won't find a reference to our own snapshot. We
5561 * still keep the following code for backward
5562 * compatibility.
5563 */
5564 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5565 location.objectid == root->root_key.objectid) {
5566 over = 0;
5567 goto skip;
5568 }
5569 over = !dir_emit(ctx, name_ptr, name_len,
5570 location.objectid, d_type);
5571
5572 skip:
5573 if (name_ptr != tmp_name)
5574 kfree(name_ptr);
5575
5576 if (over)
5577 goto nopos;
5578 di_len = btrfs_dir_name_len(leaf, di) +
5579 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5580 di_cur += di_len;
5581 di = (struct btrfs_dir_item *)((char *)di + di_len);
5582 }
5583 next:
5584 path->slots[0]++;
5585 }
5586
5587 if (key_type == BTRFS_DIR_INDEX_KEY) {
5588 if (is_curr)
5589 ctx->pos++;
5590 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5591 if (ret)
5592 goto nopos;
5593 }
5594
5595 /* Reached end of directory/root. Bump pos past the last item. */
5596 ctx->pos++;
5597
5598 /*
5599 * Stop new entries from being returned after we return the last
5600 * entry.
5601 *
5602 * New directory entries are assigned a strictly increasing
5603 * offset. This means that new entries created during readdir
5604 * are *guaranteed* to be seen in the future by that readdir.
5605 * This has broken buggy programs which operate on names as
5606 * they're returned by readdir. Until we re-use freed offsets
5607 * we have this hack to stop new entries from being returned
5608 * under the assumption that they'll never reach this huge
5609 * offset.
5610 *
5611 * This is being careful not to overflow 32bit loff_t unless the
5612 * last entry requires it because doing so has broken 32bit apps
5613 * in the past.
5614 */
5615 if (key_type == BTRFS_DIR_INDEX_KEY) {
5616 if (ctx->pos >= INT_MAX)
5617 ctx->pos = LLONG_MAX;
5618 else
5619 ctx->pos = INT_MAX;
5620 }
5621 nopos:
5622 ret = 0;
5623 err:
5624 if (key_type == BTRFS_DIR_INDEX_KEY)
5625 btrfs_put_delayed_items(&ins_list, &del_list);
5626 btrfs_free_path(path);
5627 return ret;
5628 }
5629
5630 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5631 {
5632 struct btrfs_root *root = BTRFS_I(inode)->root;
5633 struct btrfs_trans_handle *trans;
5634 int ret = 0;
5635 bool nolock = false;
5636
5637 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5638 return 0;
5639
5640 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5641 nolock = true;
5642
5643 if (wbc->sync_mode == WB_SYNC_ALL) {
5644 if (nolock)
5645 trans = btrfs_join_transaction_nolock(root);
5646 else
5647 trans = btrfs_join_transaction(root);
5648 if (IS_ERR(trans))
5649 return PTR_ERR(trans);
5650 ret = btrfs_commit_transaction(trans, root);
5651 }
5652 return ret;
5653 }
5654
5655 /*
5656 * This is somewhat expensive, updating the tree every time the
5657 * inode changes. But, it is most likely to find the inode in cache.
5658 * FIXME, needs more benchmarking...there are no reasons other than performance
5659 * to keep or drop this code.
5660 */
5661 static int btrfs_dirty_inode(struct inode *inode)
5662 {
5663 struct btrfs_root *root = BTRFS_I(inode)->root;
5664 struct btrfs_trans_handle *trans;
5665 int ret;
5666
5667 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5668 return 0;
5669
5670 trans = btrfs_join_transaction(root);
5671 if (IS_ERR(trans))
5672 return PTR_ERR(trans);
5673
5674 ret = btrfs_update_inode(trans, root, inode);
5675 if (ret && ret == -ENOSPC) {
5676 /* whoops, lets try again with the full transaction */
5677 btrfs_end_transaction(trans, root);
5678 trans = btrfs_start_transaction(root, 1);
5679 if (IS_ERR(trans))
5680 return PTR_ERR(trans);
5681
5682 ret = btrfs_update_inode(trans, root, inode);
5683 }
5684 btrfs_end_transaction(trans, root);
5685 if (BTRFS_I(inode)->delayed_node)
5686 btrfs_balance_delayed_items(root);
5687
5688 return ret;
5689 }
5690
5691 /*
5692 * This is a copy of file_update_time. We need this so we can return error on
5693 * ENOSPC for updating the inode in the case of file write and mmap writes.
5694 */
5695 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5696 int flags)
5697 {
5698 struct btrfs_root *root = BTRFS_I(inode)->root;
5699
5700 if (btrfs_root_readonly(root))
5701 return -EROFS;
5702
5703 if (flags & S_VERSION)
5704 inode_inc_iversion(inode);
5705 if (flags & S_CTIME)
5706 inode->i_ctime = *now;
5707 if (flags & S_MTIME)
5708 inode->i_mtime = *now;
5709 if (flags & S_ATIME)
5710 inode->i_atime = *now;
5711 return btrfs_dirty_inode(inode);
5712 }
5713
5714 /*
5715 * find the highest existing sequence number in a directory
5716 * and then set the in-memory index_cnt variable to reflect
5717 * free sequence numbers
5718 */
5719 static int btrfs_set_inode_index_count(struct inode *inode)
5720 {
5721 struct btrfs_root *root = BTRFS_I(inode)->root;
5722 struct btrfs_key key, found_key;
5723 struct btrfs_path *path;
5724 struct extent_buffer *leaf;
5725 int ret;
5726
5727 key.objectid = btrfs_ino(inode);
5728 key.type = BTRFS_DIR_INDEX_KEY;
5729 key.offset = (u64)-1;
5730
5731 path = btrfs_alloc_path();
5732 if (!path)
5733 return -ENOMEM;
5734
5735 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5736 if (ret < 0)
5737 goto out;
5738 /* FIXME: we should be able to handle this */
5739 if (ret == 0)
5740 goto out;
5741 ret = 0;
5742
5743 /*
5744 * MAGIC NUMBER EXPLANATION:
5745 * since we search a directory based on f_pos we have to start at 2
5746 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5747 * else has to start at 2
5748 */
5749 if (path->slots[0] == 0) {
5750 BTRFS_I(inode)->index_cnt = 2;
5751 goto out;
5752 }
5753
5754 path->slots[0]--;
5755
5756 leaf = path->nodes[0];
5757 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5758
5759 if (found_key.objectid != btrfs_ino(inode) ||
5760 found_key.type != BTRFS_DIR_INDEX_KEY) {
5761 BTRFS_I(inode)->index_cnt = 2;
5762 goto out;
5763 }
5764
5765 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5766 out:
5767 btrfs_free_path(path);
5768 return ret;
5769 }
5770
5771 /*
5772 * helper to find a free sequence number in a given directory. This current
5773 * code is very simple, later versions will do smarter things in the btree
5774 */
5775 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5776 {
5777 int ret = 0;
5778
5779 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5780 ret = btrfs_inode_delayed_dir_index_count(dir);
5781 if (ret) {
5782 ret = btrfs_set_inode_index_count(dir);
5783 if (ret)
5784 return ret;
5785 }
5786 }
5787
5788 *index = BTRFS_I(dir)->index_cnt;
5789 BTRFS_I(dir)->index_cnt++;
5790
5791 return ret;
5792 }
5793
5794 static int btrfs_insert_inode_locked(struct inode *inode)
5795 {
5796 struct btrfs_iget_args args;
5797 args.location = &BTRFS_I(inode)->location;
5798 args.root = BTRFS_I(inode)->root;
5799
5800 return insert_inode_locked4(inode,
5801 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5802 btrfs_find_actor, &args);
5803 }
5804
5805 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5806 struct btrfs_root *root,
5807 struct inode *dir,
5808 const char *name, int name_len,
5809 u64 ref_objectid, u64 objectid,
5810 umode_t mode, u64 *index)
5811 {
5812 struct inode *inode;
5813 struct btrfs_inode_item *inode_item;
5814 struct btrfs_key *location;
5815 struct btrfs_path *path;
5816 struct btrfs_inode_ref *ref;
5817 struct btrfs_key key[2];
5818 u32 sizes[2];
5819 int nitems = name ? 2 : 1;
5820 unsigned long ptr;
5821 int ret;
5822
5823 path = btrfs_alloc_path();
5824 if (!path)
5825 return ERR_PTR(-ENOMEM);
5826
5827 inode = new_inode(root->fs_info->sb);
5828 if (!inode) {
5829 btrfs_free_path(path);
5830 return ERR_PTR(-ENOMEM);
5831 }
5832
5833 /*
5834 * O_TMPFILE, set link count to 0, so that after this point,
5835 * we fill in an inode item with the correct link count.
5836 */
5837 if (!name)
5838 set_nlink(inode, 0);
5839
5840 /*
5841 * we have to initialize this early, so we can reclaim the inode
5842 * number if we fail afterwards in this function.
5843 */
5844 inode->i_ino = objectid;
5845
5846 if (dir && name) {
5847 trace_btrfs_inode_request(dir);
5848
5849 ret = btrfs_set_inode_index(dir, index);
5850 if (ret) {
5851 btrfs_free_path(path);
5852 iput(inode);
5853 return ERR_PTR(ret);
5854 }
5855 } else if (dir) {
5856 *index = 0;
5857 }
5858 /*
5859 * index_cnt is ignored for everything but a dir,
5860 * btrfs_get_inode_index_count has an explanation for the magic
5861 * number
5862 */
5863 BTRFS_I(inode)->index_cnt = 2;
5864 BTRFS_I(inode)->dir_index = *index;
5865 BTRFS_I(inode)->root = root;
5866 BTRFS_I(inode)->generation = trans->transid;
5867 inode->i_generation = BTRFS_I(inode)->generation;
5868
5869 /*
5870 * We could have gotten an inode number from somebody who was fsynced
5871 * and then removed in this same transaction, so let's just set full
5872 * sync since it will be a full sync anyway and this will blow away the
5873 * old info in the log.
5874 */
5875 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5876
5877 key[0].objectid = objectid;
5878 key[0].type = BTRFS_INODE_ITEM_KEY;
5879 key[0].offset = 0;
5880
5881 sizes[0] = sizeof(struct btrfs_inode_item);
5882
5883 if (name) {
5884 /*
5885 * Start new inodes with an inode_ref. This is slightly more
5886 * efficient for small numbers of hard links since they will
5887 * be packed into one item. Extended refs will kick in if we
5888 * add more hard links than can fit in the ref item.
5889 */
5890 key[1].objectid = objectid;
5891 key[1].type = BTRFS_INODE_REF_KEY;
5892 key[1].offset = ref_objectid;
5893
5894 sizes[1] = name_len + sizeof(*ref);
5895 }
5896
5897 location = &BTRFS_I(inode)->location;
5898 location->objectid = objectid;
5899 location->offset = 0;
5900 location->type = BTRFS_INODE_ITEM_KEY;
5901
5902 ret = btrfs_insert_inode_locked(inode);
5903 if (ret < 0)
5904 goto fail;
5905
5906 path->leave_spinning = 1;
5907 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5908 if (ret != 0)
5909 goto fail_unlock;
5910
5911 inode_init_owner(inode, dir, mode);
5912 inode_set_bytes(inode, 0);
5913
5914 inode->i_mtime = CURRENT_TIME;
5915 inode->i_atime = inode->i_mtime;
5916 inode->i_ctime = inode->i_mtime;
5917 BTRFS_I(inode)->i_otime = inode->i_mtime;
5918
5919 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5920 struct btrfs_inode_item);
5921 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5922 sizeof(*inode_item));
5923 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5924
5925 if (name) {
5926 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5927 struct btrfs_inode_ref);
5928 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5929 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5930 ptr = (unsigned long)(ref + 1);
5931 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5932 }
5933
5934 btrfs_mark_buffer_dirty(path->nodes[0]);
5935 btrfs_free_path(path);
5936
5937 btrfs_inherit_iflags(inode, dir);
5938
5939 if (S_ISREG(mode)) {
5940 if (btrfs_test_opt(root, NODATASUM))
5941 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5942 if (btrfs_test_opt(root, NODATACOW))
5943 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5944 BTRFS_INODE_NODATASUM;
5945 }
5946
5947 inode_tree_add(inode);
5948
5949 trace_btrfs_inode_new(inode);
5950 btrfs_set_inode_last_trans(trans, inode);
5951
5952 btrfs_update_root_times(trans, root);
5953
5954 ret = btrfs_inode_inherit_props(trans, inode, dir);
5955 if (ret)
5956 btrfs_err(root->fs_info,
5957 "error inheriting props for ino %llu (root %llu): %d",
5958 btrfs_ino(inode), root->root_key.objectid, ret);
5959
5960 return inode;
5961
5962 fail_unlock:
5963 unlock_new_inode(inode);
5964 fail:
5965 if (dir && name)
5966 BTRFS_I(dir)->index_cnt--;
5967 btrfs_free_path(path);
5968 iput(inode);
5969 return ERR_PTR(ret);
5970 }
5971
5972 static inline u8 btrfs_inode_type(struct inode *inode)
5973 {
5974 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5975 }
5976
5977 /*
5978 * utility function to add 'inode' into 'parent_inode' with
5979 * a give name and a given sequence number.
5980 * if 'add_backref' is true, also insert a backref from the
5981 * inode to the parent directory.
5982 */
5983 int btrfs_add_link(struct btrfs_trans_handle *trans,
5984 struct inode *parent_inode, struct inode *inode,
5985 const char *name, int name_len, int add_backref, u64 index)
5986 {
5987 int ret = 0;
5988 struct btrfs_key key;
5989 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5990 u64 ino = btrfs_ino(inode);
5991 u64 parent_ino = btrfs_ino(parent_inode);
5992
5993 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5994 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5995 } else {
5996 key.objectid = ino;
5997 key.type = BTRFS_INODE_ITEM_KEY;
5998 key.offset = 0;
5999 }
6000
6001 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6002 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6003 key.objectid, root->root_key.objectid,
6004 parent_ino, index, name, name_len);
6005 } else if (add_backref) {
6006 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6007 parent_ino, index);
6008 }
6009
6010 /* Nothing to clean up yet */
6011 if (ret)
6012 return ret;
6013
6014 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6015 parent_inode, &key,
6016 btrfs_inode_type(inode), index);
6017 if (ret == -EEXIST || ret == -EOVERFLOW)
6018 goto fail_dir_item;
6019 else if (ret) {
6020 btrfs_abort_transaction(trans, root, ret);
6021 return ret;
6022 }
6023
6024 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6025 name_len * 2);
6026 inode_inc_iversion(parent_inode);
6027 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6028 ret = btrfs_update_inode(trans, root, parent_inode);
6029 if (ret)
6030 btrfs_abort_transaction(trans, root, ret);
6031 return ret;
6032
6033 fail_dir_item:
6034 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6035 u64 local_index;
6036 int err;
6037 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6038 key.objectid, root->root_key.objectid,
6039 parent_ino, &local_index, name, name_len);
6040
6041 } else if (add_backref) {
6042 u64 local_index;
6043 int err;
6044
6045 err = btrfs_del_inode_ref(trans, root, name, name_len,
6046 ino, parent_ino, &local_index);
6047 }
6048 return ret;
6049 }
6050
6051 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6052 struct inode *dir, struct dentry *dentry,
6053 struct inode *inode, int backref, u64 index)
6054 {
6055 int err = btrfs_add_link(trans, dir, inode,
6056 dentry->d_name.name, dentry->d_name.len,
6057 backref, index);
6058 if (err > 0)
6059 err = -EEXIST;
6060 return err;
6061 }
6062
6063 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6064 umode_t mode, dev_t rdev)
6065 {
6066 struct btrfs_trans_handle *trans;
6067 struct btrfs_root *root = BTRFS_I(dir)->root;
6068 struct inode *inode = NULL;
6069 int err;
6070 int drop_inode = 0;
6071 u64 objectid;
6072 u64 index = 0;
6073
6074 if (!new_valid_dev(rdev))
6075 return -EINVAL;
6076
6077 /*
6078 * 2 for inode item and ref
6079 * 2 for dir items
6080 * 1 for xattr if selinux is on
6081 */
6082 trans = btrfs_start_transaction(root, 5);
6083 if (IS_ERR(trans))
6084 return PTR_ERR(trans);
6085
6086 err = btrfs_find_free_ino(root, &objectid);
6087 if (err)
6088 goto out_unlock;
6089
6090 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6091 dentry->d_name.len, btrfs_ino(dir), objectid,
6092 mode, &index);
6093 if (IS_ERR(inode)) {
6094 err = PTR_ERR(inode);
6095 goto out_unlock;
6096 }
6097
6098 /*
6099 * If the active LSM wants to access the inode during
6100 * d_instantiate it needs these. Smack checks to see
6101 * if the filesystem supports xattrs by looking at the
6102 * ops vector.
6103 */
6104 inode->i_op = &btrfs_special_inode_operations;
6105 init_special_inode(inode, inode->i_mode, rdev);
6106
6107 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6108 if (err)
6109 goto out_unlock_inode;
6110
6111 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6112 if (err) {
6113 goto out_unlock_inode;
6114 } else {
6115 btrfs_update_inode(trans, root, inode);
6116 unlock_new_inode(inode);
6117 d_instantiate(dentry, inode);
6118 }
6119
6120 out_unlock:
6121 btrfs_end_transaction(trans, root);
6122 btrfs_balance_delayed_items(root);
6123 btrfs_btree_balance_dirty(root);
6124 if (drop_inode) {
6125 inode_dec_link_count(inode);
6126 iput(inode);
6127 }
6128 return err;
6129
6130 out_unlock_inode:
6131 drop_inode = 1;
6132 unlock_new_inode(inode);
6133 goto out_unlock;
6134
6135 }
6136
6137 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6138 umode_t mode, bool excl)
6139 {
6140 struct btrfs_trans_handle *trans;
6141 struct btrfs_root *root = BTRFS_I(dir)->root;
6142 struct inode *inode = NULL;
6143 int drop_inode_on_err = 0;
6144 int err;
6145 u64 objectid;
6146 u64 index = 0;
6147
6148 /*
6149 * 2 for inode item and ref
6150 * 2 for dir items
6151 * 1 for xattr if selinux is on
6152 */
6153 trans = btrfs_start_transaction(root, 5);
6154 if (IS_ERR(trans))
6155 return PTR_ERR(trans);
6156
6157 err = btrfs_find_free_ino(root, &objectid);
6158 if (err)
6159 goto out_unlock;
6160
6161 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6162 dentry->d_name.len, btrfs_ino(dir), objectid,
6163 mode, &index);
6164 if (IS_ERR(inode)) {
6165 err = PTR_ERR(inode);
6166 goto out_unlock;
6167 }
6168 drop_inode_on_err = 1;
6169 /*
6170 * If the active LSM wants to access the inode during
6171 * d_instantiate it needs these. Smack checks to see
6172 * if the filesystem supports xattrs by looking at the
6173 * ops vector.
6174 */
6175 inode->i_fop = &btrfs_file_operations;
6176 inode->i_op = &btrfs_file_inode_operations;
6177 inode->i_mapping->a_ops = &btrfs_aops;
6178 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6179
6180 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6181 if (err)
6182 goto out_unlock_inode;
6183
6184 err = btrfs_update_inode(trans, root, inode);
6185 if (err)
6186 goto out_unlock_inode;
6187
6188 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6189 if (err)
6190 goto out_unlock_inode;
6191
6192 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6193 unlock_new_inode(inode);
6194 d_instantiate(dentry, inode);
6195
6196 out_unlock:
6197 btrfs_end_transaction(trans, root);
6198 if (err && drop_inode_on_err) {
6199 inode_dec_link_count(inode);
6200 iput(inode);
6201 }
6202 btrfs_balance_delayed_items(root);
6203 btrfs_btree_balance_dirty(root);
6204 return err;
6205
6206 out_unlock_inode:
6207 unlock_new_inode(inode);
6208 goto out_unlock;
6209
6210 }
6211
6212 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6213 struct dentry *dentry)
6214 {
6215 struct btrfs_trans_handle *trans;
6216 struct btrfs_root *root = BTRFS_I(dir)->root;
6217 struct inode *inode = old_dentry->d_inode;
6218 u64 index;
6219 int err;
6220 int drop_inode = 0;
6221
6222 /* do not allow sys_link's with other subvols of the same device */
6223 if (root->objectid != BTRFS_I(inode)->root->objectid)
6224 return -EXDEV;
6225
6226 if (inode->i_nlink >= BTRFS_LINK_MAX)
6227 return -EMLINK;
6228
6229 err = btrfs_set_inode_index(dir, &index);
6230 if (err)
6231 goto fail;
6232
6233 /*
6234 * 2 items for inode and inode ref
6235 * 2 items for dir items
6236 * 1 item for parent inode
6237 */
6238 trans = btrfs_start_transaction(root, 5);
6239 if (IS_ERR(trans)) {
6240 err = PTR_ERR(trans);
6241 goto fail;
6242 }
6243
6244 /* There are several dir indexes for this inode, clear the cache. */
6245 BTRFS_I(inode)->dir_index = 0ULL;
6246 inc_nlink(inode);
6247 inode_inc_iversion(inode);
6248 inode->i_ctime = CURRENT_TIME;
6249 ihold(inode);
6250 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6251
6252 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6253
6254 if (err) {
6255 drop_inode = 1;
6256 } else {
6257 struct dentry *parent = dentry->d_parent;
6258 err = btrfs_update_inode(trans, root, inode);
6259 if (err)
6260 goto fail;
6261 if (inode->i_nlink == 1) {
6262 /*
6263 * If new hard link count is 1, it's a file created
6264 * with open(2) O_TMPFILE flag.
6265 */
6266 err = btrfs_orphan_del(trans, inode);
6267 if (err)
6268 goto fail;
6269 }
6270 d_instantiate(dentry, inode);
6271 btrfs_log_new_name(trans, inode, NULL, parent);
6272 }
6273
6274 btrfs_end_transaction(trans, root);
6275 btrfs_balance_delayed_items(root);
6276 fail:
6277 if (drop_inode) {
6278 inode_dec_link_count(inode);
6279 iput(inode);
6280 }
6281 btrfs_btree_balance_dirty(root);
6282 return err;
6283 }
6284
6285 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6286 {
6287 struct inode *inode = NULL;
6288 struct btrfs_trans_handle *trans;
6289 struct btrfs_root *root = BTRFS_I(dir)->root;
6290 int err = 0;
6291 int drop_on_err = 0;
6292 u64 objectid = 0;
6293 u64 index = 0;
6294
6295 /*
6296 * 2 items for inode and ref
6297 * 2 items for dir items
6298 * 1 for xattr if selinux is on
6299 */
6300 trans = btrfs_start_transaction(root, 5);
6301 if (IS_ERR(trans))
6302 return PTR_ERR(trans);
6303
6304 err = btrfs_find_free_ino(root, &objectid);
6305 if (err)
6306 goto out_fail;
6307
6308 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6309 dentry->d_name.len, btrfs_ino(dir), objectid,
6310 S_IFDIR | mode, &index);
6311 if (IS_ERR(inode)) {
6312 err = PTR_ERR(inode);
6313 goto out_fail;
6314 }
6315
6316 drop_on_err = 1;
6317 /* these must be set before we unlock the inode */
6318 inode->i_op = &btrfs_dir_inode_operations;
6319 inode->i_fop = &btrfs_dir_file_operations;
6320
6321 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6322 if (err)
6323 goto out_fail_inode;
6324
6325 btrfs_i_size_write(inode, 0);
6326 err = btrfs_update_inode(trans, root, inode);
6327 if (err)
6328 goto out_fail_inode;
6329
6330 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6331 dentry->d_name.len, 0, index);
6332 if (err)
6333 goto out_fail_inode;
6334
6335 d_instantiate(dentry, inode);
6336 /*
6337 * mkdir is special. We're unlocking after we call d_instantiate
6338 * to avoid a race with nfsd calling d_instantiate.
6339 */
6340 unlock_new_inode(inode);
6341 drop_on_err = 0;
6342
6343 out_fail:
6344 btrfs_end_transaction(trans, root);
6345 if (drop_on_err) {
6346 inode_dec_link_count(inode);
6347 iput(inode);
6348 }
6349 btrfs_balance_delayed_items(root);
6350 btrfs_btree_balance_dirty(root);
6351 return err;
6352
6353 out_fail_inode:
6354 unlock_new_inode(inode);
6355 goto out_fail;
6356 }
6357
6358 /* Find next extent map of a given extent map, caller needs to ensure locks */
6359 static struct extent_map *next_extent_map(struct extent_map *em)
6360 {
6361 struct rb_node *next;
6362
6363 next = rb_next(&em->rb_node);
6364 if (!next)
6365 return NULL;
6366 return container_of(next, struct extent_map, rb_node);
6367 }
6368
6369 static struct extent_map *prev_extent_map(struct extent_map *em)
6370 {
6371 struct rb_node *prev;
6372
6373 prev = rb_prev(&em->rb_node);
6374 if (!prev)
6375 return NULL;
6376 return container_of(prev, struct extent_map, rb_node);
6377 }
6378
6379 /* helper for btfs_get_extent. Given an existing extent in the tree,
6380 * the existing extent is the nearest extent to map_start,
6381 * and an extent that you want to insert, deal with overlap and insert
6382 * the best fitted new extent into the tree.
6383 */
6384 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6385 struct extent_map *existing,
6386 struct extent_map *em,
6387 u64 map_start)
6388 {
6389 struct extent_map *prev;
6390 struct extent_map *next;
6391 u64 start;
6392 u64 end;
6393 u64 start_diff;
6394
6395 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6396
6397 if (existing->start > map_start) {
6398 next = existing;
6399 prev = prev_extent_map(next);
6400 } else {
6401 prev = existing;
6402 next = next_extent_map(prev);
6403 }
6404
6405 start = prev ? extent_map_end(prev) : em->start;
6406 start = max_t(u64, start, em->start);
6407 end = next ? next->start : extent_map_end(em);
6408 end = min_t(u64, end, extent_map_end(em));
6409 start_diff = start - em->start;
6410 em->start = start;
6411 em->len = end - start;
6412 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6413 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6414 em->block_start += start_diff;
6415 em->block_len -= start_diff;
6416 }
6417 return add_extent_mapping(em_tree, em, 0);
6418 }
6419
6420 static noinline int uncompress_inline(struct btrfs_path *path,
6421 struct inode *inode, struct page *page,
6422 size_t pg_offset, u64 extent_offset,
6423 struct btrfs_file_extent_item *item)
6424 {
6425 int ret;
6426 struct extent_buffer *leaf = path->nodes[0];
6427 char *tmp;
6428 size_t max_size;
6429 unsigned long inline_size;
6430 unsigned long ptr;
6431 int compress_type;
6432
6433 WARN_ON(pg_offset != 0);
6434 compress_type = btrfs_file_extent_compression(leaf, item);
6435 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6436 inline_size = btrfs_file_extent_inline_item_len(leaf,
6437 btrfs_item_nr(path->slots[0]));
6438 tmp = kmalloc(inline_size, GFP_NOFS);
6439 if (!tmp)
6440 return -ENOMEM;
6441 ptr = btrfs_file_extent_inline_start(item);
6442
6443 read_extent_buffer(leaf, tmp, ptr, inline_size);
6444
6445 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6446 ret = btrfs_decompress(compress_type, tmp, page,
6447 extent_offset, inline_size, max_size);
6448 kfree(tmp);
6449 return ret;
6450 }
6451
6452 /*
6453 * a bit scary, this does extent mapping from logical file offset to the disk.
6454 * the ugly parts come from merging extents from the disk with the in-ram
6455 * representation. This gets more complex because of the data=ordered code,
6456 * where the in-ram extents might be locked pending data=ordered completion.
6457 *
6458 * This also copies inline extents directly into the page.
6459 */
6460
6461 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6462 size_t pg_offset, u64 start, u64 len,
6463 int create)
6464 {
6465 int ret;
6466 int err = 0;
6467 u64 extent_start = 0;
6468 u64 extent_end = 0;
6469 u64 objectid = btrfs_ino(inode);
6470 u32 found_type;
6471 struct btrfs_path *path = NULL;
6472 struct btrfs_root *root = BTRFS_I(inode)->root;
6473 struct btrfs_file_extent_item *item;
6474 struct extent_buffer *leaf;
6475 struct btrfs_key found_key;
6476 struct extent_map *em = NULL;
6477 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6478 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6479 struct btrfs_trans_handle *trans = NULL;
6480 const bool new_inline = !page || create;
6481
6482 again:
6483 read_lock(&em_tree->lock);
6484 em = lookup_extent_mapping(em_tree, start, len);
6485 if (em)
6486 em->bdev = root->fs_info->fs_devices->latest_bdev;
6487 read_unlock(&em_tree->lock);
6488
6489 if (em) {
6490 if (em->start > start || em->start + em->len <= start)
6491 free_extent_map(em);
6492 else if (em->block_start == EXTENT_MAP_INLINE && page)
6493 free_extent_map(em);
6494 else
6495 goto out;
6496 }
6497 em = alloc_extent_map();
6498 if (!em) {
6499 err = -ENOMEM;
6500 goto out;
6501 }
6502 em->bdev = root->fs_info->fs_devices->latest_bdev;
6503 em->start = EXTENT_MAP_HOLE;
6504 em->orig_start = EXTENT_MAP_HOLE;
6505 em->len = (u64)-1;
6506 em->block_len = (u64)-1;
6507
6508 if (!path) {
6509 path = btrfs_alloc_path();
6510 if (!path) {
6511 err = -ENOMEM;
6512 goto out;
6513 }
6514 /*
6515 * Chances are we'll be called again, so go ahead and do
6516 * readahead
6517 */
6518 path->reada = 1;
6519 }
6520
6521 ret = btrfs_lookup_file_extent(trans, root, path,
6522 objectid, start, trans != NULL);
6523 if (ret < 0) {
6524 err = ret;
6525 goto out;
6526 }
6527
6528 if (ret != 0) {
6529 if (path->slots[0] == 0)
6530 goto not_found;
6531 path->slots[0]--;
6532 }
6533
6534 leaf = path->nodes[0];
6535 item = btrfs_item_ptr(leaf, path->slots[0],
6536 struct btrfs_file_extent_item);
6537 /* are we inside the extent that was found? */
6538 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6539 found_type = found_key.type;
6540 if (found_key.objectid != objectid ||
6541 found_type != BTRFS_EXTENT_DATA_KEY) {
6542 /*
6543 * If we backup past the first extent we want to move forward
6544 * and see if there is an extent in front of us, otherwise we'll
6545 * say there is a hole for our whole search range which can
6546 * cause problems.
6547 */
6548 extent_end = start;
6549 goto next;
6550 }
6551
6552 found_type = btrfs_file_extent_type(leaf, item);
6553 extent_start = found_key.offset;
6554 if (found_type == BTRFS_FILE_EXTENT_REG ||
6555 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6556 extent_end = extent_start +
6557 btrfs_file_extent_num_bytes(leaf, item);
6558 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6559 size_t size;
6560 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6561 extent_end = ALIGN(extent_start + size, root->sectorsize);
6562 }
6563 next:
6564 if (start >= extent_end) {
6565 path->slots[0]++;
6566 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6567 ret = btrfs_next_leaf(root, path);
6568 if (ret < 0) {
6569 err = ret;
6570 goto out;
6571 }
6572 if (ret > 0)
6573 goto not_found;
6574 leaf = path->nodes[0];
6575 }
6576 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6577 if (found_key.objectid != objectid ||
6578 found_key.type != BTRFS_EXTENT_DATA_KEY)
6579 goto not_found;
6580 if (start + len <= found_key.offset)
6581 goto not_found;
6582 if (start > found_key.offset)
6583 goto next;
6584 em->start = start;
6585 em->orig_start = start;
6586 em->len = found_key.offset - start;
6587 goto not_found_em;
6588 }
6589
6590 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6591
6592 if (found_type == BTRFS_FILE_EXTENT_REG ||
6593 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6594 goto insert;
6595 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6596 unsigned long ptr;
6597 char *map;
6598 size_t size;
6599 size_t extent_offset;
6600 size_t copy_size;
6601
6602 if (new_inline)
6603 goto out;
6604
6605 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6606 extent_offset = page_offset(page) + pg_offset - extent_start;
6607 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6608 size - extent_offset);
6609 em->start = extent_start + extent_offset;
6610 em->len = ALIGN(copy_size, root->sectorsize);
6611 em->orig_block_len = em->len;
6612 em->orig_start = em->start;
6613 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6614 if (create == 0 && !PageUptodate(page)) {
6615 if (btrfs_file_extent_compression(leaf, item) !=
6616 BTRFS_COMPRESS_NONE) {
6617 ret = uncompress_inline(path, inode, page,
6618 pg_offset,
6619 extent_offset, item);
6620 if (ret) {
6621 err = ret;
6622 goto out;
6623 }
6624 } else {
6625 map = kmap(page);
6626 read_extent_buffer(leaf, map + pg_offset, ptr,
6627 copy_size);
6628 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6629 memset(map + pg_offset + copy_size, 0,
6630 PAGE_CACHE_SIZE - pg_offset -
6631 copy_size);
6632 }
6633 kunmap(page);
6634 }
6635 flush_dcache_page(page);
6636 } else if (create && PageUptodate(page)) {
6637 BUG();
6638 if (!trans) {
6639 kunmap(page);
6640 free_extent_map(em);
6641 em = NULL;
6642
6643 btrfs_release_path(path);
6644 trans = btrfs_join_transaction(root);
6645
6646 if (IS_ERR(trans))
6647 return ERR_CAST(trans);
6648 goto again;
6649 }
6650 map = kmap(page);
6651 write_extent_buffer(leaf, map + pg_offset, ptr,
6652 copy_size);
6653 kunmap(page);
6654 btrfs_mark_buffer_dirty(leaf);
6655 }
6656 set_extent_uptodate(io_tree, em->start,
6657 extent_map_end(em) - 1, NULL, GFP_NOFS);
6658 goto insert;
6659 }
6660 not_found:
6661 em->start = start;
6662 em->orig_start = start;
6663 em->len = len;
6664 not_found_em:
6665 em->block_start = EXTENT_MAP_HOLE;
6666 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6667 insert:
6668 btrfs_release_path(path);
6669 if (em->start > start || extent_map_end(em) <= start) {
6670 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6671 em->start, em->len, start, len);
6672 err = -EIO;
6673 goto out;
6674 }
6675
6676 err = 0;
6677 write_lock(&em_tree->lock);
6678 ret = add_extent_mapping(em_tree, em, 0);
6679 /* it is possible that someone inserted the extent into the tree
6680 * while we had the lock dropped. It is also possible that
6681 * an overlapping map exists in the tree
6682 */
6683 if (ret == -EEXIST) {
6684 struct extent_map *existing;
6685
6686 ret = 0;
6687
6688 existing = search_extent_mapping(em_tree, start, len);
6689 /*
6690 * existing will always be non-NULL, since there must be
6691 * extent causing the -EEXIST.
6692 */
6693 if (start >= extent_map_end(existing) ||
6694 start <= existing->start) {
6695 /*
6696 * The existing extent map is the one nearest to
6697 * the [start, start + len) range which overlaps
6698 */
6699 err = merge_extent_mapping(em_tree, existing,
6700 em, start);
6701 free_extent_map(existing);
6702 if (err) {
6703 free_extent_map(em);
6704 em = NULL;
6705 }
6706 } else {
6707 free_extent_map(em);
6708 em = existing;
6709 err = 0;
6710 }
6711 }
6712 write_unlock(&em_tree->lock);
6713 out:
6714
6715 trace_btrfs_get_extent(root, em);
6716
6717 if (path)
6718 btrfs_free_path(path);
6719 if (trans) {
6720 ret = btrfs_end_transaction(trans, root);
6721 if (!err)
6722 err = ret;
6723 }
6724 if (err) {
6725 free_extent_map(em);
6726 return ERR_PTR(err);
6727 }
6728 BUG_ON(!em); /* Error is always set */
6729 return em;
6730 }
6731
6732 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6733 size_t pg_offset, u64 start, u64 len,
6734 int create)
6735 {
6736 struct extent_map *em;
6737 struct extent_map *hole_em = NULL;
6738 u64 range_start = start;
6739 u64 end;
6740 u64 found;
6741 u64 found_end;
6742 int err = 0;
6743
6744 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6745 if (IS_ERR(em))
6746 return em;
6747 if (em) {
6748 /*
6749 * if our em maps to
6750 * - a hole or
6751 * - a pre-alloc extent,
6752 * there might actually be delalloc bytes behind it.
6753 */
6754 if (em->block_start != EXTENT_MAP_HOLE &&
6755 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6756 return em;
6757 else
6758 hole_em = em;
6759 }
6760
6761 /* check to see if we've wrapped (len == -1 or similar) */
6762 end = start + len;
6763 if (end < start)
6764 end = (u64)-1;
6765 else
6766 end -= 1;
6767
6768 em = NULL;
6769
6770 /* ok, we didn't find anything, lets look for delalloc */
6771 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6772 end, len, EXTENT_DELALLOC, 1);
6773 found_end = range_start + found;
6774 if (found_end < range_start)
6775 found_end = (u64)-1;
6776
6777 /*
6778 * we didn't find anything useful, return
6779 * the original results from get_extent()
6780 */
6781 if (range_start > end || found_end <= start) {
6782 em = hole_em;
6783 hole_em = NULL;
6784 goto out;
6785 }
6786
6787 /* adjust the range_start to make sure it doesn't
6788 * go backwards from the start they passed in
6789 */
6790 range_start = max(start, range_start);
6791 found = found_end - range_start;
6792
6793 if (found > 0) {
6794 u64 hole_start = start;
6795 u64 hole_len = len;
6796
6797 em = alloc_extent_map();
6798 if (!em) {
6799 err = -ENOMEM;
6800 goto out;
6801 }
6802 /*
6803 * when btrfs_get_extent can't find anything it
6804 * returns one huge hole
6805 *
6806 * make sure what it found really fits our range, and
6807 * adjust to make sure it is based on the start from
6808 * the caller
6809 */
6810 if (hole_em) {
6811 u64 calc_end = extent_map_end(hole_em);
6812
6813 if (calc_end <= start || (hole_em->start > end)) {
6814 free_extent_map(hole_em);
6815 hole_em = NULL;
6816 } else {
6817 hole_start = max(hole_em->start, start);
6818 hole_len = calc_end - hole_start;
6819 }
6820 }
6821 em->bdev = NULL;
6822 if (hole_em && range_start > hole_start) {
6823 /* our hole starts before our delalloc, so we
6824 * have to return just the parts of the hole
6825 * that go until the delalloc starts
6826 */
6827 em->len = min(hole_len,
6828 range_start - hole_start);
6829 em->start = hole_start;
6830 em->orig_start = hole_start;
6831 /*
6832 * don't adjust block start at all,
6833 * it is fixed at EXTENT_MAP_HOLE
6834 */
6835 em->block_start = hole_em->block_start;
6836 em->block_len = hole_len;
6837 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6838 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6839 } else {
6840 em->start = range_start;
6841 em->len = found;
6842 em->orig_start = range_start;
6843 em->block_start = EXTENT_MAP_DELALLOC;
6844 em->block_len = found;
6845 }
6846 } else if (hole_em) {
6847 return hole_em;
6848 }
6849 out:
6850
6851 free_extent_map(hole_em);
6852 if (err) {
6853 free_extent_map(em);
6854 return ERR_PTR(err);
6855 }
6856 return em;
6857 }
6858
6859 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6860 u64 start, u64 len)
6861 {
6862 struct btrfs_root *root = BTRFS_I(inode)->root;
6863 struct extent_map *em;
6864 struct btrfs_key ins;
6865 u64 alloc_hint;
6866 int ret;
6867
6868 alloc_hint = get_extent_allocation_hint(inode, start, len);
6869 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6870 alloc_hint, &ins, 1, 1);
6871 if (ret)
6872 return ERR_PTR(ret);
6873
6874 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6875 ins.offset, ins.offset, ins.offset, 0);
6876 if (IS_ERR(em)) {
6877 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6878 return em;
6879 }
6880
6881 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6882 ins.offset, ins.offset, 0);
6883 if (ret) {
6884 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6885 free_extent_map(em);
6886 return ERR_PTR(ret);
6887 }
6888
6889 return em;
6890 }
6891
6892 /*
6893 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6894 * block must be cow'd
6895 */
6896 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6897 u64 *orig_start, u64 *orig_block_len,
6898 u64 *ram_bytes)
6899 {
6900 struct btrfs_trans_handle *trans;
6901 struct btrfs_path *path;
6902 int ret;
6903 struct extent_buffer *leaf;
6904 struct btrfs_root *root = BTRFS_I(inode)->root;
6905 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6906 struct btrfs_file_extent_item *fi;
6907 struct btrfs_key key;
6908 u64 disk_bytenr;
6909 u64 backref_offset;
6910 u64 extent_end;
6911 u64 num_bytes;
6912 int slot;
6913 int found_type;
6914 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6915
6916 path = btrfs_alloc_path();
6917 if (!path)
6918 return -ENOMEM;
6919
6920 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6921 offset, 0);
6922 if (ret < 0)
6923 goto out;
6924
6925 slot = path->slots[0];
6926 if (ret == 1) {
6927 if (slot == 0) {
6928 /* can't find the item, must cow */
6929 ret = 0;
6930 goto out;
6931 }
6932 slot--;
6933 }
6934 ret = 0;
6935 leaf = path->nodes[0];
6936 btrfs_item_key_to_cpu(leaf, &key, slot);
6937 if (key.objectid != btrfs_ino(inode) ||
6938 key.type != BTRFS_EXTENT_DATA_KEY) {
6939 /* not our file or wrong item type, must cow */
6940 goto out;
6941 }
6942
6943 if (key.offset > offset) {
6944 /* Wrong offset, must cow */
6945 goto out;
6946 }
6947
6948 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6949 found_type = btrfs_file_extent_type(leaf, fi);
6950 if (found_type != BTRFS_FILE_EXTENT_REG &&
6951 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6952 /* not a regular extent, must cow */
6953 goto out;
6954 }
6955
6956 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6957 goto out;
6958
6959 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6960 if (extent_end <= offset)
6961 goto out;
6962
6963 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6964 if (disk_bytenr == 0)
6965 goto out;
6966
6967 if (btrfs_file_extent_compression(leaf, fi) ||
6968 btrfs_file_extent_encryption(leaf, fi) ||
6969 btrfs_file_extent_other_encoding(leaf, fi))
6970 goto out;
6971
6972 backref_offset = btrfs_file_extent_offset(leaf, fi);
6973
6974 if (orig_start) {
6975 *orig_start = key.offset - backref_offset;
6976 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6977 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6978 }
6979
6980 if (btrfs_extent_readonly(root, disk_bytenr))
6981 goto out;
6982
6983 num_bytes = min(offset + *len, extent_end) - offset;
6984 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6985 u64 range_end;
6986
6987 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6988 ret = test_range_bit(io_tree, offset, range_end,
6989 EXTENT_DELALLOC, 0, NULL);
6990 if (ret) {
6991 ret = -EAGAIN;
6992 goto out;
6993 }
6994 }
6995
6996 btrfs_release_path(path);
6997
6998 /*
6999 * look for other files referencing this extent, if we
7000 * find any we must cow
7001 */
7002 trans = btrfs_join_transaction(root);
7003 if (IS_ERR(trans)) {
7004 ret = 0;
7005 goto out;
7006 }
7007
7008 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7009 key.offset - backref_offset, disk_bytenr);
7010 btrfs_end_transaction(trans, root);
7011 if (ret) {
7012 ret = 0;
7013 goto out;
7014 }
7015
7016 /*
7017 * adjust disk_bytenr and num_bytes to cover just the bytes
7018 * in this extent we are about to write. If there
7019 * are any csums in that range we have to cow in order
7020 * to keep the csums correct
7021 */
7022 disk_bytenr += backref_offset;
7023 disk_bytenr += offset - key.offset;
7024 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7025 goto out;
7026 /*
7027 * all of the above have passed, it is safe to overwrite this extent
7028 * without cow
7029 */
7030 *len = num_bytes;
7031 ret = 1;
7032 out:
7033 btrfs_free_path(path);
7034 return ret;
7035 }
7036
7037 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7038 {
7039 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7040 int found = false;
7041 void **pagep = NULL;
7042 struct page *page = NULL;
7043 int start_idx;
7044 int end_idx;
7045
7046 start_idx = start >> PAGE_CACHE_SHIFT;
7047
7048 /*
7049 * end is the last byte in the last page. end == start is legal
7050 */
7051 end_idx = end >> PAGE_CACHE_SHIFT;
7052
7053 rcu_read_lock();
7054
7055 /* Most of the code in this while loop is lifted from
7056 * find_get_page. It's been modified to begin searching from a
7057 * page and return just the first page found in that range. If the
7058 * found idx is less than or equal to the end idx then we know that
7059 * a page exists. If no pages are found or if those pages are
7060 * outside of the range then we're fine (yay!) */
7061 while (page == NULL &&
7062 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7063 page = radix_tree_deref_slot(pagep);
7064 if (unlikely(!page))
7065 break;
7066
7067 if (radix_tree_exception(page)) {
7068 if (radix_tree_deref_retry(page)) {
7069 page = NULL;
7070 continue;
7071 }
7072 /*
7073 * Otherwise, shmem/tmpfs must be storing a swap entry
7074 * here as an exceptional entry: so return it without
7075 * attempting to raise page count.
7076 */
7077 page = NULL;
7078 break; /* TODO: Is this relevant for this use case? */
7079 }
7080
7081 if (!page_cache_get_speculative(page)) {
7082 page = NULL;
7083 continue;
7084 }
7085
7086 /*
7087 * Has the page moved?
7088 * This is part of the lockless pagecache protocol. See
7089 * include/linux/pagemap.h for details.
7090 */
7091 if (unlikely(page != *pagep)) {
7092 page_cache_release(page);
7093 page = NULL;
7094 }
7095 }
7096
7097 if (page) {
7098 if (page->index <= end_idx)
7099 found = true;
7100 page_cache_release(page);
7101 }
7102
7103 rcu_read_unlock();
7104 return found;
7105 }
7106
7107 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7108 struct extent_state **cached_state, int writing)
7109 {
7110 struct btrfs_ordered_extent *ordered;
7111 int ret = 0;
7112
7113 while (1) {
7114 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7115 0, cached_state);
7116 /*
7117 * We're concerned with the entire range that we're going to be
7118 * doing DIO to, so we need to make sure theres no ordered
7119 * extents in this range.
7120 */
7121 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7122 lockend - lockstart + 1);
7123
7124 /*
7125 * We need to make sure there are no buffered pages in this
7126 * range either, we could have raced between the invalidate in
7127 * generic_file_direct_write and locking the extent. The
7128 * invalidate needs to happen so that reads after a write do not
7129 * get stale data.
7130 */
7131 if (!ordered &&
7132 (!writing ||
7133 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7134 break;
7135
7136 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7137 cached_state, GFP_NOFS);
7138
7139 if (ordered) {
7140 btrfs_start_ordered_extent(inode, ordered, 1);
7141 btrfs_put_ordered_extent(ordered);
7142 } else {
7143 /* Screw you mmap */
7144 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7145 if (ret)
7146 break;
7147 ret = filemap_fdatawait_range(inode->i_mapping,
7148 lockstart,
7149 lockend);
7150 if (ret)
7151 break;
7152
7153 /*
7154 * If we found a page that couldn't be invalidated just
7155 * fall back to buffered.
7156 */
7157 ret = invalidate_inode_pages2_range(inode->i_mapping,
7158 lockstart >> PAGE_CACHE_SHIFT,
7159 lockend >> PAGE_CACHE_SHIFT);
7160 if (ret)
7161 break;
7162 }
7163
7164 cond_resched();
7165 }
7166
7167 return ret;
7168 }
7169
7170 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7171 u64 len, u64 orig_start,
7172 u64 block_start, u64 block_len,
7173 u64 orig_block_len, u64 ram_bytes,
7174 int type)
7175 {
7176 struct extent_map_tree *em_tree;
7177 struct extent_map *em;
7178 struct btrfs_root *root = BTRFS_I(inode)->root;
7179 int ret;
7180
7181 em_tree = &BTRFS_I(inode)->extent_tree;
7182 em = alloc_extent_map();
7183 if (!em)
7184 return ERR_PTR(-ENOMEM);
7185
7186 em->start = start;
7187 em->orig_start = orig_start;
7188 em->mod_start = start;
7189 em->mod_len = len;
7190 em->len = len;
7191 em->block_len = block_len;
7192 em->block_start = block_start;
7193 em->bdev = root->fs_info->fs_devices->latest_bdev;
7194 em->orig_block_len = orig_block_len;
7195 em->ram_bytes = ram_bytes;
7196 em->generation = -1;
7197 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7198 if (type == BTRFS_ORDERED_PREALLOC)
7199 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7200
7201 do {
7202 btrfs_drop_extent_cache(inode, em->start,
7203 em->start + em->len - 1, 0);
7204 write_lock(&em_tree->lock);
7205 ret = add_extent_mapping(em_tree, em, 1);
7206 write_unlock(&em_tree->lock);
7207 } while (ret == -EEXIST);
7208
7209 if (ret) {
7210 free_extent_map(em);
7211 return ERR_PTR(ret);
7212 }
7213
7214 return em;
7215 }
7216
7217
7218 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7219 struct buffer_head *bh_result, int create)
7220 {
7221 struct extent_map *em;
7222 struct btrfs_root *root = BTRFS_I(inode)->root;
7223 struct extent_state *cached_state = NULL;
7224 u64 start = iblock << inode->i_blkbits;
7225 u64 lockstart, lockend;
7226 u64 len = bh_result->b_size;
7227 u64 orig_len = len;
7228 int unlock_bits = EXTENT_LOCKED;
7229 int ret = 0;
7230
7231 if (create)
7232 unlock_bits |= EXTENT_DIRTY;
7233 else
7234 len = min_t(u64, len, root->sectorsize);
7235
7236 lockstart = start;
7237 lockend = start + len - 1;
7238
7239 /*
7240 * If this errors out it's because we couldn't invalidate pagecache for
7241 * this range and we need to fallback to buffered.
7242 */
7243 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7244 return -ENOTBLK;
7245
7246 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7247 if (IS_ERR(em)) {
7248 ret = PTR_ERR(em);
7249 goto unlock_err;
7250 }
7251
7252 /*
7253 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7254 * io. INLINE is special, and we could probably kludge it in here, but
7255 * it's still buffered so for safety lets just fall back to the generic
7256 * buffered path.
7257 *
7258 * For COMPRESSED we _have_ to read the entire extent in so we can
7259 * decompress it, so there will be buffering required no matter what we
7260 * do, so go ahead and fallback to buffered.
7261 *
7262 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7263 * to buffered IO. Don't blame me, this is the price we pay for using
7264 * the generic code.
7265 */
7266 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7267 em->block_start == EXTENT_MAP_INLINE) {
7268 free_extent_map(em);
7269 ret = -ENOTBLK;
7270 goto unlock_err;
7271 }
7272
7273 /* Just a good old fashioned hole, return */
7274 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7275 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7276 free_extent_map(em);
7277 goto unlock_err;
7278 }
7279
7280 /*
7281 * We don't allocate a new extent in the following cases
7282 *
7283 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7284 * existing extent.
7285 * 2) The extent is marked as PREALLOC. We're good to go here and can
7286 * just use the extent.
7287 *
7288 */
7289 if (!create) {
7290 len = min(len, em->len - (start - em->start));
7291 lockstart = start + len;
7292 goto unlock;
7293 }
7294
7295 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7296 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7297 em->block_start != EXTENT_MAP_HOLE)) {
7298 int type;
7299 u64 block_start, orig_start, orig_block_len, ram_bytes;
7300
7301 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7302 type = BTRFS_ORDERED_PREALLOC;
7303 else
7304 type = BTRFS_ORDERED_NOCOW;
7305 len = min(len, em->len - (start - em->start));
7306 block_start = em->block_start + (start - em->start);
7307
7308 if (can_nocow_extent(inode, start, &len, &orig_start,
7309 &orig_block_len, &ram_bytes) == 1) {
7310 if (type == BTRFS_ORDERED_PREALLOC) {
7311 free_extent_map(em);
7312 em = create_pinned_em(inode, start, len,
7313 orig_start,
7314 block_start, len,
7315 orig_block_len,
7316 ram_bytes, type);
7317 if (IS_ERR(em)) {
7318 ret = PTR_ERR(em);
7319 goto unlock_err;
7320 }
7321 }
7322
7323 ret = btrfs_add_ordered_extent_dio(inode, start,
7324 block_start, len, len, type);
7325 if (ret) {
7326 free_extent_map(em);
7327 goto unlock_err;
7328 }
7329 goto unlock;
7330 }
7331 }
7332
7333 /*
7334 * this will cow the extent, reset the len in case we changed
7335 * it above
7336 */
7337 len = bh_result->b_size;
7338 free_extent_map(em);
7339 em = btrfs_new_extent_direct(inode, start, len);
7340 if (IS_ERR(em)) {
7341 ret = PTR_ERR(em);
7342 goto unlock_err;
7343 }
7344 len = min(len, em->len - (start - em->start));
7345 unlock:
7346 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7347 inode->i_blkbits;
7348 bh_result->b_size = len;
7349 bh_result->b_bdev = em->bdev;
7350 set_buffer_mapped(bh_result);
7351 if (create) {
7352 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7353 set_buffer_new(bh_result);
7354
7355 /*
7356 * Need to update the i_size under the extent lock so buffered
7357 * readers will get the updated i_size when we unlock.
7358 */
7359 if (start + len > i_size_read(inode))
7360 i_size_write(inode, start + len);
7361
7362 if (len < orig_len) {
7363 spin_lock(&BTRFS_I(inode)->lock);
7364 BTRFS_I(inode)->outstanding_extents++;
7365 spin_unlock(&BTRFS_I(inode)->lock);
7366 }
7367 btrfs_free_reserved_data_space(inode, len);
7368 }
7369
7370 /*
7371 * In the case of write we need to clear and unlock the entire range,
7372 * in the case of read we need to unlock only the end area that we
7373 * aren't using if there is any left over space.
7374 */
7375 if (lockstart < lockend) {
7376 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7377 lockend, unlock_bits, 1, 0,
7378 &cached_state, GFP_NOFS);
7379 } else {
7380 free_extent_state(cached_state);
7381 }
7382
7383 free_extent_map(em);
7384
7385 return 0;
7386
7387 unlock_err:
7388 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7389 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7390 return ret;
7391 }
7392
7393 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7394 int rw, int mirror_num)
7395 {
7396 struct btrfs_root *root = BTRFS_I(inode)->root;
7397 int ret;
7398
7399 BUG_ON(rw & REQ_WRITE);
7400
7401 bio_get(bio);
7402
7403 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7404 BTRFS_WQ_ENDIO_DIO_REPAIR);
7405 if (ret)
7406 goto err;
7407
7408 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7409 err:
7410 bio_put(bio);
7411 return ret;
7412 }
7413
7414 static int btrfs_check_dio_repairable(struct inode *inode,
7415 struct bio *failed_bio,
7416 struct io_failure_record *failrec,
7417 int failed_mirror)
7418 {
7419 int num_copies;
7420
7421 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7422 failrec->logical, failrec->len);
7423 if (num_copies == 1) {
7424 /*
7425 * we only have a single copy of the data, so don't bother with
7426 * all the retry and error correction code that follows. no
7427 * matter what the error is, it is very likely to persist.
7428 */
7429 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7430 num_copies, failrec->this_mirror, failed_mirror);
7431 return 0;
7432 }
7433
7434 failrec->failed_mirror = failed_mirror;
7435 failrec->this_mirror++;
7436 if (failrec->this_mirror == failed_mirror)
7437 failrec->this_mirror++;
7438
7439 if (failrec->this_mirror > num_copies) {
7440 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7441 num_copies, failrec->this_mirror, failed_mirror);
7442 return 0;
7443 }
7444
7445 return 1;
7446 }
7447
7448 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7449 struct page *page, u64 start, u64 end,
7450 int failed_mirror, bio_end_io_t *repair_endio,
7451 void *repair_arg)
7452 {
7453 struct io_failure_record *failrec;
7454 struct bio *bio;
7455 int isector;
7456 int read_mode;
7457 int ret;
7458
7459 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7460
7461 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7462 if (ret)
7463 return ret;
7464
7465 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7466 failed_mirror);
7467 if (!ret) {
7468 free_io_failure(inode, failrec);
7469 return -EIO;
7470 }
7471
7472 if (failed_bio->bi_vcnt > 1)
7473 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7474 else
7475 read_mode = READ_SYNC;
7476
7477 isector = start - btrfs_io_bio(failed_bio)->logical;
7478 isector >>= inode->i_sb->s_blocksize_bits;
7479 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7480 0, isector, repair_endio, repair_arg);
7481 if (!bio) {
7482 free_io_failure(inode, failrec);
7483 return -EIO;
7484 }
7485
7486 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7487 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7488 read_mode, failrec->this_mirror, failrec->in_validation);
7489
7490 ret = submit_dio_repair_bio(inode, bio, read_mode,
7491 failrec->this_mirror);
7492 if (ret) {
7493 free_io_failure(inode, failrec);
7494 bio_put(bio);
7495 }
7496
7497 return ret;
7498 }
7499
7500 struct btrfs_retry_complete {
7501 struct completion done;
7502 struct inode *inode;
7503 u64 start;
7504 int uptodate;
7505 };
7506
7507 static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7508 {
7509 struct btrfs_retry_complete *done = bio->bi_private;
7510 struct bio_vec *bvec;
7511 int i;
7512
7513 if (err)
7514 goto end;
7515
7516 done->uptodate = 1;
7517 bio_for_each_segment_all(bvec, bio, i)
7518 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7519 end:
7520 complete(&done->done);
7521 bio_put(bio);
7522 }
7523
7524 static int __btrfs_correct_data_nocsum(struct inode *inode,
7525 struct btrfs_io_bio *io_bio)
7526 {
7527 struct bio_vec *bvec;
7528 struct btrfs_retry_complete done;
7529 u64 start;
7530 int i;
7531 int ret;
7532
7533 start = io_bio->logical;
7534 done.inode = inode;
7535
7536 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7537 try_again:
7538 done.uptodate = 0;
7539 done.start = start;
7540 init_completion(&done.done);
7541
7542 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7543 start + bvec->bv_len - 1,
7544 io_bio->mirror_num,
7545 btrfs_retry_endio_nocsum, &done);
7546 if (ret)
7547 return ret;
7548
7549 wait_for_completion(&done.done);
7550
7551 if (!done.uptodate) {
7552 /* We might have another mirror, so try again */
7553 goto try_again;
7554 }
7555
7556 start += bvec->bv_len;
7557 }
7558
7559 return 0;
7560 }
7561
7562 static void btrfs_retry_endio(struct bio *bio, int err)
7563 {
7564 struct btrfs_retry_complete *done = bio->bi_private;
7565 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7566 struct bio_vec *bvec;
7567 int uptodate;
7568 int ret;
7569 int i;
7570
7571 if (err)
7572 goto end;
7573
7574 uptodate = 1;
7575 bio_for_each_segment_all(bvec, bio, i) {
7576 ret = __readpage_endio_check(done->inode, io_bio, i,
7577 bvec->bv_page, 0,
7578 done->start, bvec->bv_len);
7579 if (!ret)
7580 clean_io_failure(done->inode, done->start,
7581 bvec->bv_page, 0);
7582 else
7583 uptodate = 0;
7584 }
7585
7586 done->uptodate = uptodate;
7587 end:
7588 complete(&done->done);
7589 bio_put(bio);
7590 }
7591
7592 static int __btrfs_subio_endio_read(struct inode *inode,
7593 struct btrfs_io_bio *io_bio, int err)
7594 {
7595 struct bio_vec *bvec;
7596 struct btrfs_retry_complete done;
7597 u64 start;
7598 u64 offset = 0;
7599 int i;
7600 int ret;
7601
7602 err = 0;
7603 start = io_bio->logical;
7604 done.inode = inode;
7605
7606 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7607 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7608 0, start, bvec->bv_len);
7609 if (likely(!ret))
7610 goto next;
7611 try_again:
7612 done.uptodate = 0;
7613 done.start = start;
7614 init_completion(&done.done);
7615
7616 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7617 start + bvec->bv_len - 1,
7618 io_bio->mirror_num,
7619 btrfs_retry_endio, &done);
7620 if (ret) {
7621 err = ret;
7622 goto next;
7623 }
7624
7625 wait_for_completion(&done.done);
7626
7627 if (!done.uptodate) {
7628 /* We might have another mirror, so try again */
7629 goto try_again;
7630 }
7631 next:
7632 offset += bvec->bv_len;
7633 start += bvec->bv_len;
7634 }
7635
7636 return err;
7637 }
7638
7639 static int btrfs_subio_endio_read(struct inode *inode,
7640 struct btrfs_io_bio *io_bio, int err)
7641 {
7642 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7643
7644 if (skip_csum) {
7645 if (unlikely(err))
7646 return __btrfs_correct_data_nocsum(inode, io_bio);
7647 else
7648 return 0;
7649 } else {
7650 return __btrfs_subio_endio_read(inode, io_bio, err);
7651 }
7652 }
7653
7654 static void btrfs_endio_direct_read(struct bio *bio, int err)
7655 {
7656 struct btrfs_dio_private *dip = bio->bi_private;
7657 struct inode *inode = dip->inode;
7658 struct bio *dio_bio;
7659 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7660
7661 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7662 err = btrfs_subio_endio_read(inode, io_bio, err);
7663
7664 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7665 dip->logical_offset + dip->bytes - 1);
7666 dio_bio = dip->dio_bio;
7667
7668 kfree(dip);
7669
7670 /* If we had a csum failure make sure to clear the uptodate flag */
7671 if (err)
7672 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7673 dio_end_io(dio_bio, err);
7674
7675 if (io_bio->end_io)
7676 io_bio->end_io(io_bio, err);
7677 bio_put(bio);
7678 }
7679
7680 static void btrfs_endio_direct_write(struct bio *bio, int err)
7681 {
7682 struct btrfs_dio_private *dip = bio->bi_private;
7683 struct inode *inode = dip->inode;
7684 struct btrfs_root *root = BTRFS_I(inode)->root;
7685 struct btrfs_ordered_extent *ordered = NULL;
7686 u64 ordered_offset = dip->logical_offset;
7687 u64 ordered_bytes = dip->bytes;
7688 struct bio *dio_bio;
7689 int ret;
7690
7691 if (err)
7692 goto out_done;
7693 again:
7694 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7695 &ordered_offset,
7696 ordered_bytes, !err);
7697 if (!ret)
7698 goto out_test;
7699
7700 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7701 finish_ordered_fn, NULL, NULL);
7702 btrfs_queue_work(root->fs_info->endio_write_workers,
7703 &ordered->work);
7704 out_test:
7705 /*
7706 * our bio might span multiple ordered extents. If we haven't
7707 * completed the accounting for the whole dio, go back and try again
7708 */
7709 if (ordered_offset < dip->logical_offset + dip->bytes) {
7710 ordered_bytes = dip->logical_offset + dip->bytes -
7711 ordered_offset;
7712 ordered = NULL;
7713 goto again;
7714 }
7715 out_done:
7716 dio_bio = dip->dio_bio;
7717
7718 kfree(dip);
7719
7720 /* If we had an error make sure to clear the uptodate flag */
7721 if (err)
7722 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7723 dio_end_io(dio_bio, err);
7724 bio_put(bio);
7725 }
7726
7727 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7728 struct bio *bio, int mirror_num,
7729 unsigned long bio_flags, u64 offset)
7730 {
7731 int ret;
7732 struct btrfs_root *root = BTRFS_I(inode)->root;
7733 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7734 BUG_ON(ret); /* -ENOMEM */
7735 return 0;
7736 }
7737
7738 static void btrfs_end_dio_bio(struct bio *bio, int err)
7739 {
7740 struct btrfs_dio_private *dip = bio->bi_private;
7741
7742 if (err)
7743 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7744 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7745 btrfs_ino(dip->inode), bio->bi_rw,
7746 (unsigned long long)bio->bi_iter.bi_sector,
7747 bio->bi_iter.bi_size, err);
7748
7749 if (dip->subio_endio)
7750 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7751
7752 if (err) {
7753 dip->errors = 1;
7754
7755 /*
7756 * before atomic variable goto zero, we must make sure
7757 * dip->errors is perceived to be set.
7758 */
7759 smp_mb__before_atomic();
7760 }
7761
7762 /* if there are more bios still pending for this dio, just exit */
7763 if (!atomic_dec_and_test(&dip->pending_bios))
7764 goto out;
7765
7766 if (dip->errors) {
7767 bio_io_error(dip->orig_bio);
7768 } else {
7769 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7770 bio_endio(dip->orig_bio, 0);
7771 }
7772 out:
7773 bio_put(bio);
7774 }
7775
7776 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7777 u64 first_sector, gfp_t gfp_flags)
7778 {
7779 int nr_vecs = bio_get_nr_vecs(bdev);
7780 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7781 }
7782
7783 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7784 struct inode *inode,
7785 struct btrfs_dio_private *dip,
7786 struct bio *bio,
7787 u64 file_offset)
7788 {
7789 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7790 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7791 int ret;
7792
7793 /*
7794 * We load all the csum data we need when we submit
7795 * the first bio to reduce the csum tree search and
7796 * contention.
7797 */
7798 if (dip->logical_offset == file_offset) {
7799 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7800 file_offset);
7801 if (ret)
7802 return ret;
7803 }
7804
7805 if (bio == dip->orig_bio)
7806 return 0;
7807
7808 file_offset -= dip->logical_offset;
7809 file_offset >>= inode->i_sb->s_blocksize_bits;
7810 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7811
7812 return 0;
7813 }
7814
7815 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7816 int rw, u64 file_offset, int skip_sum,
7817 int async_submit)
7818 {
7819 struct btrfs_dio_private *dip = bio->bi_private;
7820 int write = rw & REQ_WRITE;
7821 struct btrfs_root *root = BTRFS_I(inode)->root;
7822 int ret;
7823
7824 if (async_submit)
7825 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7826
7827 bio_get(bio);
7828
7829 if (!write) {
7830 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7831 BTRFS_WQ_ENDIO_DATA);
7832 if (ret)
7833 goto err;
7834 }
7835
7836 if (skip_sum)
7837 goto map;
7838
7839 if (write && async_submit) {
7840 ret = btrfs_wq_submit_bio(root->fs_info,
7841 inode, rw, bio, 0, 0,
7842 file_offset,
7843 __btrfs_submit_bio_start_direct_io,
7844 __btrfs_submit_bio_done);
7845 goto err;
7846 } else if (write) {
7847 /*
7848 * If we aren't doing async submit, calculate the csum of the
7849 * bio now.
7850 */
7851 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7852 if (ret)
7853 goto err;
7854 } else {
7855 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7856 file_offset);
7857 if (ret)
7858 goto err;
7859 }
7860 map:
7861 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7862 err:
7863 bio_put(bio);
7864 return ret;
7865 }
7866
7867 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7868 int skip_sum)
7869 {
7870 struct inode *inode = dip->inode;
7871 struct btrfs_root *root = BTRFS_I(inode)->root;
7872 struct bio *bio;
7873 struct bio *orig_bio = dip->orig_bio;
7874 struct bio_vec *bvec = orig_bio->bi_io_vec;
7875 u64 start_sector = orig_bio->bi_iter.bi_sector;
7876 u64 file_offset = dip->logical_offset;
7877 u64 submit_len = 0;
7878 u64 map_length;
7879 int nr_pages = 0;
7880 int ret;
7881 int async_submit = 0;
7882
7883 map_length = orig_bio->bi_iter.bi_size;
7884 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7885 &map_length, NULL, 0);
7886 if (ret)
7887 return -EIO;
7888
7889 if (map_length >= orig_bio->bi_iter.bi_size) {
7890 bio = orig_bio;
7891 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
7892 goto submit;
7893 }
7894
7895 /* async crcs make it difficult to collect full stripe writes. */
7896 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
7897 async_submit = 0;
7898 else
7899 async_submit = 1;
7900
7901 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7902 if (!bio)
7903 return -ENOMEM;
7904
7905 bio->bi_private = dip;
7906 bio->bi_end_io = btrfs_end_dio_bio;
7907 btrfs_io_bio(bio)->logical = file_offset;
7908 atomic_inc(&dip->pending_bios);
7909
7910 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7911 if (map_length < submit_len + bvec->bv_len ||
7912 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7913 bvec->bv_offset) < bvec->bv_len) {
7914 /*
7915 * inc the count before we submit the bio so
7916 * we know the end IO handler won't happen before
7917 * we inc the count. Otherwise, the dip might get freed
7918 * before we're done setting it up
7919 */
7920 atomic_inc(&dip->pending_bios);
7921 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7922 file_offset, skip_sum,
7923 async_submit);
7924 if (ret) {
7925 bio_put(bio);
7926 atomic_dec(&dip->pending_bios);
7927 goto out_err;
7928 }
7929
7930 start_sector += submit_len >> 9;
7931 file_offset += submit_len;
7932
7933 submit_len = 0;
7934 nr_pages = 0;
7935
7936 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7937 start_sector, GFP_NOFS);
7938 if (!bio)
7939 goto out_err;
7940 bio->bi_private = dip;
7941 bio->bi_end_io = btrfs_end_dio_bio;
7942 btrfs_io_bio(bio)->logical = file_offset;
7943
7944 map_length = orig_bio->bi_iter.bi_size;
7945 ret = btrfs_map_block(root->fs_info, rw,
7946 start_sector << 9,
7947 &map_length, NULL, 0);
7948 if (ret) {
7949 bio_put(bio);
7950 goto out_err;
7951 }
7952 } else {
7953 submit_len += bvec->bv_len;
7954 nr_pages++;
7955 bvec++;
7956 }
7957 }
7958
7959 submit:
7960 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7961 async_submit);
7962 if (!ret)
7963 return 0;
7964
7965 bio_put(bio);
7966 out_err:
7967 dip->errors = 1;
7968 /*
7969 * before atomic variable goto zero, we must
7970 * make sure dip->errors is perceived to be set.
7971 */
7972 smp_mb__before_atomic();
7973 if (atomic_dec_and_test(&dip->pending_bios))
7974 bio_io_error(dip->orig_bio);
7975
7976 /* bio_end_io() will handle error, so we needn't return it */
7977 return 0;
7978 }
7979
7980 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7981 struct inode *inode, loff_t file_offset)
7982 {
7983 struct btrfs_root *root = BTRFS_I(inode)->root;
7984 struct btrfs_dio_private *dip;
7985 struct bio *io_bio;
7986 struct btrfs_io_bio *btrfs_bio;
7987 int skip_sum;
7988 int write = rw & REQ_WRITE;
7989 int ret = 0;
7990
7991 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7992
7993 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7994 if (!io_bio) {
7995 ret = -ENOMEM;
7996 goto free_ordered;
7997 }
7998
7999 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8000 if (!dip) {
8001 ret = -ENOMEM;
8002 goto free_io_bio;
8003 }
8004
8005 dip->private = dio_bio->bi_private;
8006 dip->inode = inode;
8007 dip->logical_offset = file_offset;
8008 dip->bytes = dio_bio->bi_iter.bi_size;
8009 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8010 io_bio->bi_private = dip;
8011 dip->orig_bio = io_bio;
8012 dip->dio_bio = dio_bio;
8013 atomic_set(&dip->pending_bios, 0);
8014 btrfs_bio = btrfs_io_bio(io_bio);
8015 btrfs_bio->logical = file_offset;
8016
8017 if (write) {
8018 io_bio->bi_end_io = btrfs_endio_direct_write;
8019 } else {
8020 io_bio->bi_end_io = btrfs_endio_direct_read;
8021 dip->subio_endio = btrfs_subio_endio_read;
8022 }
8023
8024 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8025 if (!ret)
8026 return;
8027
8028 if (btrfs_bio->end_io)
8029 btrfs_bio->end_io(btrfs_bio, ret);
8030 free_io_bio:
8031 bio_put(io_bio);
8032
8033 free_ordered:
8034 /*
8035 * If this is a write, we need to clean up the reserved space and kill
8036 * the ordered extent.
8037 */
8038 if (write) {
8039 struct btrfs_ordered_extent *ordered;
8040 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
8041 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
8042 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
8043 btrfs_free_reserved_extent(root, ordered->start,
8044 ordered->disk_len, 1);
8045 btrfs_put_ordered_extent(ordered);
8046 btrfs_put_ordered_extent(ordered);
8047 }
8048 bio_endio(dio_bio, ret);
8049 }
8050
8051 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
8052 const struct iov_iter *iter, loff_t offset)
8053 {
8054 int seg;
8055 int i;
8056 unsigned blocksize_mask = root->sectorsize - 1;
8057 ssize_t retval = -EINVAL;
8058
8059 if (offset & blocksize_mask)
8060 goto out;
8061
8062 if (iov_iter_alignment(iter) & blocksize_mask)
8063 goto out;
8064
8065 /* If this is a write we don't need to check anymore */
8066 if (rw & WRITE)
8067 return 0;
8068 /*
8069 * Check to make sure we don't have duplicate iov_base's in this
8070 * iovec, if so return EINVAL, otherwise we'll get csum errors
8071 * when reading back.
8072 */
8073 for (seg = 0; seg < iter->nr_segs; seg++) {
8074 for (i = seg + 1; i < iter->nr_segs; i++) {
8075 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8076 goto out;
8077 }
8078 }
8079 retval = 0;
8080 out:
8081 return retval;
8082 }
8083
8084 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
8085 struct iov_iter *iter, loff_t offset)
8086 {
8087 struct file *file = iocb->ki_filp;
8088 struct inode *inode = file->f_mapping->host;
8089 size_t count = 0;
8090 int flags = 0;
8091 bool wakeup = true;
8092 bool relock = false;
8093 ssize_t ret;
8094
8095 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
8096 return 0;
8097
8098 atomic_inc(&inode->i_dio_count);
8099 smp_mb__after_atomic();
8100
8101 /*
8102 * The generic stuff only does filemap_write_and_wait_range, which
8103 * isn't enough if we've written compressed pages to this area, so
8104 * we need to flush the dirty pages again to make absolutely sure
8105 * that any outstanding dirty pages are on disk.
8106 */
8107 count = iov_iter_count(iter);
8108 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8109 &BTRFS_I(inode)->runtime_flags))
8110 filemap_fdatawrite_range(inode->i_mapping, offset,
8111 offset + count - 1);
8112
8113 if (rw & WRITE) {
8114 /*
8115 * If the write DIO is beyond the EOF, we need update
8116 * the isize, but it is protected by i_mutex. So we can
8117 * not unlock the i_mutex at this case.
8118 */
8119 if (offset + count <= inode->i_size) {
8120 mutex_unlock(&inode->i_mutex);
8121 relock = true;
8122 }
8123 ret = btrfs_delalloc_reserve_space(inode, count);
8124 if (ret)
8125 goto out;
8126 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8127 &BTRFS_I(inode)->runtime_flags)) {
8128 inode_dio_done(inode);
8129 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8130 wakeup = false;
8131 }
8132
8133 ret = __blockdev_direct_IO(rw, iocb, inode,
8134 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8135 iter, offset, btrfs_get_blocks_direct, NULL,
8136 btrfs_submit_direct, flags);
8137 if (rw & WRITE) {
8138 if (ret < 0 && ret != -EIOCBQUEUED)
8139 btrfs_delalloc_release_space(inode, count);
8140 else if (ret >= 0 && (size_t)ret < count)
8141 btrfs_delalloc_release_space(inode,
8142 count - (size_t)ret);
8143 }
8144 out:
8145 if (wakeup)
8146 inode_dio_done(inode);
8147 if (relock)
8148 mutex_lock(&inode->i_mutex);
8149
8150 return ret;
8151 }
8152
8153 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8154
8155 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8156 __u64 start, __u64 len)
8157 {
8158 int ret;
8159
8160 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8161 if (ret)
8162 return ret;
8163
8164 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8165 }
8166
8167 int btrfs_readpage(struct file *file, struct page *page)
8168 {
8169 struct extent_io_tree *tree;
8170 tree = &BTRFS_I(page->mapping->host)->io_tree;
8171 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8172 }
8173
8174 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8175 {
8176 struct extent_io_tree *tree;
8177
8178
8179 if (current->flags & PF_MEMALLOC) {
8180 redirty_page_for_writepage(wbc, page);
8181 unlock_page(page);
8182 return 0;
8183 }
8184 tree = &BTRFS_I(page->mapping->host)->io_tree;
8185 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8186 }
8187
8188 static int btrfs_writepages(struct address_space *mapping,
8189 struct writeback_control *wbc)
8190 {
8191 struct extent_io_tree *tree;
8192
8193 tree = &BTRFS_I(mapping->host)->io_tree;
8194 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8195 }
8196
8197 static int
8198 btrfs_readpages(struct file *file, struct address_space *mapping,
8199 struct list_head *pages, unsigned nr_pages)
8200 {
8201 struct extent_io_tree *tree;
8202 tree = &BTRFS_I(mapping->host)->io_tree;
8203 return extent_readpages(tree, mapping, pages, nr_pages,
8204 btrfs_get_extent);
8205 }
8206 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8207 {
8208 struct extent_io_tree *tree;
8209 struct extent_map_tree *map;
8210 int ret;
8211
8212 tree = &BTRFS_I(page->mapping->host)->io_tree;
8213 map = &BTRFS_I(page->mapping->host)->extent_tree;
8214 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8215 if (ret == 1) {
8216 ClearPagePrivate(page);
8217 set_page_private(page, 0);
8218 page_cache_release(page);
8219 }
8220 return ret;
8221 }
8222
8223 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8224 {
8225 if (PageWriteback(page) || PageDirty(page))
8226 return 0;
8227 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8228 }
8229
8230 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8231 unsigned int length)
8232 {
8233 struct inode *inode = page->mapping->host;
8234 struct extent_io_tree *tree;
8235 struct btrfs_ordered_extent *ordered;
8236 struct extent_state *cached_state = NULL;
8237 u64 page_start = page_offset(page);
8238 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8239 int inode_evicting = inode->i_state & I_FREEING;
8240
8241 /*
8242 * we have the page locked, so new writeback can't start,
8243 * and the dirty bit won't be cleared while we are here.
8244 *
8245 * Wait for IO on this page so that we can safely clear
8246 * the PagePrivate2 bit and do ordered accounting
8247 */
8248 wait_on_page_writeback(page);
8249
8250 tree = &BTRFS_I(inode)->io_tree;
8251 if (offset) {
8252 btrfs_releasepage(page, GFP_NOFS);
8253 return;
8254 }
8255
8256 if (!inode_evicting)
8257 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8258 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8259 if (ordered) {
8260 /*
8261 * IO on this page will never be started, so we need
8262 * to account for any ordered extents now
8263 */
8264 if (!inode_evicting)
8265 clear_extent_bit(tree, page_start, page_end,
8266 EXTENT_DIRTY | EXTENT_DELALLOC |
8267 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8268 EXTENT_DEFRAG, 1, 0, &cached_state,
8269 GFP_NOFS);
8270 /*
8271 * whoever cleared the private bit is responsible
8272 * for the finish_ordered_io
8273 */
8274 if (TestClearPagePrivate2(page)) {
8275 struct btrfs_ordered_inode_tree *tree;
8276 u64 new_len;
8277
8278 tree = &BTRFS_I(inode)->ordered_tree;
8279
8280 spin_lock_irq(&tree->lock);
8281 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8282 new_len = page_start - ordered->file_offset;
8283 if (new_len < ordered->truncated_len)
8284 ordered->truncated_len = new_len;
8285 spin_unlock_irq(&tree->lock);
8286
8287 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8288 page_start,
8289 PAGE_CACHE_SIZE, 1))
8290 btrfs_finish_ordered_io(ordered);
8291 }
8292 btrfs_put_ordered_extent(ordered);
8293 if (!inode_evicting) {
8294 cached_state = NULL;
8295 lock_extent_bits(tree, page_start, page_end, 0,
8296 &cached_state);
8297 }
8298 }
8299
8300 if (!inode_evicting) {
8301 clear_extent_bit(tree, page_start, page_end,
8302 EXTENT_LOCKED | EXTENT_DIRTY |
8303 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8304 EXTENT_DEFRAG, 1, 1,
8305 &cached_state, GFP_NOFS);
8306
8307 __btrfs_releasepage(page, GFP_NOFS);
8308 }
8309
8310 ClearPageChecked(page);
8311 if (PagePrivate(page)) {
8312 ClearPagePrivate(page);
8313 set_page_private(page, 0);
8314 page_cache_release(page);
8315 }
8316 }
8317
8318 /*
8319 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8320 * called from a page fault handler when a page is first dirtied. Hence we must
8321 * be careful to check for EOF conditions here. We set the page up correctly
8322 * for a written page which means we get ENOSPC checking when writing into
8323 * holes and correct delalloc and unwritten extent mapping on filesystems that
8324 * support these features.
8325 *
8326 * We are not allowed to take the i_mutex here so we have to play games to
8327 * protect against truncate races as the page could now be beyond EOF. Because
8328 * vmtruncate() writes the inode size before removing pages, once we have the
8329 * page lock we can determine safely if the page is beyond EOF. If it is not
8330 * beyond EOF, then the page is guaranteed safe against truncation until we
8331 * unlock the page.
8332 */
8333 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8334 {
8335 struct page *page = vmf->page;
8336 struct inode *inode = file_inode(vma->vm_file);
8337 struct btrfs_root *root = BTRFS_I(inode)->root;
8338 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8339 struct btrfs_ordered_extent *ordered;
8340 struct extent_state *cached_state = NULL;
8341 char *kaddr;
8342 unsigned long zero_start;
8343 loff_t size;
8344 int ret;
8345 int reserved = 0;
8346 u64 page_start;
8347 u64 page_end;
8348
8349 sb_start_pagefault(inode->i_sb);
8350 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8351 if (!ret) {
8352 ret = file_update_time(vma->vm_file);
8353 reserved = 1;
8354 }
8355 if (ret) {
8356 if (ret == -ENOMEM)
8357 ret = VM_FAULT_OOM;
8358 else /* -ENOSPC, -EIO, etc */
8359 ret = VM_FAULT_SIGBUS;
8360 if (reserved)
8361 goto out;
8362 goto out_noreserve;
8363 }
8364
8365 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8366 again:
8367 lock_page(page);
8368 size = i_size_read(inode);
8369 page_start = page_offset(page);
8370 page_end = page_start + PAGE_CACHE_SIZE - 1;
8371
8372 if ((page->mapping != inode->i_mapping) ||
8373 (page_start >= size)) {
8374 /* page got truncated out from underneath us */
8375 goto out_unlock;
8376 }
8377 wait_on_page_writeback(page);
8378
8379 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8380 set_page_extent_mapped(page);
8381
8382 /*
8383 * we can't set the delalloc bits if there are pending ordered
8384 * extents. Drop our locks and wait for them to finish
8385 */
8386 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8387 if (ordered) {
8388 unlock_extent_cached(io_tree, page_start, page_end,
8389 &cached_state, GFP_NOFS);
8390 unlock_page(page);
8391 btrfs_start_ordered_extent(inode, ordered, 1);
8392 btrfs_put_ordered_extent(ordered);
8393 goto again;
8394 }
8395
8396 /*
8397 * XXX - page_mkwrite gets called every time the page is dirtied, even
8398 * if it was already dirty, so for space accounting reasons we need to
8399 * clear any delalloc bits for the range we are fixing to save. There
8400 * is probably a better way to do this, but for now keep consistent with
8401 * prepare_pages in the normal write path.
8402 */
8403 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8404 EXTENT_DIRTY | EXTENT_DELALLOC |
8405 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8406 0, 0, &cached_state, GFP_NOFS);
8407
8408 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8409 &cached_state);
8410 if (ret) {
8411 unlock_extent_cached(io_tree, page_start, page_end,
8412 &cached_state, GFP_NOFS);
8413 ret = VM_FAULT_SIGBUS;
8414 goto out_unlock;
8415 }
8416 ret = 0;
8417
8418 /* page is wholly or partially inside EOF */
8419 if (page_start + PAGE_CACHE_SIZE > size)
8420 zero_start = size & ~PAGE_CACHE_MASK;
8421 else
8422 zero_start = PAGE_CACHE_SIZE;
8423
8424 if (zero_start != PAGE_CACHE_SIZE) {
8425 kaddr = kmap(page);
8426 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8427 flush_dcache_page(page);
8428 kunmap(page);
8429 }
8430 ClearPageChecked(page);
8431 set_page_dirty(page);
8432 SetPageUptodate(page);
8433
8434 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8435 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8436 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8437
8438 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8439
8440 out_unlock:
8441 if (!ret) {
8442 sb_end_pagefault(inode->i_sb);
8443 return VM_FAULT_LOCKED;
8444 }
8445 unlock_page(page);
8446 out:
8447 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8448 out_noreserve:
8449 sb_end_pagefault(inode->i_sb);
8450 return ret;
8451 }
8452
8453 static int btrfs_truncate(struct inode *inode)
8454 {
8455 struct btrfs_root *root = BTRFS_I(inode)->root;
8456 struct btrfs_block_rsv *rsv;
8457 int ret = 0;
8458 int err = 0;
8459 struct btrfs_trans_handle *trans;
8460 u64 mask = root->sectorsize - 1;
8461 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8462
8463 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8464 (u64)-1);
8465 if (ret)
8466 return ret;
8467
8468 /*
8469 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8470 * 3 things going on here
8471 *
8472 * 1) We need to reserve space for our orphan item and the space to
8473 * delete our orphan item. Lord knows we don't want to have a dangling
8474 * orphan item because we didn't reserve space to remove it.
8475 *
8476 * 2) We need to reserve space to update our inode.
8477 *
8478 * 3) We need to have something to cache all the space that is going to
8479 * be free'd up by the truncate operation, but also have some slack
8480 * space reserved in case it uses space during the truncate (thank you
8481 * very much snapshotting).
8482 *
8483 * And we need these to all be seperate. The fact is we can use alot of
8484 * space doing the truncate, and we have no earthly idea how much space
8485 * we will use, so we need the truncate reservation to be seperate so it
8486 * doesn't end up using space reserved for updating the inode or
8487 * removing the orphan item. We also need to be able to stop the
8488 * transaction and start a new one, which means we need to be able to
8489 * update the inode several times, and we have no idea of knowing how
8490 * many times that will be, so we can't just reserve 1 item for the
8491 * entirety of the opration, so that has to be done seperately as well.
8492 * Then there is the orphan item, which does indeed need to be held on
8493 * to for the whole operation, and we need nobody to touch this reserved
8494 * space except the orphan code.
8495 *
8496 * So that leaves us with
8497 *
8498 * 1) root->orphan_block_rsv - for the orphan deletion.
8499 * 2) rsv - for the truncate reservation, which we will steal from the
8500 * transaction reservation.
8501 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8502 * updating the inode.
8503 */
8504 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8505 if (!rsv)
8506 return -ENOMEM;
8507 rsv->size = min_size;
8508 rsv->failfast = 1;
8509
8510 /*
8511 * 1 for the truncate slack space
8512 * 1 for updating the inode.
8513 */
8514 trans = btrfs_start_transaction(root, 2);
8515 if (IS_ERR(trans)) {
8516 err = PTR_ERR(trans);
8517 goto out;
8518 }
8519
8520 /* Migrate the slack space for the truncate to our reserve */
8521 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8522 min_size);
8523 BUG_ON(ret);
8524
8525 /*
8526 * So if we truncate and then write and fsync we normally would just
8527 * write the extents that changed, which is a problem if we need to
8528 * first truncate that entire inode. So set this flag so we write out
8529 * all of the extents in the inode to the sync log so we're completely
8530 * safe.
8531 */
8532 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8533 trans->block_rsv = rsv;
8534
8535 while (1) {
8536 ret = btrfs_truncate_inode_items(trans, root, inode,
8537 inode->i_size,
8538 BTRFS_EXTENT_DATA_KEY);
8539 if (ret != -ENOSPC) {
8540 err = ret;
8541 break;
8542 }
8543
8544 trans->block_rsv = &root->fs_info->trans_block_rsv;
8545 ret = btrfs_update_inode(trans, root, inode);
8546 if (ret) {
8547 err = ret;
8548 break;
8549 }
8550
8551 btrfs_end_transaction(trans, root);
8552 btrfs_btree_balance_dirty(root);
8553
8554 trans = btrfs_start_transaction(root, 2);
8555 if (IS_ERR(trans)) {
8556 ret = err = PTR_ERR(trans);
8557 trans = NULL;
8558 break;
8559 }
8560
8561 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8562 rsv, min_size);
8563 BUG_ON(ret); /* shouldn't happen */
8564 trans->block_rsv = rsv;
8565 }
8566
8567 if (ret == 0 && inode->i_nlink > 0) {
8568 trans->block_rsv = root->orphan_block_rsv;
8569 ret = btrfs_orphan_del(trans, inode);
8570 if (ret)
8571 err = ret;
8572 }
8573
8574 if (trans) {
8575 trans->block_rsv = &root->fs_info->trans_block_rsv;
8576 ret = btrfs_update_inode(trans, root, inode);
8577 if (ret && !err)
8578 err = ret;
8579
8580 ret = btrfs_end_transaction(trans, root);
8581 btrfs_btree_balance_dirty(root);
8582 }
8583
8584 out:
8585 btrfs_free_block_rsv(root, rsv);
8586
8587 if (ret && !err)
8588 err = ret;
8589
8590 return err;
8591 }
8592
8593 /*
8594 * create a new subvolume directory/inode (helper for the ioctl).
8595 */
8596 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8597 struct btrfs_root *new_root,
8598 struct btrfs_root *parent_root,
8599 u64 new_dirid)
8600 {
8601 struct inode *inode;
8602 int err;
8603 u64 index = 0;
8604
8605 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8606 new_dirid, new_dirid,
8607 S_IFDIR | (~current_umask() & S_IRWXUGO),
8608 &index);
8609 if (IS_ERR(inode))
8610 return PTR_ERR(inode);
8611 inode->i_op = &btrfs_dir_inode_operations;
8612 inode->i_fop = &btrfs_dir_file_operations;
8613
8614 set_nlink(inode, 1);
8615 btrfs_i_size_write(inode, 0);
8616 unlock_new_inode(inode);
8617
8618 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8619 if (err)
8620 btrfs_err(new_root->fs_info,
8621 "error inheriting subvolume %llu properties: %d",
8622 new_root->root_key.objectid, err);
8623
8624 err = btrfs_update_inode(trans, new_root, inode);
8625
8626 iput(inode);
8627 return err;
8628 }
8629
8630 struct inode *btrfs_alloc_inode(struct super_block *sb)
8631 {
8632 struct btrfs_inode *ei;
8633 struct inode *inode;
8634
8635 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8636 if (!ei)
8637 return NULL;
8638
8639 ei->root = NULL;
8640 ei->generation = 0;
8641 ei->last_trans = 0;
8642 ei->last_sub_trans = 0;
8643 ei->logged_trans = 0;
8644 ei->delalloc_bytes = 0;
8645 ei->defrag_bytes = 0;
8646 ei->disk_i_size = 0;
8647 ei->flags = 0;
8648 ei->csum_bytes = 0;
8649 ei->index_cnt = (u64)-1;
8650 ei->dir_index = 0;
8651 ei->last_unlink_trans = 0;
8652 ei->last_log_commit = 0;
8653
8654 spin_lock_init(&ei->lock);
8655 ei->outstanding_extents = 0;
8656 ei->reserved_extents = 0;
8657
8658 ei->runtime_flags = 0;
8659 ei->force_compress = BTRFS_COMPRESS_NONE;
8660
8661 ei->delayed_node = NULL;
8662
8663 ei->i_otime.tv_sec = 0;
8664 ei->i_otime.tv_nsec = 0;
8665
8666 inode = &ei->vfs_inode;
8667 extent_map_tree_init(&ei->extent_tree);
8668 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8669 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8670 ei->io_tree.track_uptodate = 1;
8671 ei->io_failure_tree.track_uptodate = 1;
8672 atomic_set(&ei->sync_writers, 0);
8673 mutex_init(&ei->log_mutex);
8674 mutex_init(&ei->delalloc_mutex);
8675 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8676 INIT_LIST_HEAD(&ei->delalloc_inodes);
8677 RB_CLEAR_NODE(&ei->rb_node);
8678
8679 return inode;
8680 }
8681
8682 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8683 void btrfs_test_destroy_inode(struct inode *inode)
8684 {
8685 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8686 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8687 }
8688 #endif
8689
8690 static void btrfs_i_callback(struct rcu_head *head)
8691 {
8692 struct inode *inode = container_of(head, struct inode, i_rcu);
8693 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8694 }
8695
8696 void btrfs_destroy_inode(struct inode *inode)
8697 {
8698 struct btrfs_ordered_extent *ordered;
8699 struct btrfs_root *root = BTRFS_I(inode)->root;
8700
8701 WARN_ON(!hlist_empty(&inode->i_dentry));
8702 WARN_ON(inode->i_data.nrpages);
8703 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8704 WARN_ON(BTRFS_I(inode)->reserved_extents);
8705 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8706 WARN_ON(BTRFS_I(inode)->csum_bytes);
8707 WARN_ON(BTRFS_I(inode)->defrag_bytes);
8708
8709 /*
8710 * This can happen where we create an inode, but somebody else also
8711 * created the same inode and we need to destroy the one we already
8712 * created.
8713 */
8714 if (!root)
8715 goto free;
8716
8717 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8718 &BTRFS_I(inode)->runtime_flags)) {
8719 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8720 btrfs_ino(inode));
8721 atomic_dec(&root->orphan_inodes);
8722 }
8723
8724 while (1) {
8725 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8726 if (!ordered)
8727 break;
8728 else {
8729 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8730 ordered->file_offset, ordered->len);
8731 btrfs_remove_ordered_extent(inode, ordered);
8732 btrfs_put_ordered_extent(ordered);
8733 btrfs_put_ordered_extent(ordered);
8734 }
8735 }
8736 inode_tree_del(inode);
8737 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8738 free:
8739 call_rcu(&inode->i_rcu, btrfs_i_callback);
8740 }
8741
8742 int btrfs_drop_inode(struct inode *inode)
8743 {
8744 struct btrfs_root *root = BTRFS_I(inode)->root;
8745
8746 if (root == NULL)
8747 return 1;
8748
8749 /* the snap/subvol tree is on deleting */
8750 if (btrfs_root_refs(&root->root_item) == 0)
8751 return 1;
8752 else
8753 return generic_drop_inode(inode);
8754 }
8755
8756 static void init_once(void *foo)
8757 {
8758 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8759
8760 inode_init_once(&ei->vfs_inode);
8761 }
8762
8763 void btrfs_destroy_cachep(void)
8764 {
8765 /*
8766 * Make sure all delayed rcu free inodes are flushed before we
8767 * destroy cache.
8768 */
8769 rcu_barrier();
8770 if (btrfs_inode_cachep)
8771 kmem_cache_destroy(btrfs_inode_cachep);
8772 if (btrfs_trans_handle_cachep)
8773 kmem_cache_destroy(btrfs_trans_handle_cachep);
8774 if (btrfs_transaction_cachep)
8775 kmem_cache_destroy(btrfs_transaction_cachep);
8776 if (btrfs_path_cachep)
8777 kmem_cache_destroy(btrfs_path_cachep);
8778 if (btrfs_free_space_cachep)
8779 kmem_cache_destroy(btrfs_free_space_cachep);
8780 if (btrfs_delalloc_work_cachep)
8781 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8782 }
8783
8784 int btrfs_init_cachep(void)
8785 {
8786 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8787 sizeof(struct btrfs_inode), 0,
8788 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8789 if (!btrfs_inode_cachep)
8790 goto fail;
8791
8792 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8793 sizeof(struct btrfs_trans_handle), 0,
8794 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8795 if (!btrfs_trans_handle_cachep)
8796 goto fail;
8797
8798 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8799 sizeof(struct btrfs_transaction), 0,
8800 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8801 if (!btrfs_transaction_cachep)
8802 goto fail;
8803
8804 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8805 sizeof(struct btrfs_path), 0,
8806 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8807 if (!btrfs_path_cachep)
8808 goto fail;
8809
8810 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8811 sizeof(struct btrfs_free_space), 0,
8812 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8813 if (!btrfs_free_space_cachep)
8814 goto fail;
8815
8816 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8817 sizeof(struct btrfs_delalloc_work), 0,
8818 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8819 NULL);
8820 if (!btrfs_delalloc_work_cachep)
8821 goto fail;
8822
8823 return 0;
8824 fail:
8825 btrfs_destroy_cachep();
8826 return -ENOMEM;
8827 }
8828
8829 static int btrfs_getattr(struct vfsmount *mnt,
8830 struct dentry *dentry, struct kstat *stat)
8831 {
8832 u64 delalloc_bytes;
8833 struct inode *inode = dentry->d_inode;
8834 u32 blocksize = inode->i_sb->s_blocksize;
8835
8836 generic_fillattr(inode, stat);
8837 stat->dev = BTRFS_I(inode)->root->anon_dev;
8838 stat->blksize = PAGE_CACHE_SIZE;
8839
8840 spin_lock(&BTRFS_I(inode)->lock);
8841 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8842 spin_unlock(&BTRFS_I(inode)->lock);
8843 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8844 ALIGN(delalloc_bytes, blocksize)) >> 9;
8845 return 0;
8846 }
8847
8848 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8849 struct inode *new_dir, struct dentry *new_dentry)
8850 {
8851 struct btrfs_trans_handle *trans;
8852 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8853 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8854 struct inode *new_inode = new_dentry->d_inode;
8855 struct inode *old_inode = old_dentry->d_inode;
8856 struct timespec ctime = CURRENT_TIME;
8857 u64 index = 0;
8858 u64 root_objectid;
8859 int ret;
8860 u64 old_ino = btrfs_ino(old_inode);
8861
8862 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8863 return -EPERM;
8864
8865 /* we only allow rename subvolume link between subvolumes */
8866 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8867 return -EXDEV;
8868
8869 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8870 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8871 return -ENOTEMPTY;
8872
8873 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8874 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8875 return -ENOTEMPTY;
8876
8877
8878 /* check for collisions, even if the name isn't there */
8879 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8880 new_dentry->d_name.name,
8881 new_dentry->d_name.len);
8882
8883 if (ret) {
8884 if (ret == -EEXIST) {
8885 /* we shouldn't get
8886 * eexist without a new_inode */
8887 if (WARN_ON(!new_inode)) {
8888 return ret;
8889 }
8890 } else {
8891 /* maybe -EOVERFLOW */
8892 return ret;
8893 }
8894 }
8895 ret = 0;
8896
8897 /*
8898 * we're using rename to replace one file with another. Start IO on it
8899 * now so we don't add too much work to the end of the transaction
8900 */
8901 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8902 filemap_flush(old_inode->i_mapping);
8903
8904 /* close the racy window with snapshot create/destroy ioctl */
8905 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8906 down_read(&root->fs_info->subvol_sem);
8907 /*
8908 * We want to reserve the absolute worst case amount of items. So if
8909 * both inodes are subvols and we need to unlink them then that would
8910 * require 4 item modifications, but if they are both normal inodes it
8911 * would require 5 item modifications, so we'll assume their normal
8912 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8913 * should cover the worst case number of items we'll modify.
8914 */
8915 trans = btrfs_start_transaction(root, 11);
8916 if (IS_ERR(trans)) {
8917 ret = PTR_ERR(trans);
8918 goto out_notrans;
8919 }
8920
8921 if (dest != root)
8922 btrfs_record_root_in_trans(trans, dest);
8923
8924 ret = btrfs_set_inode_index(new_dir, &index);
8925 if (ret)
8926 goto out_fail;
8927
8928 BTRFS_I(old_inode)->dir_index = 0ULL;
8929 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8930 /* force full log commit if subvolume involved. */
8931 btrfs_set_log_full_commit(root->fs_info, trans);
8932 } else {
8933 ret = btrfs_insert_inode_ref(trans, dest,
8934 new_dentry->d_name.name,
8935 new_dentry->d_name.len,
8936 old_ino,
8937 btrfs_ino(new_dir), index);
8938 if (ret)
8939 goto out_fail;
8940 /*
8941 * this is an ugly little race, but the rename is required
8942 * to make sure that if we crash, the inode is either at the
8943 * old name or the new one. pinning the log transaction lets
8944 * us make sure we don't allow a log commit to come in after
8945 * we unlink the name but before we add the new name back in.
8946 */
8947 btrfs_pin_log_trans(root);
8948 }
8949
8950 inode_inc_iversion(old_dir);
8951 inode_inc_iversion(new_dir);
8952 inode_inc_iversion(old_inode);
8953 old_dir->i_ctime = old_dir->i_mtime = ctime;
8954 new_dir->i_ctime = new_dir->i_mtime = ctime;
8955 old_inode->i_ctime = ctime;
8956
8957 if (old_dentry->d_parent != new_dentry->d_parent)
8958 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8959
8960 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8961 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8962 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8963 old_dentry->d_name.name,
8964 old_dentry->d_name.len);
8965 } else {
8966 ret = __btrfs_unlink_inode(trans, root, old_dir,
8967 old_dentry->d_inode,
8968 old_dentry->d_name.name,
8969 old_dentry->d_name.len);
8970 if (!ret)
8971 ret = btrfs_update_inode(trans, root, old_inode);
8972 }
8973 if (ret) {
8974 btrfs_abort_transaction(trans, root, ret);
8975 goto out_fail;
8976 }
8977
8978 if (new_inode) {
8979 inode_inc_iversion(new_inode);
8980 new_inode->i_ctime = CURRENT_TIME;
8981 if (unlikely(btrfs_ino(new_inode) ==
8982 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8983 root_objectid = BTRFS_I(new_inode)->location.objectid;
8984 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8985 root_objectid,
8986 new_dentry->d_name.name,
8987 new_dentry->d_name.len);
8988 BUG_ON(new_inode->i_nlink == 0);
8989 } else {
8990 ret = btrfs_unlink_inode(trans, dest, new_dir,
8991 new_dentry->d_inode,
8992 new_dentry->d_name.name,
8993 new_dentry->d_name.len);
8994 }
8995 if (!ret && new_inode->i_nlink == 0)
8996 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8997 if (ret) {
8998 btrfs_abort_transaction(trans, root, ret);
8999 goto out_fail;
9000 }
9001 }
9002
9003 ret = btrfs_add_link(trans, new_dir, old_inode,
9004 new_dentry->d_name.name,
9005 new_dentry->d_name.len, 0, index);
9006 if (ret) {
9007 btrfs_abort_transaction(trans, root, ret);
9008 goto out_fail;
9009 }
9010
9011 if (old_inode->i_nlink == 1)
9012 BTRFS_I(old_inode)->dir_index = index;
9013
9014 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9015 struct dentry *parent = new_dentry->d_parent;
9016 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9017 btrfs_end_log_trans(root);
9018 }
9019 out_fail:
9020 btrfs_end_transaction(trans, root);
9021 out_notrans:
9022 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9023 up_read(&root->fs_info->subvol_sem);
9024
9025 return ret;
9026 }
9027
9028 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9029 struct inode *new_dir, struct dentry *new_dentry,
9030 unsigned int flags)
9031 {
9032 if (flags & ~RENAME_NOREPLACE)
9033 return -EINVAL;
9034
9035 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9036 }
9037
9038 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9039 {
9040 struct btrfs_delalloc_work *delalloc_work;
9041 struct inode *inode;
9042
9043 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9044 work);
9045 inode = delalloc_work->inode;
9046 if (delalloc_work->wait) {
9047 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9048 } else {
9049 filemap_flush(inode->i_mapping);
9050 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9051 &BTRFS_I(inode)->runtime_flags))
9052 filemap_flush(inode->i_mapping);
9053 }
9054
9055 if (delalloc_work->delay_iput)
9056 btrfs_add_delayed_iput(inode);
9057 else
9058 iput(inode);
9059 complete(&delalloc_work->completion);
9060 }
9061
9062 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9063 int wait, int delay_iput)
9064 {
9065 struct btrfs_delalloc_work *work;
9066
9067 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9068 if (!work)
9069 return NULL;
9070
9071 init_completion(&work->completion);
9072 INIT_LIST_HEAD(&work->list);
9073 work->inode = inode;
9074 work->wait = wait;
9075 work->delay_iput = delay_iput;
9076 WARN_ON_ONCE(!inode);
9077 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9078 btrfs_run_delalloc_work, NULL, NULL);
9079
9080 return work;
9081 }
9082
9083 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9084 {
9085 wait_for_completion(&work->completion);
9086 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9087 }
9088
9089 /*
9090 * some fairly slow code that needs optimization. This walks the list
9091 * of all the inodes with pending delalloc and forces them to disk.
9092 */
9093 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9094 int nr)
9095 {
9096 struct btrfs_inode *binode;
9097 struct inode *inode;
9098 struct btrfs_delalloc_work *work, *next;
9099 struct list_head works;
9100 struct list_head splice;
9101 int ret = 0;
9102
9103 INIT_LIST_HEAD(&works);
9104 INIT_LIST_HEAD(&splice);
9105
9106 mutex_lock(&root->delalloc_mutex);
9107 spin_lock(&root->delalloc_lock);
9108 list_splice_init(&root->delalloc_inodes, &splice);
9109 while (!list_empty(&splice)) {
9110 binode = list_entry(splice.next, struct btrfs_inode,
9111 delalloc_inodes);
9112
9113 list_move_tail(&binode->delalloc_inodes,
9114 &root->delalloc_inodes);
9115 inode = igrab(&binode->vfs_inode);
9116 if (!inode) {
9117 cond_resched_lock(&root->delalloc_lock);
9118 continue;
9119 }
9120 spin_unlock(&root->delalloc_lock);
9121
9122 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9123 if (!work) {
9124 if (delay_iput)
9125 btrfs_add_delayed_iput(inode);
9126 else
9127 iput(inode);
9128 ret = -ENOMEM;
9129 goto out;
9130 }
9131 list_add_tail(&work->list, &works);
9132 btrfs_queue_work(root->fs_info->flush_workers,
9133 &work->work);
9134 ret++;
9135 if (nr != -1 && ret >= nr)
9136 goto out;
9137 cond_resched();
9138 spin_lock(&root->delalloc_lock);
9139 }
9140 spin_unlock(&root->delalloc_lock);
9141
9142 out:
9143 list_for_each_entry_safe(work, next, &works, list) {
9144 list_del_init(&work->list);
9145 btrfs_wait_and_free_delalloc_work(work);
9146 }
9147
9148 if (!list_empty_careful(&splice)) {
9149 spin_lock(&root->delalloc_lock);
9150 list_splice_tail(&splice, &root->delalloc_inodes);
9151 spin_unlock(&root->delalloc_lock);
9152 }
9153 mutex_unlock(&root->delalloc_mutex);
9154 return ret;
9155 }
9156
9157 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9158 {
9159 int ret;
9160
9161 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9162 return -EROFS;
9163
9164 ret = __start_delalloc_inodes(root, delay_iput, -1);
9165 if (ret > 0)
9166 ret = 0;
9167 /*
9168 * the filemap_flush will queue IO into the worker threads, but
9169 * we have to make sure the IO is actually started and that
9170 * ordered extents get created before we return
9171 */
9172 atomic_inc(&root->fs_info->async_submit_draining);
9173 while (atomic_read(&root->fs_info->nr_async_submits) ||
9174 atomic_read(&root->fs_info->async_delalloc_pages)) {
9175 wait_event(root->fs_info->async_submit_wait,
9176 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9177 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9178 }
9179 atomic_dec(&root->fs_info->async_submit_draining);
9180 return ret;
9181 }
9182
9183 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9184 int nr)
9185 {
9186 struct btrfs_root *root;
9187 struct list_head splice;
9188 int ret;
9189
9190 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9191 return -EROFS;
9192
9193 INIT_LIST_HEAD(&splice);
9194
9195 mutex_lock(&fs_info->delalloc_root_mutex);
9196 spin_lock(&fs_info->delalloc_root_lock);
9197 list_splice_init(&fs_info->delalloc_roots, &splice);
9198 while (!list_empty(&splice) && nr) {
9199 root = list_first_entry(&splice, struct btrfs_root,
9200 delalloc_root);
9201 root = btrfs_grab_fs_root(root);
9202 BUG_ON(!root);
9203 list_move_tail(&root->delalloc_root,
9204 &fs_info->delalloc_roots);
9205 spin_unlock(&fs_info->delalloc_root_lock);
9206
9207 ret = __start_delalloc_inodes(root, delay_iput, nr);
9208 btrfs_put_fs_root(root);
9209 if (ret < 0)
9210 goto out;
9211
9212 if (nr != -1) {
9213 nr -= ret;
9214 WARN_ON(nr < 0);
9215 }
9216 spin_lock(&fs_info->delalloc_root_lock);
9217 }
9218 spin_unlock(&fs_info->delalloc_root_lock);
9219
9220 ret = 0;
9221 atomic_inc(&fs_info->async_submit_draining);
9222 while (atomic_read(&fs_info->nr_async_submits) ||
9223 atomic_read(&fs_info->async_delalloc_pages)) {
9224 wait_event(fs_info->async_submit_wait,
9225 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9226 atomic_read(&fs_info->async_delalloc_pages) == 0));
9227 }
9228 atomic_dec(&fs_info->async_submit_draining);
9229 out:
9230 if (!list_empty_careful(&splice)) {
9231 spin_lock(&fs_info->delalloc_root_lock);
9232 list_splice_tail(&splice, &fs_info->delalloc_roots);
9233 spin_unlock(&fs_info->delalloc_root_lock);
9234 }
9235 mutex_unlock(&fs_info->delalloc_root_mutex);
9236 return ret;
9237 }
9238
9239 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9240 const char *symname)
9241 {
9242 struct btrfs_trans_handle *trans;
9243 struct btrfs_root *root = BTRFS_I(dir)->root;
9244 struct btrfs_path *path;
9245 struct btrfs_key key;
9246 struct inode *inode = NULL;
9247 int err;
9248 int drop_inode = 0;
9249 u64 objectid;
9250 u64 index = 0;
9251 int name_len;
9252 int datasize;
9253 unsigned long ptr;
9254 struct btrfs_file_extent_item *ei;
9255 struct extent_buffer *leaf;
9256
9257 name_len = strlen(symname);
9258 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9259 return -ENAMETOOLONG;
9260
9261 /*
9262 * 2 items for inode item and ref
9263 * 2 items for dir items
9264 * 1 item for xattr if selinux is on
9265 */
9266 trans = btrfs_start_transaction(root, 5);
9267 if (IS_ERR(trans))
9268 return PTR_ERR(trans);
9269
9270 err = btrfs_find_free_ino(root, &objectid);
9271 if (err)
9272 goto out_unlock;
9273
9274 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9275 dentry->d_name.len, btrfs_ino(dir), objectid,
9276 S_IFLNK|S_IRWXUGO, &index);
9277 if (IS_ERR(inode)) {
9278 err = PTR_ERR(inode);
9279 goto out_unlock;
9280 }
9281
9282 /*
9283 * If the active LSM wants to access the inode during
9284 * d_instantiate it needs these. Smack checks to see
9285 * if the filesystem supports xattrs by looking at the
9286 * ops vector.
9287 */
9288 inode->i_fop = &btrfs_file_operations;
9289 inode->i_op = &btrfs_file_inode_operations;
9290 inode->i_mapping->a_ops = &btrfs_aops;
9291 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9292 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9293
9294 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9295 if (err)
9296 goto out_unlock_inode;
9297
9298 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9299 if (err)
9300 goto out_unlock_inode;
9301
9302 path = btrfs_alloc_path();
9303 if (!path) {
9304 err = -ENOMEM;
9305 goto out_unlock_inode;
9306 }
9307 key.objectid = btrfs_ino(inode);
9308 key.offset = 0;
9309 key.type = BTRFS_EXTENT_DATA_KEY;
9310 datasize = btrfs_file_extent_calc_inline_size(name_len);
9311 err = btrfs_insert_empty_item(trans, root, path, &key,
9312 datasize);
9313 if (err) {
9314 btrfs_free_path(path);
9315 goto out_unlock_inode;
9316 }
9317 leaf = path->nodes[0];
9318 ei = btrfs_item_ptr(leaf, path->slots[0],
9319 struct btrfs_file_extent_item);
9320 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9321 btrfs_set_file_extent_type(leaf, ei,
9322 BTRFS_FILE_EXTENT_INLINE);
9323 btrfs_set_file_extent_encryption(leaf, ei, 0);
9324 btrfs_set_file_extent_compression(leaf, ei, 0);
9325 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9326 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9327
9328 ptr = btrfs_file_extent_inline_start(ei);
9329 write_extent_buffer(leaf, symname, ptr, name_len);
9330 btrfs_mark_buffer_dirty(leaf);
9331 btrfs_free_path(path);
9332
9333 inode->i_op = &btrfs_symlink_inode_operations;
9334 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9335 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9336 inode_set_bytes(inode, name_len);
9337 btrfs_i_size_write(inode, name_len);
9338 err = btrfs_update_inode(trans, root, inode);
9339 if (err) {
9340 drop_inode = 1;
9341 goto out_unlock_inode;
9342 }
9343
9344 unlock_new_inode(inode);
9345 d_instantiate(dentry, inode);
9346
9347 out_unlock:
9348 btrfs_end_transaction(trans, root);
9349 if (drop_inode) {
9350 inode_dec_link_count(inode);
9351 iput(inode);
9352 }
9353 btrfs_btree_balance_dirty(root);
9354 return err;
9355
9356 out_unlock_inode:
9357 drop_inode = 1;
9358 unlock_new_inode(inode);
9359 goto out_unlock;
9360 }
9361
9362 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9363 u64 start, u64 num_bytes, u64 min_size,
9364 loff_t actual_len, u64 *alloc_hint,
9365 struct btrfs_trans_handle *trans)
9366 {
9367 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9368 struct extent_map *em;
9369 struct btrfs_root *root = BTRFS_I(inode)->root;
9370 struct btrfs_key ins;
9371 u64 cur_offset = start;
9372 u64 i_size;
9373 u64 cur_bytes;
9374 int ret = 0;
9375 bool own_trans = true;
9376
9377 if (trans)
9378 own_trans = false;
9379 while (num_bytes > 0) {
9380 if (own_trans) {
9381 trans = btrfs_start_transaction(root, 3);
9382 if (IS_ERR(trans)) {
9383 ret = PTR_ERR(trans);
9384 break;
9385 }
9386 }
9387
9388 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9389 cur_bytes = max(cur_bytes, min_size);
9390 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9391 *alloc_hint, &ins, 1, 0);
9392 if (ret) {
9393 if (own_trans)
9394 btrfs_end_transaction(trans, root);
9395 break;
9396 }
9397
9398 ret = insert_reserved_file_extent(trans, inode,
9399 cur_offset, ins.objectid,
9400 ins.offset, ins.offset,
9401 ins.offset, 0, 0, 0,
9402 BTRFS_FILE_EXTENT_PREALLOC);
9403 if (ret) {
9404 btrfs_free_reserved_extent(root, ins.objectid,
9405 ins.offset, 0);
9406 btrfs_abort_transaction(trans, root, ret);
9407 if (own_trans)
9408 btrfs_end_transaction(trans, root);
9409 break;
9410 }
9411 btrfs_drop_extent_cache(inode, cur_offset,
9412 cur_offset + ins.offset -1, 0);
9413
9414 em = alloc_extent_map();
9415 if (!em) {
9416 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9417 &BTRFS_I(inode)->runtime_flags);
9418 goto next;
9419 }
9420
9421 em->start = cur_offset;
9422 em->orig_start = cur_offset;
9423 em->len = ins.offset;
9424 em->block_start = ins.objectid;
9425 em->block_len = ins.offset;
9426 em->orig_block_len = ins.offset;
9427 em->ram_bytes = ins.offset;
9428 em->bdev = root->fs_info->fs_devices->latest_bdev;
9429 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9430 em->generation = trans->transid;
9431
9432 while (1) {
9433 write_lock(&em_tree->lock);
9434 ret = add_extent_mapping(em_tree, em, 1);
9435 write_unlock(&em_tree->lock);
9436 if (ret != -EEXIST)
9437 break;
9438 btrfs_drop_extent_cache(inode, cur_offset,
9439 cur_offset + ins.offset - 1,
9440 0);
9441 }
9442 free_extent_map(em);
9443 next:
9444 num_bytes -= ins.offset;
9445 cur_offset += ins.offset;
9446 *alloc_hint = ins.objectid + ins.offset;
9447
9448 inode_inc_iversion(inode);
9449 inode->i_ctime = CURRENT_TIME;
9450 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9451 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9452 (actual_len > inode->i_size) &&
9453 (cur_offset > inode->i_size)) {
9454 if (cur_offset > actual_len)
9455 i_size = actual_len;
9456 else
9457 i_size = cur_offset;
9458 i_size_write(inode, i_size);
9459 btrfs_ordered_update_i_size(inode, i_size, NULL);
9460 }
9461
9462 ret = btrfs_update_inode(trans, root, inode);
9463
9464 if (ret) {
9465 btrfs_abort_transaction(trans, root, ret);
9466 if (own_trans)
9467 btrfs_end_transaction(trans, root);
9468 break;
9469 }
9470
9471 if (own_trans)
9472 btrfs_end_transaction(trans, root);
9473 }
9474 return ret;
9475 }
9476
9477 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9478 u64 start, u64 num_bytes, u64 min_size,
9479 loff_t actual_len, u64 *alloc_hint)
9480 {
9481 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9482 min_size, actual_len, alloc_hint,
9483 NULL);
9484 }
9485
9486 int btrfs_prealloc_file_range_trans(struct inode *inode,
9487 struct btrfs_trans_handle *trans, int mode,
9488 u64 start, u64 num_bytes, u64 min_size,
9489 loff_t actual_len, u64 *alloc_hint)
9490 {
9491 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9492 min_size, actual_len, alloc_hint, trans);
9493 }
9494
9495 static int btrfs_set_page_dirty(struct page *page)
9496 {
9497 return __set_page_dirty_nobuffers(page);
9498 }
9499
9500 static int btrfs_permission(struct inode *inode, int mask)
9501 {
9502 struct btrfs_root *root = BTRFS_I(inode)->root;
9503 umode_t mode = inode->i_mode;
9504
9505 if (mask & MAY_WRITE &&
9506 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9507 if (btrfs_root_readonly(root))
9508 return -EROFS;
9509 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9510 return -EACCES;
9511 }
9512 return generic_permission(inode, mask);
9513 }
9514
9515 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9516 {
9517 struct btrfs_trans_handle *trans;
9518 struct btrfs_root *root = BTRFS_I(dir)->root;
9519 struct inode *inode = NULL;
9520 u64 objectid;
9521 u64 index;
9522 int ret = 0;
9523
9524 /*
9525 * 5 units required for adding orphan entry
9526 */
9527 trans = btrfs_start_transaction(root, 5);
9528 if (IS_ERR(trans))
9529 return PTR_ERR(trans);
9530
9531 ret = btrfs_find_free_ino(root, &objectid);
9532 if (ret)
9533 goto out;
9534
9535 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9536 btrfs_ino(dir), objectid, mode, &index);
9537 if (IS_ERR(inode)) {
9538 ret = PTR_ERR(inode);
9539 inode = NULL;
9540 goto out;
9541 }
9542
9543 inode->i_fop = &btrfs_file_operations;
9544 inode->i_op = &btrfs_file_inode_operations;
9545
9546 inode->i_mapping->a_ops = &btrfs_aops;
9547 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9548 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9549
9550 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9551 if (ret)
9552 goto out_inode;
9553
9554 ret = btrfs_update_inode(trans, root, inode);
9555 if (ret)
9556 goto out_inode;
9557 ret = btrfs_orphan_add(trans, inode);
9558 if (ret)
9559 goto out_inode;
9560
9561 /*
9562 * We set number of links to 0 in btrfs_new_inode(), and here we set
9563 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9564 * through:
9565 *
9566 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9567 */
9568 set_nlink(inode, 1);
9569 unlock_new_inode(inode);
9570 d_tmpfile(dentry, inode);
9571 mark_inode_dirty(inode);
9572
9573 out:
9574 btrfs_end_transaction(trans, root);
9575 if (ret)
9576 iput(inode);
9577 btrfs_balance_delayed_items(root);
9578 btrfs_btree_balance_dirty(root);
9579 return ret;
9580
9581 out_inode:
9582 unlock_new_inode(inode);
9583 goto out;
9584
9585 }
9586
9587 /* Inspired by filemap_check_errors() */
9588 int btrfs_inode_check_errors(struct inode *inode)
9589 {
9590 int ret = 0;
9591
9592 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9593 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9594 ret = -ENOSPC;
9595 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9596 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9597 ret = -EIO;
9598
9599 return ret;
9600 }
9601
9602 static const struct inode_operations btrfs_dir_inode_operations = {
9603 .getattr = btrfs_getattr,
9604 .lookup = btrfs_lookup,
9605 .create = btrfs_create,
9606 .unlink = btrfs_unlink,
9607 .link = btrfs_link,
9608 .mkdir = btrfs_mkdir,
9609 .rmdir = btrfs_rmdir,
9610 .rename2 = btrfs_rename2,
9611 .symlink = btrfs_symlink,
9612 .setattr = btrfs_setattr,
9613 .mknod = btrfs_mknod,
9614 .setxattr = btrfs_setxattr,
9615 .getxattr = btrfs_getxattr,
9616 .listxattr = btrfs_listxattr,
9617 .removexattr = btrfs_removexattr,
9618 .permission = btrfs_permission,
9619 .get_acl = btrfs_get_acl,
9620 .set_acl = btrfs_set_acl,
9621 .update_time = btrfs_update_time,
9622 .tmpfile = btrfs_tmpfile,
9623 };
9624 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9625 .lookup = btrfs_lookup,
9626 .permission = btrfs_permission,
9627 .get_acl = btrfs_get_acl,
9628 .set_acl = btrfs_set_acl,
9629 .update_time = btrfs_update_time,
9630 };
9631
9632 static const struct file_operations btrfs_dir_file_operations = {
9633 .llseek = generic_file_llseek,
9634 .read = generic_read_dir,
9635 .iterate = btrfs_real_readdir,
9636 .unlocked_ioctl = btrfs_ioctl,
9637 #ifdef CONFIG_COMPAT
9638 .compat_ioctl = btrfs_ioctl,
9639 #endif
9640 .release = btrfs_release_file,
9641 .fsync = btrfs_sync_file,
9642 };
9643
9644 static struct extent_io_ops btrfs_extent_io_ops = {
9645 .fill_delalloc = run_delalloc_range,
9646 .submit_bio_hook = btrfs_submit_bio_hook,
9647 .merge_bio_hook = btrfs_merge_bio_hook,
9648 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9649 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9650 .writepage_start_hook = btrfs_writepage_start_hook,
9651 .set_bit_hook = btrfs_set_bit_hook,
9652 .clear_bit_hook = btrfs_clear_bit_hook,
9653 .merge_extent_hook = btrfs_merge_extent_hook,
9654 .split_extent_hook = btrfs_split_extent_hook,
9655 };
9656
9657 /*
9658 * btrfs doesn't support the bmap operation because swapfiles
9659 * use bmap to make a mapping of extents in the file. They assume
9660 * these extents won't change over the life of the file and they
9661 * use the bmap result to do IO directly to the drive.
9662 *
9663 * the btrfs bmap call would return logical addresses that aren't
9664 * suitable for IO and they also will change frequently as COW
9665 * operations happen. So, swapfile + btrfs == corruption.
9666 *
9667 * For now we're avoiding this by dropping bmap.
9668 */
9669 static const struct address_space_operations btrfs_aops = {
9670 .readpage = btrfs_readpage,
9671 .writepage = btrfs_writepage,
9672 .writepages = btrfs_writepages,
9673 .readpages = btrfs_readpages,
9674 .direct_IO = btrfs_direct_IO,
9675 .invalidatepage = btrfs_invalidatepage,
9676 .releasepage = btrfs_releasepage,
9677 .set_page_dirty = btrfs_set_page_dirty,
9678 .error_remove_page = generic_error_remove_page,
9679 };
9680
9681 static const struct address_space_operations btrfs_symlink_aops = {
9682 .readpage = btrfs_readpage,
9683 .writepage = btrfs_writepage,
9684 .invalidatepage = btrfs_invalidatepage,
9685 .releasepage = btrfs_releasepage,
9686 };
9687
9688 static const struct inode_operations btrfs_file_inode_operations = {
9689 .getattr = btrfs_getattr,
9690 .setattr = btrfs_setattr,
9691 .setxattr = btrfs_setxattr,
9692 .getxattr = btrfs_getxattr,
9693 .listxattr = btrfs_listxattr,
9694 .removexattr = btrfs_removexattr,
9695 .permission = btrfs_permission,
9696 .fiemap = btrfs_fiemap,
9697 .get_acl = btrfs_get_acl,
9698 .set_acl = btrfs_set_acl,
9699 .update_time = btrfs_update_time,
9700 };
9701 static const struct inode_operations btrfs_special_inode_operations = {
9702 .getattr = btrfs_getattr,
9703 .setattr = btrfs_setattr,
9704 .permission = btrfs_permission,
9705 .setxattr = btrfs_setxattr,
9706 .getxattr = btrfs_getxattr,
9707 .listxattr = btrfs_listxattr,
9708 .removexattr = btrfs_removexattr,
9709 .get_acl = btrfs_get_acl,
9710 .set_acl = btrfs_set_acl,
9711 .update_time = btrfs_update_time,
9712 };
9713 static const struct inode_operations btrfs_symlink_inode_operations = {
9714 .readlink = generic_readlink,
9715 .follow_link = page_follow_link_light,
9716 .put_link = page_put_link,
9717 .getattr = btrfs_getattr,
9718 .setattr = btrfs_setattr,
9719 .permission = btrfs_permission,
9720 .setxattr = btrfs_setxattr,
9721 .getxattr = btrfs_getxattr,
9722 .listxattr = btrfs_listxattr,
9723 .removexattr = btrfs_removexattr,
9724 .update_time = btrfs_update_time,
9725 };
9726
9727 const struct dentry_operations btrfs_dentry_operations = {
9728 .d_delete = btrfs_dentry_delete,
9729 .d_release = btrfs_dentry_release,
9730 };
This page took 0.213197 seconds and 6 git commands to generate.