Btrfs: Add a write ahead tree log to optimize synchronous operations
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "compat.h"
50 #include "tree-log.h"
51
52 struct btrfs_iget_args {
53 u64 ino;
54 struct btrfs_root *root;
55 };
56
57 static struct inode_operations btrfs_dir_inode_operations;
58 static struct inode_operations btrfs_symlink_inode_operations;
59 static struct inode_operations btrfs_dir_ro_inode_operations;
60 static struct inode_operations btrfs_special_inode_operations;
61 static struct inode_operations btrfs_file_inode_operations;
62 static struct address_space_operations btrfs_aops;
63 static struct address_space_operations btrfs_symlink_aops;
64 static struct file_operations btrfs_dir_file_operations;
65 static struct extent_io_ops btrfs_extent_io_ops;
66
67 static struct kmem_cache *btrfs_inode_cachep;
68 struct kmem_cache *btrfs_trans_handle_cachep;
69 struct kmem_cache *btrfs_transaction_cachep;
70 struct kmem_cache *btrfs_bit_radix_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85
86 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
87 int for_del)
88 {
89 u64 total;
90 u64 used;
91 u64 thresh;
92 unsigned long flags;
93 int ret = 0;
94
95 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
96 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
97 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
98 if (for_del)
99 thresh = total * 90;
100 else
101 thresh = total * 85;
102
103 do_div(thresh, 100);
104
105 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
106 ret = -ENOSPC;
107 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
108 return ret;
109 }
110
111 static int cow_file_range(struct inode *inode, u64 start, u64 end)
112 {
113 struct btrfs_root *root = BTRFS_I(inode)->root;
114 struct btrfs_trans_handle *trans;
115 u64 alloc_hint = 0;
116 u64 num_bytes;
117 u64 cur_alloc_size;
118 u64 blocksize = root->sectorsize;
119 u64 orig_num_bytes;
120 struct btrfs_key ins;
121 struct extent_map *em;
122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123 int ret = 0;
124
125 trans = btrfs_join_transaction(root, 1);
126 BUG_ON(!trans);
127 btrfs_set_trans_block_group(trans, inode);
128
129 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
130 num_bytes = max(blocksize, num_bytes);
131 orig_num_bytes = num_bytes;
132
133 if (alloc_hint == EXTENT_MAP_INLINE)
134 goto out;
135
136 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
137 mutex_lock(&BTRFS_I(inode)->extent_mutex);
138 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
139 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
140
141 while(num_bytes > 0) {
142 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
143 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
144 root->sectorsize, 0, 0,
145 (u64)-1, &ins, 1);
146 if (ret) {
147 WARN_ON(1);
148 goto out;
149 }
150 em = alloc_extent_map(GFP_NOFS);
151 em->start = start;
152 em->len = ins.offset;
153 em->block_start = ins.objectid;
154 em->bdev = root->fs_info->fs_devices->latest_bdev;
155 mutex_lock(&BTRFS_I(inode)->extent_mutex);
156 set_bit(EXTENT_FLAG_PINNED, &em->flags);
157 while(1) {
158 spin_lock(&em_tree->lock);
159 ret = add_extent_mapping(em_tree, em);
160 spin_unlock(&em_tree->lock);
161 if (ret != -EEXIST) {
162 free_extent_map(em);
163 break;
164 }
165 btrfs_drop_extent_cache(inode, start,
166 start + ins.offset - 1);
167 }
168 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
169
170 cur_alloc_size = ins.offset;
171 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
172 ins.offset, 0);
173 BUG_ON(ret);
174 if (num_bytes < cur_alloc_size) {
175 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
176 cur_alloc_size);
177 break;
178 }
179 num_bytes -= cur_alloc_size;
180 alloc_hint = ins.objectid + ins.offset;
181 start += cur_alloc_size;
182 }
183 out:
184 btrfs_end_transaction(trans, root);
185 return ret;
186 }
187
188 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
189 {
190 u64 extent_start;
191 u64 extent_end;
192 u64 bytenr;
193 u64 loops = 0;
194 u64 total_fs_bytes;
195 struct btrfs_root *root = BTRFS_I(inode)->root;
196 struct btrfs_block_group_cache *block_group;
197 struct btrfs_trans_handle *trans;
198 struct extent_buffer *leaf;
199 int found_type;
200 struct btrfs_path *path;
201 struct btrfs_file_extent_item *item;
202 int ret;
203 int err = 0;
204 struct btrfs_key found_key;
205
206 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
207 path = btrfs_alloc_path();
208 BUG_ON(!path);
209 trans = btrfs_join_transaction(root, 1);
210 BUG_ON(!trans);
211 again:
212 ret = btrfs_lookup_file_extent(NULL, root, path,
213 inode->i_ino, start, 0);
214 if (ret < 0) {
215 err = ret;
216 goto out;
217 }
218
219 if (ret != 0) {
220 if (path->slots[0] == 0)
221 goto not_found;
222 path->slots[0]--;
223 }
224
225 leaf = path->nodes[0];
226 item = btrfs_item_ptr(leaf, path->slots[0],
227 struct btrfs_file_extent_item);
228
229 /* are we inside the extent that was found? */
230 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
231 found_type = btrfs_key_type(&found_key);
232 if (found_key.objectid != inode->i_ino ||
233 found_type != BTRFS_EXTENT_DATA_KEY)
234 goto not_found;
235
236 found_type = btrfs_file_extent_type(leaf, item);
237 extent_start = found_key.offset;
238 if (found_type == BTRFS_FILE_EXTENT_REG) {
239 u64 extent_num_bytes;
240
241 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
242 extent_end = extent_start + extent_num_bytes;
243 err = 0;
244
245 if (loops && start != extent_start)
246 goto not_found;
247
248 if (start < extent_start || start >= extent_end)
249 goto not_found;
250
251 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
252 if (bytenr == 0)
253 goto not_found;
254
255 if (btrfs_cross_ref_exists(trans, root, &found_key, bytenr))
256 goto not_found;
257 /*
258 * we may be called by the resizer, make sure we're inside
259 * the limits of the FS
260 */
261 block_group = btrfs_lookup_block_group(root->fs_info,
262 bytenr);
263 if (!block_group || block_group->ro)
264 goto not_found;
265
266 bytenr += btrfs_file_extent_offset(leaf, item);
267 extent_num_bytes = min(end + 1, extent_end) - start;
268 ret = btrfs_add_ordered_extent(inode, start, bytenr,
269 extent_num_bytes, 1);
270 if (ret) {
271 err = ret;
272 goto out;
273 }
274
275 btrfs_release_path(root, path);
276 start = extent_end;
277 if (start <= end) {
278 loops++;
279 goto again;
280 }
281 } else {
282 not_found:
283 btrfs_end_transaction(trans, root);
284 btrfs_free_path(path);
285 return cow_file_range(inode, start, end);
286 }
287 out:
288 WARN_ON(err);
289 btrfs_end_transaction(trans, root);
290 btrfs_free_path(path);
291 return err;
292 }
293
294 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
295 {
296 struct btrfs_root *root = BTRFS_I(inode)->root;
297 int ret;
298
299 if (btrfs_test_opt(root, NODATACOW) ||
300 btrfs_test_flag(inode, NODATACOW))
301 ret = run_delalloc_nocow(inode, start, end);
302 else
303 ret = cow_file_range(inode, start, end);
304
305 return ret;
306 }
307
308 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
309 unsigned long old, unsigned long bits)
310 {
311 unsigned long flags;
312 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
313 struct btrfs_root *root = BTRFS_I(inode)->root;
314 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
315 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
316 root->fs_info->delalloc_bytes += end - start + 1;
317 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
318 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
319 &root->fs_info->delalloc_inodes);
320 }
321 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
322 }
323 return 0;
324 }
325
326 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
327 unsigned long old, unsigned long bits)
328 {
329 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
330 struct btrfs_root *root = BTRFS_I(inode)->root;
331 unsigned long flags;
332
333 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
334 if (end - start + 1 > root->fs_info->delalloc_bytes) {
335 printk("warning: delalloc account %Lu %Lu\n",
336 end - start + 1, root->fs_info->delalloc_bytes);
337 root->fs_info->delalloc_bytes = 0;
338 BTRFS_I(inode)->delalloc_bytes = 0;
339 } else {
340 root->fs_info->delalloc_bytes -= end - start + 1;
341 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
342 }
343 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
344 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
345 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
346 }
347 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
348 }
349 return 0;
350 }
351
352 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
353 size_t size, struct bio *bio)
354 {
355 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
356 struct btrfs_mapping_tree *map_tree;
357 u64 logical = bio->bi_sector << 9;
358 u64 length = 0;
359 u64 map_length;
360 int ret;
361
362 length = bio->bi_size;
363 map_tree = &root->fs_info->mapping_tree;
364 map_length = length;
365 ret = btrfs_map_block(map_tree, READ, logical,
366 &map_length, NULL, 0);
367
368 if (map_length < length + size) {
369 return 1;
370 }
371 return 0;
372 }
373
374 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
375 int mirror_num)
376 {
377 struct btrfs_root *root = BTRFS_I(inode)->root;
378 int ret = 0;
379
380 ret = btrfs_csum_one_bio(root, inode, bio);
381 BUG_ON(ret);
382
383 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
384 }
385
386 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
387 int mirror_num)
388 {
389 struct btrfs_root *root = BTRFS_I(inode)->root;
390 int ret = 0;
391
392 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
393 BUG_ON(ret);
394
395 if (btrfs_test_opt(root, NODATASUM) ||
396 btrfs_test_flag(inode, NODATASUM)) {
397 goto mapit;
398 }
399
400 if (!(rw & (1 << BIO_RW))) {
401 btrfs_lookup_bio_sums(root, inode, bio);
402 goto mapit;
403 }
404 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
405 inode, rw, bio, mirror_num,
406 __btrfs_submit_bio_hook);
407 mapit:
408 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
409 }
410
411 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
412 struct inode *inode, u64 file_offset,
413 struct list_head *list)
414 {
415 struct list_head *cur;
416 struct btrfs_ordered_sum *sum;
417
418 btrfs_set_trans_block_group(trans, inode);
419 list_for_each(cur, list) {
420 sum = list_entry(cur, struct btrfs_ordered_sum, list);
421 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
422 inode, sum);
423 }
424 return 0;
425 }
426
427 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
428 {
429 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
430 GFP_NOFS);
431 }
432
433 struct btrfs_writepage_fixup {
434 struct page *page;
435 struct btrfs_work work;
436 };
437
438 /* see btrfs_writepage_start_hook for details on why this is required */
439 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
440 {
441 struct btrfs_writepage_fixup *fixup;
442 struct btrfs_ordered_extent *ordered;
443 struct page *page;
444 struct inode *inode;
445 u64 page_start;
446 u64 page_end;
447
448 fixup = container_of(work, struct btrfs_writepage_fixup, work);
449 page = fixup->page;
450 again:
451 lock_page(page);
452 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
453 ClearPageChecked(page);
454 goto out_page;
455 }
456
457 inode = page->mapping->host;
458 page_start = page_offset(page);
459 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
460
461 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
462
463 /* already ordered? We're done */
464 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
465 EXTENT_ORDERED, 0)) {
466 goto out;
467 }
468
469 ordered = btrfs_lookup_ordered_extent(inode, page_start);
470 if (ordered) {
471 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
472 page_end, GFP_NOFS);
473 unlock_page(page);
474 btrfs_start_ordered_extent(inode, ordered, 1);
475 goto again;
476 }
477
478 btrfs_set_extent_delalloc(inode, page_start, page_end);
479 ClearPageChecked(page);
480 out:
481 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
482 out_page:
483 unlock_page(page);
484 page_cache_release(page);
485 }
486
487 /*
488 * There are a few paths in the higher layers of the kernel that directly
489 * set the page dirty bit without asking the filesystem if it is a
490 * good idea. This causes problems because we want to make sure COW
491 * properly happens and the data=ordered rules are followed.
492 *
493 * In our case any range that doesn't have the EXTENT_ORDERED bit set
494 * hasn't been properly setup for IO. We kick off an async process
495 * to fix it up. The async helper will wait for ordered extents, set
496 * the delalloc bit and make it safe to write the page.
497 */
498 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
499 {
500 struct inode *inode = page->mapping->host;
501 struct btrfs_writepage_fixup *fixup;
502 struct btrfs_root *root = BTRFS_I(inode)->root;
503 int ret;
504
505 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
506 EXTENT_ORDERED, 0);
507 if (ret)
508 return 0;
509
510 if (PageChecked(page))
511 return -EAGAIN;
512
513 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
514 if (!fixup)
515 return -EAGAIN;
516
517 SetPageChecked(page);
518 page_cache_get(page);
519 fixup->work.func = btrfs_writepage_fixup_worker;
520 fixup->page = page;
521 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
522 return -EAGAIN;
523 }
524
525 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
526 {
527 struct btrfs_root *root = BTRFS_I(inode)->root;
528 struct btrfs_trans_handle *trans;
529 struct btrfs_ordered_extent *ordered_extent;
530 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
531 u64 alloc_hint = 0;
532 struct list_head list;
533 struct btrfs_key ins;
534 int ret;
535
536 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
537 if (!ret)
538 return 0;
539
540 trans = btrfs_join_transaction(root, 1);
541
542 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
543 BUG_ON(!ordered_extent);
544 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
545 goto nocow;
546
547 lock_extent(io_tree, ordered_extent->file_offset,
548 ordered_extent->file_offset + ordered_extent->len - 1,
549 GFP_NOFS);
550
551 INIT_LIST_HEAD(&list);
552
553 ins.objectid = ordered_extent->start;
554 ins.offset = ordered_extent->len;
555 ins.type = BTRFS_EXTENT_ITEM_KEY;
556
557 ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
558 trans->transid, inode->i_ino,
559 ordered_extent->file_offset, &ins);
560 BUG_ON(ret);
561
562 mutex_lock(&BTRFS_I(inode)->extent_mutex);
563
564 ret = btrfs_drop_extents(trans, root, inode,
565 ordered_extent->file_offset,
566 ordered_extent->file_offset +
567 ordered_extent->len,
568 ordered_extent->file_offset, &alloc_hint);
569 BUG_ON(ret);
570 ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
571 ordered_extent->file_offset,
572 ordered_extent->start,
573 ordered_extent->len,
574 ordered_extent->len, 0);
575 BUG_ON(ret);
576
577 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
578 ordered_extent->file_offset +
579 ordered_extent->len - 1);
580 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
581
582 inode->i_blocks += ordered_extent->len >> 9;
583 unlock_extent(io_tree, ordered_extent->file_offset,
584 ordered_extent->file_offset + ordered_extent->len - 1,
585 GFP_NOFS);
586 nocow:
587 add_pending_csums(trans, inode, ordered_extent->file_offset,
588 &ordered_extent->list);
589
590 btrfs_ordered_update_i_size(inode, ordered_extent);
591 btrfs_update_inode(trans, root, inode);
592 btrfs_remove_ordered_extent(inode, ordered_extent);
593
594 /* once for us */
595 btrfs_put_ordered_extent(ordered_extent);
596 /* once for the tree */
597 btrfs_put_ordered_extent(ordered_extent);
598
599 btrfs_end_transaction(trans, root);
600 return 0;
601 }
602
603 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
604 struct extent_state *state, int uptodate)
605 {
606 return btrfs_finish_ordered_io(page->mapping->host, start, end);
607 }
608
609 struct io_failure_record {
610 struct page *page;
611 u64 start;
612 u64 len;
613 u64 logical;
614 int last_mirror;
615 };
616
617 int btrfs_io_failed_hook(struct bio *failed_bio,
618 struct page *page, u64 start, u64 end,
619 struct extent_state *state)
620 {
621 struct io_failure_record *failrec = NULL;
622 u64 private;
623 struct extent_map *em;
624 struct inode *inode = page->mapping->host;
625 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
626 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
627 struct bio *bio;
628 int num_copies;
629 int ret;
630 int rw;
631 u64 logical;
632
633 ret = get_state_private(failure_tree, start, &private);
634 if (ret) {
635 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
636 if (!failrec)
637 return -ENOMEM;
638 failrec->start = start;
639 failrec->len = end - start + 1;
640 failrec->last_mirror = 0;
641
642 spin_lock(&em_tree->lock);
643 em = lookup_extent_mapping(em_tree, start, failrec->len);
644 if (em->start > start || em->start + em->len < start) {
645 free_extent_map(em);
646 em = NULL;
647 }
648 spin_unlock(&em_tree->lock);
649
650 if (!em || IS_ERR(em)) {
651 kfree(failrec);
652 return -EIO;
653 }
654 logical = start - em->start;
655 logical = em->block_start + logical;
656 failrec->logical = logical;
657 free_extent_map(em);
658 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
659 EXTENT_DIRTY, GFP_NOFS);
660 set_state_private(failure_tree, start,
661 (u64)(unsigned long)failrec);
662 } else {
663 failrec = (struct io_failure_record *)(unsigned long)private;
664 }
665 num_copies = btrfs_num_copies(
666 &BTRFS_I(inode)->root->fs_info->mapping_tree,
667 failrec->logical, failrec->len);
668 failrec->last_mirror++;
669 if (!state) {
670 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
671 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
672 failrec->start,
673 EXTENT_LOCKED);
674 if (state && state->start != failrec->start)
675 state = NULL;
676 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
677 }
678 if (!state || failrec->last_mirror > num_copies) {
679 set_state_private(failure_tree, failrec->start, 0);
680 clear_extent_bits(failure_tree, failrec->start,
681 failrec->start + failrec->len - 1,
682 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
683 kfree(failrec);
684 return -EIO;
685 }
686 bio = bio_alloc(GFP_NOFS, 1);
687 bio->bi_private = state;
688 bio->bi_end_io = failed_bio->bi_end_io;
689 bio->bi_sector = failrec->logical >> 9;
690 bio->bi_bdev = failed_bio->bi_bdev;
691 bio->bi_size = 0;
692 bio_add_page(bio, page, failrec->len, start - page_offset(page));
693 if (failed_bio->bi_rw & (1 << BIO_RW))
694 rw = WRITE;
695 else
696 rw = READ;
697
698 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
699 failrec->last_mirror);
700 return 0;
701 }
702
703 int btrfs_clean_io_failures(struct inode *inode, u64 start)
704 {
705 u64 private;
706 u64 private_failure;
707 struct io_failure_record *failure;
708 int ret;
709
710 private = 0;
711 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
712 (u64)-1, 1, EXTENT_DIRTY)) {
713 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
714 start, &private_failure);
715 if (ret == 0) {
716 failure = (struct io_failure_record *)(unsigned long)
717 private_failure;
718 set_state_private(&BTRFS_I(inode)->io_failure_tree,
719 failure->start, 0);
720 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
721 failure->start,
722 failure->start + failure->len - 1,
723 EXTENT_DIRTY | EXTENT_LOCKED,
724 GFP_NOFS);
725 kfree(failure);
726 }
727 }
728 return 0;
729 }
730
731 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
732 struct extent_state *state)
733 {
734 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
735 struct inode *inode = page->mapping->host;
736 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
737 char *kaddr;
738 u64 private = ~(u32)0;
739 int ret;
740 struct btrfs_root *root = BTRFS_I(inode)->root;
741 u32 csum = ~(u32)0;
742 unsigned long flags;
743
744 if (btrfs_test_opt(root, NODATASUM) ||
745 btrfs_test_flag(inode, NODATASUM))
746 return 0;
747 if (state && state->start == start) {
748 private = state->private;
749 ret = 0;
750 } else {
751 ret = get_state_private(io_tree, start, &private);
752 }
753 local_irq_save(flags);
754 kaddr = kmap_atomic(page, KM_IRQ0);
755 if (ret) {
756 goto zeroit;
757 }
758 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
759 btrfs_csum_final(csum, (char *)&csum);
760 if (csum != private) {
761 goto zeroit;
762 }
763 kunmap_atomic(kaddr, KM_IRQ0);
764 local_irq_restore(flags);
765
766 /* if the io failure tree for this inode is non-empty,
767 * check to see if we've recovered from a failed IO
768 */
769 btrfs_clean_io_failures(inode, start);
770 return 0;
771
772 zeroit:
773 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
774 page->mapping->host->i_ino, (unsigned long long)start, csum,
775 private);
776 memset(kaddr + offset, 1, end - start + 1);
777 flush_dcache_page(page);
778 kunmap_atomic(kaddr, KM_IRQ0);
779 local_irq_restore(flags);
780 if (private == 0)
781 return 0;
782 return -EIO;
783 }
784
785 /*
786 * This creates an orphan entry for the given inode in case something goes
787 * wrong in the middle of an unlink/truncate.
788 */
789 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
790 {
791 struct btrfs_root *root = BTRFS_I(inode)->root;
792 int ret = 0;
793
794 spin_lock(&root->list_lock);
795
796 /* already on the orphan list, we're good */
797 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
798 spin_unlock(&root->list_lock);
799 return 0;
800 }
801
802 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
803
804 spin_unlock(&root->list_lock);
805
806 /*
807 * insert an orphan item to track this unlinked/truncated file
808 */
809 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
810
811 return ret;
812 }
813
814 /*
815 * We have done the truncate/delete so we can go ahead and remove the orphan
816 * item for this particular inode.
817 */
818 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
819 {
820 struct btrfs_root *root = BTRFS_I(inode)->root;
821 int ret = 0;
822
823 spin_lock(&root->list_lock);
824
825 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
826 spin_unlock(&root->list_lock);
827 return 0;
828 }
829
830 list_del_init(&BTRFS_I(inode)->i_orphan);
831 if (!trans) {
832 spin_unlock(&root->list_lock);
833 return 0;
834 }
835
836 spin_unlock(&root->list_lock);
837
838 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
839
840 return ret;
841 }
842
843 /*
844 * this cleans up any orphans that may be left on the list from the last use
845 * of this root.
846 */
847 void btrfs_orphan_cleanup(struct btrfs_root *root)
848 {
849 struct btrfs_path *path;
850 struct extent_buffer *leaf;
851 struct btrfs_item *item;
852 struct btrfs_key key, found_key;
853 struct btrfs_trans_handle *trans;
854 struct inode *inode;
855 int ret = 0, nr_unlink = 0, nr_truncate = 0;
856
857 /* don't do orphan cleanup if the fs is readonly. */
858 if (root->inode->i_sb->s_flags & MS_RDONLY)
859 return;
860
861 path = btrfs_alloc_path();
862 if (!path)
863 return;
864 path->reada = -1;
865
866 key.objectid = BTRFS_ORPHAN_OBJECTID;
867 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
868 key.offset = (u64)-1;
869
870 trans = btrfs_start_transaction(root, 1);
871 btrfs_set_trans_block_group(trans, root->inode);
872
873 while (1) {
874 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
875 if (ret < 0) {
876 printk(KERN_ERR "Error searching slot for orphan: %d"
877 "\n", ret);
878 break;
879 }
880
881 /*
882 * if ret == 0 means we found what we were searching for, which
883 * is weird, but possible, so only screw with path if we didnt
884 * find the key and see if we have stuff that matches
885 */
886 if (ret > 0) {
887 if (path->slots[0] == 0)
888 break;
889 path->slots[0]--;
890 }
891
892 /* pull out the item */
893 leaf = path->nodes[0];
894 item = btrfs_item_nr(leaf, path->slots[0]);
895 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
896
897 /* make sure the item matches what we want */
898 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
899 break;
900 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
901 break;
902
903 /* release the path since we're done with it */
904 btrfs_release_path(root, path);
905
906 /*
907 * this is where we are basically btrfs_lookup, without the
908 * crossing root thing. we store the inode number in the
909 * offset of the orphan item.
910 */
911 inode = btrfs_iget_locked(root->inode->i_sb,
912 found_key.offset, root);
913 if (!inode)
914 break;
915
916 if (inode->i_state & I_NEW) {
917 BTRFS_I(inode)->root = root;
918
919 /* have to set the location manually */
920 BTRFS_I(inode)->location.objectid = inode->i_ino;
921 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
922 BTRFS_I(inode)->location.offset = 0;
923
924 btrfs_read_locked_inode(inode);
925 unlock_new_inode(inode);
926 }
927
928 /*
929 * add this inode to the orphan list so btrfs_orphan_del does
930 * the proper thing when we hit it
931 */
932 spin_lock(&root->list_lock);
933 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
934 spin_unlock(&root->list_lock);
935
936 /*
937 * if this is a bad inode, means we actually succeeded in
938 * removing the inode, but not the orphan record, which means
939 * we need to manually delete the orphan since iput will just
940 * do a destroy_inode
941 */
942 if (is_bad_inode(inode)) {
943 btrfs_orphan_del(trans, inode);
944 iput(inode);
945 continue;
946 }
947
948 /* if we have links, this was a truncate, lets do that */
949 if (inode->i_nlink) {
950 nr_truncate++;
951 btrfs_truncate(inode);
952 } else {
953 nr_unlink++;
954 }
955
956 /* this will do delete_inode and everything for us */
957 iput(inode);
958 }
959
960 if (nr_unlink)
961 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
962 if (nr_truncate)
963 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
964
965 btrfs_free_path(path);
966 btrfs_end_transaction(trans, root);
967 }
968
969 void btrfs_read_locked_inode(struct inode *inode)
970 {
971 struct btrfs_path *path;
972 struct extent_buffer *leaf;
973 struct btrfs_inode_item *inode_item;
974 struct btrfs_timespec *tspec;
975 struct btrfs_root *root = BTRFS_I(inode)->root;
976 struct btrfs_key location;
977 u64 alloc_group_block;
978 u32 rdev;
979 int ret;
980
981 path = btrfs_alloc_path();
982 BUG_ON(!path);
983 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
984
985 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
986 if (ret)
987 goto make_bad;
988
989 leaf = path->nodes[0];
990 inode_item = btrfs_item_ptr(leaf, path->slots[0],
991 struct btrfs_inode_item);
992
993 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
994 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
995 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
996 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
997 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
998
999 tspec = btrfs_inode_atime(inode_item);
1000 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1001 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1002
1003 tspec = btrfs_inode_mtime(inode_item);
1004 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1005 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1006
1007 tspec = btrfs_inode_ctime(inode_item);
1008 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1009 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1010
1011 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
1012 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1013 inode->i_generation = BTRFS_I(inode)->generation;
1014 inode->i_rdev = 0;
1015 rdev = btrfs_inode_rdev(leaf, inode_item);
1016
1017 BTRFS_I(inode)->index_cnt = (u64)-1;
1018
1019 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1020 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1021 alloc_group_block);
1022 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1023 if (!BTRFS_I(inode)->block_group) {
1024 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1025 NULL, 0,
1026 BTRFS_BLOCK_GROUP_METADATA, 0);
1027 }
1028 btrfs_free_path(path);
1029 inode_item = NULL;
1030
1031 switch (inode->i_mode & S_IFMT) {
1032 case S_IFREG:
1033 inode->i_mapping->a_ops = &btrfs_aops;
1034 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1035 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1036 inode->i_fop = &btrfs_file_operations;
1037 inode->i_op = &btrfs_file_inode_operations;
1038 break;
1039 case S_IFDIR:
1040 inode->i_fop = &btrfs_dir_file_operations;
1041 if (root == root->fs_info->tree_root)
1042 inode->i_op = &btrfs_dir_ro_inode_operations;
1043 else
1044 inode->i_op = &btrfs_dir_inode_operations;
1045 break;
1046 case S_IFLNK:
1047 inode->i_op = &btrfs_symlink_inode_operations;
1048 inode->i_mapping->a_ops = &btrfs_symlink_aops;
1049 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1050 break;
1051 default:
1052 init_special_inode(inode, inode->i_mode, rdev);
1053 break;
1054 }
1055 return;
1056
1057 make_bad:
1058 btrfs_free_path(path);
1059 make_bad_inode(inode);
1060 }
1061
1062 static void fill_inode_item(struct btrfs_trans_handle *trans,
1063 struct extent_buffer *leaf,
1064 struct btrfs_inode_item *item,
1065 struct inode *inode)
1066 {
1067 btrfs_set_inode_uid(leaf, item, inode->i_uid);
1068 btrfs_set_inode_gid(leaf, item, inode->i_gid);
1069 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
1070 btrfs_set_inode_mode(leaf, item, inode->i_mode);
1071 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
1072
1073 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
1074 inode->i_atime.tv_sec);
1075 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
1076 inode->i_atime.tv_nsec);
1077
1078 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
1079 inode->i_mtime.tv_sec);
1080 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
1081 inode->i_mtime.tv_nsec);
1082
1083 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
1084 inode->i_ctime.tv_sec);
1085 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
1086 inode->i_ctime.tv_nsec);
1087
1088 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
1089 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
1090 btrfs_set_inode_transid(leaf, item, trans->transid);
1091 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
1092 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
1093 btrfs_set_inode_block_group(leaf, item,
1094 BTRFS_I(inode)->block_group->key.objectid);
1095 }
1096
1097 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct inode *inode)
1100 {
1101 struct btrfs_inode_item *inode_item;
1102 struct btrfs_path *path;
1103 struct extent_buffer *leaf;
1104 int ret;
1105
1106 path = btrfs_alloc_path();
1107 BUG_ON(!path);
1108 ret = btrfs_lookup_inode(trans, root, path,
1109 &BTRFS_I(inode)->location, 1);
1110 if (ret) {
1111 if (ret > 0)
1112 ret = -ENOENT;
1113 goto failed;
1114 }
1115
1116 leaf = path->nodes[0];
1117 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1118 struct btrfs_inode_item);
1119
1120 fill_inode_item(trans, leaf, inode_item, inode);
1121 btrfs_mark_buffer_dirty(leaf);
1122 btrfs_set_inode_last_trans(trans, inode);
1123 ret = 0;
1124 failed:
1125 btrfs_free_path(path);
1126 return ret;
1127 }
1128
1129
1130 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
1131 struct btrfs_root *root,
1132 struct inode *dir, struct inode *inode,
1133 const char *name, int name_len)
1134 {
1135 struct btrfs_path *path;
1136 int ret = 0;
1137 struct extent_buffer *leaf;
1138 struct btrfs_dir_item *di;
1139 struct btrfs_key key;
1140 u64 index;
1141
1142 path = btrfs_alloc_path();
1143 if (!path) {
1144 ret = -ENOMEM;
1145 goto err;
1146 }
1147
1148 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1149 name, name_len, -1);
1150 if (IS_ERR(di)) {
1151 ret = PTR_ERR(di);
1152 goto err;
1153 }
1154 if (!di) {
1155 ret = -ENOENT;
1156 goto err;
1157 }
1158 leaf = path->nodes[0];
1159 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1160 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1161 if (ret)
1162 goto err;
1163 btrfs_release_path(root, path);
1164
1165 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1166 inode->i_ino,
1167 dir->i_ino, &index);
1168 if (ret) {
1169 printk("failed to delete reference to %.*s, "
1170 "inode %lu parent %lu\n", name_len, name,
1171 inode->i_ino, dir->i_ino);
1172 goto err;
1173 }
1174
1175 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1176 index, name, name_len, -1);
1177 if (IS_ERR(di)) {
1178 ret = PTR_ERR(di);
1179 goto err;
1180 }
1181 if (!di) {
1182 ret = -ENOENT;
1183 goto err;
1184 }
1185 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1186 btrfs_release_path(root, path);
1187
1188 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
1189 inode, dir->i_ino);
1190 BUG_ON(ret);
1191
1192 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
1193 dir, index);
1194 BUG_ON(ret);
1195 err:
1196 btrfs_free_path(path);
1197 if (ret)
1198 goto out;
1199
1200 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1201 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1202 btrfs_update_inode(trans, root, dir);
1203 btrfs_drop_nlink(inode);
1204 ret = btrfs_update_inode(trans, root, inode);
1205 dir->i_sb->s_dirt = 1;
1206 out:
1207 return ret;
1208 }
1209
1210 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1211 {
1212 struct btrfs_root *root;
1213 struct btrfs_trans_handle *trans;
1214 struct inode *inode = dentry->d_inode;
1215 int ret;
1216 unsigned long nr = 0;
1217
1218 root = BTRFS_I(dir)->root;
1219
1220 ret = btrfs_check_free_space(root, 1, 1);
1221 if (ret)
1222 goto fail;
1223
1224 trans = btrfs_start_transaction(root, 1);
1225
1226 btrfs_set_trans_block_group(trans, dir);
1227 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1228 dentry->d_name.name, dentry->d_name.len);
1229
1230 if (inode->i_nlink == 0)
1231 ret = btrfs_orphan_add(trans, inode);
1232
1233 nr = trans->blocks_used;
1234
1235 btrfs_end_transaction_throttle(trans, root);
1236 fail:
1237 btrfs_btree_balance_dirty(root, nr);
1238 return ret;
1239 }
1240
1241 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1242 {
1243 struct inode *inode = dentry->d_inode;
1244 int err = 0;
1245 int ret;
1246 struct btrfs_root *root = BTRFS_I(dir)->root;
1247 struct btrfs_trans_handle *trans;
1248 unsigned long nr = 0;
1249
1250 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1251 return -ENOTEMPTY;
1252 }
1253
1254 ret = btrfs_check_free_space(root, 1, 1);
1255 if (ret)
1256 goto fail;
1257
1258 trans = btrfs_start_transaction(root, 1);
1259 btrfs_set_trans_block_group(trans, dir);
1260
1261 err = btrfs_orphan_add(trans, inode);
1262 if (err)
1263 goto fail_trans;
1264
1265 /* now the directory is empty */
1266 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
1267 dentry->d_name.name, dentry->d_name.len);
1268 if (!err) {
1269 btrfs_i_size_write(inode, 0);
1270 }
1271
1272 fail_trans:
1273 nr = trans->blocks_used;
1274 ret = btrfs_end_transaction_throttle(trans, root);
1275 fail:
1276 btrfs_btree_balance_dirty(root, nr);
1277
1278 if (ret && !err)
1279 err = ret;
1280 return err;
1281 }
1282
1283 /*
1284 * this can truncate away extent items, csum items and directory items.
1285 * It starts at a high offset and removes keys until it can't find
1286 * any higher than i_size.
1287 *
1288 * csum items that cross the new i_size are truncated to the new size
1289 * as well.
1290 *
1291 * min_type is the minimum key type to truncate down to. If set to 0, this
1292 * will kill all the items on this inode, including the INODE_ITEM_KEY.
1293 */
1294 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
1295 struct btrfs_root *root,
1296 struct inode *inode,
1297 u64 new_size, u32 min_type)
1298 {
1299 int ret;
1300 struct btrfs_path *path;
1301 struct btrfs_key key;
1302 struct btrfs_key found_key;
1303 u32 found_type;
1304 struct extent_buffer *leaf;
1305 struct btrfs_file_extent_item *fi;
1306 u64 extent_start = 0;
1307 u64 extent_num_bytes = 0;
1308 u64 item_end = 0;
1309 u64 root_gen = 0;
1310 u64 root_owner = 0;
1311 int found_extent;
1312 int del_item;
1313 int pending_del_nr = 0;
1314 int pending_del_slot = 0;
1315 int extent_type = -1;
1316 u64 mask = root->sectorsize - 1;
1317
1318 if (root->ref_cows)
1319 btrfs_drop_extent_cache(inode,
1320 new_size & (~mask), (u64)-1);
1321 path = btrfs_alloc_path();
1322 path->reada = -1;
1323 BUG_ON(!path);
1324
1325 /* FIXME, add redo link to tree so we don't leak on crash */
1326 key.objectid = inode->i_ino;
1327 key.offset = (u64)-1;
1328 key.type = (u8)-1;
1329
1330 btrfs_init_path(path);
1331 search_again:
1332 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1333 if (ret < 0) {
1334 goto error;
1335 }
1336 if (ret > 0) {
1337 /* there are no items in the tree for us to truncate, we're
1338 * done
1339 */
1340 if (path->slots[0] == 0) {
1341 ret = 0;
1342 goto error;
1343 }
1344 path->slots[0]--;
1345 }
1346
1347 while(1) {
1348 fi = NULL;
1349 leaf = path->nodes[0];
1350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1351 found_type = btrfs_key_type(&found_key);
1352
1353 if (found_key.objectid != inode->i_ino)
1354 break;
1355
1356 if (found_type < min_type)
1357 break;
1358
1359 item_end = found_key.offset;
1360 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1361 fi = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_file_extent_item);
1363 extent_type = btrfs_file_extent_type(leaf, fi);
1364 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1365 item_end +=
1366 btrfs_file_extent_num_bytes(leaf, fi);
1367 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1368 struct btrfs_item *item = btrfs_item_nr(leaf,
1369 path->slots[0]);
1370 item_end += btrfs_file_extent_inline_len(leaf,
1371 item);
1372 }
1373 item_end--;
1374 }
1375 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1376 ret = btrfs_csum_truncate(trans, root, path,
1377 new_size);
1378 BUG_ON(ret);
1379 }
1380 if (item_end < new_size) {
1381 if (found_type == BTRFS_DIR_ITEM_KEY) {
1382 found_type = BTRFS_INODE_ITEM_KEY;
1383 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1384 found_type = BTRFS_CSUM_ITEM_KEY;
1385 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1386 found_type = BTRFS_XATTR_ITEM_KEY;
1387 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1388 found_type = BTRFS_INODE_REF_KEY;
1389 } else if (found_type) {
1390 found_type--;
1391 } else {
1392 break;
1393 }
1394 btrfs_set_key_type(&key, found_type);
1395 goto next;
1396 }
1397 if (found_key.offset >= new_size)
1398 del_item = 1;
1399 else
1400 del_item = 0;
1401 found_extent = 0;
1402
1403 /* FIXME, shrink the extent if the ref count is only 1 */
1404 if (found_type != BTRFS_EXTENT_DATA_KEY)
1405 goto delete;
1406
1407 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1408 u64 num_dec;
1409 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1410 if (!del_item) {
1411 u64 orig_num_bytes =
1412 btrfs_file_extent_num_bytes(leaf, fi);
1413 extent_num_bytes = new_size -
1414 found_key.offset + root->sectorsize - 1;
1415 extent_num_bytes = extent_num_bytes &
1416 ~((u64)root->sectorsize - 1);
1417 btrfs_set_file_extent_num_bytes(leaf, fi,
1418 extent_num_bytes);
1419 num_dec = (orig_num_bytes -
1420 extent_num_bytes);
1421 if (root->ref_cows && extent_start != 0)
1422 dec_i_blocks(inode, num_dec);
1423 btrfs_mark_buffer_dirty(leaf);
1424 } else {
1425 extent_num_bytes =
1426 btrfs_file_extent_disk_num_bytes(leaf,
1427 fi);
1428 /* FIXME blocksize != 4096 */
1429 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1430 if (extent_start != 0) {
1431 found_extent = 1;
1432 if (root->ref_cows)
1433 dec_i_blocks(inode, num_dec);
1434 }
1435 if (root->ref_cows) {
1436 root_gen =
1437 btrfs_header_generation(leaf);
1438 }
1439 root_owner = btrfs_header_owner(leaf);
1440 }
1441 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1442 if (!del_item) {
1443 u32 size = new_size - found_key.offset;
1444
1445 if (root->ref_cows) {
1446 dec_i_blocks(inode, item_end + 1 -
1447 found_key.offset - size);
1448 }
1449 size =
1450 btrfs_file_extent_calc_inline_size(size);
1451 ret = btrfs_truncate_item(trans, root, path,
1452 size, 1);
1453 BUG_ON(ret);
1454 } else if (root->ref_cows) {
1455 dec_i_blocks(inode, item_end + 1 -
1456 found_key.offset);
1457 }
1458 }
1459 delete:
1460 if (del_item) {
1461 if (!pending_del_nr) {
1462 /* no pending yet, add ourselves */
1463 pending_del_slot = path->slots[0];
1464 pending_del_nr = 1;
1465 } else if (pending_del_nr &&
1466 path->slots[0] + 1 == pending_del_slot) {
1467 /* hop on the pending chunk */
1468 pending_del_nr++;
1469 pending_del_slot = path->slots[0];
1470 } else {
1471 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1472 }
1473 } else {
1474 break;
1475 }
1476 if (found_extent) {
1477 ret = btrfs_free_extent(trans, root, extent_start,
1478 extent_num_bytes,
1479 root_owner,
1480 root_gen, inode->i_ino,
1481 found_key.offset, 0);
1482 BUG_ON(ret);
1483 }
1484 next:
1485 if (path->slots[0] == 0) {
1486 if (pending_del_nr)
1487 goto del_pending;
1488 btrfs_release_path(root, path);
1489 goto search_again;
1490 }
1491
1492 path->slots[0]--;
1493 if (pending_del_nr &&
1494 path->slots[0] + 1 != pending_del_slot) {
1495 struct btrfs_key debug;
1496 del_pending:
1497 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1498 pending_del_slot);
1499 ret = btrfs_del_items(trans, root, path,
1500 pending_del_slot,
1501 pending_del_nr);
1502 BUG_ON(ret);
1503 pending_del_nr = 0;
1504 btrfs_release_path(root, path);
1505 goto search_again;
1506 }
1507 }
1508 ret = 0;
1509 error:
1510 if (pending_del_nr) {
1511 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1512 pending_del_nr);
1513 }
1514 btrfs_free_path(path);
1515 inode->i_sb->s_dirt = 1;
1516 return ret;
1517 }
1518
1519 /*
1520 * taken from block_truncate_page, but does cow as it zeros out
1521 * any bytes left in the last page in the file.
1522 */
1523 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1524 {
1525 struct inode *inode = mapping->host;
1526 struct btrfs_root *root = BTRFS_I(inode)->root;
1527 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1528 struct btrfs_ordered_extent *ordered;
1529 char *kaddr;
1530 u32 blocksize = root->sectorsize;
1531 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1532 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1533 struct page *page;
1534 int ret = 0;
1535 u64 page_start;
1536 u64 page_end;
1537
1538 if ((offset & (blocksize - 1)) == 0)
1539 goto out;
1540
1541 ret = -ENOMEM;
1542 again:
1543 page = grab_cache_page(mapping, index);
1544 if (!page)
1545 goto out;
1546
1547 page_start = page_offset(page);
1548 page_end = page_start + PAGE_CACHE_SIZE - 1;
1549
1550 if (!PageUptodate(page)) {
1551 ret = btrfs_readpage(NULL, page);
1552 lock_page(page);
1553 if (page->mapping != mapping) {
1554 unlock_page(page);
1555 page_cache_release(page);
1556 goto again;
1557 }
1558 if (!PageUptodate(page)) {
1559 ret = -EIO;
1560 goto out_unlock;
1561 }
1562 }
1563 wait_on_page_writeback(page);
1564
1565 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1566 set_page_extent_mapped(page);
1567
1568 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1569 if (ordered) {
1570 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1571 unlock_page(page);
1572 page_cache_release(page);
1573 btrfs_start_ordered_extent(inode, ordered, 1);
1574 btrfs_put_ordered_extent(ordered);
1575 goto again;
1576 }
1577
1578 btrfs_set_extent_delalloc(inode, page_start, page_end);
1579 ret = 0;
1580 if (offset != PAGE_CACHE_SIZE) {
1581 kaddr = kmap(page);
1582 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1583 flush_dcache_page(page);
1584 kunmap(page);
1585 }
1586 ClearPageChecked(page);
1587 set_page_dirty(page);
1588 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1589
1590 out_unlock:
1591 unlock_page(page);
1592 page_cache_release(page);
1593 out:
1594 return ret;
1595 }
1596
1597 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1598 {
1599 struct inode *inode = dentry->d_inode;
1600 int err;
1601
1602 err = inode_change_ok(inode, attr);
1603 if (err)
1604 return err;
1605
1606 if (S_ISREG(inode->i_mode) &&
1607 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1608 struct btrfs_trans_handle *trans;
1609 struct btrfs_root *root = BTRFS_I(inode)->root;
1610 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1611
1612 u64 mask = root->sectorsize - 1;
1613 u64 hole_start = (inode->i_size + mask) & ~mask;
1614 u64 block_end = (attr->ia_size + mask) & ~mask;
1615 u64 hole_size;
1616 u64 alloc_hint = 0;
1617
1618 if (attr->ia_size <= hole_start)
1619 goto out;
1620
1621 err = btrfs_check_free_space(root, 1, 0);
1622 if (err)
1623 goto fail;
1624
1625 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1626
1627 hole_size = block_end - hole_start;
1628 while(1) {
1629 struct btrfs_ordered_extent *ordered;
1630 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1631
1632 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1633 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
1634 if (ordered) {
1635 unlock_extent(io_tree, hole_start,
1636 block_end - 1, GFP_NOFS);
1637 btrfs_put_ordered_extent(ordered);
1638 } else {
1639 break;
1640 }
1641 }
1642
1643 trans = btrfs_start_transaction(root, 1);
1644 btrfs_set_trans_block_group(trans, inode);
1645 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1646 err = btrfs_drop_extents(trans, root, inode,
1647 hole_start, block_end, hole_start,
1648 &alloc_hint);
1649
1650 if (alloc_hint != EXTENT_MAP_INLINE) {
1651 err = btrfs_insert_file_extent(trans, root,
1652 inode->i_ino,
1653 hole_start, 0, 0,
1654 hole_size, 0);
1655 btrfs_drop_extent_cache(inode, hole_start,
1656 (u64)-1);
1657 btrfs_check_file(root, inode);
1658 }
1659 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1660 btrfs_end_transaction(trans, root);
1661 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1662 if (err)
1663 return err;
1664 }
1665 out:
1666 err = inode_setattr(inode, attr);
1667
1668 if (!err && ((attr->ia_valid & ATTR_MODE)))
1669 err = btrfs_acl_chmod(inode);
1670 fail:
1671 return err;
1672 }
1673
1674 void btrfs_delete_inode(struct inode *inode)
1675 {
1676 struct btrfs_trans_handle *trans;
1677 struct btrfs_root *root = BTRFS_I(inode)->root;
1678 unsigned long nr;
1679 int ret;
1680
1681 truncate_inode_pages(&inode->i_data, 0);
1682 if (is_bad_inode(inode)) {
1683 btrfs_orphan_del(NULL, inode);
1684 goto no_delete;
1685 }
1686 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1687
1688 btrfs_i_size_write(inode, 0);
1689 trans = btrfs_start_transaction(root, 1);
1690
1691 btrfs_set_trans_block_group(trans, inode);
1692 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
1693 if (ret) {
1694 btrfs_orphan_del(NULL, inode);
1695 goto no_delete_lock;
1696 }
1697
1698 btrfs_orphan_del(trans, inode);
1699
1700 nr = trans->blocks_used;
1701 clear_inode(inode);
1702
1703 btrfs_end_transaction(trans, root);
1704 btrfs_btree_balance_dirty(root, nr);
1705 return;
1706
1707 no_delete_lock:
1708 nr = trans->blocks_used;
1709 btrfs_end_transaction(trans, root);
1710 btrfs_btree_balance_dirty(root, nr);
1711 no_delete:
1712 clear_inode(inode);
1713 }
1714
1715 /*
1716 * this returns the key found in the dir entry in the location pointer.
1717 * If no dir entries were found, location->objectid is 0.
1718 */
1719 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1720 struct btrfs_key *location)
1721 {
1722 const char *name = dentry->d_name.name;
1723 int namelen = dentry->d_name.len;
1724 struct btrfs_dir_item *di;
1725 struct btrfs_path *path;
1726 struct btrfs_root *root = BTRFS_I(dir)->root;
1727 int ret = 0;
1728
1729 path = btrfs_alloc_path();
1730 BUG_ON(!path);
1731
1732 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1733 namelen, 0);
1734 if (IS_ERR(di))
1735 ret = PTR_ERR(di);
1736 if (!di || IS_ERR(di)) {
1737 goto out_err;
1738 }
1739 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1740 out:
1741 btrfs_free_path(path);
1742 return ret;
1743 out_err:
1744 location->objectid = 0;
1745 goto out;
1746 }
1747
1748 /*
1749 * when we hit a tree root in a directory, the btrfs part of the inode
1750 * needs to be changed to reflect the root directory of the tree root. This
1751 * is kind of like crossing a mount point.
1752 */
1753 static int fixup_tree_root_location(struct btrfs_root *root,
1754 struct btrfs_key *location,
1755 struct btrfs_root **sub_root,
1756 struct dentry *dentry)
1757 {
1758 struct btrfs_root_item *ri;
1759
1760 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1761 return 0;
1762 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1763 return 0;
1764
1765 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1766 dentry->d_name.name,
1767 dentry->d_name.len);
1768 if (IS_ERR(*sub_root))
1769 return PTR_ERR(*sub_root);
1770
1771 ri = &(*sub_root)->root_item;
1772 location->objectid = btrfs_root_dirid(ri);
1773 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1774 location->offset = 0;
1775
1776 return 0;
1777 }
1778
1779 static noinline void init_btrfs_i(struct inode *inode)
1780 {
1781 struct btrfs_inode *bi = BTRFS_I(inode);
1782
1783 bi->i_acl = NULL;
1784 bi->i_default_acl = NULL;
1785
1786 bi->generation = 0;
1787 bi->last_trans = 0;
1788 bi->logged_trans = 0;
1789 bi->delalloc_bytes = 0;
1790 bi->disk_i_size = 0;
1791 bi->flags = 0;
1792 bi->index_cnt = (u64)-1;
1793 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1794 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1795 inode->i_mapping, GFP_NOFS);
1796 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1797 inode->i_mapping, GFP_NOFS);
1798 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
1799 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1800 mutex_init(&BTRFS_I(inode)->csum_mutex);
1801 mutex_init(&BTRFS_I(inode)->extent_mutex);
1802 mutex_init(&BTRFS_I(inode)->log_mutex);
1803 }
1804
1805 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1806 {
1807 struct btrfs_iget_args *args = p;
1808 inode->i_ino = args->ino;
1809 init_btrfs_i(inode);
1810 BTRFS_I(inode)->root = args->root;
1811 return 0;
1812 }
1813
1814 static int btrfs_find_actor(struct inode *inode, void *opaque)
1815 {
1816 struct btrfs_iget_args *args = opaque;
1817 return (args->ino == inode->i_ino &&
1818 args->root == BTRFS_I(inode)->root);
1819 }
1820
1821 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1822 u64 root_objectid)
1823 {
1824 struct btrfs_iget_args args;
1825 args.ino = objectid;
1826 args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1827
1828 if (!args.root)
1829 return NULL;
1830
1831 return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1832 }
1833
1834 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1835 struct btrfs_root *root)
1836 {
1837 struct inode *inode;
1838 struct btrfs_iget_args args;
1839 args.ino = objectid;
1840 args.root = root;
1841
1842 inode = iget5_locked(s, objectid, btrfs_find_actor,
1843 btrfs_init_locked_inode,
1844 (void *)&args);
1845 return inode;
1846 }
1847
1848 /* Get an inode object given its location and corresponding root.
1849 * Returns in *is_new if the inode was read from disk
1850 */
1851 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
1852 struct btrfs_root *root, int *is_new)
1853 {
1854 struct inode *inode;
1855
1856 inode = btrfs_iget_locked(s, location->objectid, root);
1857 if (!inode)
1858 return ERR_PTR(-EACCES);
1859
1860 if (inode->i_state & I_NEW) {
1861 BTRFS_I(inode)->root = root;
1862 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
1863 btrfs_read_locked_inode(inode);
1864 unlock_new_inode(inode);
1865 if (is_new)
1866 *is_new = 1;
1867 } else {
1868 if (is_new)
1869 *is_new = 0;
1870 }
1871
1872 return inode;
1873 }
1874
1875 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1876 struct nameidata *nd)
1877 {
1878 struct inode * inode;
1879 struct btrfs_inode *bi = BTRFS_I(dir);
1880 struct btrfs_root *root = bi->root;
1881 struct btrfs_root *sub_root = root;
1882 struct btrfs_key location;
1883 int ret, new, do_orphan = 0;
1884
1885 if (dentry->d_name.len > BTRFS_NAME_LEN)
1886 return ERR_PTR(-ENAMETOOLONG);
1887
1888 ret = btrfs_inode_by_name(dir, dentry, &location);
1889
1890 if (ret < 0)
1891 return ERR_PTR(ret);
1892
1893 inode = NULL;
1894 if (location.objectid) {
1895 ret = fixup_tree_root_location(root, &location, &sub_root,
1896 dentry);
1897 if (ret < 0)
1898 return ERR_PTR(ret);
1899 if (ret > 0)
1900 return ERR_PTR(-ENOENT);
1901 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
1902 if (IS_ERR(inode))
1903 return ERR_CAST(inode);
1904
1905 /* the inode and parent dir are two different roots */
1906 if (new && root != sub_root) {
1907 igrab(inode);
1908 sub_root->inode = inode;
1909 do_orphan = 1;
1910 }
1911 }
1912
1913 if (unlikely(do_orphan))
1914 btrfs_orphan_cleanup(sub_root);
1915
1916 return d_splice_alias(inode, dentry);
1917 }
1918
1919 static unsigned char btrfs_filetype_table[] = {
1920 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1921 };
1922
1923 static int btrfs_real_readdir(struct file *filp, void *dirent,
1924 filldir_t filldir)
1925 {
1926 struct inode *inode = filp->f_dentry->d_inode;
1927 struct btrfs_root *root = BTRFS_I(inode)->root;
1928 struct btrfs_item *item;
1929 struct btrfs_dir_item *di;
1930 struct btrfs_key key;
1931 struct btrfs_key found_key;
1932 struct btrfs_path *path;
1933 int ret;
1934 u32 nritems;
1935 struct extent_buffer *leaf;
1936 int slot;
1937 int advance;
1938 unsigned char d_type;
1939 int over = 0;
1940 u32 di_cur;
1941 u32 di_total;
1942 u32 di_len;
1943 int key_type = BTRFS_DIR_INDEX_KEY;
1944 char tmp_name[32];
1945 char *name_ptr;
1946 int name_len;
1947
1948 /* FIXME, use a real flag for deciding about the key type */
1949 if (root->fs_info->tree_root == root)
1950 key_type = BTRFS_DIR_ITEM_KEY;
1951
1952 /* special case for "." */
1953 if (filp->f_pos == 0) {
1954 over = filldir(dirent, ".", 1,
1955 1, inode->i_ino,
1956 DT_DIR);
1957 if (over)
1958 return 0;
1959 filp->f_pos = 1;
1960 }
1961 /* special case for .., just use the back ref */
1962 if (filp->f_pos == 1) {
1963 u64 pino = parent_ino(filp->f_path.dentry);
1964 over = filldir(dirent, "..", 2,
1965 2, pino, DT_DIR);
1966 if (over)
1967 return 0;
1968 filp->f_pos = 2;
1969 }
1970
1971 path = btrfs_alloc_path();
1972 path->reada = 2;
1973
1974 btrfs_set_key_type(&key, key_type);
1975 key.offset = filp->f_pos;
1976 key.objectid = inode->i_ino;
1977
1978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1979 if (ret < 0)
1980 goto err;
1981 advance = 0;
1982
1983 while (1) {
1984 leaf = path->nodes[0];
1985 nritems = btrfs_header_nritems(leaf);
1986 slot = path->slots[0];
1987 if (advance || slot >= nritems) {
1988 if (slot >= nritems - 1) {
1989 ret = btrfs_next_leaf(root, path);
1990 if (ret)
1991 break;
1992 leaf = path->nodes[0];
1993 nritems = btrfs_header_nritems(leaf);
1994 slot = path->slots[0];
1995 } else {
1996 slot++;
1997 path->slots[0]++;
1998 }
1999 }
2000 advance = 1;
2001 item = btrfs_item_nr(leaf, slot);
2002 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2003
2004 if (found_key.objectid != key.objectid)
2005 break;
2006 if (btrfs_key_type(&found_key) != key_type)
2007 break;
2008 if (found_key.offset < filp->f_pos)
2009 continue;
2010
2011 filp->f_pos = found_key.offset;
2012
2013 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
2014 di_cur = 0;
2015 di_total = btrfs_item_size(leaf, item);
2016
2017 while (di_cur < di_total) {
2018 struct btrfs_key location;
2019
2020 name_len = btrfs_dir_name_len(leaf, di);
2021 if (name_len <= sizeof(tmp_name)) {
2022 name_ptr = tmp_name;
2023 } else {
2024 name_ptr = kmalloc(name_len, GFP_NOFS);
2025 if (!name_ptr) {
2026 ret = -ENOMEM;
2027 goto err;
2028 }
2029 }
2030 read_extent_buffer(leaf, name_ptr,
2031 (unsigned long)(di + 1), name_len);
2032
2033 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
2034 btrfs_dir_item_key_to_cpu(leaf, di, &location);
2035 over = filldir(dirent, name_ptr, name_len,
2036 found_key.offset, location.objectid,
2037 d_type);
2038
2039 if (name_ptr != tmp_name)
2040 kfree(name_ptr);
2041
2042 if (over)
2043 goto nopos;
2044
2045 di_len = btrfs_dir_name_len(leaf, di) +
2046 btrfs_dir_data_len(leaf, di) + sizeof(*di);
2047 di_cur += di_len;
2048 di = (struct btrfs_dir_item *)((char *)di + di_len);
2049 }
2050 }
2051
2052 /* Reached end of directory/root. Bump pos past the last item. */
2053 if (key_type == BTRFS_DIR_INDEX_KEY)
2054 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
2055 else
2056 filp->f_pos++;
2057 nopos:
2058 ret = 0;
2059 err:
2060 btrfs_free_path(path);
2061 return ret;
2062 }
2063
2064 /* Kernels earlier than 2.6.28 still have the NFS deadlock where nfsd
2065 will call the file system's ->lookup() method from within its
2066 filldir callback, which in turn was called from the file system's
2067 ->readdir() method. And will deadlock for many file systems. */
2068 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
2069
2070 struct nfshack_dirent {
2071 u64 ino;
2072 loff_t offset;
2073 int namlen;
2074 unsigned int d_type;
2075 char name[];
2076 };
2077
2078 struct nfshack_readdir {
2079 char *dirent;
2080 size_t used;
2081 int full;
2082 };
2083
2084
2085
2086 static int btrfs_nfshack_filldir(void *__buf, const char *name, int namlen,
2087 loff_t offset, u64 ino, unsigned int d_type)
2088 {
2089 struct nfshack_readdir *buf = __buf;
2090 struct nfshack_dirent *de = (void *)(buf->dirent + buf->used);
2091 unsigned int reclen;
2092
2093 reclen = ALIGN(sizeof(struct nfshack_dirent) + namlen, sizeof(u64));
2094 if (buf->used + reclen > PAGE_SIZE) {
2095 buf->full = 1;
2096 return -EINVAL;
2097 }
2098
2099 de->namlen = namlen;
2100 de->offset = offset;
2101 de->ino = ino;
2102 de->d_type = d_type;
2103 memcpy(de->name, name, namlen);
2104 buf->used += reclen;
2105
2106 return 0;
2107 }
2108
2109 static int btrfs_nfshack_readdir(struct file *file, void *dirent,
2110 filldir_t filldir)
2111 {
2112 struct nfshack_readdir buf;
2113 struct nfshack_dirent *de;
2114 int err;
2115 int size;
2116 loff_t offset;
2117
2118 buf.dirent = (void *)__get_free_page(GFP_KERNEL);
2119 if (!buf.dirent)
2120 return -ENOMEM;
2121
2122 offset = file->f_pos;
2123
2124 do {
2125 unsigned int reclen;
2126
2127 buf.used = 0;
2128 buf.full = 0;
2129 err = btrfs_real_readdir(file, &buf, btrfs_nfshack_filldir);
2130 if (err)
2131 break;
2132
2133 size = buf.used;
2134
2135 if (!size)
2136 break;
2137
2138 de = (struct nfshack_dirent *)buf.dirent;
2139 while (size > 0) {
2140 offset = de->offset;
2141
2142 if (filldir(dirent, de->name, de->namlen, de->offset,
2143 de->ino, de->d_type))
2144 goto done;
2145 offset = file->f_pos;
2146
2147 reclen = ALIGN(sizeof(*de) + de->namlen,
2148 sizeof(u64));
2149 size -= reclen;
2150 de = (struct nfshack_dirent *)((char *)de + reclen);
2151 }
2152 } while (buf.full);
2153
2154 done:
2155 free_page((unsigned long)buf.dirent);
2156 file->f_pos = offset;
2157
2158 return err;
2159 }
2160 #endif
2161
2162 int btrfs_write_inode(struct inode *inode, int wait)
2163 {
2164 struct btrfs_root *root = BTRFS_I(inode)->root;
2165 struct btrfs_trans_handle *trans;
2166 int ret = 0;
2167
2168 if (root->fs_info->closing > 1)
2169 return 0;
2170
2171 if (wait) {
2172 trans = btrfs_join_transaction(root, 1);
2173 btrfs_set_trans_block_group(trans, inode);
2174 ret = btrfs_commit_transaction(trans, root);
2175 }
2176 return ret;
2177 }
2178
2179 /*
2180 * This is somewhat expensive, updating the tree every time the
2181 * inode changes. But, it is most likely to find the inode in cache.
2182 * FIXME, needs more benchmarking...there are no reasons other than performance
2183 * to keep or drop this code.
2184 */
2185 void btrfs_dirty_inode(struct inode *inode)
2186 {
2187 struct btrfs_root *root = BTRFS_I(inode)->root;
2188 struct btrfs_trans_handle *trans;
2189
2190 trans = btrfs_join_transaction(root, 1);
2191 btrfs_set_trans_block_group(trans, inode);
2192 btrfs_update_inode(trans, root, inode);
2193 btrfs_end_transaction(trans, root);
2194 }
2195
2196 static int btrfs_set_inode_index_count(struct inode *inode)
2197 {
2198 struct btrfs_root *root = BTRFS_I(inode)->root;
2199 struct btrfs_key key, found_key;
2200 struct btrfs_path *path;
2201 struct extent_buffer *leaf;
2202 int ret;
2203
2204 key.objectid = inode->i_ino;
2205 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
2206 key.offset = (u64)-1;
2207
2208 path = btrfs_alloc_path();
2209 if (!path)
2210 return -ENOMEM;
2211
2212 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2213 if (ret < 0)
2214 goto out;
2215 /* FIXME: we should be able to handle this */
2216 if (ret == 0)
2217 goto out;
2218 ret = 0;
2219
2220 /*
2221 * MAGIC NUMBER EXPLANATION:
2222 * since we search a directory based on f_pos we have to start at 2
2223 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
2224 * else has to start at 2
2225 */
2226 if (path->slots[0] == 0) {
2227 BTRFS_I(inode)->index_cnt = 2;
2228 goto out;
2229 }
2230
2231 path->slots[0]--;
2232
2233 leaf = path->nodes[0];
2234 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2235
2236 if (found_key.objectid != inode->i_ino ||
2237 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
2238 BTRFS_I(inode)->index_cnt = 2;
2239 goto out;
2240 }
2241
2242 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
2243 out:
2244 btrfs_free_path(path);
2245 return ret;
2246 }
2247
2248 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
2249 u64 *index)
2250 {
2251 int ret = 0;
2252
2253 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
2254 ret = btrfs_set_inode_index_count(dir);
2255 if (ret)
2256 return ret;
2257 }
2258
2259 *index = BTRFS_I(dir)->index_cnt;
2260 BTRFS_I(dir)->index_cnt++;
2261
2262 return ret;
2263 }
2264
2265 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
2266 struct btrfs_root *root,
2267 struct inode *dir,
2268 const char *name, int name_len,
2269 u64 ref_objectid,
2270 u64 objectid,
2271 struct btrfs_block_group_cache *group,
2272 int mode, u64 *index)
2273 {
2274 struct inode *inode;
2275 struct btrfs_inode_item *inode_item;
2276 struct btrfs_block_group_cache *new_inode_group;
2277 struct btrfs_key *location;
2278 struct btrfs_path *path;
2279 struct btrfs_inode_ref *ref;
2280 struct btrfs_key key[2];
2281 u32 sizes[2];
2282 unsigned long ptr;
2283 int ret;
2284 int owner;
2285
2286 path = btrfs_alloc_path();
2287 BUG_ON(!path);
2288
2289 inode = new_inode(root->fs_info->sb);
2290 if (!inode)
2291 return ERR_PTR(-ENOMEM);
2292
2293 if (dir) {
2294 ret = btrfs_set_inode_index(dir, inode, index);
2295 if (ret)
2296 return ERR_PTR(ret);
2297 }
2298 /*
2299 * index_cnt is ignored for everything but a dir,
2300 * btrfs_get_inode_index_count has an explanation for the magic
2301 * number
2302 */
2303 init_btrfs_i(inode);
2304 BTRFS_I(inode)->index_cnt = 2;
2305 BTRFS_I(inode)->root = root;
2306 BTRFS_I(inode)->generation = trans->transid;
2307
2308 if (mode & S_IFDIR)
2309 owner = 0;
2310 else
2311 owner = 1;
2312 new_inode_group = btrfs_find_block_group(root, group, 0,
2313 BTRFS_BLOCK_GROUP_METADATA, owner);
2314 if (!new_inode_group) {
2315 printk("find_block group failed\n");
2316 new_inode_group = group;
2317 }
2318 BTRFS_I(inode)->block_group = new_inode_group;
2319
2320 key[0].objectid = objectid;
2321 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
2322 key[0].offset = 0;
2323
2324 key[1].objectid = objectid;
2325 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
2326 key[1].offset = ref_objectid;
2327
2328 sizes[0] = sizeof(struct btrfs_inode_item);
2329 sizes[1] = name_len + sizeof(*ref);
2330
2331 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
2332 if (ret != 0)
2333 goto fail;
2334
2335 if (objectid > root->highest_inode)
2336 root->highest_inode = objectid;
2337
2338 inode->i_uid = current->fsuid;
2339 inode->i_gid = current->fsgid;
2340 inode->i_mode = mode;
2341 inode->i_ino = objectid;
2342 inode->i_blocks = 0;
2343 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2344 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2345 struct btrfs_inode_item);
2346 fill_inode_item(trans, path->nodes[0], inode_item, inode);
2347
2348 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
2349 struct btrfs_inode_ref);
2350 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
2351 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
2352 ptr = (unsigned long)(ref + 1);
2353 write_extent_buffer(path->nodes[0], name, ptr, name_len);
2354
2355 btrfs_mark_buffer_dirty(path->nodes[0]);
2356 btrfs_free_path(path);
2357
2358 location = &BTRFS_I(inode)->location;
2359 location->objectid = objectid;
2360 location->offset = 0;
2361 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2362
2363 insert_inode_hash(inode);
2364 return inode;
2365 fail:
2366 if (dir)
2367 BTRFS_I(dir)->index_cnt--;
2368 btrfs_free_path(path);
2369 return ERR_PTR(ret);
2370 }
2371
2372 static inline u8 btrfs_inode_type(struct inode *inode)
2373 {
2374 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2375 }
2376
2377 int btrfs_add_link(struct btrfs_trans_handle *trans,
2378 struct inode *parent_inode, struct inode *inode,
2379 const char *name, int name_len, int add_backref, u64 index)
2380 {
2381 int ret;
2382 struct btrfs_key key;
2383 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
2384
2385 key.objectid = inode->i_ino;
2386 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2387 key.offset = 0;
2388
2389 ret = btrfs_insert_dir_item(trans, root, name, name_len,
2390 parent_inode->i_ino,
2391 &key, btrfs_inode_type(inode),
2392 index);
2393 if (ret == 0) {
2394 if (add_backref) {
2395 ret = btrfs_insert_inode_ref(trans, root,
2396 name, name_len,
2397 inode->i_ino,
2398 parent_inode->i_ino,
2399 index);
2400 }
2401 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2402 name_len * 2);
2403 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2404 ret = btrfs_update_inode(trans, root, parent_inode);
2405 }
2406 return ret;
2407 }
2408
2409 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2410 struct dentry *dentry, struct inode *inode,
2411 int backref, u64 index)
2412 {
2413 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2414 inode, dentry->d_name.name,
2415 dentry->d_name.len, backref, index);
2416 if (!err) {
2417 d_instantiate(dentry, inode);
2418 return 0;
2419 }
2420 if (err > 0)
2421 err = -EEXIST;
2422 return err;
2423 }
2424
2425 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2426 int mode, dev_t rdev)
2427 {
2428 struct btrfs_trans_handle *trans;
2429 struct btrfs_root *root = BTRFS_I(dir)->root;
2430 struct inode *inode = NULL;
2431 int err;
2432 int drop_inode = 0;
2433 u64 objectid;
2434 unsigned long nr = 0;
2435 u64 index = 0;
2436
2437 if (!new_valid_dev(rdev))
2438 return -EINVAL;
2439
2440 err = btrfs_check_free_space(root, 1, 0);
2441 if (err)
2442 goto fail;
2443
2444 trans = btrfs_start_transaction(root, 1);
2445 btrfs_set_trans_block_group(trans, dir);
2446
2447 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2448 if (err) {
2449 err = -ENOSPC;
2450 goto out_unlock;
2451 }
2452
2453 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2454 dentry->d_name.len,
2455 dentry->d_parent->d_inode->i_ino, objectid,
2456 BTRFS_I(dir)->block_group, mode, &index);
2457 err = PTR_ERR(inode);
2458 if (IS_ERR(inode))
2459 goto out_unlock;
2460
2461 err = btrfs_init_acl(inode, dir);
2462 if (err) {
2463 drop_inode = 1;
2464 goto out_unlock;
2465 }
2466
2467 btrfs_set_trans_block_group(trans, inode);
2468 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2469 if (err)
2470 drop_inode = 1;
2471 else {
2472 inode->i_op = &btrfs_special_inode_operations;
2473 init_special_inode(inode, inode->i_mode, rdev);
2474 btrfs_update_inode(trans, root, inode);
2475 }
2476 dir->i_sb->s_dirt = 1;
2477 btrfs_update_inode_block_group(trans, inode);
2478 btrfs_update_inode_block_group(trans, dir);
2479 out_unlock:
2480 nr = trans->blocks_used;
2481 btrfs_end_transaction_throttle(trans, root);
2482 fail:
2483 if (drop_inode) {
2484 inode_dec_link_count(inode);
2485 iput(inode);
2486 }
2487 btrfs_btree_balance_dirty(root, nr);
2488 return err;
2489 }
2490
2491 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2492 int mode, struct nameidata *nd)
2493 {
2494 struct btrfs_trans_handle *trans;
2495 struct btrfs_root *root = BTRFS_I(dir)->root;
2496 struct inode *inode = NULL;
2497 int err;
2498 int drop_inode = 0;
2499 unsigned long nr = 0;
2500 u64 objectid;
2501 u64 index = 0;
2502
2503 err = btrfs_check_free_space(root, 1, 0);
2504 if (err)
2505 goto fail;
2506 trans = btrfs_start_transaction(root, 1);
2507 btrfs_set_trans_block_group(trans, dir);
2508
2509 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2510 if (err) {
2511 err = -ENOSPC;
2512 goto out_unlock;
2513 }
2514
2515 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2516 dentry->d_name.len,
2517 dentry->d_parent->d_inode->i_ino,
2518 objectid, BTRFS_I(dir)->block_group, mode,
2519 &index);
2520 err = PTR_ERR(inode);
2521 if (IS_ERR(inode))
2522 goto out_unlock;
2523
2524 err = btrfs_init_acl(inode, dir);
2525 if (err) {
2526 drop_inode = 1;
2527 goto out_unlock;
2528 }
2529
2530 btrfs_set_trans_block_group(trans, inode);
2531 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
2532 if (err)
2533 drop_inode = 1;
2534 else {
2535 inode->i_mapping->a_ops = &btrfs_aops;
2536 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2537 inode->i_fop = &btrfs_file_operations;
2538 inode->i_op = &btrfs_file_inode_operations;
2539 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2540 }
2541 dir->i_sb->s_dirt = 1;
2542 btrfs_update_inode_block_group(trans, inode);
2543 btrfs_update_inode_block_group(trans, dir);
2544 out_unlock:
2545 nr = trans->blocks_used;
2546 btrfs_end_transaction_throttle(trans, root);
2547 fail:
2548 if (drop_inode) {
2549 inode_dec_link_count(inode);
2550 iput(inode);
2551 }
2552 btrfs_btree_balance_dirty(root, nr);
2553 return err;
2554 }
2555
2556 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2557 struct dentry *dentry)
2558 {
2559 struct btrfs_trans_handle *trans;
2560 struct btrfs_root *root = BTRFS_I(dir)->root;
2561 struct inode *inode = old_dentry->d_inode;
2562 u64 index;
2563 unsigned long nr = 0;
2564 int err;
2565 int drop_inode = 0;
2566
2567 if (inode->i_nlink == 0)
2568 return -ENOENT;
2569
2570 btrfs_inc_nlink(inode);
2571 err = btrfs_check_free_space(root, 1, 0);
2572 if (err)
2573 goto fail;
2574 err = btrfs_set_inode_index(dir, inode, &index);
2575 if (err)
2576 goto fail;
2577
2578 trans = btrfs_start_transaction(root, 1);
2579
2580 btrfs_set_trans_block_group(trans, dir);
2581 atomic_inc(&inode->i_count);
2582
2583 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
2584
2585 if (err)
2586 drop_inode = 1;
2587
2588 dir->i_sb->s_dirt = 1;
2589 btrfs_update_inode_block_group(trans, dir);
2590 err = btrfs_update_inode(trans, root, inode);
2591
2592 if (err)
2593 drop_inode = 1;
2594
2595 nr = trans->blocks_used;
2596 btrfs_end_transaction_throttle(trans, root);
2597 fail:
2598 if (drop_inode) {
2599 inode_dec_link_count(inode);
2600 iput(inode);
2601 }
2602 btrfs_btree_balance_dirty(root, nr);
2603 return err;
2604 }
2605
2606 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2607 {
2608 struct inode *inode = NULL;
2609 struct btrfs_trans_handle *trans;
2610 struct btrfs_root *root = BTRFS_I(dir)->root;
2611 int err = 0;
2612 int drop_on_err = 0;
2613 u64 objectid = 0;
2614 u64 index = 0;
2615 unsigned long nr = 1;
2616
2617 err = btrfs_check_free_space(root, 1, 0);
2618 if (err)
2619 goto out_unlock;
2620
2621 trans = btrfs_start_transaction(root, 1);
2622 btrfs_set_trans_block_group(trans, dir);
2623
2624 if (IS_ERR(trans)) {
2625 err = PTR_ERR(trans);
2626 goto out_unlock;
2627 }
2628
2629 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2630 if (err) {
2631 err = -ENOSPC;
2632 goto out_unlock;
2633 }
2634
2635 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
2636 dentry->d_name.len,
2637 dentry->d_parent->d_inode->i_ino, objectid,
2638 BTRFS_I(dir)->block_group, S_IFDIR | mode,
2639 &index);
2640 if (IS_ERR(inode)) {
2641 err = PTR_ERR(inode);
2642 goto out_fail;
2643 }
2644
2645 drop_on_err = 1;
2646
2647 err = btrfs_init_acl(inode, dir);
2648 if (err)
2649 goto out_fail;
2650
2651 inode->i_op = &btrfs_dir_inode_operations;
2652 inode->i_fop = &btrfs_dir_file_operations;
2653 btrfs_set_trans_block_group(trans, inode);
2654
2655 btrfs_i_size_write(inode, 0);
2656 err = btrfs_update_inode(trans, root, inode);
2657 if (err)
2658 goto out_fail;
2659
2660 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
2661 inode, dentry->d_name.name,
2662 dentry->d_name.len, 0, index);
2663 if (err)
2664 goto out_fail;
2665
2666 d_instantiate(dentry, inode);
2667 drop_on_err = 0;
2668 dir->i_sb->s_dirt = 1;
2669 btrfs_update_inode_block_group(trans, inode);
2670 btrfs_update_inode_block_group(trans, dir);
2671
2672 out_fail:
2673 nr = trans->blocks_used;
2674 btrfs_end_transaction_throttle(trans, root);
2675
2676 out_unlock:
2677 if (drop_on_err)
2678 iput(inode);
2679 btrfs_btree_balance_dirty(root, nr);
2680 return err;
2681 }
2682
2683 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2684 struct extent_map *existing,
2685 struct extent_map *em,
2686 u64 map_start, u64 map_len)
2687 {
2688 u64 start_diff;
2689
2690 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2691 start_diff = map_start - em->start;
2692 em->start = map_start;
2693 em->len = map_len;
2694 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2695 em->block_start += start_diff;
2696 return add_extent_mapping(em_tree, em);
2697 }
2698
2699 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2700 size_t pg_offset, u64 start, u64 len,
2701 int create)
2702 {
2703 int ret;
2704 int err = 0;
2705 u64 bytenr;
2706 u64 extent_start = 0;
2707 u64 extent_end = 0;
2708 u64 objectid = inode->i_ino;
2709 u32 found_type;
2710 struct btrfs_path *path = NULL;
2711 struct btrfs_root *root = BTRFS_I(inode)->root;
2712 struct btrfs_file_extent_item *item;
2713 struct extent_buffer *leaf;
2714 struct btrfs_key found_key;
2715 struct extent_map *em = NULL;
2716 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2717 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2718 struct btrfs_trans_handle *trans = NULL;
2719
2720 again:
2721 spin_lock(&em_tree->lock);
2722 em = lookup_extent_mapping(em_tree, start, len);
2723 if (em)
2724 em->bdev = root->fs_info->fs_devices->latest_bdev;
2725 spin_unlock(&em_tree->lock);
2726
2727 if (em) {
2728 if (em->start > start || em->start + em->len <= start)
2729 free_extent_map(em);
2730 else if (em->block_start == EXTENT_MAP_INLINE && page)
2731 free_extent_map(em);
2732 else
2733 goto out;
2734 }
2735 em = alloc_extent_map(GFP_NOFS);
2736 if (!em) {
2737 err = -ENOMEM;
2738 goto out;
2739 }
2740 em->bdev = root->fs_info->fs_devices->latest_bdev;
2741 em->start = EXTENT_MAP_HOLE;
2742 em->len = (u64)-1;
2743
2744 if (!path) {
2745 path = btrfs_alloc_path();
2746 BUG_ON(!path);
2747 }
2748
2749 ret = btrfs_lookup_file_extent(trans, root, path,
2750 objectid, start, trans != NULL);
2751 if (ret < 0) {
2752 err = ret;
2753 goto out;
2754 }
2755
2756 if (ret != 0) {
2757 if (path->slots[0] == 0)
2758 goto not_found;
2759 path->slots[0]--;
2760 }
2761
2762 leaf = path->nodes[0];
2763 item = btrfs_item_ptr(leaf, path->slots[0],
2764 struct btrfs_file_extent_item);
2765 /* are we inside the extent that was found? */
2766 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2767 found_type = btrfs_key_type(&found_key);
2768 if (found_key.objectid != objectid ||
2769 found_type != BTRFS_EXTENT_DATA_KEY) {
2770 goto not_found;
2771 }
2772
2773 found_type = btrfs_file_extent_type(leaf, item);
2774 extent_start = found_key.offset;
2775 if (found_type == BTRFS_FILE_EXTENT_REG) {
2776 extent_end = extent_start +
2777 btrfs_file_extent_num_bytes(leaf, item);
2778 err = 0;
2779 if (start < extent_start || start >= extent_end) {
2780 em->start = start;
2781 if (start < extent_start) {
2782 if (start + len <= extent_start)
2783 goto not_found;
2784 em->len = extent_end - extent_start;
2785 } else {
2786 em->len = len;
2787 }
2788 goto not_found_em;
2789 }
2790 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2791 if (bytenr == 0) {
2792 em->start = extent_start;
2793 em->len = extent_end - extent_start;
2794 em->block_start = EXTENT_MAP_HOLE;
2795 goto insert;
2796 }
2797 bytenr += btrfs_file_extent_offset(leaf, item);
2798 em->block_start = bytenr;
2799 em->start = extent_start;
2800 em->len = extent_end - extent_start;
2801 goto insert;
2802 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2803 u64 page_start;
2804 unsigned long ptr;
2805 char *map;
2806 size_t size;
2807 size_t extent_offset;
2808 size_t copy_size;
2809
2810 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2811 path->slots[0]));
2812 extent_end = (extent_start + size + root->sectorsize - 1) &
2813 ~((u64)root->sectorsize - 1);
2814 if (start < extent_start || start >= extent_end) {
2815 em->start = start;
2816 if (start < extent_start) {
2817 if (start + len <= extent_start)
2818 goto not_found;
2819 em->len = extent_end - extent_start;
2820 } else {
2821 em->len = len;
2822 }
2823 goto not_found_em;
2824 }
2825 em->block_start = EXTENT_MAP_INLINE;
2826
2827 if (!page) {
2828 em->start = extent_start;
2829 em->len = size;
2830 goto out;
2831 }
2832
2833 page_start = page_offset(page) + pg_offset;
2834 extent_offset = page_start - extent_start;
2835 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2836 size - extent_offset);
2837 em->start = extent_start + extent_offset;
2838 em->len = (copy_size + root->sectorsize - 1) &
2839 ~((u64)root->sectorsize - 1);
2840 map = kmap(page);
2841 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2842 if (create == 0 && !PageUptodate(page)) {
2843 read_extent_buffer(leaf, map + pg_offset, ptr,
2844 copy_size);
2845 flush_dcache_page(page);
2846 } else if (create && PageUptodate(page)) {
2847 if (!trans) {
2848 kunmap(page);
2849 free_extent_map(em);
2850 em = NULL;
2851 btrfs_release_path(root, path);
2852 trans = btrfs_join_transaction(root, 1);
2853 goto again;
2854 }
2855 write_extent_buffer(leaf, map + pg_offset, ptr,
2856 copy_size);
2857 btrfs_mark_buffer_dirty(leaf);
2858 }
2859 kunmap(page);
2860 set_extent_uptodate(io_tree, em->start,
2861 extent_map_end(em) - 1, GFP_NOFS);
2862 goto insert;
2863 } else {
2864 printk("unkknown found_type %d\n", found_type);
2865 WARN_ON(1);
2866 }
2867 not_found:
2868 em->start = start;
2869 em->len = len;
2870 not_found_em:
2871 em->block_start = EXTENT_MAP_HOLE;
2872 insert:
2873 btrfs_release_path(root, path);
2874 if (em->start > start || extent_map_end(em) <= start) {
2875 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2876 err = -EIO;
2877 goto out;
2878 }
2879
2880 err = 0;
2881 spin_lock(&em_tree->lock);
2882 ret = add_extent_mapping(em_tree, em);
2883 /* it is possible that someone inserted the extent into the tree
2884 * while we had the lock dropped. It is also possible that
2885 * an overlapping map exists in the tree
2886 */
2887 if (ret == -EEXIST) {
2888 struct extent_map *existing;
2889
2890 ret = 0;
2891
2892 existing = lookup_extent_mapping(em_tree, start, len);
2893 if (existing && (existing->start > start ||
2894 existing->start + existing->len <= start)) {
2895 free_extent_map(existing);
2896 existing = NULL;
2897 }
2898 if (!existing) {
2899 existing = lookup_extent_mapping(em_tree, em->start,
2900 em->len);
2901 if (existing) {
2902 err = merge_extent_mapping(em_tree, existing,
2903 em, start,
2904 root->sectorsize);
2905 free_extent_map(existing);
2906 if (err) {
2907 free_extent_map(em);
2908 em = NULL;
2909 }
2910 } else {
2911 err = -EIO;
2912 printk("failing to insert %Lu %Lu\n",
2913 start, len);
2914 free_extent_map(em);
2915 em = NULL;
2916 }
2917 } else {
2918 free_extent_map(em);
2919 em = existing;
2920 err = 0;
2921 }
2922 }
2923 spin_unlock(&em_tree->lock);
2924 out:
2925 if (path)
2926 btrfs_free_path(path);
2927 if (trans) {
2928 ret = btrfs_end_transaction(trans, root);
2929 if (!err) {
2930 err = ret;
2931 }
2932 }
2933 if (err) {
2934 free_extent_map(em);
2935 WARN_ON(1);
2936 return ERR_PTR(err);
2937 }
2938 return em;
2939 }
2940
2941 #if 0 /* waiting for O_DIRECT reads */
2942 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2943 struct buffer_head *bh_result, int create)
2944 {
2945 struct extent_map *em;
2946 u64 start = (u64)iblock << inode->i_blkbits;
2947 struct btrfs_multi_bio *multi = NULL;
2948 struct btrfs_root *root = BTRFS_I(inode)->root;
2949 u64 len;
2950 u64 logical;
2951 u64 map_length;
2952 int ret = 0;
2953
2954 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2955
2956 if (!em || IS_ERR(em))
2957 goto out;
2958
2959 if (em->start > start || em->start + em->len <= start) {
2960 goto out;
2961 }
2962
2963 if (em->block_start == EXTENT_MAP_INLINE) {
2964 ret = -EINVAL;
2965 goto out;
2966 }
2967
2968 len = em->start + em->len - start;
2969 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2970
2971 if (em->block_start == EXTENT_MAP_HOLE ||
2972 em->block_start == EXTENT_MAP_DELALLOC) {
2973 bh_result->b_size = len;
2974 goto out;
2975 }
2976
2977 logical = start - em->start;
2978 logical = em->block_start + logical;
2979
2980 map_length = len;
2981 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2982 logical, &map_length, &multi, 0);
2983 BUG_ON(ret);
2984 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2985 bh_result->b_size = min(map_length, len);
2986
2987 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2988 set_buffer_mapped(bh_result);
2989 kfree(multi);
2990 out:
2991 free_extent_map(em);
2992 return ret;
2993 }
2994 #endif
2995
2996 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2997 const struct iovec *iov, loff_t offset,
2998 unsigned long nr_segs)
2999 {
3000 return -EINVAL;
3001 #if 0
3002 struct file *file = iocb->ki_filp;
3003 struct inode *inode = file->f_mapping->host;
3004
3005 if (rw == WRITE)
3006 return -EINVAL;
3007
3008 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3009 offset, nr_segs, btrfs_get_block, NULL);
3010 #endif
3011 }
3012
3013 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
3014 {
3015 return extent_bmap(mapping, iblock, btrfs_get_extent);
3016 }
3017
3018 int btrfs_readpage(struct file *file, struct page *page)
3019 {
3020 struct extent_io_tree *tree;
3021 tree = &BTRFS_I(page->mapping->host)->io_tree;
3022 return extent_read_full_page(tree, page, btrfs_get_extent);
3023 }
3024
3025 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
3026 {
3027 struct extent_io_tree *tree;
3028
3029
3030 if (current->flags & PF_MEMALLOC) {
3031 redirty_page_for_writepage(wbc, page);
3032 unlock_page(page);
3033 return 0;
3034 }
3035 tree = &BTRFS_I(page->mapping->host)->io_tree;
3036 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
3037 }
3038
3039 int btrfs_writepages(struct address_space *mapping,
3040 struct writeback_control *wbc)
3041 {
3042 struct extent_io_tree *tree;
3043 tree = &BTRFS_I(mapping->host)->io_tree;
3044 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
3045 }
3046
3047 static int
3048 btrfs_readpages(struct file *file, struct address_space *mapping,
3049 struct list_head *pages, unsigned nr_pages)
3050 {
3051 struct extent_io_tree *tree;
3052 tree = &BTRFS_I(mapping->host)->io_tree;
3053 return extent_readpages(tree, mapping, pages, nr_pages,
3054 btrfs_get_extent);
3055 }
3056 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3057 {
3058 struct extent_io_tree *tree;
3059 struct extent_map_tree *map;
3060 int ret;
3061
3062 tree = &BTRFS_I(page->mapping->host)->io_tree;
3063 map = &BTRFS_I(page->mapping->host)->extent_tree;
3064 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
3065 if (ret == 1) {
3066 ClearPagePrivate(page);
3067 set_page_private(page, 0);
3068 page_cache_release(page);
3069 }
3070 return ret;
3071 }
3072
3073 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
3074 {
3075 return __btrfs_releasepage(page, gfp_flags);
3076 }
3077
3078 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
3079 {
3080 struct extent_io_tree *tree;
3081 struct btrfs_ordered_extent *ordered;
3082 u64 page_start = page_offset(page);
3083 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
3084
3085 wait_on_page_writeback(page);
3086 tree = &BTRFS_I(page->mapping->host)->io_tree;
3087 if (offset) {
3088 btrfs_releasepage(page, GFP_NOFS);
3089 return;
3090 }
3091
3092 lock_extent(tree, page_start, page_end, GFP_NOFS);
3093 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
3094 page_offset(page));
3095 if (ordered) {
3096 /*
3097 * IO on this page will never be started, so we need
3098 * to account for any ordered extents now
3099 */
3100 clear_extent_bit(tree, page_start, page_end,
3101 EXTENT_DIRTY | EXTENT_DELALLOC |
3102 EXTENT_LOCKED, 1, 0, GFP_NOFS);
3103 btrfs_finish_ordered_io(page->mapping->host,
3104 page_start, page_end);
3105 btrfs_put_ordered_extent(ordered);
3106 lock_extent(tree, page_start, page_end, GFP_NOFS);
3107 }
3108 clear_extent_bit(tree, page_start, page_end,
3109 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3110 EXTENT_ORDERED,
3111 1, 1, GFP_NOFS);
3112 __btrfs_releasepage(page, GFP_NOFS);
3113
3114 ClearPageChecked(page);
3115 if (PagePrivate(page)) {
3116 ClearPagePrivate(page);
3117 set_page_private(page, 0);
3118 page_cache_release(page);
3119 }
3120 }
3121
3122 /*
3123 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
3124 * called from a page fault handler when a page is first dirtied. Hence we must
3125 * be careful to check for EOF conditions here. We set the page up correctly
3126 * for a written page which means we get ENOSPC checking when writing into
3127 * holes and correct delalloc and unwritten extent mapping on filesystems that
3128 * support these features.
3129 *
3130 * We are not allowed to take the i_mutex here so we have to play games to
3131 * protect against truncate races as the page could now be beyond EOF. Because
3132 * vmtruncate() writes the inode size before removing pages, once we have the
3133 * page lock we can determine safely if the page is beyond EOF. If it is not
3134 * beyond EOF, then the page is guaranteed safe against truncation until we
3135 * unlock the page.
3136 */
3137 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
3138 {
3139 struct inode *inode = fdentry(vma->vm_file)->d_inode;
3140 struct btrfs_root *root = BTRFS_I(inode)->root;
3141 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3142 struct btrfs_ordered_extent *ordered;
3143 char *kaddr;
3144 unsigned long zero_start;
3145 loff_t size;
3146 int ret;
3147 u64 page_start;
3148 u64 page_end;
3149
3150 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
3151 if (ret)
3152 goto out;
3153
3154 ret = -EINVAL;
3155 again:
3156 lock_page(page);
3157 size = i_size_read(inode);
3158 page_start = page_offset(page);
3159 page_end = page_start + PAGE_CACHE_SIZE - 1;
3160
3161 if ((page->mapping != inode->i_mapping) ||
3162 (page_start >= size)) {
3163 /* page got truncated out from underneath us */
3164 goto out_unlock;
3165 }
3166 wait_on_page_writeback(page);
3167
3168 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3169 set_page_extent_mapped(page);
3170
3171 /*
3172 * we can't set the delalloc bits if there are pending ordered
3173 * extents. Drop our locks and wait for them to finish
3174 */
3175 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3176 if (ordered) {
3177 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3178 unlock_page(page);
3179 btrfs_start_ordered_extent(inode, ordered, 1);
3180 btrfs_put_ordered_extent(ordered);
3181 goto again;
3182 }
3183
3184 btrfs_set_extent_delalloc(inode, page_start, page_end);
3185 ret = 0;
3186
3187 /* page is wholly or partially inside EOF */
3188 if (page_start + PAGE_CACHE_SIZE > size)
3189 zero_start = size & ~PAGE_CACHE_MASK;
3190 else
3191 zero_start = PAGE_CACHE_SIZE;
3192
3193 if (zero_start != PAGE_CACHE_SIZE) {
3194 kaddr = kmap(page);
3195 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
3196 flush_dcache_page(page);
3197 kunmap(page);
3198 }
3199 ClearPageChecked(page);
3200 set_page_dirty(page);
3201 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3202
3203 out_unlock:
3204 unlock_page(page);
3205 out:
3206 return ret;
3207 }
3208
3209 static void btrfs_truncate(struct inode *inode)
3210 {
3211 struct btrfs_root *root = BTRFS_I(inode)->root;
3212 int ret;
3213 struct btrfs_trans_handle *trans;
3214 unsigned long nr;
3215 u64 mask = root->sectorsize - 1;
3216
3217 if (!S_ISREG(inode->i_mode))
3218 return;
3219 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3220 return;
3221
3222 btrfs_truncate_page(inode->i_mapping, inode->i_size);
3223 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
3224
3225 trans = btrfs_start_transaction(root, 1);
3226 btrfs_set_trans_block_group(trans, inode);
3227 btrfs_i_size_write(inode, inode->i_size);
3228
3229 ret = btrfs_orphan_add(trans, inode);
3230 if (ret)
3231 goto out;
3232 /* FIXME, add redo link to tree so we don't leak on crash */
3233 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
3234 BTRFS_EXTENT_DATA_KEY);
3235 btrfs_update_inode(trans, root, inode);
3236
3237 ret = btrfs_orphan_del(trans, inode);
3238 BUG_ON(ret);
3239
3240 out:
3241 nr = trans->blocks_used;
3242 ret = btrfs_end_transaction_throttle(trans, root);
3243 BUG_ON(ret);
3244 btrfs_btree_balance_dirty(root, nr);
3245 }
3246
3247 /*
3248 * Invalidate a single dcache entry at the root of the filesystem.
3249 * Needed after creation of snapshot or subvolume.
3250 */
3251 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
3252 int namelen)
3253 {
3254 struct dentry *alias, *entry;
3255 struct qstr qstr;
3256
3257 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
3258 if (alias) {
3259 qstr.name = name;
3260 qstr.len = namelen;
3261 /* change me if btrfs ever gets a d_hash operation */
3262 qstr.hash = full_name_hash(qstr.name, qstr.len);
3263 entry = d_lookup(alias, &qstr);
3264 dput(alias);
3265 if (entry) {
3266 d_invalidate(entry);
3267 dput(entry);
3268 }
3269 }
3270 }
3271
3272 int btrfs_create_subvol_root(struct btrfs_root *new_root,
3273 struct btrfs_trans_handle *trans, u64 new_dirid,
3274 struct btrfs_block_group_cache *block_group)
3275 {
3276 struct inode *inode;
3277 u64 index = 0;
3278
3279 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
3280 new_dirid, block_group, S_IFDIR | 0700, &index);
3281 if (IS_ERR(inode))
3282 return PTR_ERR(inode);
3283 inode->i_op = &btrfs_dir_inode_operations;
3284 inode->i_fop = &btrfs_dir_file_operations;
3285 new_root->inode = inode;
3286
3287 inode->i_nlink = 1;
3288 btrfs_i_size_write(inode, 0);
3289
3290 return btrfs_update_inode(trans, new_root, inode);
3291 }
3292
3293 unsigned long btrfs_force_ra(struct address_space *mapping,
3294 struct file_ra_state *ra, struct file *file,
3295 pgoff_t offset, pgoff_t last_index)
3296 {
3297 pgoff_t req_size = last_index - offset + 1;
3298
3299 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3300 offset = page_cache_readahead(mapping, ra, file, offset, req_size);
3301 return offset;
3302 #else
3303 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3304 return offset + req_size;
3305 #endif
3306 }
3307
3308 struct inode *btrfs_alloc_inode(struct super_block *sb)
3309 {
3310 struct btrfs_inode *ei;
3311
3312 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
3313 if (!ei)
3314 return NULL;
3315 ei->last_trans = 0;
3316 ei->logged_trans = 0;
3317 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
3318 ei->i_acl = BTRFS_ACL_NOT_CACHED;
3319 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
3320 INIT_LIST_HEAD(&ei->i_orphan);
3321 return &ei->vfs_inode;
3322 }
3323
3324 void btrfs_destroy_inode(struct inode *inode)
3325 {
3326 struct btrfs_ordered_extent *ordered;
3327 WARN_ON(!list_empty(&inode->i_dentry));
3328 WARN_ON(inode->i_data.nrpages);
3329
3330 if (BTRFS_I(inode)->i_acl &&
3331 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
3332 posix_acl_release(BTRFS_I(inode)->i_acl);
3333 if (BTRFS_I(inode)->i_default_acl &&
3334 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
3335 posix_acl_release(BTRFS_I(inode)->i_default_acl);
3336
3337 spin_lock(&BTRFS_I(inode)->root->list_lock);
3338 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
3339 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
3340 " list\n", inode->i_ino);
3341 dump_stack();
3342 }
3343 spin_unlock(&BTRFS_I(inode)->root->list_lock);
3344
3345 while(1) {
3346 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
3347 if (!ordered)
3348 break;
3349 else {
3350 printk("found ordered extent %Lu %Lu\n",
3351 ordered->file_offset, ordered->len);
3352 btrfs_remove_ordered_extent(inode, ordered);
3353 btrfs_put_ordered_extent(ordered);
3354 btrfs_put_ordered_extent(ordered);
3355 }
3356 }
3357 btrfs_drop_extent_cache(inode, 0, (u64)-1);
3358 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
3359 }
3360
3361 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3362 static void init_once(void *foo)
3363 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3364 static void init_once(struct kmem_cache * cachep, void *foo)
3365 #else
3366 static void init_once(void * foo, struct kmem_cache * cachep,
3367 unsigned long flags)
3368 #endif
3369 {
3370 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
3371
3372 inode_init_once(&ei->vfs_inode);
3373 }
3374
3375 void btrfs_destroy_cachep(void)
3376 {
3377 if (btrfs_inode_cachep)
3378 kmem_cache_destroy(btrfs_inode_cachep);
3379 if (btrfs_trans_handle_cachep)
3380 kmem_cache_destroy(btrfs_trans_handle_cachep);
3381 if (btrfs_transaction_cachep)
3382 kmem_cache_destroy(btrfs_transaction_cachep);
3383 if (btrfs_bit_radix_cachep)
3384 kmem_cache_destroy(btrfs_bit_radix_cachep);
3385 if (btrfs_path_cachep)
3386 kmem_cache_destroy(btrfs_path_cachep);
3387 }
3388
3389 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
3390 unsigned long extra_flags,
3391 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3392 void (*ctor)(void *)
3393 #elif LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
3394 void (*ctor)(struct kmem_cache *, void *)
3395 #else
3396 void (*ctor)(void *, struct kmem_cache *,
3397 unsigned long)
3398 #endif
3399 )
3400 {
3401 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
3402 SLAB_MEM_SPREAD | extra_flags), ctor
3403 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
3404 ,NULL
3405 #endif
3406 );
3407 }
3408
3409 int btrfs_init_cachep(void)
3410 {
3411 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
3412 sizeof(struct btrfs_inode),
3413 0, init_once);
3414 if (!btrfs_inode_cachep)
3415 goto fail;
3416 btrfs_trans_handle_cachep =
3417 btrfs_cache_create("btrfs_trans_handle_cache",
3418 sizeof(struct btrfs_trans_handle),
3419 0, NULL);
3420 if (!btrfs_trans_handle_cachep)
3421 goto fail;
3422 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3423 sizeof(struct btrfs_transaction),
3424 0, NULL);
3425 if (!btrfs_transaction_cachep)
3426 goto fail;
3427 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3428 sizeof(struct btrfs_path),
3429 0, NULL);
3430 if (!btrfs_path_cachep)
3431 goto fail;
3432 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3433 SLAB_DESTROY_BY_RCU, NULL);
3434 if (!btrfs_bit_radix_cachep)
3435 goto fail;
3436 return 0;
3437 fail:
3438 btrfs_destroy_cachep();
3439 return -ENOMEM;
3440 }
3441
3442 static int btrfs_getattr(struct vfsmount *mnt,
3443 struct dentry *dentry, struct kstat *stat)
3444 {
3445 struct inode *inode = dentry->d_inode;
3446 generic_fillattr(inode, stat);
3447 stat->blksize = PAGE_CACHE_SIZE;
3448 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3449 return 0;
3450 }
3451
3452 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3453 struct inode * new_dir,struct dentry *new_dentry)
3454 {
3455 struct btrfs_trans_handle *trans;
3456 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3457 struct inode *new_inode = new_dentry->d_inode;
3458 struct inode *old_inode = old_dentry->d_inode;
3459 struct timespec ctime = CURRENT_TIME;
3460 u64 index = 0;
3461 int ret;
3462
3463 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3464 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3465 return -ENOTEMPTY;
3466 }
3467
3468 ret = btrfs_check_free_space(root, 1, 0);
3469 if (ret)
3470 goto out_unlock;
3471
3472 trans = btrfs_start_transaction(root, 1);
3473
3474 btrfs_set_trans_block_group(trans, new_dir);
3475
3476 btrfs_inc_nlink(old_dentry->d_inode);
3477 old_dir->i_ctime = old_dir->i_mtime = ctime;
3478 new_dir->i_ctime = new_dir->i_mtime = ctime;
3479 old_inode->i_ctime = ctime;
3480
3481 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
3482 old_dentry->d_name.name,
3483 old_dentry->d_name.len);
3484 if (ret)
3485 goto out_fail;
3486
3487 if (new_inode) {
3488 new_inode->i_ctime = CURRENT_TIME;
3489 ret = btrfs_unlink_inode(trans, root, new_dir,
3490 new_dentry->d_inode,
3491 new_dentry->d_name.name,
3492 new_dentry->d_name.len);
3493 if (ret)
3494 goto out_fail;
3495 if (new_inode->i_nlink == 0) {
3496 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
3497 if (ret)
3498 goto out_fail;
3499 }
3500
3501 }
3502 ret = btrfs_set_inode_index(new_dir, old_inode, &index);
3503 if (ret)
3504 goto out_fail;
3505
3506 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
3507 old_inode, new_dentry->d_name.name,
3508 new_dentry->d_name.len, 1, index);
3509 if (ret)
3510 goto out_fail;
3511
3512 out_fail:
3513 btrfs_end_transaction_throttle(trans, root);
3514 out_unlock:
3515 return ret;
3516 }
3517
3518 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
3519 {
3520 struct list_head *head = &root->fs_info->delalloc_inodes;
3521 struct btrfs_inode *binode;
3522 unsigned long flags;
3523
3524 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3525 while(!list_empty(head)) {
3526 binode = list_entry(head->next, struct btrfs_inode,
3527 delalloc_inodes);
3528 atomic_inc(&binode->vfs_inode.i_count);
3529 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3530 filemap_write_and_wait(binode->vfs_inode.i_mapping);
3531 iput(&binode->vfs_inode);
3532 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
3533 }
3534 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
3535 return 0;
3536 }
3537
3538 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3539 const char *symname)
3540 {
3541 struct btrfs_trans_handle *trans;
3542 struct btrfs_root *root = BTRFS_I(dir)->root;
3543 struct btrfs_path *path;
3544 struct btrfs_key key;
3545 struct inode *inode = NULL;
3546 int err;
3547 int drop_inode = 0;
3548 u64 objectid;
3549 u64 index = 0 ;
3550 int name_len;
3551 int datasize;
3552 unsigned long ptr;
3553 struct btrfs_file_extent_item *ei;
3554 struct extent_buffer *leaf;
3555 unsigned long nr = 0;
3556
3557 name_len = strlen(symname) + 1;
3558 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3559 return -ENAMETOOLONG;
3560
3561 err = btrfs_check_free_space(root, 1, 0);
3562 if (err)
3563 goto out_fail;
3564
3565 trans = btrfs_start_transaction(root, 1);
3566 btrfs_set_trans_block_group(trans, dir);
3567
3568 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3569 if (err) {
3570 err = -ENOSPC;
3571 goto out_unlock;
3572 }
3573
3574 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3575 dentry->d_name.len,
3576 dentry->d_parent->d_inode->i_ino, objectid,
3577 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
3578 &index);
3579 err = PTR_ERR(inode);
3580 if (IS_ERR(inode))
3581 goto out_unlock;
3582
3583 err = btrfs_init_acl(inode, dir);
3584 if (err) {
3585 drop_inode = 1;
3586 goto out_unlock;
3587 }
3588
3589 btrfs_set_trans_block_group(trans, inode);
3590 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3591 if (err)
3592 drop_inode = 1;
3593 else {
3594 inode->i_mapping->a_ops = &btrfs_aops;
3595 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3596 inode->i_fop = &btrfs_file_operations;
3597 inode->i_op = &btrfs_file_inode_operations;
3598 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3599 }
3600 dir->i_sb->s_dirt = 1;
3601 btrfs_update_inode_block_group(trans, inode);
3602 btrfs_update_inode_block_group(trans, dir);
3603 if (drop_inode)
3604 goto out_unlock;
3605
3606 path = btrfs_alloc_path();
3607 BUG_ON(!path);
3608 key.objectid = inode->i_ino;
3609 key.offset = 0;
3610 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3611 datasize = btrfs_file_extent_calc_inline_size(name_len);
3612 err = btrfs_insert_empty_item(trans, root, path, &key,
3613 datasize);
3614 if (err) {
3615 drop_inode = 1;
3616 goto out_unlock;
3617 }
3618 leaf = path->nodes[0];
3619 ei = btrfs_item_ptr(leaf, path->slots[0],
3620 struct btrfs_file_extent_item);
3621 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3622 btrfs_set_file_extent_type(leaf, ei,
3623 BTRFS_FILE_EXTENT_INLINE);
3624 ptr = btrfs_file_extent_inline_start(ei);
3625 write_extent_buffer(leaf, symname, ptr, name_len);
3626 btrfs_mark_buffer_dirty(leaf);
3627 btrfs_free_path(path);
3628
3629 inode->i_op = &btrfs_symlink_inode_operations;
3630 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3631 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3632 btrfs_i_size_write(inode, name_len - 1);
3633 err = btrfs_update_inode(trans, root, inode);
3634 if (err)
3635 drop_inode = 1;
3636
3637 out_unlock:
3638 nr = trans->blocks_used;
3639 btrfs_end_transaction_throttle(trans, root);
3640 out_fail:
3641 if (drop_inode) {
3642 inode_dec_link_count(inode);
3643 iput(inode);
3644 }
3645 btrfs_btree_balance_dirty(root, nr);
3646 return err;
3647 }
3648
3649 static int btrfs_set_page_dirty(struct page *page)
3650 {
3651 return __set_page_dirty_nobuffers(page);
3652 }
3653
3654 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,26)
3655 static int btrfs_permission(struct inode *inode, int mask)
3656 #else
3657 static int btrfs_permission(struct inode *inode, int mask,
3658 struct nameidata *nd)
3659 #endif
3660 {
3661 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3662 return -EACCES;
3663 return generic_permission(inode, mask, btrfs_check_acl);
3664 }
3665
3666 static struct inode_operations btrfs_dir_inode_operations = {
3667 .lookup = btrfs_lookup,
3668 .create = btrfs_create,
3669 .unlink = btrfs_unlink,
3670 .link = btrfs_link,
3671 .mkdir = btrfs_mkdir,
3672 .rmdir = btrfs_rmdir,
3673 .rename = btrfs_rename,
3674 .symlink = btrfs_symlink,
3675 .setattr = btrfs_setattr,
3676 .mknod = btrfs_mknod,
3677 .setxattr = btrfs_setxattr,
3678 .getxattr = btrfs_getxattr,
3679 .listxattr = btrfs_listxattr,
3680 .removexattr = btrfs_removexattr,
3681 .permission = btrfs_permission,
3682 };
3683 static struct inode_operations btrfs_dir_ro_inode_operations = {
3684 .lookup = btrfs_lookup,
3685 .permission = btrfs_permission,
3686 };
3687 static struct file_operations btrfs_dir_file_operations = {
3688 .llseek = generic_file_llseek,
3689 .read = generic_read_dir,
3690 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
3691 .readdir = btrfs_nfshack_readdir,
3692 #else /* NFSd readdir/lookup deadlock is fixed */
3693 .readdir = btrfs_real_readdir,
3694 #endif
3695 .unlocked_ioctl = btrfs_ioctl,
3696 #ifdef CONFIG_COMPAT
3697 .compat_ioctl = btrfs_ioctl,
3698 #endif
3699 .release = btrfs_release_file,
3700 .fsync = btrfs_sync_file,
3701 };
3702
3703 static struct extent_io_ops btrfs_extent_io_ops = {
3704 .fill_delalloc = run_delalloc_range,
3705 .submit_bio_hook = btrfs_submit_bio_hook,
3706 .merge_bio_hook = btrfs_merge_bio_hook,
3707 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3708 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3709 .writepage_start_hook = btrfs_writepage_start_hook,
3710 .readpage_io_failed_hook = btrfs_io_failed_hook,
3711 .set_bit_hook = btrfs_set_bit_hook,
3712 .clear_bit_hook = btrfs_clear_bit_hook,
3713 };
3714
3715 static struct address_space_operations btrfs_aops = {
3716 .readpage = btrfs_readpage,
3717 .writepage = btrfs_writepage,
3718 .writepages = btrfs_writepages,
3719 .readpages = btrfs_readpages,
3720 .sync_page = block_sync_page,
3721 .bmap = btrfs_bmap,
3722 .direct_IO = btrfs_direct_IO,
3723 .invalidatepage = btrfs_invalidatepage,
3724 .releasepage = btrfs_releasepage,
3725 .set_page_dirty = btrfs_set_page_dirty,
3726 };
3727
3728 static struct address_space_operations btrfs_symlink_aops = {
3729 .readpage = btrfs_readpage,
3730 .writepage = btrfs_writepage,
3731 .invalidatepage = btrfs_invalidatepage,
3732 .releasepage = btrfs_releasepage,
3733 };
3734
3735 static struct inode_operations btrfs_file_inode_operations = {
3736 .truncate = btrfs_truncate,
3737 .getattr = btrfs_getattr,
3738 .setattr = btrfs_setattr,
3739 .setxattr = btrfs_setxattr,
3740 .getxattr = btrfs_getxattr,
3741 .listxattr = btrfs_listxattr,
3742 .removexattr = btrfs_removexattr,
3743 .permission = btrfs_permission,
3744 };
3745 static struct inode_operations btrfs_special_inode_operations = {
3746 .getattr = btrfs_getattr,
3747 .setattr = btrfs_setattr,
3748 .permission = btrfs_permission,
3749 .setxattr = btrfs_setxattr,
3750 .getxattr = btrfs_getxattr,
3751 .listxattr = btrfs_listxattr,
3752 .removexattr = btrfs_removexattr,
3753 };
3754 static struct inode_operations btrfs_symlink_inode_operations = {
3755 .readlink = generic_readlink,
3756 .follow_link = page_follow_link_light,
3757 .put_link = page_put_link,
3758 .permission = btrfs_permission,
3759 };
This page took 0.304074 seconds and 6 git commands to generate.