Merge branch 'tip/perf/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/roste...
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57
58 struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61 };
62
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88 };
89
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
93 static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
99
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
103 {
104 int err;
105
106 err = btrfs_init_acl(trans, inode, dir);
107 if (!err)
108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 return err;
110 }
111
112 /*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
120 int compress_type,
121 struct page **compressed_pages)
122 {
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
135
136 if (compressed_size && compressed_pages)
137 cur_size = compressed_size;
138
139 path = btrfs_alloc_path();
140 if (!path)
141 return -ENOMEM;
142
143 path->leave_spinning = 1;
144
145 key.objectid = btrfs_ino(inode);
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 if (ret) {
154 err = ret;
155 goto fail;
156 }
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
166
167 if (compress_type != BTRFS_COMPRESS_NONE) {
168 struct page *cpage;
169 int i = 0;
170 while (compressed_size > 0) {
171 cpage = compressed_pages[i];
172 cur_size = min_t(unsigned long, compressed_size,
173 PAGE_CACHE_SIZE);
174
175 kaddr = kmap_atomic(cpage);
176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
177 kunmap_atomic(kaddr);
178
179 i++;
180 ptr += cur_size;
181 compressed_size -= cur_size;
182 }
183 btrfs_set_file_extent_compression(leaf, ei,
184 compress_type);
185 } else {
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
189 kaddr = kmap_atomic(page);
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
192 kunmap_atomic(kaddr);
193 page_cache_release(page);
194 }
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
197
198 /*
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
202 *
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
206 */
207 BTRFS_I(inode)->disk_i_size = inode->i_size;
208 ret = btrfs_update_inode(trans, root, inode);
209
210 return ret;
211 fail:
212 btrfs_free_path(path);
213 return err;
214 }
215
216
217 /*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
225 size_t compressed_size, int compress_type,
226 struct page **compressed_pages)
227 {
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
233 u64 data_len = inline_len;
234 int ret;
235
236 if (compressed_size)
237 data_len = compressed_size;
238
239 if (start > 0 ||
240 actual_end >= PAGE_CACHE_SIZE ||
241 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
242 (!compressed_size &&
243 (actual_end & (root->sectorsize - 1)) == 0) ||
244 end + 1 < isize ||
245 data_len > root->fs_info->max_inline) {
246 return 1;
247 }
248
249 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
250 if (ret)
251 return ret;
252
253 if (isize > actual_end)
254 inline_len = min_t(u64, isize, actual_end);
255 ret = insert_inline_extent(trans, root, inode, start,
256 inline_len, compressed_size,
257 compress_type, compressed_pages);
258 if (ret && ret != -ENOSPC) {
259 btrfs_abort_transaction(trans, root, ret);
260 return ret;
261 } else if (ret == -ENOSPC) {
262 return 1;
263 }
264
265 btrfs_delalloc_release_metadata(inode, end + 1 - start);
266 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
267 return 0;
268 }
269
270 struct async_extent {
271 u64 start;
272 u64 ram_size;
273 u64 compressed_size;
274 struct page **pages;
275 unsigned long nr_pages;
276 int compress_type;
277 struct list_head list;
278 };
279
280 struct async_cow {
281 struct inode *inode;
282 struct btrfs_root *root;
283 struct page *locked_page;
284 u64 start;
285 u64 end;
286 struct list_head extents;
287 struct btrfs_work work;
288 };
289
290 static noinline int add_async_extent(struct async_cow *cow,
291 u64 start, u64 ram_size,
292 u64 compressed_size,
293 struct page **pages,
294 unsigned long nr_pages,
295 int compress_type)
296 {
297 struct async_extent *async_extent;
298
299 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
300 BUG_ON(!async_extent); /* -ENOMEM */
301 async_extent->start = start;
302 async_extent->ram_size = ram_size;
303 async_extent->compressed_size = compressed_size;
304 async_extent->pages = pages;
305 async_extent->nr_pages = nr_pages;
306 async_extent->compress_type = compress_type;
307 list_add_tail(&async_extent->list, &cow->extents);
308 return 0;
309 }
310
311 /*
312 * we create compressed extents in two phases. The first
313 * phase compresses a range of pages that have already been
314 * locked (both pages and state bits are locked).
315 *
316 * This is done inside an ordered work queue, and the compression
317 * is spread across many cpus. The actual IO submission is step
318 * two, and the ordered work queue takes care of making sure that
319 * happens in the same order things were put onto the queue by
320 * writepages and friends.
321 *
322 * If this code finds it can't get good compression, it puts an
323 * entry onto the work queue to write the uncompressed bytes. This
324 * makes sure that both compressed inodes and uncompressed inodes
325 * are written in the same order that the flusher thread sent them
326 * down.
327 */
328 static noinline int compress_file_range(struct inode *inode,
329 struct page *locked_page,
330 u64 start, u64 end,
331 struct async_cow *async_cow,
332 int *num_added)
333 {
334 struct btrfs_root *root = BTRFS_I(inode)->root;
335 struct btrfs_trans_handle *trans;
336 u64 num_bytes;
337 u64 blocksize = root->sectorsize;
338 u64 actual_end;
339 u64 isize = i_size_read(inode);
340 int ret = 0;
341 struct page **pages = NULL;
342 unsigned long nr_pages;
343 unsigned long nr_pages_ret = 0;
344 unsigned long total_compressed = 0;
345 unsigned long total_in = 0;
346 unsigned long max_compressed = 128 * 1024;
347 unsigned long max_uncompressed = 128 * 1024;
348 int i;
349 int will_compress;
350 int compress_type = root->fs_info->compress_type;
351
352 /* if this is a small write inside eof, kick off a defrag */
353 if ((end - start + 1) < 16 * 1024 &&
354 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
355 btrfs_add_inode_defrag(NULL, inode);
356
357 actual_end = min_t(u64, isize, end + 1);
358 again:
359 will_compress = 0;
360 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
361 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
362
363 /*
364 * we don't want to send crud past the end of i_size through
365 * compression, that's just a waste of CPU time. So, if the
366 * end of the file is before the start of our current
367 * requested range of bytes, we bail out to the uncompressed
368 * cleanup code that can deal with all of this.
369 *
370 * It isn't really the fastest way to fix things, but this is a
371 * very uncommon corner.
372 */
373 if (actual_end <= start)
374 goto cleanup_and_bail_uncompressed;
375
376 total_compressed = actual_end - start;
377
378 /* we want to make sure that amount of ram required to uncompress
379 * an extent is reasonable, so we limit the total size in ram
380 * of a compressed extent to 128k. This is a crucial number
381 * because it also controls how easily we can spread reads across
382 * cpus for decompression.
383 *
384 * We also want to make sure the amount of IO required to do
385 * a random read is reasonably small, so we limit the size of
386 * a compressed extent to 128k.
387 */
388 total_compressed = min(total_compressed, max_uncompressed);
389 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
390 num_bytes = max(blocksize, num_bytes);
391 total_in = 0;
392 ret = 0;
393
394 /*
395 * we do compression for mount -o compress and when the
396 * inode has not been flagged as nocompress. This flag can
397 * change at any time if we discover bad compression ratios.
398 */
399 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
400 (btrfs_test_opt(root, COMPRESS) ||
401 (BTRFS_I(inode)->force_compress) ||
402 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
403 WARN_ON(pages);
404 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
405 if (!pages) {
406 /* just bail out to the uncompressed code */
407 goto cont;
408 }
409
410 if (BTRFS_I(inode)->force_compress)
411 compress_type = BTRFS_I(inode)->force_compress;
412
413 ret = btrfs_compress_pages(compress_type,
414 inode->i_mapping, start,
415 total_compressed, pages,
416 nr_pages, &nr_pages_ret,
417 &total_in,
418 &total_compressed,
419 max_compressed);
420
421 if (!ret) {
422 unsigned long offset = total_compressed &
423 (PAGE_CACHE_SIZE - 1);
424 struct page *page = pages[nr_pages_ret - 1];
425 char *kaddr;
426
427 /* zero the tail end of the last page, we might be
428 * sending it down to disk
429 */
430 if (offset) {
431 kaddr = kmap_atomic(page);
432 memset(kaddr + offset, 0,
433 PAGE_CACHE_SIZE - offset);
434 kunmap_atomic(kaddr);
435 }
436 will_compress = 1;
437 }
438 }
439 cont:
440 if (start == 0) {
441 trans = btrfs_join_transaction(root);
442 if (IS_ERR(trans)) {
443 ret = PTR_ERR(trans);
444 trans = NULL;
445 goto cleanup_and_out;
446 }
447 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
448
449 /* lets try to make an inline extent */
450 if (ret || total_in < (actual_end - start)) {
451 /* we didn't compress the entire range, try
452 * to make an uncompressed inline extent.
453 */
454 ret = cow_file_range_inline(trans, root, inode,
455 start, end, 0, 0, NULL);
456 } else {
457 /* try making a compressed inline extent */
458 ret = cow_file_range_inline(trans, root, inode,
459 start, end,
460 total_compressed,
461 compress_type, pages);
462 }
463 if (ret <= 0) {
464 /*
465 * inline extent creation worked or returned error,
466 * we don't need to create any more async work items.
467 * Unlock and free up our temp pages.
468 */
469 extent_clear_unlock_delalloc(inode,
470 &BTRFS_I(inode)->io_tree,
471 start, end, NULL,
472 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
473 EXTENT_CLEAR_DELALLOC |
474 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
475
476 btrfs_end_transaction(trans, root);
477 goto free_pages_out;
478 }
479 btrfs_end_transaction(trans, root);
480 }
481
482 if (will_compress) {
483 /*
484 * we aren't doing an inline extent round the compressed size
485 * up to a block size boundary so the allocator does sane
486 * things
487 */
488 total_compressed = (total_compressed + blocksize - 1) &
489 ~(blocksize - 1);
490
491 /*
492 * one last check to make sure the compression is really a
493 * win, compare the page count read with the blocks on disk
494 */
495 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
496 ~(PAGE_CACHE_SIZE - 1);
497 if (total_compressed >= total_in) {
498 will_compress = 0;
499 } else {
500 num_bytes = total_in;
501 }
502 }
503 if (!will_compress && pages) {
504 /*
505 * the compression code ran but failed to make things smaller,
506 * free any pages it allocated and our page pointer array
507 */
508 for (i = 0; i < nr_pages_ret; i++) {
509 WARN_ON(pages[i]->mapping);
510 page_cache_release(pages[i]);
511 }
512 kfree(pages);
513 pages = NULL;
514 total_compressed = 0;
515 nr_pages_ret = 0;
516
517 /* flag the file so we don't compress in the future */
518 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
519 !(BTRFS_I(inode)->force_compress)) {
520 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
521 }
522 }
523 if (will_compress) {
524 *num_added += 1;
525
526 /* the async work queues will take care of doing actual
527 * allocation on disk for these compressed pages,
528 * and will submit them to the elevator.
529 */
530 add_async_extent(async_cow, start, num_bytes,
531 total_compressed, pages, nr_pages_ret,
532 compress_type);
533
534 if (start + num_bytes < end) {
535 start += num_bytes;
536 pages = NULL;
537 cond_resched();
538 goto again;
539 }
540 } else {
541 cleanup_and_bail_uncompressed:
542 /*
543 * No compression, but we still need to write the pages in
544 * the file we've been given so far. redirty the locked
545 * page if it corresponds to our extent and set things up
546 * for the async work queue to run cow_file_range to do
547 * the normal delalloc dance
548 */
549 if (page_offset(locked_page) >= start &&
550 page_offset(locked_page) <= end) {
551 __set_page_dirty_nobuffers(locked_page);
552 /* unlocked later on in the async handlers */
553 }
554 add_async_extent(async_cow, start, end - start + 1,
555 0, NULL, 0, BTRFS_COMPRESS_NONE);
556 *num_added += 1;
557 }
558
559 out:
560 return ret;
561
562 free_pages_out:
563 for (i = 0; i < nr_pages_ret; i++) {
564 WARN_ON(pages[i]->mapping);
565 page_cache_release(pages[i]);
566 }
567 kfree(pages);
568
569 goto out;
570
571 cleanup_and_out:
572 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
573 start, end, NULL,
574 EXTENT_CLEAR_UNLOCK_PAGE |
575 EXTENT_CLEAR_DIRTY |
576 EXTENT_CLEAR_DELALLOC |
577 EXTENT_SET_WRITEBACK |
578 EXTENT_END_WRITEBACK);
579 if (!trans || IS_ERR(trans))
580 btrfs_error(root->fs_info, ret, "Failed to join transaction");
581 else
582 btrfs_abort_transaction(trans, root, ret);
583 goto free_pages_out;
584 }
585
586 /*
587 * phase two of compressed writeback. This is the ordered portion
588 * of the code, which only gets called in the order the work was
589 * queued. We walk all the async extents created by compress_file_range
590 * and send them down to the disk.
591 */
592 static noinline int submit_compressed_extents(struct inode *inode,
593 struct async_cow *async_cow)
594 {
595 struct async_extent *async_extent;
596 u64 alloc_hint = 0;
597 struct btrfs_trans_handle *trans;
598 struct btrfs_key ins;
599 struct extent_map *em;
600 struct btrfs_root *root = BTRFS_I(inode)->root;
601 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
602 struct extent_io_tree *io_tree;
603 int ret = 0;
604
605 if (list_empty(&async_cow->extents))
606 return 0;
607
608
609 while (!list_empty(&async_cow->extents)) {
610 async_extent = list_entry(async_cow->extents.next,
611 struct async_extent, list);
612 list_del(&async_extent->list);
613
614 io_tree = &BTRFS_I(inode)->io_tree;
615
616 retry:
617 /* did the compression code fall back to uncompressed IO? */
618 if (!async_extent->pages) {
619 int page_started = 0;
620 unsigned long nr_written = 0;
621
622 lock_extent(io_tree, async_extent->start,
623 async_extent->start +
624 async_extent->ram_size - 1);
625
626 /* allocate blocks */
627 ret = cow_file_range(inode, async_cow->locked_page,
628 async_extent->start,
629 async_extent->start +
630 async_extent->ram_size - 1,
631 &page_started, &nr_written, 0);
632
633 /* JDM XXX */
634
635 /*
636 * if page_started, cow_file_range inserted an
637 * inline extent and took care of all the unlocking
638 * and IO for us. Otherwise, we need to submit
639 * all those pages down to the drive.
640 */
641 if (!page_started && !ret)
642 extent_write_locked_range(io_tree,
643 inode, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1,
646 btrfs_get_extent,
647 WB_SYNC_ALL);
648 kfree(async_extent);
649 cond_resched();
650 continue;
651 }
652
653 lock_extent(io_tree, async_extent->start,
654 async_extent->start + async_extent->ram_size - 1);
655
656 trans = btrfs_join_transaction(root);
657 if (IS_ERR(trans)) {
658 ret = PTR_ERR(trans);
659 } else {
660 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
661 ret = btrfs_reserve_extent(trans, root,
662 async_extent->compressed_size,
663 async_extent->compressed_size,
664 0, alloc_hint, &ins, 1);
665 if (ret && ret != -ENOSPC)
666 btrfs_abort_transaction(trans, root, ret);
667 btrfs_end_transaction(trans, root);
668 }
669
670 if (ret) {
671 int i;
672 for (i = 0; i < async_extent->nr_pages; i++) {
673 WARN_ON(async_extent->pages[i]->mapping);
674 page_cache_release(async_extent->pages[i]);
675 }
676 kfree(async_extent->pages);
677 async_extent->nr_pages = 0;
678 async_extent->pages = NULL;
679 unlock_extent(io_tree, async_extent->start,
680 async_extent->start +
681 async_extent->ram_size - 1);
682 if (ret == -ENOSPC)
683 goto retry;
684 goto out_free; /* JDM: Requeue? */
685 }
686
687 /*
688 * here we're doing allocation and writeback of the
689 * compressed pages
690 */
691 btrfs_drop_extent_cache(inode, async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1, 0);
694
695 em = alloc_extent_map();
696 BUG_ON(!em); /* -ENOMEM */
697 em->start = async_extent->start;
698 em->len = async_extent->ram_size;
699 em->orig_start = em->start;
700
701 em->block_start = ins.objectid;
702 em->block_len = ins.offset;
703 em->bdev = root->fs_info->fs_devices->latest_bdev;
704 em->compress_type = async_extent->compress_type;
705 set_bit(EXTENT_FLAG_PINNED, &em->flags);
706 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
707
708 while (1) {
709 write_lock(&em_tree->lock);
710 ret = add_extent_mapping(em_tree, em);
711 write_unlock(&em_tree->lock);
712 if (ret != -EEXIST) {
713 free_extent_map(em);
714 break;
715 }
716 btrfs_drop_extent_cache(inode, async_extent->start,
717 async_extent->start +
718 async_extent->ram_size - 1, 0);
719 }
720
721 ret = btrfs_add_ordered_extent_compress(inode,
722 async_extent->start,
723 ins.objectid,
724 async_extent->ram_size,
725 ins.offset,
726 BTRFS_ORDERED_COMPRESSED,
727 async_extent->compress_type);
728 BUG_ON(ret); /* -ENOMEM */
729
730 /*
731 * clear dirty, set writeback and unlock the pages.
732 */
733 extent_clear_unlock_delalloc(inode,
734 &BTRFS_I(inode)->io_tree,
735 async_extent->start,
736 async_extent->start +
737 async_extent->ram_size - 1,
738 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
739 EXTENT_CLEAR_UNLOCK |
740 EXTENT_CLEAR_DELALLOC |
741 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
742
743 ret = btrfs_submit_compressed_write(inode,
744 async_extent->start,
745 async_extent->ram_size,
746 ins.objectid,
747 ins.offset, async_extent->pages,
748 async_extent->nr_pages);
749
750 BUG_ON(ret); /* -ENOMEM */
751 alloc_hint = ins.objectid + ins.offset;
752 kfree(async_extent);
753 cond_resched();
754 }
755 ret = 0;
756 out:
757 return ret;
758 out_free:
759 kfree(async_extent);
760 goto out;
761 }
762
763 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
764 u64 num_bytes)
765 {
766 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
767 struct extent_map *em;
768 u64 alloc_hint = 0;
769
770 read_lock(&em_tree->lock);
771 em = search_extent_mapping(em_tree, start, num_bytes);
772 if (em) {
773 /*
774 * if block start isn't an actual block number then find the
775 * first block in this inode and use that as a hint. If that
776 * block is also bogus then just don't worry about it.
777 */
778 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
779 free_extent_map(em);
780 em = search_extent_mapping(em_tree, 0, 0);
781 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
782 alloc_hint = em->block_start;
783 if (em)
784 free_extent_map(em);
785 } else {
786 alloc_hint = em->block_start;
787 free_extent_map(em);
788 }
789 }
790 read_unlock(&em_tree->lock);
791
792 return alloc_hint;
793 }
794
795 /*
796 * when extent_io.c finds a delayed allocation range in the file,
797 * the call backs end up in this code. The basic idea is to
798 * allocate extents on disk for the range, and create ordered data structs
799 * in ram to track those extents.
800 *
801 * locked_page is the page that writepage had locked already. We use
802 * it to make sure we don't do extra locks or unlocks.
803 *
804 * *page_started is set to one if we unlock locked_page and do everything
805 * required to start IO on it. It may be clean and already done with
806 * IO when we return.
807 */
808 static noinline int cow_file_range(struct inode *inode,
809 struct page *locked_page,
810 u64 start, u64 end, int *page_started,
811 unsigned long *nr_written,
812 int unlock)
813 {
814 struct btrfs_root *root = BTRFS_I(inode)->root;
815 struct btrfs_trans_handle *trans;
816 u64 alloc_hint = 0;
817 u64 num_bytes;
818 unsigned long ram_size;
819 u64 disk_num_bytes;
820 u64 cur_alloc_size;
821 u64 blocksize = root->sectorsize;
822 struct btrfs_key ins;
823 struct extent_map *em;
824 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
825 int ret = 0;
826
827 BUG_ON(btrfs_is_free_space_inode(inode));
828 trans = btrfs_join_transaction(root);
829 if (IS_ERR(trans)) {
830 extent_clear_unlock_delalloc(inode,
831 &BTRFS_I(inode)->io_tree,
832 start, end, locked_page,
833 EXTENT_CLEAR_UNLOCK_PAGE |
834 EXTENT_CLEAR_UNLOCK |
835 EXTENT_CLEAR_DELALLOC |
836 EXTENT_CLEAR_DIRTY |
837 EXTENT_SET_WRITEBACK |
838 EXTENT_END_WRITEBACK);
839 return PTR_ERR(trans);
840 }
841 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
842
843 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
844 num_bytes = max(blocksize, num_bytes);
845 disk_num_bytes = num_bytes;
846 ret = 0;
847
848 /* if this is a small write inside eof, kick off defrag */
849 if (num_bytes < 64 * 1024 &&
850 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
851 btrfs_add_inode_defrag(trans, inode);
852
853 if (start == 0) {
854 /* lets try to make an inline extent */
855 ret = cow_file_range_inline(trans, root, inode,
856 start, end, 0, 0, NULL);
857 if (ret == 0) {
858 extent_clear_unlock_delalloc(inode,
859 &BTRFS_I(inode)->io_tree,
860 start, end, NULL,
861 EXTENT_CLEAR_UNLOCK_PAGE |
862 EXTENT_CLEAR_UNLOCK |
863 EXTENT_CLEAR_DELALLOC |
864 EXTENT_CLEAR_DIRTY |
865 EXTENT_SET_WRITEBACK |
866 EXTENT_END_WRITEBACK);
867
868 *nr_written = *nr_written +
869 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
870 *page_started = 1;
871 goto out;
872 } else if (ret < 0) {
873 btrfs_abort_transaction(trans, root, ret);
874 goto out_unlock;
875 }
876 }
877
878 BUG_ON(disk_num_bytes >
879 btrfs_super_total_bytes(root->fs_info->super_copy));
880
881 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
882 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
883
884 while (disk_num_bytes > 0) {
885 unsigned long op;
886
887 cur_alloc_size = disk_num_bytes;
888 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
889 root->sectorsize, 0, alloc_hint,
890 &ins, 1);
891 if (ret < 0) {
892 btrfs_abort_transaction(trans, root, ret);
893 goto out_unlock;
894 }
895
896 em = alloc_extent_map();
897 BUG_ON(!em); /* -ENOMEM */
898 em->start = start;
899 em->orig_start = em->start;
900 ram_size = ins.offset;
901 em->len = ins.offset;
902
903 em->block_start = ins.objectid;
904 em->block_len = ins.offset;
905 em->bdev = root->fs_info->fs_devices->latest_bdev;
906 set_bit(EXTENT_FLAG_PINNED, &em->flags);
907
908 while (1) {
909 write_lock(&em_tree->lock);
910 ret = add_extent_mapping(em_tree, em);
911 write_unlock(&em_tree->lock);
912 if (ret != -EEXIST) {
913 free_extent_map(em);
914 break;
915 }
916 btrfs_drop_extent_cache(inode, start,
917 start + ram_size - 1, 0);
918 }
919
920 cur_alloc_size = ins.offset;
921 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
922 ram_size, cur_alloc_size, 0);
923 BUG_ON(ret); /* -ENOMEM */
924
925 if (root->root_key.objectid ==
926 BTRFS_DATA_RELOC_TREE_OBJECTID) {
927 ret = btrfs_reloc_clone_csums(inode, start,
928 cur_alloc_size);
929 if (ret) {
930 btrfs_abort_transaction(trans, root, ret);
931 goto out_unlock;
932 }
933 }
934
935 if (disk_num_bytes < cur_alloc_size)
936 break;
937
938 /* we're not doing compressed IO, don't unlock the first
939 * page (which the caller expects to stay locked), don't
940 * clear any dirty bits and don't set any writeback bits
941 *
942 * Do set the Private2 bit so we know this page was properly
943 * setup for writepage
944 */
945 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
946 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
947 EXTENT_SET_PRIVATE2;
948
949 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
950 start, start + ram_size - 1,
951 locked_page, op);
952 disk_num_bytes -= cur_alloc_size;
953 num_bytes -= cur_alloc_size;
954 alloc_hint = ins.objectid + ins.offset;
955 start += cur_alloc_size;
956 }
957 ret = 0;
958 out:
959 btrfs_end_transaction(trans, root);
960
961 return ret;
962 out_unlock:
963 extent_clear_unlock_delalloc(inode,
964 &BTRFS_I(inode)->io_tree,
965 start, end, locked_page,
966 EXTENT_CLEAR_UNLOCK_PAGE |
967 EXTENT_CLEAR_UNLOCK |
968 EXTENT_CLEAR_DELALLOC |
969 EXTENT_CLEAR_DIRTY |
970 EXTENT_SET_WRITEBACK |
971 EXTENT_END_WRITEBACK);
972
973 goto out;
974 }
975
976 /*
977 * work queue call back to started compression on a file and pages
978 */
979 static noinline void async_cow_start(struct btrfs_work *work)
980 {
981 struct async_cow *async_cow;
982 int num_added = 0;
983 async_cow = container_of(work, struct async_cow, work);
984
985 compress_file_range(async_cow->inode, async_cow->locked_page,
986 async_cow->start, async_cow->end, async_cow,
987 &num_added);
988 if (num_added == 0) {
989 btrfs_add_delayed_iput(async_cow->inode);
990 async_cow->inode = NULL;
991 }
992 }
993
994 /*
995 * work queue call back to submit previously compressed pages
996 */
997 static noinline void async_cow_submit(struct btrfs_work *work)
998 {
999 struct async_cow *async_cow;
1000 struct btrfs_root *root;
1001 unsigned long nr_pages;
1002
1003 async_cow = container_of(work, struct async_cow, work);
1004
1005 root = async_cow->root;
1006 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1007 PAGE_CACHE_SHIFT;
1008
1009 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1010 5 * 1024 * 1024 &&
1011 waitqueue_active(&root->fs_info->async_submit_wait))
1012 wake_up(&root->fs_info->async_submit_wait);
1013
1014 if (async_cow->inode)
1015 submit_compressed_extents(async_cow->inode, async_cow);
1016 }
1017
1018 static noinline void async_cow_free(struct btrfs_work *work)
1019 {
1020 struct async_cow *async_cow;
1021 async_cow = container_of(work, struct async_cow, work);
1022 if (async_cow->inode)
1023 btrfs_add_delayed_iput(async_cow->inode);
1024 kfree(async_cow);
1025 }
1026
1027 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1028 u64 start, u64 end, int *page_started,
1029 unsigned long *nr_written)
1030 {
1031 struct async_cow *async_cow;
1032 struct btrfs_root *root = BTRFS_I(inode)->root;
1033 unsigned long nr_pages;
1034 u64 cur_end;
1035 int limit = 10 * 1024 * 1024;
1036
1037 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1038 1, 0, NULL, GFP_NOFS);
1039 while (start < end) {
1040 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1041 BUG_ON(!async_cow); /* -ENOMEM */
1042 async_cow->inode = igrab(inode);
1043 async_cow->root = root;
1044 async_cow->locked_page = locked_page;
1045 async_cow->start = start;
1046
1047 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1048 cur_end = end;
1049 else
1050 cur_end = min(end, start + 512 * 1024 - 1);
1051
1052 async_cow->end = cur_end;
1053 INIT_LIST_HEAD(&async_cow->extents);
1054
1055 async_cow->work.func = async_cow_start;
1056 async_cow->work.ordered_func = async_cow_submit;
1057 async_cow->work.ordered_free = async_cow_free;
1058 async_cow->work.flags = 0;
1059
1060 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1061 PAGE_CACHE_SHIFT;
1062 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1063
1064 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1065 &async_cow->work);
1066
1067 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1068 wait_event(root->fs_info->async_submit_wait,
1069 (atomic_read(&root->fs_info->async_delalloc_pages) <
1070 limit));
1071 }
1072
1073 while (atomic_read(&root->fs_info->async_submit_draining) &&
1074 atomic_read(&root->fs_info->async_delalloc_pages)) {
1075 wait_event(root->fs_info->async_submit_wait,
1076 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1077 0));
1078 }
1079
1080 *nr_written += nr_pages;
1081 start = cur_end + 1;
1082 }
1083 *page_started = 1;
1084 return 0;
1085 }
1086
1087 static noinline int csum_exist_in_range(struct btrfs_root *root,
1088 u64 bytenr, u64 num_bytes)
1089 {
1090 int ret;
1091 struct btrfs_ordered_sum *sums;
1092 LIST_HEAD(list);
1093
1094 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1095 bytenr + num_bytes - 1, &list, 0);
1096 if (ret == 0 && list_empty(&list))
1097 return 0;
1098
1099 while (!list_empty(&list)) {
1100 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1101 list_del(&sums->list);
1102 kfree(sums);
1103 }
1104 return 1;
1105 }
1106
1107 /*
1108 * when nowcow writeback call back. This checks for snapshots or COW copies
1109 * of the extents that exist in the file, and COWs the file as required.
1110 *
1111 * If no cow copies or snapshots exist, we write directly to the existing
1112 * blocks on disk
1113 */
1114 static noinline int run_delalloc_nocow(struct inode *inode,
1115 struct page *locked_page,
1116 u64 start, u64 end, int *page_started, int force,
1117 unsigned long *nr_written)
1118 {
1119 struct btrfs_root *root = BTRFS_I(inode)->root;
1120 struct btrfs_trans_handle *trans;
1121 struct extent_buffer *leaf;
1122 struct btrfs_path *path;
1123 struct btrfs_file_extent_item *fi;
1124 struct btrfs_key found_key;
1125 u64 cow_start;
1126 u64 cur_offset;
1127 u64 extent_end;
1128 u64 extent_offset;
1129 u64 disk_bytenr;
1130 u64 num_bytes;
1131 int extent_type;
1132 int ret, err;
1133 int type;
1134 int nocow;
1135 int check_prev = 1;
1136 bool nolock;
1137 u64 ino = btrfs_ino(inode);
1138
1139 path = btrfs_alloc_path();
1140 if (!path) {
1141 extent_clear_unlock_delalloc(inode,
1142 &BTRFS_I(inode)->io_tree,
1143 start, end, locked_page,
1144 EXTENT_CLEAR_UNLOCK_PAGE |
1145 EXTENT_CLEAR_UNLOCK |
1146 EXTENT_CLEAR_DELALLOC |
1147 EXTENT_CLEAR_DIRTY |
1148 EXTENT_SET_WRITEBACK |
1149 EXTENT_END_WRITEBACK);
1150 return -ENOMEM;
1151 }
1152
1153 nolock = btrfs_is_free_space_inode(inode);
1154
1155 if (nolock)
1156 trans = btrfs_join_transaction_nolock(root);
1157 else
1158 trans = btrfs_join_transaction(root);
1159
1160 if (IS_ERR(trans)) {
1161 extent_clear_unlock_delalloc(inode,
1162 &BTRFS_I(inode)->io_tree,
1163 start, end, locked_page,
1164 EXTENT_CLEAR_UNLOCK_PAGE |
1165 EXTENT_CLEAR_UNLOCK |
1166 EXTENT_CLEAR_DELALLOC |
1167 EXTENT_CLEAR_DIRTY |
1168 EXTENT_SET_WRITEBACK |
1169 EXTENT_END_WRITEBACK);
1170 btrfs_free_path(path);
1171 return PTR_ERR(trans);
1172 }
1173
1174 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1175
1176 cow_start = (u64)-1;
1177 cur_offset = start;
1178 while (1) {
1179 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1180 cur_offset, 0);
1181 if (ret < 0) {
1182 btrfs_abort_transaction(trans, root, ret);
1183 goto error;
1184 }
1185 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key,
1188 path->slots[0] - 1);
1189 if (found_key.objectid == ino &&
1190 found_key.type == BTRFS_EXTENT_DATA_KEY)
1191 path->slots[0]--;
1192 }
1193 check_prev = 0;
1194 next_slot:
1195 leaf = path->nodes[0];
1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197 ret = btrfs_next_leaf(root, path);
1198 if (ret < 0) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 goto error;
1201 }
1202 if (ret > 0)
1203 break;
1204 leaf = path->nodes[0];
1205 }
1206
1207 nocow = 0;
1208 disk_bytenr = 0;
1209 num_bytes = 0;
1210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1211
1212 if (found_key.objectid > ino ||
1213 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1214 found_key.offset > end)
1215 break;
1216
1217 if (found_key.offset > cur_offset) {
1218 extent_end = found_key.offset;
1219 extent_type = 0;
1220 goto out_check;
1221 }
1222
1223 fi = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_file_extent_item);
1225 extent_type = btrfs_file_extent_type(leaf, fi);
1226
1227 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1228 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1229 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1230 extent_offset = btrfs_file_extent_offset(leaf, fi);
1231 extent_end = found_key.offset +
1232 btrfs_file_extent_num_bytes(leaf, fi);
1233 if (extent_end <= start) {
1234 path->slots[0]++;
1235 goto next_slot;
1236 }
1237 if (disk_bytenr == 0)
1238 goto out_check;
1239 if (btrfs_file_extent_compression(leaf, fi) ||
1240 btrfs_file_extent_encryption(leaf, fi) ||
1241 btrfs_file_extent_other_encoding(leaf, fi))
1242 goto out_check;
1243 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1244 goto out_check;
1245 if (btrfs_extent_readonly(root, disk_bytenr))
1246 goto out_check;
1247 if (btrfs_cross_ref_exist(trans, root, ino,
1248 found_key.offset -
1249 extent_offset, disk_bytenr))
1250 goto out_check;
1251 disk_bytenr += extent_offset;
1252 disk_bytenr += cur_offset - found_key.offset;
1253 num_bytes = min(end + 1, extent_end) - cur_offset;
1254 /*
1255 * force cow if csum exists in the range.
1256 * this ensure that csum for a given extent are
1257 * either valid or do not exist.
1258 */
1259 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1260 goto out_check;
1261 nocow = 1;
1262 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1263 extent_end = found_key.offset +
1264 btrfs_file_extent_inline_len(leaf, fi);
1265 extent_end = ALIGN(extent_end, root->sectorsize);
1266 } else {
1267 BUG_ON(1);
1268 }
1269 out_check:
1270 if (extent_end <= start) {
1271 path->slots[0]++;
1272 goto next_slot;
1273 }
1274 if (!nocow) {
1275 if (cow_start == (u64)-1)
1276 cow_start = cur_offset;
1277 cur_offset = extent_end;
1278 if (cur_offset > end)
1279 break;
1280 path->slots[0]++;
1281 goto next_slot;
1282 }
1283
1284 btrfs_release_path(path);
1285 if (cow_start != (u64)-1) {
1286 ret = cow_file_range(inode, locked_page, cow_start,
1287 found_key.offset - 1, page_started,
1288 nr_written, 1);
1289 if (ret) {
1290 btrfs_abort_transaction(trans, root, ret);
1291 goto error;
1292 }
1293 cow_start = (u64)-1;
1294 }
1295
1296 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1297 struct extent_map *em;
1298 struct extent_map_tree *em_tree;
1299 em_tree = &BTRFS_I(inode)->extent_tree;
1300 em = alloc_extent_map();
1301 BUG_ON(!em); /* -ENOMEM */
1302 em->start = cur_offset;
1303 em->orig_start = em->start;
1304 em->len = num_bytes;
1305 em->block_len = num_bytes;
1306 em->block_start = disk_bytenr;
1307 em->bdev = root->fs_info->fs_devices->latest_bdev;
1308 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1309 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1310 while (1) {
1311 write_lock(&em_tree->lock);
1312 ret = add_extent_mapping(em_tree, em);
1313 write_unlock(&em_tree->lock);
1314 if (ret != -EEXIST) {
1315 free_extent_map(em);
1316 break;
1317 }
1318 btrfs_drop_extent_cache(inode, em->start,
1319 em->start + em->len - 1, 0);
1320 }
1321 type = BTRFS_ORDERED_PREALLOC;
1322 } else {
1323 type = BTRFS_ORDERED_NOCOW;
1324 }
1325
1326 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1327 num_bytes, num_bytes, type);
1328 BUG_ON(ret); /* -ENOMEM */
1329
1330 if (root->root_key.objectid ==
1331 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1332 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1333 num_bytes);
1334 if (ret) {
1335 btrfs_abort_transaction(trans, root, ret);
1336 goto error;
1337 }
1338 }
1339
1340 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1341 cur_offset, cur_offset + num_bytes - 1,
1342 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1343 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1344 EXTENT_SET_PRIVATE2);
1345 cur_offset = extent_end;
1346 if (cur_offset > end)
1347 break;
1348 }
1349 btrfs_release_path(path);
1350
1351 if (cur_offset <= end && cow_start == (u64)-1) {
1352 cow_start = cur_offset;
1353 cur_offset = end;
1354 }
1355
1356 if (cow_start != (u64)-1) {
1357 ret = cow_file_range(inode, locked_page, cow_start, end,
1358 page_started, nr_written, 1);
1359 if (ret) {
1360 btrfs_abort_transaction(trans, root, ret);
1361 goto error;
1362 }
1363 }
1364
1365 error:
1366 err = btrfs_end_transaction(trans, root);
1367 if (!ret)
1368 ret = err;
1369
1370 if (ret && cur_offset < end)
1371 extent_clear_unlock_delalloc(inode,
1372 &BTRFS_I(inode)->io_tree,
1373 cur_offset, end, locked_page,
1374 EXTENT_CLEAR_UNLOCK_PAGE |
1375 EXTENT_CLEAR_UNLOCK |
1376 EXTENT_CLEAR_DELALLOC |
1377 EXTENT_CLEAR_DIRTY |
1378 EXTENT_SET_WRITEBACK |
1379 EXTENT_END_WRITEBACK);
1380
1381 btrfs_free_path(path);
1382 return ret;
1383 }
1384
1385 /*
1386 * extent_io.c call back to do delayed allocation processing
1387 */
1388 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1389 u64 start, u64 end, int *page_started,
1390 unsigned long *nr_written)
1391 {
1392 int ret;
1393 struct btrfs_root *root = BTRFS_I(inode)->root;
1394
1395 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1396 ret = run_delalloc_nocow(inode, locked_page, start, end,
1397 page_started, 1, nr_written);
1398 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1399 ret = run_delalloc_nocow(inode, locked_page, start, end,
1400 page_started, 0, nr_written);
1401 } else if (!btrfs_test_opt(root, COMPRESS) &&
1402 !(BTRFS_I(inode)->force_compress) &&
1403 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1404 ret = cow_file_range(inode, locked_page, start, end,
1405 page_started, nr_written, 1);
1406 } else {
1407 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1408 &BTRFS_I(inode)->runtime_flags);
1409 ret = cow_file_range_async(inode, locked_page, start, end,
1410 page_started, nr_written);
1411 }
1412 return ret;
1413 }
1414
1415 static void btrfs_split_extent_hook(struct inode *inode,
1416 struct extent_state *orig, u64 split)
1417 {
1418 /* not delalloc, ignore it */
1419 if (!(orig->state & EXTENT_DELALLOC))
1420 return;
1421
1422 spin_lock(&BTRFS_I(inode)->lock);
1423 BTRFS_I(inode)->outstanding_extents++;
1424 spin_unlock(&BTRFS_I(inode)->lock);
1425 }
1426
1427 /*
1428 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1429 * extents so we can keep track of new extents that are just merged onto old
1430 * extents, such as when we are doing sequential writes, so we can properly
1431 * account for the metadata space we'll need.
1432 */
1433 static void btrfs_merge_extent_hook(struct inode *inode,
1434 struct extent_state *new,
1435 struct extent_state *other)
1436 {
1437 /* not delalloc, ignore it */
1438 if (!(other->state & EXTENT_DELALLOC))
1439 return;
1440
1441 spin_lock(&BTRFS_I(inode)->lock);
1442 BTRFS_I(inode)->outstanding_extents--;
1443 spin_unlock(&BTRFS_I(inode)->lock);
1444 }
1445
1446 /*
1447 * extent_io.c set_bit_hook, used to track delayed allocation
1448 * bytes in this file, and to maintain the list of inodes that
1449 * have pending delalloc work to be done.
1450 */
1451 static void btrfs_set_bit_hook(struct inode *inode,
1452 struct extent_state *state, int *bits)
1453 {
1454
1455 /*
1456 * set_bit and clear bit hooks normally require _irqsave/restore
1457 * but in this case, we are only testing for the DELALLOC
1458 * bit, which is only set or cleared with irqs on
1459 */
1460 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1461 struct btrfs_root *root = BTRFS_I(inode)->root;
1462 u64 len = state->end + 1 - state->start;
1463 bool do_list = !btrfs_is_free_space_inode(inode);
1464
1465 if (*bits & EXTENT_FIRST_DELALLOC) {
1466 *bits &= ~EXTENT_FIRST_DELALLOC;
1467 } else {
1468 spin_lock(&BTRFS_I(inode)->lock);
1469 BTRFS_I(inode)->outstanding_extents++;
1470 spin_unlock(&BTRFS_I(inode)->lock);
1471 }
1472
1473 spin_lock(&root->fs_info->delalloc_lock);
1474 BTRFS_I(inode)->delalloc_bytes += len;
1475 root->fs_info->delalloc_bytes += len;
1476 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1477 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1478 &root->fs_info->delalloc_inodes);
1479 }
1480 spin_unlock(&root->fs_info->delalloc_lock);
1481 }
1482 }
1483
1484 /*
1485 * extent_io.c clear_bit_hook, see set_bit_hook for why
1486 */
1487 static void btrfs_clear_bit_hook(struct inode *inode,
1488 struct extent_state *state, int *bits)
1489 {
1490 /*
1491 * set_bit and clear bit hooks normally require _irqsave/restore
1492 * but in this case, we are only testing for the DELALLOC
1493 * bit, which is only set or cleared with irqs on
1494 */
1495 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1496 struct btrfs_root *root = BTRFS_I(inode)->root;
1497 u64 len = state->end + 1 - state->start;
1498 bool do_list = !btrfs_is_free_space_inode(inode);
1499
1500 if (*bits & EXTENT_FIRST_DELALLOC) {
1501 *bits &= ~EXTENT_FIRST_DELALLOC;
1502 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1503 spin_lock(&BTRFS_I(inode)->lock);
1504 BTRFS_I(inode)->outstanding_extents--;
1505 spin_unlock(&BTRFS_I(inode)->lock);
1506 }
1507
1508 if (*bits & EXTENT_DO_ACCOUNTING)
1509 btrfs_delalloc_release_metadata(inode, len);
1510
1511 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1512 && do_list)
1513 btrfs_free_reserved_data_space(inode, len);
1514
1515 spin_lock(&root->fs_info->delalloc_lock);
1516 root->fs_info->delalloc_bytes -= len;
1517 BTRFS_I(inode)->delalloc_bytes -= len;
1518
1519 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1520 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1521 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1522 }
1523 spin_unlock(&root->fs_info->delalloc_lock);
1524 }
1525 }
1526
1527 /*
1528 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1529 * we don't create bios that span stripes or chunks
1530 */
1531 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1532 size_t size, struct bio *bio,
1533 unsigned long bio_flags)
1534 {
1535 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1536 struct btrfs_mapping_tree *map_tree;
1537 u64 logical = (u64)bio->bi_sector << 9;
1538 u64 length = 0;
1539 u64 map_length;
1540 int ret;
1541
1542 if (bio_flags & EXTENT_BIO_COMPRESSED)
1543 return 0;
1544
1545 length = bio->bi_size;
1546 map_tree = &root->fs_info->mapping_tree;
1547 map_length = length;
1548 ret = btrfs_map_block(map_tree, READ, logical,
1549 &map_length, NULL, 0);
1550 /* Will always return 0 or 1 with map_multi == NULL */
1551 BUG_ON(ret < 0);
1552 if (map_length < length + size)
1553 return 1;
1554 return 0;
1555 }
1556
1557 /*
1558 * in order to insert checksums into the metadata in large chunks,
1559 * we wait until bio submission time. All the pages in the bio are
1560 * checksummed and sums are attached onto the ordered extent record.
1561 *
1562 * At IO completion time the cums attached on the ordered extent record
1563 * are inserted into the btree
1564 */
1565 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1566 struct bio *bio, int mirror_num,
1567 unsigned long bio_flags,
1568 u64 bio_offset)
1569 {
1570 struct btrfs_root *root = BTRFS_I(inode)->root;
1571 int ret = 0;
1572
1573 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1574 BUG_ON(ret); /* -ENOMEM */
1575 return 0;
1576 }
1577
1578 /*
1579 * in order to insert checksums into the metadata in large chunks,
1580 * we wait until bio submission time. All the pages in the bio are
1581 * checksummed and sums are attached onto the ordered extent record.
1582 *
1583 * At IO completion time the cums attached on the ordered extent record
1584 * are inserted into the btree
1585 */
1586 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1587 int mirror_num, unsigned long bio_flags,
1588 u64 bio_offset)
1589 {
1590 struct btrfs_root *root = BTRFS_I(inode)->root;
1591 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1592 }
1593
1594 /*
1595 * extent_io.c submission hook. This does the right thing for csum calculation
1596 * on write, or reading the csums from the tree before a read
1597 */
1598 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1599 int mirror_num, unsigned long bio_flags,
1600 u64 bio_offset)
1601 {
1602 struct btrfs_root *root = BTRFS_I(inode)->root;
1603 int ret = 0;
1604 int skip_sum;
1605 int metadata = 0;
1606
1607 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1608
1609 if (btrfs_is_free_space_inode(inode))
1610 metadata = 2;
1611
1612 if (!(rw & REQ_WRITE)) {
1613 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1614 if (ret)
1615 return ret;
1616
1617 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1618 return btrfs_submit_compressed_read(inode, bio,
1619 mirror_num, bio_flags);
1620 } else if (!skip_sum) {
1621 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1622 if (ret)
1623 return ret;
1624 }
1625 goto mapit;
1626 } else if (!skip_sum) {
1627 /* csum items have already been cloned */
1628 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1629 goto mapit;
1630 /* we're doing a write, do the async checksumming */
1631 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1632 inode, rw, bio, mirror_num,
1633 bio_flags, bio_offset,
1634 __btrfs_submit_bio_start,
1635 __btrfs_submit_bio_done);
1636 }
1637
1638 mapit:
1639 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1640 }
1641
1642 /*
1643 * given a list of ordered sums record them in the inode. This happens
1644 * at IO completion time based on sums calculated at bio submission time.
1645 */
1646 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1647 struct inode *inode, u64 file_offset,
1648 struct list_head *list)
1649 {
1650 struct btrfs_ordered_sum *sum;
1651
1652 list_for_each_entry(sum, list, list) {
1653 btrfs_csum_file_blocks(trans,
1654 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1655 }
1656 return 0;
1657 }
1658
1659 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1660 struct extent_state **cached_state)
1661 {
1662 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1663 WARN_ON(1);
1664 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1665 cached_state, GFP_NOFS);
1666 }
1667
1668 /* see btrfs_writepage_start_hook for details on why this is required */
1669 struct btrfs_writepage_fixup {
1670 struct page *page;
1671 struct btrfs_work work;
1672 };
1673
1674 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1675 {
1676 struct btrfs_writepage_fixup *fixup;
1677 struct btrfs_ordered_extent *ordered;
1678 struct extent_state *cached_state = NULL;
1679 struct page *page;
1680 struct inode *inode;
1681 u64 page_start;
1682 u64 page_end;
1683 int ret;
1684
1685 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1686 page = fixup->page;
1687 again:
1688 lock_page(page);
1689 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1690 ClearPageChecked(page);
1691 goto out_page;
1692 }
1693
1694 inode = page->mapping->host;
1695 page_start = page_offset(page);
1696 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1697
1698 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1699 &cached_state);
1700
1701 /* already ordered? We're done */
1702 if (PagePrivate2(page))
1703 goto out;
1704
1705 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1706 if (ordered) {
1707 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1708 page_end, &cached_state, GFP_NOFS);
1709 unlock_page(page);
1710 btrfs_start_ordered_extent(inode, ordered, 1);
1711 btrfs_put_ordered_extent(ordered);
1712 goto again;
1713 }
1714
1715 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1716 if (ret) {
1717 mapping_set_error(page->mapping, ret);
1718 end_extent_writepage(page, ret, page_start, page_end);
1719 ClearPageChecked(page);
1720 goto out;
1721 }
1722
1723 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1724 ClearPageChecked(page);
1725 set_page_dirty(page);
1726 out:
1727 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1728 &cached_state, GFP_NOFS);
1729 out_page:
1730 unlock_page(page);
1731 page_cache_release(page);
1732 kfree(fixup);
1733 }
1734
1735 /*
1736 * There are a few paths in the higher layers of the kernel that directly
1737 * set the page dirty bit without asking the filesystem if it is a
1738 * good idea. This causes problems because we want to make sure COW
1739 * properly happens and the data=ordered rules are followed.
1740 *
1741 * In our case any range that doesn't have the ORDERED bit set
1742 * hasn't been properly setup for IO. We kick off an async process
1743 * to fix it up. The async helper will wait for ordered extents, set
1744 * the delalloc bit and make it safe to write the page.
1745 */
1746 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1747 {
1748 struct inode *inode = page->mapping->host;
1749 struct btrfs_writepage_fixup *fixup;
1750 struct btrfs_root *root = BTRFS_I(inode)->root;
1751
1752 /* this page is properly in the ordered list */
1753 if (TestClearPagePrivate2(page))
1754 return 0;
1755
1756 if (PageChecked(page))
1757 return -EAGAIN;
1758
1759 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1760 if (!fixup)
1761 return -EAGAIN;
1762
1763 SetPageChecked(page);
1764 page_cache_get(page);
1765 fixup->work.func = btrfs_writepage_fixup_worker;
1766 fixup->page = page;
1767 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1768 return -EBUSY;
1769 }
1770
1771 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1772 struct inode *inode, u64 file_pos,
1773 u64 disk_bytenr, u64 disk_num_bytes,
1774 u64 num_bytes, u64 ram_bytes,
1775 u8 compression, u8 encryption,
1776 u16 other_encoding, int extent_type)
1777 {
1778 struct btrfs_root *root = BTRFS_I(inode)->root;
1779 struct btrfs_file_extent_item *fi;
1780 struct btrfs_path *path;
1781 struct extent_buffer *leaf;
1782 struct btrfs_key ins;
1783 int ret;
1784
1785 path = btrfs_alloc_path();
1786 if (!path)
1787 return -ENOMEM;
1788
1789 path->leave_spinning = 1;
1790
1791 /*
1792 * we may be replacing one extent in the tree with another.
1793 * The new extent is pinned in the extent map, and we don't want
1794 * to drop it from the cache until it is completely in the btree.
1795 *
1796 * So, tell btrfs_drop_extents to leave this extent in the cache.
1797 * the caller is expected to unpin it and allow it to be merged
1798 * with the others.
1799 */
1800 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1801 file_pos + num_bytes, 0);
1802 if (ret)
1803 goto out;
1804
1805 ins.objectid = btrfs_ino(inode);
1806 ins.offset = file_pos;
1807 ins.type = BTRFS_EXTENT_DATA_KEY;
1808 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1809 if (ret)
1810 goto out;
1811 leaf = path->nodes[0];
1812 fi = btrfs_item_ptr(leaf, path->slots[0],
1813 struct btrfs_file_extent_item);
1814 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1815 btrfs_set_file_extent_type(leaf, fi, extent_type);
1816 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1817 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1818 btrfs_set_file_extent_offset(leaf, fi, 0);
1819 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1820 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1821 btrfs_set_file_extent_compression(leaf, fi, compression);
1822 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1823 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1824
1825 btrfs_mark_buffer_dirty(leaf);
1826 btrfs_release_path(path);
1827
1828 inode_add_bytes(inode, num_bytes);
1829
1830 ins.objectid = disk_bytenr;
1831 ins.offset = disk_num_bytes;
1832 ins.type = BTRFS_EXTENT_ITEM_KEY;
1833 ret = btrfs_alloc_reserved_file_extent(trans, root,
1834 root->root_key.objectid,
1835 btrfs_ino(inode), file_pos, &ins);
1836 out:
1837 btrfs_free_path(path);
1838
1839 return ret;
1840 }
1841
1842 /*
1843 * helper function for btrfs_finish_ordered_io, this
1844 * just reads in some of the csum leaves to prime them into ram
1845 * before we start the transaction. It limits the amount of btree
1846 * reads required while inside the transaction.
1847 */
1848 /* as ordered data IO finishes, this gets called so we can finish
1849 * an ordered extent if the range of bytes in the file it covers are
1850 * fully written.
1851 */
1852 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1853 {
1854 struct inode *inode = ordered_extent->inode;
1855 struct btrfs_root *root = BTRFS_I(inode)->root;
1856 struct btrfs_trans_handle *trans = NULL;
1857 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1858 struct extent_state *cached_state = NULL;
1859 int compress_type = 0;
1860 int ret;
1861 bool nolock;
1862
1863 nolock = btrfs_is_free_space_inode(inode);
1864
1865 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1866 ret = -EIO;
1867 goto out;
1868 }
1869
1870 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1871 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1872 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1873 if (!ret) {
1874 if (nolock)
1875 trans = btrfs_join_transaction_nolock(root);
1876 else
1877 trans = btrfs_join_transaction(root);
1878 if (IS_ERR(trans)) {
1879 ret = PTR_ERR(trans);
1880 trans = NULL;
1881 goto out;
1882 }
1883 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1884 ret = btrfs_update_inode_fallback(trans, root, inode);
1885 if (ret) /* -ENOMEM or corruption */
1886 btrfs_abort_transaction(trans, root, ret);
1887 }
1888 goto out;
1889 }
1890
1891 lock_extent_bits(io_tree, ordered_extent->file_offset,
1892 ordered_extent->file_offset + ordered_extent->len - 1,
1893 0, &cached_state);
1894
1895 if (nolock)
1896 trans = btrfs_join_transaction_nolock(root);
1897 else
1898 trans = btrfs_join_transaction(root);
1899 if (IS_ERR(trans)) {
1900 ret = PTR_ERR(trans);
1901 trans = NULL;
1902 goto out_unlock;
1903 }
1904 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1905
1906 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1907 compress_type = ordered_extent->compress_type;
1908 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1909 BUG_ON(compress_type);
1910 ret = btrfs_mark_extent_written(trans, inode,
1911 ordered_extent->file_offset,
1912 ordered_extent->file_offset +
1913 ordered_extent->len);
1914 } else {
1915 BUG_ON(root == root->fs_info->tree_root);
1916 ret = insert_reserved_file_extent(trans, inode,
1917 ordered_extent->file_offset,
1918 ordered_extent->start,
1919 ordered_extent->disk_len,
1920 ordered_extent->len,
1921 ordered_extent->len,
1922 compress_type, 0, 0,
1923 BTRFS_FILE_EXTENT_REG);
1924 }
1925 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1926 ordered_extent->file_offset, ordered_extent->len,
1927 trans->transid);
1928 if (ret < 0) {
1929 btrfs_abort_transaction(trans, root, ret);
1930 goto out_unlock;
1931 }
1932
1933 add_pending_csums(trans, inode, ordered_extent->file_offset,
1934 &ordered_extent->list);
1935
1936 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1937 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1938 ret = btrfs_update_inode_fallback(trans, root, inode);
1939 if (ret) { /* -ENOMEM or corruption */
1940 btrfs_abort_transaction(trans, root, ret);
1941 goto out_unlock;
1942 }
1943 } else {
1944 btrfs_set_inode_last_trans(trans, inode);
1945 }
1946 ret = 0;
1947 out_unlock:
1948 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1949 ordered_extent->file_offset +
1950 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1951 out:
1952 if (root != root->fs_info->tree_root)
1953 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1954 if (trans)
1955 btrfs_end_transaction(trans, root);
1956
1957 if (ret)
1958 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1959 ordered_extent->file_offset +
1960 ordered_extent->len - 1, NULL, GFP_NOFS);
1961
1962 /*
1963 * This needs to be done to make sure anybody waiting knows we are done
1964 * updating everything for this ordered extent.
1965 */
1966 btrfs_remove_ordered_extent(inode, ordered_extent);
1967
1968 /* once for us */
1969 btrfs_put_ordered_extent(ordered_extent);
1970 /* once for the tree */
1971 btrfs_put_ordered_extent(ordered_extent);
1972
1973 return ret;
1974 }
1975
1976 static void finish_ordered_fn(struct btrfs_work *work)
1977 {
1978 struct btrfs_ordered_extent *ordered_extent;
1979 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1980 btrfs_finish_ordered_io(ordered_extent);
1981 }
1982
1983 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1984 struct extent_state *state, int uptodate)
1985 {
1986 struct inode *inode = page->mapping->host;
1987 struct btrfs_root *root = BTRFS_I(inode)->root;
1988 struct btrfs_ordered_extent *ordered_extent = NULL;
1989 struct btrfs_workers *workers;
1990
1991 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1992
1993 ClearPagePrivate2(page);
1994 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1995 end - start + 1, uptodate))
1996 return 0;
1997
1998 ordered_extent->work.func = finish_ordered_fn;
1999 ordered_extent->work.flags = 0;
2000
2001 if (btrfs_is_free_space_inode(inode))
2002 workers = &root->fs_info->endio_freespace_worker;
2003 else
2004 workers = &root->fs_info->endio_write_workers;
2005 btrfs_queue_worker(workers, &ordered_extent->work);
2006
2007 return 0;
2008 }
2009
2010 /*
2011 * when reads are done, we need to check csums to verify the data is correct
2012 * if there's a match, we allow the bio to finish. If not, the code in
2013 * extent_io.c will try to find good copies for us.
2014 */
2015 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2016 struct extent_state *state, int mirror)
2017 {
2018 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2019 struct inode *inode = page->mapping->host;
2020 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2021 char *kaddr;
2022 u64 private = ~(u32)0;
2023 int ret;
2024 struct btrfs_root *root = BTRFS_I(inode)->root;
2025 u32 csum = ~(u32)0;
2026
2027 if (PageChecked(page)) {
2028 ClearPageChecked(page);
2029 goto good;
2030 }
2031
2032 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2033 goto good;
2034
2035 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2036 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2037 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2038 GFP_NOFS);
2039 return 0;
2040 }
2041
2042 if (state && state->start == start) {
2043 private = state->private;
2044 ret = 0;
2045 } else {
2046 ret = get_state_private(io_tree, start, &private);
2047 }
2048 kaddr = kmap_atomic(page);
2049 if (ret)
2050 goto zeroit;
2051
2052 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2053 btrfs_csum_final(csum, (char *)&csum);
2054 if (csum != private)
2055 goto zeroit;
2056
2057 kunmap_atomic(kaddr);
2058 good:
2059 return 0;
2060
2061 zeroit:
2062 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2063 "private %llu\n",
2064 (unsigned long long)btrfs_ino(page->mapping->host),
2065 (unsigned long long)start, csum,
2066 (unsigned long long)private);
2067 memset(kaddr + offset, 1, end - start + 1);
2068 flush_dcache_page(page);
2069 kunmap_atomic(kaddr);
2070 if (private == 0)
2071 return 0;
2072 return -EIO;
2073 }
2074
2075 struct delayed_iput {
2076 struct list_head list;
2077 struct inode *inode;
2078 };
2079
2080 /* JDM: If this is fs-wide, why can't we add a pointer to
2081 * btrfs_inode instead and avoid the allocation? */
2082 void btrfs_add_delayed_iput(struct inode *inode)
2083 {
2084 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2085 struct delayed_iput *delayed;
2086
2087 if (atomic_add_unless(&inode->i_count, -1, 1))
2088 return;
2089
2090 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2091 delayed->inode = inode;
2092
2093 spin_lock(&fs_info->delayed_iput_lock);
2094 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2095 spin_unlock(&fs_info->delayed_iput_lock);
2096 }
2097
2098 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2099 {
2100 LIST_HEAD(list);
2101 struct btrfs_fs_info *fs_info = root->fs_info;
2102 struct delayed_iput *delayed;
2103 int empty;
2104
2105 spin_lock(&fs_info->delayed_iput_lock);
2106 empty = list_empty(&fs_info->delayed_iputs);
2107 spin_unlock(&fs_info->delayed_iput_lock);
2108 if (empty)
2109 return;
2110
2111 spin_lock(&fs_info->delayed_iput_lock);
2112 list_splice_init(&fs_info->delayed_iputs, &list);
2113 spin_unlock(&fs_info->delayed_iput_lock);
2114
2115 while (!list_empty(&list)) {
2116 delayed = list_entry(list.next, struct delayed_iput, list);
2117 list_del(&delayed->list);
2118 iput(delayed->inode);
2119 kfree(delayed);
2120 }
2121 }
2122
2123 enum btrfs_orphan_cleanup_state {
2124 ORPHAN_CLEANUP_STARTED = 1,
2125 ORPHAN_CLEANUP_DONE = 2,
2126 };
2127
2128 /*
2129 * This is called in transaction commit time. If there are no orphan
2130 * files in the subvolume, it removes orphan item and frees block_rsv
2131 * structure.
2132 */
2133 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2134 struct btrfs_root *root)
2135 {
2136 struct btrfs_block_rsv *block_rsv;
2137 int ret;
2138
2139 if (atomic_read(&root->orphan_inodes) ||
2140 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2141 return;
2142
2143 spin_lock(&root->orphan_lock);
2144 if (atomic_read(&root->orphan_inodes)) {
2145 spin_unlock(&root->orphan_lock);
2146 return;
2147 }
2148
2149 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2150 spin_unlock(&root->orphan_lock);
2151 return;
2152 }
2153
2154 block_rsv = root->orphan_block_rsv;
2155 root->orphan_block_rsv = NULL;
2156 spin_unlock(&root->orphan_lock);
2157
2158 if (root->orphan_item_inserted &&
2159 btrfs_root_refs(&root->root_item) > 0) {
2160 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2161 root->root_key.objectid);
2162 BUG_ON(ret);
2163 root->orphan_item_inserted = 0;
2164 }
2165
2166 if (block_rsv) {
2167 WARN_ON(block_rsv->size > 0);
2168 btrfs_free_block_rsv(root, block_rsv);
2169 }
2170 }
2171
2172 /*
2173 * This creates an orphan entry for the given inode in case something goes
2174 * wrong in the middle of an unlink/truncate.
2175 *
2176 * NOTE: caller of this function should reserve 5 units of metadata for
2177 * this function.
2178 */
2179 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2180 {
2181 struct btrfs_root *root = BTRFS_I(inode)->root;
2182 struct btrfs_block_rsv *block_rsv = NULL;
2183 int reserve = 0;
2184 int insert = 0;
2185 int ret;
2186
2187 if (!root->orphan_block_rsv) {
2188 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2189 if (!block_rsv)
2190 return -ENOMEM;
2191 }
2192
2193 spin_lock(&root->orphan_lock);
2194 if (!root->orphan_block_rsv) {
2195 root->orphan_block_rsv = block_rsv;
2196 } else if (block_rsv) {
2197 btrfs_free_block_rsv(root, block_rsv);
2198 block_rsv = NULL;
2199 }
2200
2201 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2202 &BTRFS_I(inode)->runtime_flags)) {
2203 #if 0
2204 /*
2205 * For proper ENOSPC handling, we should do orphan
2206 * cleanup when mounting. But this introduces backward
2207 * compatibility issue.
2208 */
2209 if (!xchg(&root->orphan_item_inserted, 1))
2210 insert = 2;
2211 else
2212 insert = 1;
2213 #endif
2214 insert = 1;
2215 atomic_inc(&root->orphan_inodes);
2216 }
2217
2218 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2219 &BTRFS_I(inode)->runtime_flags))
2220 reserve = 1;
2221 spin_unlock(&root->orphan_lock);
2222
2223 /* grab metadata reservation from transaction handle */
2224 if (reserve) {
2225 ret = btrfs_orphan_reserve_metadata(trans, inode);
2226 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2227 }
2228
2229 /* insert an orphan item to track this unlinked/truncated file */
2230 if (insert >= 1) {
2231 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2232 if (ret && ret != -EEXIST) {
2233 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2234 &BTRFS_I(inode)->runtime_flags);
2235 btrfs_abort_transaction(trans, root, ret);
2236 return ret;
2237 }
2238 ret = 0;
2239 }
2240
2241 /* insert an orphan item to track subvolume contains orphan files */
2242 if (insert >= 2) {
2243 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2244 root->root_key.objectid);
2245 if (ret && ret != -EEXIST) {
2246 btrfs_abort_transaction(trans, root, ret);
2247 return ret;
2248 }
2249 }
2250 return 0;
2251 }
2252
2253 /*
2254 * We have done the truncate/delete so we can go ahead and remove the orphan
2255 * item for this particular inode.
2256 */
2257 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2258 {
2259 struct btrfs_root *root = BTRFS_I(inode)->root;
2260 int delete_item = 0;
2261 int release_rsv = 0;
2262 int ret = 0;
2263
2264 spin_lock(&root->orphan_lock);
2265 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2266 &BTRFS_I(inode)->runtime_flags))
2267 delete_item = 1;
2268
2269 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2270 &BTRFS_I(inode)->runtime_flags))
2271 release_rsv = 1;
2272 spin_unlock(&root->orphan_lock);
2273
2274 if (trans && delete_item) {
2275 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2276 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2277 }
2278
2279 if (release_rsv) {
2280 btrfs_orphan_release_metadata(inode);
2281 atomic_dec(&root->orphan_inodes);
2282 }
2283
2284 return 0;
2285 }
2286
2287 /*
2288 * this cleans up any orphans that may be left on the list from the last use
2289 * of this root.
2290 */
2291 int btrfs_orphan_cleanup(struct btrfs_root *root)
2292 {
2293 struct btrfs_path *path;
2294 struct extent_buffer *leaf;
2295 struct btrfs_key key, found_key;
2296 struct btrfs_trans_handle *trans;
2297 struct inode *inode;
2298 u64 last_objectid = 0;
2299 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2300
2301 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2302 return 0;
2303
2304 path = btrfs_alloc_path();
2305 if (!path) {
2306 ret = -ENOMEM;
2307 goto out;
2308 }
2309 path->reada = -1;
2310
2311 key.objectid = BTRFS_ORPHAN_OBJECTID;
2312 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2313 key.offset = (u64)-1;
2314
2315 while (1) {
2316 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2317 if (ret < 0)
2318 goto out;
2319
2320 /*
2321 * if ret == 0 means we found what we were searching for, which
2322 * is weird, but possible, so only screw with path if we didn't
2323 * find the key and see if we have stuff that matches
2324 */
2325 if (ret > 0) {
2326 ret = 0;
2327 if (path->slots[0] == 0)
2328 break;
2329 path->slots[0]--;
2330 }
2331
2332 /* pull out the item */
2333 leaf = path->nodes[0];
2334 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2335
2336 /* make sure the item matches what we want */
2337 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2338 break;
2339 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2340 break;
2341
2342 /* release the path since we're done with it */
2343 btrfs_release_path(path);
2344
2345 /*
2346 * this is where we are basically btrfs_lookup, without the
2347 * crossing root thing. we store the inode number in the
2348 * offset of the orphan item.
2349 */
2350
2351 if (found_key.offset == last_objectid) {
2352 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2353 "stopping orphan cleanup\n");
2354 ret = -EINVAL;
2355 goto out;
2356 }
2357
2358 last_objectid = found_key.offset;
2359
2360 found_key.objectid = found_key.offset;
2361 found_key.type = BTRFS_INODE_ITEM_KEY;
2362 found_key.offset = 0;
2363 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2364 ret = PTR_RET(inode);
2365 if (ret && ret != -ESTALE)
2366 goto out;
2367
2368 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2369 struct btrfs_root *dead_root;
2370 struct btrfs_fs_info *fs_info = root->fs_info;
2371 int is_dead_root = 0;
2372
2373 /*
2374 * this is an orphan in the tree root. Currently these
2375 * could come from 2 sources:
2376 * a) a snapshot deletion in progress
2377 * b) a free space cache inode
2378 * We need to distinguish those two, as the snapshot
2379 * orphan must not get deleted.
2380 * find_dead_roots already ran before us, so if this
2381 * is a snapshot deletion, we should find the root
2382 * in the dead_roots list
2383 */
2384 spin_lock(&fs_info->trans_lock);
2385 list_for_each_entry(dead_root, &fs_info->dead_roots,
2386 root_list) {
2387 if (dead_root->root_key.objectid ==
2388 found_key.objectid) {
2389 is_dead_root = 1;
2390 break;
2391 }
2392 }
2393 spin_unlock(&fs_info->trans_lock);
2394 if (is_dead_root) {
2395 /* prevent this orphan from being found again */
2396 key.offset = found_key.objectid - 1;
2397 continue;
2398 }
2399 }
2400 /*
2401 * Inode is already gone but the orphan item is still there,
2402 * kill the orphan item.
2403 */
2404 if (ret == -ESTALE) {
2405 trans = btrfs_start_transaction(root, 1);
2406 if (IS_ERR(trans)) {
2407 ret = PTR_ERR(trans);
2408 goto out;
2409 }
2410 printk(KERN_ERR "auto deleting %Lu\n",
2411 found_key.objectid);
2412 ret = btrfs_del_orphan_item(trans, root,
2413 found_key.objectid);
2414 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2415 btrfs_end_transaction(trans, root);
2416 continue;
2417 }
2418
2419 /*
2420 * add this inode to the orphan list so btrfs_orphan_del does
2421 * the proper thing when we hit it
2422 */
2423 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2424 &BTRFS_I(inode)->runtime_flags);
2425
2426 /* if we have links, this was a truncate, lets do that */
2427 if (inode->i_nlink) {
2428 if (!S_ISREG(inode->i_mode)) {
2429 WARN_ON(1);
2430 iput(inode);
2431 continue;
2432 }
2433 nr_truncate++;
2434 ret = btrfs_truncate(inode);
2435 } else {
2436 nr_unlink++;
2437 }
2438
2439 /* this will do delete_inode and everything for us */
2440 iput(inode);
2441 if (ret)
2442 goto out;
2443 }
2444 /* release the path since we're done with it */
2445 btrfs_release_path(path);
2446
2447 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2448
2449 if (root->orphan_block_rsv)
2450 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2451 (u64)-1);
2452
2453 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2454 trans = btrfs_join_transaction(root);
2455 if (!IS_ERR(trans))
2456 btrfs_end_transaction(trans, root);
2457 }
2458
2459 if (nr_unlink)
2460 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2461 if (nr_truncate)
2462 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2463
2464 out:
2465 if (ret)
2466 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2467 btrfs_free_path(path);
2468 return ret;
2469 }
2470
2471 /*
2472 * very simple check to peek ahead in the leaf looking for xattrs. If we
2473 * don't find any xattrs, we know there can't be any acls.
2474 *
2475 * slot is the slot the inode is in, objectid is the objectid of the inode
2476 */
2477 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2478 int slot, u64 objectid)
2479 {
2480 u32 nritems = btrfs_header_nritems(leaf);
2481 struct btrfs_key found_key;
2482 int scanned = 0;
2483
2484 slot++;
2485 while (slot < nritems) {
2486 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2487
2488 /* we found a different objectid, there must not be acls */
2489 if (found_key.objectid != objectid)
2490 return 0;
2491
2492 /* we found an xattr, assume we've got an acl */
2493 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2494 return 1;
2495
2496 /*
2497 * we found a key greater than an xattr key, there can't
2498 * be any acls later on
2499 */
2500 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2501 return 0;
2502
2503 slot++;
2504 scanned++;
2505
2506 /*
2507 * it goes inode, inode backrefs, xattrs, extents,
2508 * so if there are a ton of hard links to an inode there can
2509 * be a lot of backrefs. Don't waste time searching too hard,
2510 * this is just an optimization
2511 */
2512 if (scanned >= 8)
2513 break;
2514 }
2515 /* we hit the end of the leaf before we found an xattr or
2516 * something larger than an xattr. We have to assume the inode
2517 * has acls
2518 */
2519 return 1;
2520 }
2521
2522 /*
2523 * read an inode from the btree into the in-memory inode
2524 */
2525 static void btrfs_read_locked_inode(struct inode *inode)
2526 {
2527 struct btrfs_path *path;
2528 struct extent_buffer *leaf;
2529 struct btrfs_inode_item *inode_item;
2530 struct btrfs_timespec *tspec;
2531 struct btrfs_root *root = BTRFS_I(inode)->root;
2532 struct btrfs_key location;
2533 int maybe_acls;
2534 u32 rdev;
2535 int ret;
2536 bool filled = false;
2537
2538 ret = btrfs_fill_inode(inode, &rdev);
2539 if (!ret)
2540 filled = true;
2541
2542 path = btrfs_alloc_path();
2543 if (!path)
2544 goto make_bad;
2545
2546 path->leave_spinning = 1;
2547 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2548
2549 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2550 if (ret)
2551 goto make_bad;
2552
2553 leaf = path->nodes[0];
2554
2555 if (filled)
2556 goto cache_acl;
2557
2558 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2559 struct btrfs_inode_item);
2560 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2561 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2562 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
2563 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
2564 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2565
2566 tspec = btrfs_inode_atime(inode_item);
2567 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2568 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2569
2570 tspec = btrfs_inode_mtime(inode_item);
2571 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2572 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2573
2574 tspec = btrfs_inode_ctime(inode_item);
2575 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2576 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2577
2578 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2579 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2580 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
2581
2582 /*
2583 * If we were modified in the current generation and evicted from memory
2584 * and then re-read we need to do a full sync since we don't have any
2585 * idea about which extents were modified before we were evicted from
2586 * cache.
2587 */
2588 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
2589 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2590 &BTRFS_I(inode)->runtime_flags);
2591
2592 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2593 inode->i_generation = BTRFS_I(inode)->generation;
2594 inode->i_rdev = 0;
2595 rdev = btrfs_inode_rdev(leaf, inode_item);
2596
2597 BTRFS_I(inode)->index_cnt = (u64)-1;
2598 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2599 cache_acl:
2600 /*
2601 * try to precache a NULL acl entry for files that don't have
2602 * any xattrs or acls
2603 */
2604 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2605 btrfs_ino(inode));
2606 if (!maybe_acls)
2607 cache_no_acl(inode);
2608
2609 btrfs_free_path(path);
2610
2611 switch (inode->i_mode & S_IFMT) {
2612 case S_IFREG:
2613 inode->i_mapping->a_ops = &btrfs_aops;
2614 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2615 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2616 inode->i_fop = &btrfs_file_operations;
2617 inode->i_op = &btrfs_file_inode_operations;
2618 break;
2619 case S_IFDIR:
2620 inode->i_fop = &btrfs_dir_file_operations;
2621 if (root == root->fs_info->tree_root)
2622 inode->i_op = &btrfs_dir_ro_inode_operations;
2623 else
2624 inode->i_op = &btrfs_dir_inode_operations;
2625 break;
2626 case S_IFLNK:
2627 inode->i_op = &btrfs_symlink_inode_operations;
2628 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2629 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2630 break;
2631 default:
2632 inode->i_op = &btrfs_special_inode_operations;
2633 init_special_inode(inode, inode->i_mode, rdev);
2634 break;
2635 }
2636
2637 btrfs_update_iflags(inode);
2638 return;
2639
2640 make_bad:
2641 btrfs_free_path(path);
2642 make_bad_inode(inode);
2643 }
2644
2645 /*
2646 * given a leaf and an inode, copy the inode fields into the leaf
2647 */
2648 static void fill_inode_item(struct btrfs_trans_handle *trans,
2649 struct extent_buffer *leaf,
2650 struct btrfs_inode_item *item,
2651 struct inode *inode)
2652 {
2653 btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2654 btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
2655 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2656 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2657 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2658
2659 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2660 inode->i_atime.tv_sec);
2661 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2662 inode->i_atime.tv_nsec);
2663
2664 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2665 inode->i_mtime.tv_sec);
2666 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2667 inode->i_mtime.tv_nsec);
2668
2669 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2670 inode->i_ctime.tv_sec);
2671 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2672 inode->i_ctime.tv_nsec);
2673
2674 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2675 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2676 btrfs_set_inode_sequence(leaf, item, inode->i_version);
2677 btrfs_set_inode_transid(leaf, item, trans->transid);
2678 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2679 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2680 btrfs_set_inode_block_group(leaf, item, 0);
2681 }
2682
2683 /*
2684 * copy everything in the in-memory inode into the btree.
2685 */
2686 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2687 struct btrfs_root *root, struct inode *inode)
2688 {
2689 struct btrfs_inode_item *inode_item;
2690 struct btrfs_path *path;
2691 struct extent_buffer *leaf;
2692 int ret;
2693
2694 path = btrfs_alloc_path();
2695 if (!path)
2696 return -ENOMEM;
2697
2698 path->leave_spinning = 1;
2699 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2700 1);
2701 if (ret) {
2702 if (ret > 0)
2703 ret = -ENOENT;
2704 goto failed;
2705 }
2706
2707 btrfs_unlock_up_safe(path, 1);
2708 leaf = path->nodes[0];
2709 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2710 struct btrfs_inode_item);
2711
2712 fill_inode_item(trans, leaf, inode_item, inode);
2713 btrfs_mark_buffer_dirty(leaf);
2714 btrfs_set_inode_last_trans(trans, inode);
2715 ret = 0;
2716 failed:
2717 btrfs_free_path(path);
2718 return ret;
2719 }
2720
2721 /*
2722 * copy everything in the in-memory inode into the btree.
2723 */
2724 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2725 struct btrfs_root *root, struct inode *inode)
2726 {
2727 int ret;
2728
2729 /*
2730 * If the inode is a free space inode, we can deadlock during commit
2731 * if we put it into the delayed code.
2732 *
2733 * The data relocation inode should also be directly updated
2734 * without delay
2735 */
2736 if (!btrfs_is_free_space_inode(inode)
2737 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2738 btrfs_update_root_times(trans, root);
2739
2740 ret = btrfs_delayed_update_inode(trans, root, inode);
2741 if (!ret)
2742 btrfs_set_inode_last_trans(trans, inode);
2743 return ret;
2744 }
2745
2746 return btrfs_update_inode_item(trans, root, inode);
2747 }
2748
2749 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2750 struct btrfs_root *root, struct inode *inode)
2751 {
2752 int ret;
2753
2754 ret = btrfs_update_inode(trans, root, inode);
2755 if (ret == -ENOSPC)
2756 return btrfs_update_inode_item(trans, root, inode);
2757 return ret;
2758 }
2759
2760 /*
2761 * unlink helper that gets used here in inode.c and in the tree logging
2762 * recovery code. It remove a link in a directory with a given name, and
2763 * also drops the back refs in the inode to the directory
2764 */
2765 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2766 struct btrfs_root *root,
2767 struct inode *dir, struct inode *inode,
2768 const char *name, int name_len)
2769 {
2770 struct btrfs_path *path;
2771 int ret = 0;
2772 struct extent_buffer *leaf;
2773 struct btrfs_dir_item *di;
2774 struct btrfs_key key;
2775 u64 index;
2776 u64 ino = btrfs_ino(inode);
2777 u64 dir_ino = btrfs_ino(dir);
2778
2779 path = btrfs_alloc_path();
2780 if (!path) {
2781 ret = -ENOMEM;
2782 goto out;
2783 }
2784
2785 path->leave_spinning = 1;
2786 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2787 name, name_len, -1);
2788 if (IS_ERR(di)) {
2789 ret = PTR_ERR(di);
2790 goto err;
2791 }
2792 if (!di) {
2793 ret = -ENOENT;
2794 goto err;
2795 }
2796 leaf = path->nodes[0];
2797 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2798 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2799 if (ret)
2800 goto err;
2801 btrfs_release_path(path);
2802
2803 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2804 dir_ino, &index);
2805 if (ret) {
2806 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2807 "inode %llu parent %llu\n", name_len, name,
2808 (unsigned long long)ino, (unsigned long long)dir_ino);
2809 btrfs_abort_transaction(trans, root, ret);
2810 goto err;
2811 }
2812
2813 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2814 if (ret) {
2815 btrfs_abort_transaction(trans, root, ret);
2816 goto err;
2817 }
2818
2819 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2820 inode, dir_ino);
2821 if (ret != 0 && ret != -ENOENT) {
2822 btrfs_abort_transaction(trans, root, ret);
2823 goto err;
2824 }
2825
2826 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2827 dir, index);
2828 if (ret == -ENOENT)
2829 ret = 0;
2830 err:
2831 btrfs_free_path(path);
2832 if (ret)
2833 goto out;
2834
2835 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2836 inode_inc_iversion(inode);
2837 inode_inc_iversion(dir);
2838 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2839 ret = btrfs_update_inode(trans, root, dir);
2840 out:
2841 return ret;
2842 }
2843
2844 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2845 struct btrfs_root *root,
2846 struct inode *dir, struct inode *inode,
2847 const char *name, int name_len)
2848 {
2849 int ret;
2850 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2851 if (!ret) {
2852 btrfs_drop_nlink(inode);
2853 ret = btrfs_update_inode(trans, root, inode);
2854 }
2855 return ret;
2856 }
2857
2858
2859 /* helper to check if there is any shared block in the path */
2860 static int check_path_shared(struct btrfs_root *root,
2861 struct btrfs_path *path)
2862 {
2863 struct extent_buffer *eb;
2864 int level;
2865 u64 refs = 1;
2866
2867 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2868 int ret;
2869
2870 if (!path->nodes[level])
2871 break;
2872 eb = path->nodes[level];
2873 if (!btrfs_block_can_be_shared(root, eb))
2874 continue;
2875 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2876 &refs, NULL);
2877 if (refs > 1)
2878 return 1;
2879 }
2880 return 0;
2881 }
2882
2883 /*
2884 * helper to start transaction for unlink and rmdir.
2885 *
2886 * unlink and rmdir are special in btrfs, they do not always free space.
2887 * so in enospc case, we should make sure they will free space before
2888 * allowing them to use the global metadata reservation.
2889 */
2890 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2891 struct dentry *dentry)
2892 {
2893 struct btrfs_trans_handle *trans;
2894 struct btrfs_root *root = BTRFS_I(dir)->root;
2895 struct btrfs_path *path;
2896 struct btrfs_dir_item *di;
2897 struct inode *inode = dentry->d_inode;
2898 u64 index;
2899 int check_link = 1;
2900 int err = -ENOSPC;
2901 int ret;
2902 u64 ino = btrfs_ino(inode);
2903 u64 dir_ino = btrfs_ino(dir);
2904
2905 /*
2906 * 1 for the possible orphan item
2907 * 1 for the dir item
2908 * 1 for the dir index
2909 * 1 for the inode ref
2910 * 1 for the inode ref in the tree log
2911 * 2 for the dir entries in the log
2912 * 1 for the inode
2913 */
2914 trans = btrfs_start_transaction(root, 8);
2915 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2916 return trans;
2917
2918 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2919 return ERR_PTR(-ENOSPC);
2920
2921 /* check if there is someone else holds reference */
2922 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2923 return ERR_PTR(-ENOSPC);
2924
2925 if (atomic_read(&inode->i_count) > 2)
2926 return ERR_PTR(-ENOSPC);
2927
2928 if (xchg(&root->fs_info->enospc_unlink, 1))
2929 return ERR_PTR(-ENOSPC);
2930
2931 path = btrfs_alloc_path();
2932 if (!path) {
2933 root->fs_info->enospc_unlink = 0;
2934 return ERR_PTR(-ENOMEM);
2935 }
2936
2937 /* 1 for the orphan item */
2938 trans = btrfs_start_transaction(root, 1);
2939 if (IS_ERR(trans)) {
2940 btrfs_free_path(path);
2941 root->fs_info->enospc_unlink = 0;
2942 return trans;
2943 }
2944
2945 path->skip_locking = 1;
2946 path->search_commit_root = 1;
2947
2948 ret = btrfs_lookup_inode(trans, root, path,
2949 &BTRFS_I(dir)->location, 0);
2950 if (ret < 0) {
2951 err = ret;
2952 goto out;
2953 }
2954 if (ret == 0) {
2955 if (check_path_shared(root, path))
2956 goto out;
2957 } else {
2958 check_link = 0;
2959 }
2960 btrfs_release_path(path);
2961
2962 ret = btrfs_lookup_inode(trans, root, path,
2963 &BTRFS_I(inode)->location, 0);
2964 if (ret < 0) {
2965 err = ret;
2966 goto out;
2967 }
2968 if (ret == 0) {
2969 if (check_path_shared(root, path))
2970 goto out;
2971 } else {
2972 check_link = 0;
2973 }
2974 btrfs_release_path(path);
2975
2976 if (ret == 0 && S_ISREG(inode->i_mode)) {
2977 ret = btrfs_lookup_file_extent(trans, root, path,
2978 ino, (u64)-1, 0);
2979 if (ret < 0) {
2980 err = ret;
2981 goto out;
2982 }
2983 BUG_ON(ret == 0); /* Corruption */
2984 if (check_path_shared(root, path))
2985 goto out;
2986 btrfs_release_path(path);
2987 }
2988
2989 if (!check_link) {
2990 err = 0;
2991 goto out;
2992 }
2993
2994 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2995 dentry->d_name.name, dentry->d_name.len, 0);
2996 if (IS_ERR(di)) {
2997 err = PTR_ERR(di);
2998 goto out;
2999 }
3000 if (di) {
3001 if (check_path_shared(root, path))
3002 goto out;
3003 } else {
3004 err = 0;
3005 goto out;
3006 }
3007 btrfs_release_path(path);
3008
3009 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3010 dentry->d_name.len, ino, dir_ino, 0,
3011 &index);
3012 if (ret) {
3013 err = ret;
3014 goto out;
3015 }
3016
3017 if (check_path_shared(root, path))
3018 goto out;
3019
3020 btrfs_release_path(path);
3021
3022 /*
3023 * This is a commit root search, if we can lookup inode item and other
3024 * relative items in the commit root, it means the transaction of
3025 * dir/file creation has been committed, and the dir index item that we
3026 * delay to insert has also been inserted into the commit root. So
3027 * we needn't worry about the delayed insertion of the dir index item
3028 * here.
3029 */
3030 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3031 dentry->d_name.name, dentry->d_name.len, 0);
3032 if (IS_ERR(di)) {
3033 err = PTR_ERR(di);
3034 goto out;
3035 }
3036 BUG_ON(ret == -ENOENT);
3037 if (check_path_shared(root, path))
3038 goto out;
3039
3040 err = 0;
3041 out:
3042 btrfs_free_path(path);
3043 /* Migrate the orphan reservation over */
3044 if (!err)
3045 err = btrfs_block_rsv_migrate(trans->block_rsv,
3046 &root->fs_info->global_block_rsv,
3047 trans->bytes_reserved);
3048
3049 if (err) {
3050 btrfs_end_transaction(trans, root);
3051 root->fs_info->enospc_unlink = 0;
3052 return ERR_PTR(err);
3053 }
3054
3055 trans->block_rsv = &root->fs_info->global_block_rsv;
3056 return trans;
3057 }
3058
3059 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3060 struct btrfs_root *root)
3061 {
3062 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3063 btrfs_block_rsv_release(root, trans->block_rsv,
3064 trans->bytes_reserved);
3065 trans->block_rsv = &root->fs_info->trans_block_rsv;
3066 BUG_ON(!root->fs_info->enospc_unlink);
3067 root->fs_info->enospc_unlink = 0;
3068 }
3069 btrfs_end_transaction(trans, root);
3070 }
3071
3072 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3073 {
3074 struct btrfs_root *root = BTRFS_I(dir)->root;
3075 struct btrfs_trans_handle *trans;
3076 struct inode *inode = dentry->d_inode;
3077 int ret;
3078 unsigned long nr = 0;
3079
3080 trans = __unlink_start_trans(dir, dentry);
3081 if (IS_ERR(trans))
3082 return PTR_ERR(trans);
3083
3084 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3085
3086 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3087 dentry->d_name.name, dentry->d_name.len);
3088 if (ret)
3089 goto out;
3090
3091 if (inode->i_nlink == 0) {
3092 ret = btrfs_orphan_add(trans, inode);
3093 if (ret)
3094 goto out;
3095 }
3096
3097 out:
3098 nr = trans->blocks_used;
3099 __unlink_end_trans(trans, root);
3100 btrfs_btree_balance_dirty(root, nr);
3101 return ret;
3102 }
3103
3104 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3105 struct btrfs_root *root,
3106 struct inode *dir, u64 objectid,
3107 const char *name, int name_len)
3108 {
3109 struct btrfs_path *path;
3110 struct extent_buffer *leaf;
3111 struct btrfs_dir_item *di;
3112 struct btrfs_key key;
3113 u64 index;
3114 int ret;
3115 u64 dir_ino = btrfs_ino(dir);
3116
3117 path = btrfs_alloc_path();
3118 if (!path)
3119 return -ENOMEM;
3120
3121 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3122 name, name_len, -1);
3123 if (IS_ERR_OR_NULL(di)) {
3124 if (!di)
3125 ret = -ENOENT;
3126 else
3127 ret = PTR_ERR(di);
3128 goto out;
3129 }
3130
3131 leaf = path->nodes[0];
3132 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3133 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3134 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3135 if (ret) {
3136 btrfs_abort_transaction(trans, root, ret);
3137 goto out;
3138 }
3139 btrfs_release_path(path);
3140
3141 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3142 objectid, root->root_key.objectid,
3143 dir_ino, &index, name, name_len);
3144 if (ret < 0) {
3145 if (ret != -ENOENT) {
3146 btrfs_abort_transaction(trans, root, ret);
3147 goto out;
3148 }
3149 di = btrfs_search_dir_index_item(root, path, dir_ino,
3150 name, name_len);
3151 if (IS_ERR_OR_NULL(di)) {
3152 if (!di)
3153 ret = -ENOENT;
3154 else
3155 ret = PTR_ERR(di);
3156 btrfs_abort_transaction(trans, root, ret);
3157 goto out;
3158 }
3159
3160 leaf = path->nodes[0];
3161 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3162 btrfs_release_path(path);
3163 index = key.offset;
3164 }
3165 btrfs_release_path(path);
3166
3167 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3168 if (ret) {
3169 btrfs_abort_transaction(trans, root, ret);
3170 goto out;
3171 }
3172
3173 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3174 inode_inc_iversion(dir);
3175 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3176 ret = btrfs_update_inode_fallback(trans, root, dir);
3177 if (ret)
3178 btrfs_abort_transaction(trans, root, ret);
3179 out:
3180 btrfs_free_path(path);
3181 return ret;
3182 }
3183
3184 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3185 {
3186 struct inode *inode = dentry->d_inode;
3187 int err = 0;
3188 struct btrfs_root *root = BTRFS_I(dir)->root;
3189 struct btrfs_trans_handle *trans;
3190 unsigned long nr = 0;
3191
3192 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3193 return -ENOTEMPTY;
3194 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3195 return -EPERM;
3196
3197 trans = __unlink_start_trans(dir, dentry);
3198 if (IS_ERR(trans))
3199 return PTR_ERR(trans);
3200
3201 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3202 err = btrfs_unlink_subvol(trans, root, dir,
3203 BTRFS_I(inode)->location.objectid,
3204 dentry->d_name.name,
3205 dentry->d_name.len);
3206 goto out;
3207 }
3208
3209 err = btrfs_orphan_add(trans, inode);
3210 if (err)
3211 goto out;
3212
3213 /* now the directory is empty */
3214 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3215 dentry->d_name.name, dentry->d_name.len);
3216 if (!err)
3217 btrfs_i_size_write(inode, 0);
3218 out:
3219 nr = trans->blocks_used;
3220 __unlink_end_trans(trans, root);
3221 btrfs_btree_balance_dirty(root, nr);
3222
3223 return err;
3224 }
3225
3226 /*
3227 * this can truncate away extent items, csum items and directory items.
3228 * It starts at a high offset and removes keys until it can't find
3229 * any higher than new_size
3230 *
3231 * csum items that cross the new i_size are truncated to the new size
3232 * as well.
3233 *
3234 * min_type is the minimum key type to truncate down to. If set to 0, this
3235 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3236 */
3237 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3238 struct btrfs_root *root,
3239 struct inode *inode,
3240 u64 new_size, u32 min_type)
3241 {
3242 struct btrfs_path *path;
3243 struct extent_buffer *leaf;
3244 struct btrfs_file_extent_item *fi;
3245 struct btrfs_key key;
3246 struct btrfs_key found_key;
3247 u64 extent_start = 0;
3248 u64 extent_num_bytes = 0;
3249 u64 extent_offset = 0;
3250 u64 item_end = 0;
3251 u64 mask = root->sectorsize - 1;
3252 u32 found_type = (u8)-1;
3253 int found_extent;
3254 int del_item;
3255 int pending_del_nr = 0;
3256 int pending_del_slot = 0;
3257 int extent_type = -1;
3258 int ret;
3259 int err = 0;
3260 u64 ino = btrfs_ino(inode);
3261
3262 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3263
3264 path = btrfs_alloc_path();
3265 if (!path)
3266 return -ENOMEM;
3267 path->reada = -1;
3268
3269 /*
3270 * We want to drop from the next block forward in case this new size is
3271 * not block aligned since we will be keeping the last block of the
3272 * extent just the way it is.
3273 */
3274 if (root->ref_cows || root == root->fs_info->tree_root)
3275 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0);
3276
3277 /*
3278 * This function is also used to drop the items in the log tree before
3279 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3280 * it is used to drop the loged items. So we shouldn't kill the delayed
3281 * items.
3282 */
3283 if (min_type == 0 && root == BTRFS_I(inode)->root)
3284 btrfs_kill_delayed_inode_items(inode);
3285
3286 key.objectid = ino;
3287 key.offset = (u64)-1;
3288 key.type = (u8)-1;
3289
3290 search_again:
3291 path->leave_spinning = 1;
3292 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3293 if (ret < 0) {
3294 err = ret;
3295 goto out;
3296 }
3297
3298 if (ret > 0) {
3299 /* there are no items in the tree for us to truncate, we're
3300 * done
3301 */
3302 if (path->slots[0] == 0)
3303 goto out;
3304 path->slots[0]--;
3305 }
3306
3307 while (1) {
3308 fi = NULL;
3309 leaf = path->nodes[0];
3310 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3311 found_type = btrfs_key_type(&found_key);
3312
3313 if (found_key.objectid != ino)
3314 break;
3315
3316 if (found_type < min_type)
3317 break;
3318
3319 item_end = found_key.offset;
3320 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3321 fi = btrfs_item_ptr(leaf, path->slots[0],
3322 struct btrfs_file_extent_item);
3323 extent_type = btrfs_file_extent_type(leaf, fi);
3324 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3325 item_end +=
3326 btrfs_file_extent_num_bytes(leaf, fi);
3327 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3328 item_end += btrfs_file_extent_inline_len(leaf,
3329 fi);
3330 }
3331 item_end--;
3332 }
3333 if (found_type > min_type) {
3334 del_item = 1;
3335 } else {
3336 if (item_end < new_size)
3337 break;
3338 if (found_key.offset >= new_size)
3339 del_item = 1;
3340 else
3341 del_item = 0;
3342 }
3343 found_extent = 0;
3344 /* FIXME, shrink the extent if the ref count is only 1 */
3345 if (found_type != BTRFS_EXTENT_DATA_KEY)
3346 goto delete;
3347
3348 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3349 u64 num_dec;
3350 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3351 if (!del_item) {
3352 u64 orig_num_bytes =
3353 btrfs_file_extent_num_bytes(leaf, fi);
3354 extent_num_bytes = new_size -
3355 found_key.offset + root->sectorsize - 1;
3356 extent_num_bytes = extent_num_bytes &
3357 ~((u64)root->sectorsize - 1);
3358 btrfs_set_file_extent_num_bytes(leaf, fi,
3359 extent_num_bytes);
3360 num_dec = (orig_num_bytes -
3361 extent_num_bytes);
3362 if (root->ref_cows && extent_start != 0)
3363 inode_sub_bytes(inode, num_dec);
3364 btrfs_mark_buffer_dirty(leaf);
3365 } else {
3366 extent_num_bytes =
3367 btrfs_file_extent_disk_num_bytes(leaf,
3368 fi);
3369 extent_offset = found_key.offset -
3370 btrfs_file_extent_offset(leaf, fi);
3371
3372 /* FIXME blocksize != 4096 */
3373 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3374 if (extent_start != 0) {
3375 found_extent = 1;
3376 if (root->ref_cows)
3377 inode_sub_bytes(inode, num_dec);
3378 }
3379 }
3380 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3381 /*
3382 * we can't truncate inline items that have had
3383 * special encodings
3384 */
3385 if (!del_item &&
3386 btrfs_file_extent_compression(leaf, fi) == 0 &&
3387 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3388 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3389 u32 size = new_size - found_key.offset;
3390
3391 if (root->ref_cows) {
3392 inode_sub_bytes(inode, item_end + 1 -
3393 new_size);
3394 }
3395 size =
3396 btrfs_file_extent_calc_inline_size(size);
3397 btrfs_truncate_item(trans, root, path,
3398 size, 1);
3399 } else if (root->ref_cows) {
3400 inode_sub_bytes(inode, item_end + 1 -
3401 found_key.offset);
3402 }
3403 }
3404 delete:
3405 if (del_item) {
3406 if (!pending_del_nr) {
3407 /* no pending yet, add ourselves */
3408 pending_del_slot = path->slots[0];
3409 pending_del_nr = 1;
3410 } else if (pending_del_nr &&
3411 path->slots[0] + 1 == pending_del_slot) {
3412 /* hop on the pending chunk */
3413 pending_del_nr++;
3414 pending_del_slot = path->slots[0];
3415 } else {
3416 BUG();
3417 }
3418 } else {
3419 break;
3420 }
3421 if (found_extent && (root->ref_cows ||
3422 root == root->fs_info->tree_root)) {
3423 btrfs_set_path_blocking(path);
3424 ret = btrfs_free_extent(trans, root, extent_start,
3425 extent_num_bytes, 0,
3426 btrfs_header_owner(leaf),
3427 ino, extent_offset, 0);
3428 BUG_ON(ret);
3429 }
3430
3431 if (found_type == BTRFS_INODE_ITEM_KEY)
3432 break;
3433
3434 if (path->slots[0] == 0 ||
3435 path->slots[0] != pending_del_slot) {
3436 if (pending_del_nr) {
3437 ret = btrfs_del_items(trans, root, path,
3438 pending_del_slot,
3439 pending_del_nr);
3440 if (ret) {
3441 btrfs_abort_transaction(trans,
3442 root, ret);
3443 goto error;
3444 }
3445 pending_del_nr = 0;
3446 }
3447 btrfs_release_path(path);
3448 goto search_again;
3449 } else {
3450 path->slots[0]--;
3451 }
3452 }
3453 out:
3454 if (pending_del_nr) {
3455 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3456 pending_del_nr);
3457 if (ret)
3458 btrfs_abort_transaction(trans, root, ret);
3459 }
3460 error:
3461 btrfs_free_path(path);
3462 return err;
3463 }
3464
3465 /*
3466 * btrfs_truncate_page - read, zero a chunk and write a page
3467 * @inode - inode that we're zeroing
3468 * @from - the offset to start zeroing
3469 * @len - the length to zero, 0 to zero the entire range respective to the
3470 * offset
3471 * @front - zero up to the offset instead of from the offset on
3472 *
3473 * This will find the page for the "from" offset and cow the page and zero the
3474 * part we want to zero. This is used with truncate and hole punching.
3475 */
3476 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
3477 int front)
3478 {
3479 struct address_space *mapping = inode->i_mapping;
3480 struct btrfs_root *root = BTRFS_I(inode)->root;
3481 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3482 struct btrfs_ordered_extent *ordered;
3483 struct extent_state *cached_state = NULL;
3484 char *kaddr;
3485 u32 blocksize = root->sectorsize;
3486 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3487 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3488 struct page *page;
3489 gfp_t mask = btrfs_alloc_write_mask(mapping);
3490 int ret = 0;
3491 u64 page_start;
3492 u64 page_end;
3493
3494 if ((offset & (blocksize - 1)) == 0 &&
3495 (!len || ((len & (blocksize - 1)) == 0)))
3496 goto out;
3497 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3498 if (ret)
3499 goto out;
3500
3501 ret = -ENOMEM;
3502 again:
3503 page = find_or_create_page(mapping, index, mask);
3504 if (!page) {
3505 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3506 goto out;
3507 }
3508
3509 page_start = page_offset(page);
3510 page_end = page_start + PAGE_CACHE_SIZE - 1;
3511
3512 if (!PageUptodate(page)) {
3513 ret = btrfs_readpage(NULL, page);
3514 lock_page(page);
3515 if (page->mapping != mapping) {
3516 unlock_page(page);
3517 page_cache_release(page);
3518 goto again;
3519 }
3520 if (!PageUptodate(page)) {
3521 ret = -EIO;
3522 goto out_unlock;
3523 }
3524 }
3525 wait_on_page_writeback(page);
3526
3527 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3528 set_page_extent_mapped(page);
3529
3530 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3531 if (ordered) {
3532 unlock_extent_cached(io_tree, page_start, page_end,
3533 &cached_state, GFP_NOFS);
3534 unlock_page(page);
3535 page_cache_release(page);
3536 btrfs_start_ordered_extent(inode, ordered, 1);
3537 btrfs_put_ordered_extent(ordered);
3538 goto again;
3539 }
3540
3541 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3542 EXTENT_DIRTY | EXTENT_DELALLOC |
3543 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
3544 0, 0, &cached_state, GFP_NOFS);
3545
3546 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3547 &cached_state);
3548 if (ret) {
3549 unlock_extent_cached(io_tree, page_start, page_end,
3550 &cached_state, GFP_NOFS);
3551 goto out_unlock;
3552 }
3553
3554 ret = 0;
3555 if (offset != PAGE_CACHE_SIZE) {
3556 if (!len)
3557 len = PAGE_CACHE_SIZE - offset;
3558 kaddr = kmap(page);
3559 if (front)
3560 memset(kaddr, 0, offset);
3561 else
3562 memset(kaddr + offset, 0, len);
3563 flush_dcache_page(page);
3564 kunmap(page);
3565 }
3566 ClearPageChecked(page);
3567 set_page_dirty(page);
3568 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3569 GFP_NOFS);
3570
3571 out_unlock:
3572 if (ret)
3573 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3574 unlock_page(page);
3575 page_cache_release(page);
3576 out:
3577 return ret;
3578 }
3579
3580 /*
3581 * This function puts in dummy file extents for the area we're creating a hole
3582 * for. So if we are truncating this file to a larger size we need to insert
3583 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3584 * the range between oldsize and size
3585 */
3586 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3587 {
3588 struct btrfs_trans_handle *trans;
3589 struct btrfs_root *root = BTRFS_I(inode)->root;
3590 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3591 struct extent_map *em = NULL;
3592 struct extent_state *cached_state = NULL;
3593 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3594 u64 mask = root->sectorsize - 1;
3595 u64 hole_start = (oldsize + mask) & ~mask;
3596 u64 block_end = (size + mask) & ~mask;
3597 u64 last_byte;
3598 u64 cur_offset;
3599 u64 hole_size;
3600 int err = 0;
3601
3602 if (size <= hole_start)
3603 return 0;
3604
3605 while (1) {
3606 struct btrfs_ordered_extent *ordered;
3607 btrfs_wait_ordered_range(inode, hole_start,
3608 block_end - hole_start);
3609 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3610 &cached_state);
3611 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3612 if (!ordered)
3613 break;
3614 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3615 &cached_state, GFP_NOFS);
3616 btrfs_put_ordered_extent(ordered);
3617 }
3618
3619 cur_offset = hole_start;
3620 while (1) {
3621 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3622 block_end - cur_offset, 0);
3623 if (IS_ERR(em)) {
3624 err = PTR_ERR(em);
3625 break;
3626 }
3627 last_byte = min(extent_map_end(em), block_end);
3628 last_byte = (last_byte + mask) & ~mask;
3629 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3630 struct extent_map *hole_em;
3631 hole_size = last_byte - cur_offset;
3632
3633 trans = btrfs_start_transaction(root, 3);
3634 if (IS_ERR(trans)) {
3635 err = PTR_ERR(trans);
3636 break;
3637 }
3638
3639 err = btrfs_drop_extents(trans, root, inode,
3640 cur_offset,
3641 cur_offset + hole_size, 1);
3642 if (err) {
3643 btrfs_abort_transaction(trans, root, err);
3644 btrfs_end_transaction(trans, root);
3645 break;
3646 }
3647
3648 err = btrfs_insert_file_extent(trans, root,
3649 btrfs_ino(inode), cur_offset, 0,
3650 0, hole_size, 0, hole_size,
3651 0, 0, 0);
3652 if (err) {
3653 btrfs_abort_transaction(trans, root, err);
3654 btrfs_end_transaction(trans, root);
3655 break;
3656 }
3657
3658 btrfs_drop_extent_cache(inode, cur_offset,
3659 cur_offset + hole_size - 1, 0);
3660 hole_em = alloc_extent_map();
3661 if (!hole_em) {
3662 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3663 &BTRFS_I(inode)->runtime_flags);
3664 goto next;
3665 }
3666 hole_em->start = cur_offset;
3667 hole_em->len = hole_size;
3668 hole_em->orig_start = cur_offset;
3669
3670 hole_em->block_start = EXTENT_MAP_HOLE;
3671 hole_em->block_len = 0;
3672 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
3673 hole_em->compress_type = BTRFS_COMPRESS_NONE;
3674 hole_em->generation = trans->transid;
3675
3676 while (1) {
3677 write_lock(&em_tree->lock);
3678 err = add_extent_mapping(em_tree, hole_em);
3679 if (!err)
3680 list_move(&hole_em->list,
3681 &em_tree->modified_extents);
3682 write_unlock(&em_tree->lock);
3683 if (err != -EEXIST)
3684 break;
3685 btrfs_drop_extent_cache(inode, cur_offset,
3686 cur_offset +
3687 hole_size - 1, 0);
3688 }
3689 free_extent_map(hole_em);
3690 next:
3691 btrfs_update_inode(trans, root, inode);
3692 btrfs_end_transaction(trans, root);
3693 }
3694 free_extent_map(em);
3695 em = NULL;
3696 cur_offset = last_byte;
3697 if (cur_offset >= block_end)
3698 break;
3699 }
3700
3701 free_extent_map(em);
3702 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3703 GFP_NOFS);
3704 return err;
3705 }
3706
3707 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3708 {
3709 struct btrfs_root *root = BTRFS_I(inode)->root;
3710 struct btrfs_trans_handle *trans;
3711 loff_t oldsize = i_size_read(inode);
3712 int ret;
3713
3714 if (newsize == oldsize)
3715 return 0;
3716
3717 if (newsize > oldsize) {
3718 truncate_pagecache(inode, oldsize, newsize);
3719 ret = btrfs_cont_expand(inode, oldsize, newsize);
3720 if (ret)
3721 return ret;
3722
3723 trans = btrfs_start_transaction(root, 1);
3724 if (IS_ERR(trans))
3725 return PTR_ERR(trans);
3726
3727 i_size_write(inode, newsize);
3728 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3729 ret = btrfs_update_inode(trans, root, inode);
3730 btrfs_end_transaction(trans, root);
3731 } else {
3732
3733 /*
3734 * We're truncating a file that used to have good data down to
3735 * zero. Make sure it gets into the ordered flush list so that
3736 * any new writes get down to disk quickly.
3737 */
3738 if (newsize == 0)
3739 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3740 &BTRFS_I(inode)->runtime_flags);
3741
3742 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3743 truncate_setsize(inode, newsize);
3744 ret = btrfs_truncate(inode);
3745 }
3746
3747 return ret;
3748 }
3749
3750 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3751 {
3752 struct inode *inode = dentry->d_inode;
3753 struct btrfs_root *root = BTRFS_I(inode)->root;
3754 int err;
3755
3756 if (btrfs_root_readonly(root))
3757 return -EROFS;
3758
3759 err = inode_change_ok(inode, attr);
3760 if (err)
3761 return err;
3762
3763 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3764 err = btrfs_setsize(inode, attr->ia_size);
3765 if (err)
3766 return err;
3767 }
3768
3769 if (attr->ia_valid) {
3770 setattr_copy(inode, attr);
3771 inode_inc_iversion(inode);
3772 err = btrfs_dirty_inode(inode);
3773
3774 if (!err && attr->ia_valid & ATTR_MODE)
3775 err = btrfs_acl_chmod(inode);
3776 }
3777
3778 return err;
3779 }
3780
3781 void btrfs_evict_inode(struct inode *inode)
3782 {
3783 struct btrfs_trans_handle *trans;
3784 struct btrfs_root *root = BTRFS_I(inode)->root;
3785 struct btrfs_block_rsv *rsv, *global_rsv;
3786 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3787 unsigned long nr;
3788 int ret;
3789
3790 trace_btrfs_inode_evict(inode);
3791
3792 truncate_inode_pages(&inode->i_data, 0);
3793 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3794 btrfs_is_free_space_inode(inode)))
3795 goto no_delete;
3796
3797 if (is_bad_inode(inode)) {
3798 btrfs_orphan_del(NULL, inode);
3799 goto no_delete;
3800 }
3801 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3802 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3803
3804 if (root->fs_info->log_root_recovering) {
3805 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3806 &BTRFS_I(inode)->runtime_flags));
3807 goto no_delete;
3808 }
3809
3810 if (inode->i_nlink > 0) {
3811 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3812 goto no_delete;
3813 }
3814
3815 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3816 if (!rsv) {
3817 btrfs_orphan_del(NULL, inode);
3818 goto no_delete;
3819 }
3820 rsv->size = min_size;
3821 rsv->failfast = 1;
3822 global_rsv = &root->fs_info->global_block_rsv;
3823
3824 btrfs_i_size_write(inode, 0);
3825
3826 /*
3827 * This is a bit simpler than btrfs_truncate since we've already
3828 * reserved our space for our orphan item in the unlink, so we just
3829 * need to reserve some slack space in case we add bytes and update
3830 * inode item when doing the truncate.
3831 */
3832 while (1) {
3833 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3834
3835 /*
3836 * Try and steal from the global reserve since we will
3837 * likely not use this space anyway, we want to try as
3838 * hard as possible to get this to work.
3839 */
3840 if (ret)
3841 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3842
3843 if (ret) {
3844 printk(KERN_WARNING "Could not get space for a "
3845 "delete, will truncate on mount %d\n", ret);
3846 btrfs_orphan_del(NULL, inode);
3847 btrfs_free_block_rsv(root, rsv);
3848 goto no_delete;
3849 }
3850
3851 trans = btrfs_start_transaction_noflush(root, 1);
3852 if (IS_ERR(trans)) {
3853 btrfs_orphan_del(NULL, inode);
3854 btrfs_free_block_rsv(root, rsv);
3855 goto no_delete;
3856 }
3857
3858 trans->block_rsv = rsv;
3859
3860 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3861 if (ret != -ENOSPC)
3862 break;
3863
3864 trans->block_rsv = &root->fs_info->trans_block_rsv;
3865 ret = btrfs_update_inode(trans, root, inode);
3866 BUG_ON(ret);
3867
3868 nr = trans->blocks_used;
3869 btrfs_end_transaction(trans, root);
3870 trans = NULL;
3871 btrfs_btree_balance_dirty(root, nr);
3872 }
3873
3874 btrfs_free_block_rsv(root, rsv);
3875
3876 if (ret == 0) {
3877 trans->block_rsv = root->orphan_block_rsv;
3878 ret = btrfs_orphan_del(trans, inode);
3879 BUG_ON(ret);
3880 }
3881
3882 trans->block_rsv = &root->fs_info->trans_block_rsv;
3883 if (!(root == root->fs_info->tree_root ||
3884 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3885 btrfs_return_ino(root, btrfs_ino(inode));
3886
3887 nr = trans->blocks_used;
3888 btrfs_end_transaction(trans, root);
3889 btrfs_btree_balance_dirty(root, nr);
3890 no_delete:
3891 clear_inode(inode);
3892 return;
3893 }
3894
3895 /*
3896 * this returns the key found in the dir entry in the location pointer.
3897 * If no dir entries were found, location->objectid is 0.
3898 */
3899 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3900 struct btrfs_key *location)
3901 {
3902 const char *name = dentry->d_name.name;
3903 int namelen = dentry->d_name.len;
3904 struct btrfs_dir_item *di;
3905 struct btrfs_path *path;
3906 struct btrfs_root *root = BTRFS_I(dir)->root;
3907 int ret = 0;
3908
3909 path = btrfs_alloc_path();
3910 if (!path)
3911 return -ENOMEM;
3912
3913 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3914 namelen, 0);
3915 if (IS_ERR(di))
3916 ret = PTR_ERR(di);
3917
3918 if (IS_ERR_OR_NULL(di))
3919 goto out_err;
3920
3921 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3922 out:
3923 btrfs_free_path(path);
3924 return ret;
3925 out_err:
3926 location->objectid = 0;
3927 goto out;
3928 }
3929
3930 /*
3931 * when we hit a tree root in a directory, the btrfs part of the inode
3932 * needs to be changed to reflect the root directory of the tree root. This
3933 * is kind of like crossing a mount point.
3934 */
3935 static int fixup_tree_root_location(struct btrfs_root *root,
3936 struct inode *dir,
3937 struct dentry *dentry,
3938 struct btrfs_key *location,
3939 struct btrfs_root **sub_root)
3940 {
3941 struct btrfs_path *path;
3942 struct btrfs_root *new_root;
3943 struct btrfs_root_ref *ref;
3944 struct extent_buffer *leaf;
3945 int ret;
3946 int err = 0;
3947
3948 path = btrfs_alloc_path();
3949 if (!path) {
3950 err = -ENOMEM;
3951 goto out;
3952 }
3953
3954 err = -ENOENT;
3955 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3956 BTRFS_I(dir)->root->root_key.objectid,
3957 location->objectid);
3958 if (ret) {
3959 if (ret < 0)
3960 err = ret;
3961 goto out;
3962 }
3963
3964 leaf = path->nodes[0];
3965 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3966 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3967 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3968 goto out;
3969
3970 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3971 (unsigned long)(ref + 1),
3972 dentry->d_name.len);
3973 if (ret)
3974 goto out;
3975
3976 btrfs_release_path(path);
3977
3978 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3979 if (IS_ERR(new_root)) {
3980 err = PTR_ERR(new_root);
3981 goto out;
3982 }
3983
3984 if (btrfs_root_refs(&new_root->root_item) == 0) {
3985 err = -ENOENT;
3986 goto out;
3987 }
3988
3989 *sub_root = new_root;
3990 location->objectid = btrfs_root_dirid(&new_root->root_item);
3991 location->type = BTRFS_INODE_ITEM_KEY;
3992 location->offset = 0;
3993 err = 0;
3994 out:
3995 btrfs_free_path(path);
3996 return err;
3997 }
3998
3999 static void inode_tree_add(struct inode *inode)
4000 {
4001 struct btrfs_root *root = BTRFS_I(inode)->root;
4002 struct btrfs_inode *entry;
4003 struct rb_node **p;
4004 struct rb_node *parent;
4005 u64 ino = btrfs_ino(inode);
4006 again:
4007 p = &root->inode_tree.rb_node;
4008 parent = NULL;
4009
4010 if (inode_unhashed(inode))
4011 return;
4012
4013 spin_lock(&root->inode_lock);
4014 while (*p) {
4015 parent = *p;
4016 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4017
4018 if (ino < btrfs_ino(&entry->vfs_inode))
4019 p = &parent->rb_left;
4020 else if (ino > btrfs_ino(&entry->vfs_inode))
4021 p = &parent->rb_right;
4022 else {
4023 WARN_ON(!(entry->vfs_inode.i_state &
4024 (I_WILL_FREE | I_FREEING)));
4025 rb_erase(parent, &root->inode_tree);
4026 RB_CLEAR_NODE(parent);
4027 spin_unlock(&root->inode_lock);
4028 goto again;
4029 }
4030 }
4031 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4032 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4033 spin_unlock(&root->inode_lock);
4034 }
4035
4036 static void inode_tree_del(struct inode *inode)
4037 {
4038 struct btrfs_root *root = BTRFS_I(inode)->root;
4039 int empty = 0;
4040
4041 spin_lock(&root->inode_lock);
4042 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4043 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4044 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4045 empty = RB_EMPTY_ROOT(&root->inode_tree);
4046 }
4047 spin_unlock(&root->inode_lock);
4048
4049 /*
4050 * Free space cache has inodes in the tree root, but the tree root has a
4051 * root_refs of 0, so this could end up dropping the tree root as a
4052 * snapshot, so we need the extra !root->fs_info->tree_root check to
4053 * make sure we don't drop it.
4054 */
4055 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4056 root != root->fs_info->tree_root) {
4057 synchronize_srcu(&root->fs_info->subvol_srcu);
4058 spin_lock(&root->inode_lock);
4059 empty = RB_EMPTY_ROOT(&root->inode_tree);
4060 spin_unlock(&root->inode_lock);
4061 if (empty)
4062 btrfs_add_dead_root(root);
4063 }
4064 }
4065
4066 void btrfs_invalidate_inodes(struct btrfs_root *root)
4067 {
4068 struct rb_node *node;
4069 struct rb_node *prev;
4070 struct btrfs_inode *entry;
4071 struct inode *inode;
4072 u64 objectid = 0;
4073
4074 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4075
4076 spin_lock(&root->inode_lock);
4077 again:
4078 node = root->inode_tree.rb_node;
4079 prev = NULL;
4080 while (node) {
4081 prev = node;
4082 entry = rb_entry(node, struct btrfs_inode, rb_node);
4083
4084 if (objectid < btrfs_ino(&entry->vfs_inode))
4085 node = node->rb_left;
4086 else if (objectid > btrfs_ino(&entry->vfs_inode))
4087 node = node->rb_right;
4088 else
4089 break;
4090 }
4091 if (!node) {
4092 while (prev) {
4093 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4094 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4095 node = prev;
4096 break;
4097 }
4098 prev = rb_next(prev);
4099 }
4100 }
4101 while (node) {
4102 entry = rb_entry(node, struct btrfs_inode, rb_node);
4103 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4104 inode = igrab(&entry->vfs_inode);
4105 if (inode) {
4106 spin_unlock(&root->inode_lock);
4107 if (atomic_read(&inode->i_count) > 1)
4108 d_prune_aliases(inode);
4109 /*
4110 * btrfs_drop_inode will have it removed from
4111 * the inode cache when its usage count
4112 * hits zero.
4113 */
4114 iput(inode);
4115 cond_resched();
4116 spin_lock(&root->inode_lock);
4117 goto again;
4118 }
4119
4120 if (cond_resched_lock(&root->inode_lock))
4121 goto again;
4122
4123 node = rb_next(node);
4124 }
4125 spin_unlock(&root->inode_lock);
4126 }
4127
4128 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4129 {
4130 struct btrfs_iget_args *args = p;
4131 inode->i_ino = args->ino;
4132 BTRFS_I(inode)->root = args->root;
4133 return 0;
4134 }
4135
4136 static int btrfs_find_actor(struct inode *inode, void *opaque)
4137 {
4138 struct btrfs_iget_args *args = opaque;
4139 return args->ino == btrfs_ino(inode) &&
4140 args->root == BTRFS_I(inode)->root;
4141 }
4142
4143 static struct inode *btrfs_iget_locked(struct super_block *s,
4144 u64 objectid,
4145 struct btrfs_root *root)
4146 {
4147 struct inode *inode;
4148 struct btrfs_iget_args args;
4149 args.ino = objectid;
4150 args.root = root;
4151
4152 inode = iget5_locked(s, objectid, btrfs_find_actor,
4153 btrfs_init_locked_inode,
4154 (void *)&args);
4155 return inode;
4156 }
4157
4158 /* Get an inode object given its location and corresponding root.
4159 * Returns in *is_new if the inode was read from disk
4160 */
4161 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4162 struct btrfs_root *root, int *new)
4163 {
4164 struct inode *inode;
4165
4166 inode = btrfs_iget_locked(s, location->objectid, root);
4167 if (!inode)
4168 return ERR_PTR(-ENOMEM);
4169
4170 if (inode->i_state & I_NEW) {
4171 BTRFS_I(inode)->root = root;
4172 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4173 btrfs_read_locked_inode(inode);
4174 if (!is_bad_inode(inode)) {
4175 inode_tree_add(inode);
4176 unlock_new_inode(inode);
4177 if (new)
4178 *new = 1;
4179 } else {
4180 unlock_new_inode(inode);
4181 iput(inode);
4182 inode = ERR_PTR(-ESTALE);
4183 }
4184 }
4185
4186 return inode;
4187 }
4188
4189 static struct inode *new_simple_dir(struct super_block *s,
4190 struct btrfs_key *key,
4191 struct btrfs_root *root)
4192 {
4193 struct inode *inode = new_inode(s);
4194
4195 if (!inode)
4196 return ERR_PTR(-ENOMEM);
4197
4198 BTRFS_I(inode)->root = root;
4199 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4200 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4201
4202 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4203 inode->i_op = &btrfs_dir_ro_inode_operations;
4204 inode->i_fop = &simple_dir_operations;
4205 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4206 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4207
4208 return inode;
4209 }
4210
4211 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4212 {
4213 struct inode *inode;
4214 struct btrfs_root *root = BTRFS_I(dir)->root;
4215 struct btrfs_root *sub_root = root;
4216 struct btrfs_key location;
4217 int index;
4218 int ret = 0;
4219
4220 if (dentry->d_name.len > BTRFS_NAME_LEN)
4221 return ERR_PTR(-ENAMETOOLONG);
4222
4223 if (unlikely(d_need_lookup(dentry))) {
4224 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4225 kfree(dentry->d_fsdata);
4226 dentry->d_fsdata = NULL;
4227 /* This thing is hashed, drop it for now */
4228 d_drop(dentry);
4229 } else {
4230 ret = btrfs_inode_by_name(dir, dentry, &location);
4231 }
4232
4233 if (ret < 0)
4234 return ERR_PTR(ret);
4235
4236 if (location.objectid == 0)
4237 return NULL;
4238
4239 if (location.type == BTRFS_INODE_ITEM_KEY) {
4240 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4241 return inode;
4242 }
4243
4244 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4245
4246 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4247 ret = fixup_tree_root_location(root, dir, dentry,
4248 &location, &sub_root);
4249 if (ret < 0) {
4250 if (ret != -ENOENT)
4251 inode = ERR_PTR(ret);
4252 else
4253 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4254 } else {
4255 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4256 }
4257 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4258
4259 if (!IS_ERR(inode) && root != sub_root) {
4260 down_read(&root->fs_info->cleanup_work_sem);
4261 if (!(inode->i_sb->s_flags & MS_RDONLY))
4262 ret = btrfs_orphan_cleanup(sub_root);
4263 up_read(&root->fs_info->cleanup_work_sem);
4264 if (ret)
4265 inode = ERR_PTR(ret);
4266 }
4267
4268 return inode;
4269 }
4270
4271 static int btrfs_dentry_delete(const struct dentry *dentry)
4272 {
4273 struct btrfs_root *root;
4274 struct inode *inode = dentry->d_inode;
4275
4276 if (!inode && !IS_ROOT(dentry))
4277 inode = dentry->d_parent->d_inode;
4278
4279 if (inode) {
4280 root = BTRFS_I(inode)->root;
4281 if (btrfs_root_refs(&root->root_item) == 0)
4282 return 1;
4283
4284 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4285 return 1;
4286 }
4287 return 0;
4288 }
4289
4290 static void btrfs_dentry_release(struct dentry *dentry)
4291 {
4292 if (dentry->d_fsdata)
4293 kfree(dentry->d_fsdata);
4294 }
4295
4296 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4297 unsigned int flags)
4298 {
4299 struct dentry *ret;
4300
4301 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4302 if (unlikely(d_need_lookup(dentry))) {
4303 spin_lock(&dentry->d_lock);
4304 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4305 spin_unlock(&dentry->d_lock);
4306 }
4307 return ret;
4308 }
4309
4310 unsigned char btrfs_filetype_table[] = {
4311 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4312 };
4313
4314 static int btrfs_real_readdir(struct file *filp, void *dirent,
4315 filldir_t filldir)
4316 {
4317 struct inode *inode = filp->f_dentry->d_inode;
4318 struct btrfs_root *root = BTRFS_I(inode)->root;
4319 struct btrfs_item *item;
4320 struct btrfs_dir_item *di;
4321 struct btrfs_key key;
4322 struct btrfs_key found_key;
4323 struct btrfs_path *path;
4324 struct list_head ins_list;
4325 struct list_head del_list;
4326 int ret;
4327 struct extent_buffer *leaf;
4328 int slot;
4329 unsigned char d_type;
4330 int over = 0;
4331 u32 di_cur;
4332 u32 di_total;
4333 u32 di_len;
4334 int key_type = BTRFS_DIR_INDEX_KEY;
4335 char tmp_name[32];
4336 char *name_ptr;
4337 int name_len;
4338 int is_curr = 0; /* filp->f_pos points to the current index? */
4339
4340 /* FIXME, use a real flag for deciding about the key type */
4341 if (root->fs_info->tree_root == root)
4342 key_type = BTRFS_DIR_ITEM_KEY;
4343
4344 /* special case for "." */
4345 if (filp->f_pos == 0) {
4346 over = filldir(dirent, ".", 1,
4347 filp->f_pos, btrfs_ino(inode), DT_DIR);
4348 if (over)
4349 return 0;
4350 filp->f_pos = 1;
4351 }
4352 /* special case for .., just use the back ref */
4353 if (filp->f_pos == 1) {
4354 u64 pino = parent_ino(filp->f_path.dentry);
4355 over = filldir(dirent, "..", 2,
4356 filp->f_pos, pino, DT_DIR);
4357 if (over)
4358 return 0;
4359 filp->f_pos = 2;
4360 }
4361 path = btrfs_alloc_path();
4362 if (!path)
4363 return -ENOMEM;
4364
4365 path->reada = 1;
4366
4367 if (key_type == BTRFS_DIR_INDEX_KEY) {
4368 INIT_LIST_HEAD(&ins_list);
4369 INIT_LIST_HEAD(&del_list);
4370 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4371 }
4372
4373 btrfs_set_key_type(&key, key_type);
4374 key.offset = filp->f_pos;
4375 key.objectid = btrfs_ino(inode);
4376
4377 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4378 if (ret < 0)
4379 goto err;
4380
4381 while (1) {
4382 leaf = path->nodes[0];
4383 slot = path->slots[0];
4384 if (slot >= btrfs_header_nritems(leaf)) {
4385 ret = btrfs_next_leaf(root, path);
4386 if (ret < 0)
4387 goto err;
4388 else if (ret > 0)
4389 break;
4390 continue;
4391 }
4392
4393 item = btrfs_item_nr(leaf, slot);
4394 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4395
4396 if (found_key.objectid != key.objectid)
4397 break;
4398 if (btrfs_key_type(&found_key) != key_type)
4399 break;
4400 if (found_key.offset < filp->f_pos)
4401 goto next;
4402 if (key_type == BTRFS_DIR_INDEX_KEY &&
4403 btrfs_should_delete_dir_index(&del_list,
4404 found_key.offset))
4405 goto next;
4406
4407 filp->f_pos = found_key.offset;
4408 is_curr = 1;
4409
4410 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4411 di_cur = 0;
4412 di_total = btrfs_item_size(leaf, item);
4413
4414 while (di_cur < di_total) {
4415 struct btrfs_key location;
4416
4417 if (verify_dir_item(root, leaf, di))
4418 break;
4419
4420 name_len = btrfs_dir_name_len(leaf, di);
4421 if (name_len <= sizeof(tmp_name)) {
4422 name_ptr = tmp_name;
4423 } else {
4424 name_ptr = kmalloc(name_len, GFP_NOFS);
4425 if (!name_ptr) {
4426 ret = -ENOMEM;
4427 goto err;
4428 }
4429 }
4430 read_extent_buffer(leaf, name_ptr,
4431 (unsigned long)(di + 1), name_len);
4432
4433 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4434 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4435
4436
4437 /* is this a reference to our own snapshot? If so
4438 * skip it.
4439 *
4440 * In contrast to old kernels, we insert the snapshot's
4441 * dir item and dir index after it has been created, so
4442 * we won't find a reference to our own snapshot. We
4443 * still keep the following code for backward
4444 * compatibility.
4445 */
4446 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4447 location.objectid == root->root_key.objectid) {
4448 over = 0;
4449 goto skip;
4450 }
4451 over = filldir(dirent, name_ptr, name_len,
4452 found_key.offset, location.objectid,
4453 d_type);
4454
4455 skip:
4456 if (name_ptr != tmp_name)
4457 kfree(name_ptr);
4458
4459 if (over)
4460 goto nopos;
4461 di_len = btrfs_dir_name_len(leaf, di) +
4462 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4463 di_cur += di_len;
4464 di = (struct btrfs_dir_item *)((char *)di + di_len);
4465 }
4466 next:
4467 path->slots[0]++;
4468 }
4469
4470 if (key_type == BTRFS_DIR_INDEX_KEY) {
4471 if (is_curr)
4472 filp->f_pos++;
4473 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4474 &ins_list);
4475 if (ret)
4476 goto nopos;
4477 }
4478
4479 /* Reached end of directory/root. Bump pos past the last item. */
4480 if (key_type == BTRFS_DIR_INDEX_KEY)
4481 /*
4482 * 32-bit glibc will use getdents64, but then strtol -
4483 * so the last number we can serve is this.
4484 */
4485 filp->f_pos = 0x7fffffff;
4486 else
4487 filp->f_pos++;
4488 nopos:
4489 ret = 0;
4490 err:
4491 if (key_type == BTRFS_DIR_INDEX_KEY)
4492 btrfs_put_delayed_items(&ins_list, &del_list);
4493 btrfs_free_path(path);
4494 return ret;
4495 }
4496
4497 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4498 {
4499 struct btrfs_root *root = BTRFS_I(inode)->root;
4500 struct btrfs_trans_handle *trans;
4501 int ret = 0;
4502 bool nolock = false;
4503
4504 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4505 return 0;
4506
4507 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
4508 nolock = true;
4509
4510 if (wbc->sync_mode == WB_SYNC_ALL) {
4511 if (nolock)
4512 trans = btrfs_join_transaction_nolock(root);
4513 else
4514 trans = btrfs_join_transaction(root);
4515 if (IS_ERR(trans))
4516 return PTR_ERR(trans);
4517 ret = btrfs_commit_transaction(trans, root);
4518 }
4519 return ret;
4520 }
4521
4522 /*
4523 * This is somewhat expensive, updating the tree every time the
4524 * inode changes. But, it is most likely to find the inode in cache.
4525 * FIXME, needs more benchmarking...there are no reasons other than performance
4526 * to keep or drop this code.
4527 */
4528 int btrfs_dirty_inode(struct inode *inode)
4529 {
4530 struct btrfs_root *root = BTRFS_I(inode)->root;
4531 struct btrfs_trans_handle *trans;
4532 int ret;
4533
4534 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4535 return 0;
4536
4537 trans = btrfs_join_transaction(root);
4538 if (IS_ERR(trans))
4539 return PTR_ERR(trans);
4540
4541 ret = btrfs_update_inode(trans, root, inode);
4542 if (ret && ret == -ENOSPC) {
4543 /* whoops, lets try again with the full transaction */
4544 btrfs_end_transaction(trans, root);
4545 trans = btrfs_start_transaction(root, 1);
4546 if (IS_ERR(trans))
4547 return PTR_ERR(trans);
4548
4549 ret = btrfs_update_inode(trans, root, inode);
4550 }
4551 btrfs_end_transaction(trans, root);
4552 if (BTRFS_I(inode)->delayed_node)
4553 btrfs_balance_delayed_items(root);
4554
4555 return ret;
4556 }
4557
4558 /*
4559 * This is a copy of file_update_time. We need this so we can return error on
4560 * ENOSPC for updating the inode in the case of file write and mmap writes.
4561 */
4562 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4563 int flags)
4564 {
4565 struct btrfs_root *root = BTRFS_I(inode)->root;
4566
4567 if (btrfs_root_readonly(root))
4568 return -EROFS;
4569
4570 if (flags & S_VERSION)
4571 inode_inc_iversion(inode);
4572 if (flags & S_CTIME)
4573 inode->i_ctime = *now;
4574 if (flags & S_MTIME)
4575 inode->i_mtime = *now;
4576 if (flags & S_ATIME)
4577 inode->i_atime = *now;
4578 return btrfs_dirty_inode(inode);
4579 }
4580
4581 /*
4582 * find the highest existing sequence number in a directory
4583 * and then set the in-memory index_cnt variable to reflect
4584 * free sequence numbers
4585 */
4586 static int btrfs_set_inode_index_count(struct inode *inode)
4587 {
4588 struct btrfs_root *root = BTRFS_I(inode)->root;
4589 struct btrfs_key key, found_key;
4590 struct btrfs_path *path;
4591 struct extent_buffer *leaf;
4592 int ret;
4593
4594 key.objectid = btrfs_ino(inode);
4595 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4596 key.offset = (u64)-1;
4597
4598 path = btrfs_alloc_path();
4599 if (!path)
4600 return -ENOMEM;
4601
4602 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4603 if (ret < 0)
4604 goto out;
4605 /* FIXME: we should be able to handle this */
4606 if (ret == 0)
4607 goto out;
4608 ret = 0;
4609
4610 /*
4611 * MAGIC NUMBER EXPLANATION:
4612 * since we search a directory based on f_pos we have to start at 2
4613 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4614 * else has to start at 2
4615 */
4616 if (path->slots[0] == 0) {
4617 BTRFS_I(inode)->index_cnt = 2;
4618 goto out;
4619 }
4620
4621 path->slots[0]--;
4622
4623 leaf = path->nodes[0];
4624 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4625
4626 if (found_key.objectid != btrfs_ino(inode) ||
4627 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4628 BTRFS_I(inode)->index_cnt = 2;
4629 goto out;
4630 }
4631
4632 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4633 out:
4634 btrfs_free_path(path);
4635 return ret;
4636 }
4637
4638 /*
4639 * helper to find a free sequence number in a given directory. This current
4640 * code is very simple, later versions will do smarter things in the btree
4641 */
4642 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4643 {
4644 int ret = 0;
4645
4646 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4647 ret = btrfs_inode_delayed_dir_index_count(dir);
4648 if (ret) {
4649 ret = btrfs_set_inode_index_count(dir);
4650 if (ret)
4651 return ret;
4652 }
4653 }
4654
4655 *index = BTRFS_I(dir)->index_cnt;
4656 BTRFS_I(dir)->index_cnt++;
4657
4658 return ret;
4659 }
4660
4661 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4662 struct btrfs_root *root,
4663 struct inode *dir,
4664 const char *name, int name_len,
4665 u64 ref_objectid, u64 objectid,
4666 umode_t mode, u64 *index)
4667 {
4668 struct inode *inode;
4669 struct btrfs_inode_item *inode_item;
4670 struct btrfs_key *location;
4671 struct btrfs_path *path;
4672 struct btrfs_inode_ref *ref;
4673 struct btrfs_key key[2];
4674 u32 sizes[2];
4675 unsigned long ptr;
4676 int ret;
4677 int owner;
4678
4679 path = btrfs_alloc_path();
4680 if (!path)
4681 return ERR_PTR(-ENOMEM);
4682
4683 inode = new_inode(root->fs_info->sb);
4684 if (!inode) {
4685 btrfs_free_path(path);
4686 return ERR_PTR(-ENOMEM);
4687 }
4688
4689 /*
4690 * we have to initialize this early, so we can reclaim the inode
4691 * number if we fail afterwards in this function.
4692 */
4693 inode->i_ino = objectid;
4694
4695 if (dir) {
4696 trace_btrfs_inode_request(dir);
4697
4698 ret = btrfs_set_inode_index(dir, index);
4699 if (ret) {
4700 btrfs_free_path(path);
4701 iput(inode);
4702 return ERR_PTR(ret);
4703 }
4704 }
4705 /*
4706 * index_cnt is ignored for everything but a dir,
4707 * btrfs_get_inode_index_count has an explanation for the magic
4708 * number
4709 */
4710 BTRFS_I(inode)->index_cnt = 2;
4711 BTRFS_I(inode)->root = root;
4712 BTRFS_I(inode)->generation = trans->transid;
4713 inode->i_generation = BTRFS_I(inode)->generation;
4714
4715 /*
4716 * We could have gotten an inode number from somebody who was fsynced
4717 * and then removed in this same transaction, so let's just set full
4718 * sync since it will be a full sync anyway and this will blow away the
4719 * old info in the log.
4720 */
4721 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
4722
4723 if (S_ISDIR(mode))
4724 owner = 0;
4725 else
4726 owner = 1;
4727
4728 key[0].objectid = objectid;
4729 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4730 key[0].offset = 0;
4731
4732 /*
4733 * Start new inodes with an inode_ref. This is slightly more
4734 * efficient for small numbers of hard links since they will
4735 * be packed into one item. Extended refs will kick in if we
4736 * add more hard links than can fit in the ref item.
4737 */
4738 key[1].objectid = objectid;
4739 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4740 key[1].offset = ref_objectid;
4741
4742 sizes[0] = sizeof(struct btrfs_inode_item);
4743 sizes[1] = name_len + sizeof(*ref);
4744
4745 path->leave_spinning = 1;
4746 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4747 if (ret != 0)
4748 goto fail;
4749
4750 inode_init_owner(inode, dir, mode);
4751 inode_set_bytes(inode, 0);
4752 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4753 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4754 struct btrfs_inode_item);
4755 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
4756 sizeof(*inode_item));
4757 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4758
4759 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4760 struct btrfs_inode_ref);
4761 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4762 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4763 ptr = (unsigned long)(ref + 1);
4764 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4765
4766 btrfs_mark_buffer_dirty(path->nodes[0]);
4767 btrfs_free_path(path);
4768
4769 location = &BTRFS_I(inode)->location;
4770 location->objectid = objectid;
4771 location->offset = 0;
4772 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4773
4774 btrfs_inherit_iflags(inode, dir);
4775
4776 if (S_ISREG(mode)) {
4777 if (btrfs_test_opt(root, NODATASUM))
4778 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4779 if (btrfs_test_opt(root, NODATACOW) ||
4780 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4781 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4782 }
4783
4784 insert_inode_hash(inode);
4785 inode_tree_add(inode);
4786
4787 trace_btrfs_inode_new(inode);
4788 btrfs_set_inode_last_trans(trans, inode);
4789
4790 btrfs_update_root_times(trans, root);
4791
4792 return inode;
4793 fail:
4794 if (dir)
4795 BTRFS_I(dir)->index_cnt--;
4796 btrfs_free_path(path);
4797 iput(inode);
4798 return ERR_PTR(ret);
4799 }
4800
4801 static inline u8 btrfs_inode_type(struct inode *inode)
4802 {
4803 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4804 }
4805
4806 /*
4807 * utility function to add 'inode' into 'parent_inode' with
4808 * a give name and a given sequence number.
4809 * if 'add_backref' is true, also insert a backref from the
4810 * inode to the parent directory.
4811 */
4812 int btrfs_add_link(struct btrfs_trans_handle *trans,
4813 struct inode *parent_inode, struct inode *inode,
4814 const char *name, int name_len, int add_backref, u64 index)
4815 {
4816 int ret = 0;
4817 struct btrfs_key key;
4818 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4819 u64 ino = btrfs_ino(inode);
4820 u64 parent_ino = btrfs_ino(parent_inode);
4821
4822 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4823 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4824 } else {
4825 key.objectid = ino;
4826 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4827 key.offset = 0;
4828 }
4829
4830 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4831 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4832 key.objectid, root->root_key.objectid,
4833 parent_ino, index, name, name_len);
4834 } else if (add_backref) {
4835 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4836 parent_ino, index);
4837 }
4838
4839 /* Nothing to clean up yet */
4840 if (ret)
4841 return ret;
4842
4843 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4844 parent_inode, &key,
4845 btrfs_inode_type(inode), index);
4846 if (ret == -EEXIST)
4847 goto fail_dir_item;
4848 else if (ret) {
4849 btrfs_abort_transaction(trans, root, ret);
4850 return ret;
4851 }
4852
4853 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4854 name_len * 2);
4855 inode_inc_iversion(parent_inode);
4856 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4857 ret = btrfs_update_inode(trans, root, parent_inode);
4858 if (ret)
4859 btrfs_abort_transaction(trans, root, ret);
4860 return ret;
4861
4862 fail_dir_item:
4863 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4864 u64 local_index;
4865 int err;
4866 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4867 key.objectid, root->root_key.objectid,
4868 parent_ino, &local_index, name, name_len);
4869
4870 } else if (add_backref) {
4871 u64 local_index;
4872 int err;
4873
4874 err = btrfs_del_inode_ref(trans, root, name, name_len,
4875 ino, parent_ino, &local_index);
4876 }
4877 return ret;
4878 }
4879
4880 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4881 struct inode *dir, struct dentry *dentry,
4882 struct inode *inode, int backref, u64 index)
4883 {
4884 int err = btrfs_add_link(trans, dir, inode,
4885 dentry->d_name.name, dentry->d_name.len,
4886 backref, index);
4887 if (err > 0)
4888 err = -EEXIST;
4889 return err;
4890 }
4891
4892 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4893 umode_t mode, dev_t rdev)
4894 {
4895 struct btrfs_trans_handle *trans;
4896 struct btrfs_root *root = BTRFS_I(dir)->root;
4897 struct inode *inode = NULL;
4898 int err;
4899 int drop_inode = 0;
4900 u64 objectid;
4901 unsigned long nr = 0;
4902 u64 index = 0;
4903
4904 if (!new_valid_dev(rdev))
4905 return -EINVAL;
4906
4907 /*
4908 * 2 for inode item and ref
4909 * 2 for dir items
4910 * 1 for xattr if selinux is on
4911 */
4912 trans = btrfs_start_transaction(root, 5);
4913 if (IS_ERR(trans))
4914 return PTR_ERR(trans);
4915
4916 err = btrfs_find_free_ino(root, &objectid);
4917 if (err)
4918 goto out_unlock;
4919
4920 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4921 dentry->d_name.len, btrfs_ino(dir), objectid,
4922 mode, &index);
4923 if (IS_ERR(inode)) {
4924 err = PTR_ERR(inode);
4925 goto out_unlock;
4926 }
4927
4928 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4929 if (err) {
4930 drop_inode = 1;
4931 goto out_unlock;
4932 }
4933
4934 /*
4935 * If the active LSM wants to access the inode during
4936 * d_instantiate it needs these. Smack checks to see
4937 * if the filesystem supports xattrs by looking at the
4938 * ops vector.
4939 */
4940
4941 inode->i_op = &btrfs_special_inode_operations;
4942 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4943 if (err)
4944 drop_inode = 1;
4945 else {
4946 init_special_inode(inode, inode->i_mode, rdev);
4947 btrfs_update_inode(trans, root, inode);
4948 d_instantiate(dentry, inode);
4949 }
4950 out_unlock:
4951 nr = trans->blocks_used;
4952 btrfs_end_transaction(trans, root);
4953 btrfs_btree_balance_dirty(root, nr);
4954 if (drop_inode) {
4955 inode_dec_link_count(inode);
4956 iput(inode);
4957 }
4958 return err;
4959 }
4960
4961 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4962 umode_t mode, bool excl)
4963 {
4964 struct btrfs_trans_handle *trans;
4965 struct btrfs_root *root = BTRFS_I(dir)->root;
4966 struct inode *inode = NULL;
4967 int drop_inode = 0;
4968 int err;
4969 unsigned long nr = 0;
4970 u64 objectid;
4971 u64 index = 0;
4972
4973 /*
4974 * 2 for inode item and ref
4975 * 2 for dir items
4976 * 1 for xattr if selinux is on
4977 */
4978 trans = btrfs_start_transaction(root, 5);
4979 if (IS_ERR(trans))
4980 return PTR_ERR(trans);
4981
4982 err = btrfs_find_free_ino(root, &objectid);
4983 if (err)
4984 goto out_unlock;
4985
4986 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4987 dentry->d_name.len, btrfs_ino(dir), objectid,
4988 mode, &index);
4989 if (IS_ERR(inode)) {
4990 err = PTR_ERR(inode);
4991 goto out_unlock;
4992 }
4993
4994 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4995 if (err) {
4996 drop_inode = 1;
4997 goto out_unlock;
4998 }
4999
5000 /*
5001 * If the active LSM wants to access the inode during
5002 * d_instantiate it needs these. Smack checks to see
5003 * if the filesystem supports xattrs by looking at the
5004 * ops vector.
5005 */
5006 inode->i_fop = &btrfs_file_operations;
5007 inode->i_op = &btrfs_file_inode_operations;
5008
5009 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5010 if (err)
5011 drop_inode = 1;
5012 else {
5013 inode->i_mapping->a_ops = &btrfs_aops;
5014 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5015 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5016 d_instantiate(dentry, inode);
5017 }
5018 out_unlock:
5019 nr = trans->blocks_used;
5020 btrfs_end_transaction(trans, root);
5021 if (drop_inode) {
5022 inode_dec_link_count(inode);
5023 iput(inode);
5024 }
5025 btrfs_btree_balance_dirty(root, nr);
5026 return err;
5027 }
5028
5029 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5030 struct dentry *dentry)
5031 {
5032 struct btrfs_trans_handle *trans;
5033 struct btrfs_root *root = BTRFS_I(dir)->root;
5034 struct inode *inode = old_dentry->d_inode;
5035 u64 index;
5036 unsigned long nr = 0;
5037 int err;
5038 int drop_inode = 0;
5039
5040 /* do not allow sys_link's with other subvols of the same device */
5041 if (root->objectid != BTRFS_I(inode)->root->objectid)
5042 return -EXDEV;
5043
5044 if (inode->i_nlink >= BTRFS_LINK_MAX)
5045 return -EMLINK;
5046
5047 err = btrfs_set_inode_index(dir, &index);
5048 if (err)
5049 goto fail;
5050
5051 /*
5052 * 2 items for inode and inode ref
5053 * 2 items for dir items
5054 * 1 item for parent inode
5055 */
5056 trans = btrfs_start_transaction(root, 5);
5057 if (IS_ERR(trans)) {
5058 err = PTR_ERR(trans);
5059 goto fail;
5060 }
5061
5062 btrfs_inc_nlink(inode);
5063 inode_inc_iversion(inode);
5064 inode->i_ctime = CURRENT_TIME;
5065 ihold(inode);
5066
5067 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5068
5069 if (err) {
5070 drop_inode = 1;
5071 } else {
5072 struct dentry *parent = dentry->d_parent;
5073 err = btrfs_update_inode(trans, root, inode);
5074 if (err)
5075 goto fail;
5076 d_instantiate(dentry, inode);
5077 btrfs_log_new_name(trans, inode, NULL, parent);
5078 }
5079
5080 nr = trans->blocks_used;
5081 btrfs_end_transaction(trans, root);
5082 fail:
5083 if (drop_inode) {
5084 inode_dec_link_count(inode);
5085 iput(inode);
5086 }
5087 btrfs_btree_balance_dirty(root, nr);
5088 return err;
5089 }
5090
5091 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5092 {
5093 struct inode *inode = NULL;
5094 struct btrfs_trans_handle *trans;
5095 struct btrfs_root *root = BTRFS_I(dir)->root;
5096 int err = 0;
5097 int drop_on_err = 0;
5098 u64 objectid = 0;
5099 u64 index = 0;
5100 unsigned long nr = 1;
5101
5102 /*
5103 * 2 items for inode and ref
5104 * 2 items for dir items
5105 * 1 for xattr if selinux is on
5106 */
5107 trans = btrfs_start_transaction(root, 5);
5108 if (IS_ERR(trans))
5109 return PTR_ERR(trans);
5110
5111 err = btrfs_find_free_ino(root, &objectid);
5112 if (err)
5113 goto out_fail;
5114
5115 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5116 dentry->d_name.len, btrfs_ino(dir), objectid,
5117 S_IFDIR | mode, &index);
5118 if (IS_ERR(inode)) {
5119 err = PTR_ERR(inode);
5120 goto out_fail;
5121 }
5122
5123 drop_on_err = 1;
5124
5125 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5126 if (err)
5127 goto out_fail;
5128
5129 inode->i_op = &btrfs_dir_inode_operations;
5130 inode->i_fop = &btrfs_dir_file_operations;
5131
5132 btrfs_i_size_write(inode, 0);
5133 err = btrfs_update_inode(trans, root, inode);
5134 if (err)
5135 goto out_fail;
5136
5137 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5138 dentry->d_name.len, 0, index);
5139 if (err)
5140 goto out_fail;
5141
5142 d_instantiate(dentry, inode);
5143 drop_on_err = 0;
5144
5145 out_fail:
5146 nr = trans->blocks_used;
5147 btrfs_end_transaction(trans, root);
5148 if (drop_on_err)
5149 iput(inode);
5150 btrfs_btree_balance_dirty(root, nr);
5151 return err;
5152 }
5153
5154 /* helper for btfs_get_extent. Given an existing extent in the tree,
5155 * and an extent that you want to insert, deal with overlap and insert
5156 * the new extent into the tree.
5157 */
5158 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5159 struct extent_map *existing,
5160 struct extent_map *em,
5161 u64 map_start, u64 map_len)
5162 {
5163 u64 start_diff;
5164
5165 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5166 start_diff = map_start - em->start;
5167 em->start = map_start;
5168 em->len = map_len;
5169 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5170 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5171 em->block_start += start_diff;
5172 em->block_len -= start_diff;
5173 }
5174 return add_extent_mapping(em_tree, em);
5175 }
5176
5177 static noinline int uncompress_inline(struct btrfs_path *path,
5178 struct inode *inode, struct page *page,
5179 size_t pg_offset, u64 extent_offset,
5180 struct btrfs_file_extent_item *item)
5181 {
5182 int ret;
5183 struct extent_buffer *leaf = path->nodes[0];
5184 char *tmp;
5185 size_t max_size;
5186 unsigned long inline_size;
5187 unsigned long ptr;
5188 int compress_type;
5189
5190 WARN_ON(pg_offset != 0);
5191 compress_type = btrfs_file_extent_compression(leaf, item);
5192 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5193 inline_size = btrfs_file_extent_inline_item_len(leaf,
5194 btrfs_item_nr(leaf, path->slots[0]));
5195 tmp = kmalloc(inline_size, GFP_NOFS);
5196 if (!tmp)
5197 return -ENOMEM;
5198 ptr = btrfs_file_extent_inline_start(item);
5199
5200 read_extent_buffer(leaf, tmp, ptr, inline_size);
5201
5202 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5203 ret = btrfs_decompress(compress_type, tmp, page,
5204 extent_offset, inline_size, max_size);
5205 if (ret) {
5206 char *kaddr = kmap_atomic(page);
5207 unsigned long copy_size = min_t(u64,
5208 PAGE_CACHE_SIZE - pg_offset,
5209 max_size - extent_offset);
5210 memset(kaddr + pg_offset, 0, copy_size);
5211 kunmap_atomic(kaddr);
5212 }
5213 kfree(tmp);
5214 return 0;
5215 }
5216
5217 /*
5218 * a bit scary, this does extent mapping from logical file offset to the disk.
5219 * the ugly parts come from merging extents from the disk with the in-ram
5220 * representation. This gets more complex because of the data=ordered code,
5221 * where the in-ram extents might be locked pending data=ordered completion.
5222 *
5223 * This also copies inline extents directly into the page.
5224 */
5225
5226 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5227 size_t pg_offset, u64 start, u64 len,
5228 int create)
5229 {
5230 int ret;
5231 int err = 0;
5232 u64 bytenr;
5233 u64 extent_start = 0;
5234 u64 extent_end = 0;
5235 u64 objectid = btrfs_ino(inode);
5236 u32 found_type;
5237 struct btrfs_path *path = NULL;
5238 struct btrfs_root *root = BTRFS_I(inode)->root;
5239 struct btrfs_file_extent_item *item;
5240 struct extent_buffer *leaf;
5241 struct btrfs_key found_key;
5242 struct extent_map *em = NULL;
5243 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5244 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5245 struct btrfs_trans_handle *trans = NULL;
5246 int compress_type;
5247
5248 again:
5249 read_lock(&em_tree->lock);
5250 em = lookup_extent_mapping(em_tree, start, len);
5251 if (em)
5252 em->bdev = root->fs_info->fs_devices->latest_bdev;
5253 read_unlock(&em_tree->lock);
5254
5255 if (em) {
5256 if (em->start > start || em->start + em->len <= start)
5257 free_extent_map(em);
5258 else if (em->block_start == EXTENT_MAP_INLINE && page)
5259 free_extent_map(em);
5260 else
5261 goto out;
5262 }
5263 em = alloc_extent_map();
5264 if (!em) {
5265 err = -ENOMEM;
5266 goto out;
5267 }
5268 em->bdev = root->fs_info->fs_devices->latest_bdev;
5269 em->start = EXTENT_MAP_HOLE;
5270 em->orig_start = EXTENT_MAP_HOLE;
5271 em->len = (u64)-1;
5272 em->block_len = (u64)-1;
5273
5274 if (!path) {
5275 path = btrfs_alloc_path();
5276 if (!path) {
5277 err = -ENOMEM;
5278 goto out;
5279 }
5280 /*
5281 * Chances are we'll be called again, so go ahead and do
5282 * readahead
5283 */
5284 path->reada = 1;
5285 }
5286
5287 ret = btrfs_lookup_file_extent(trans, root, path,
5288 objectid, start, trans != NULL);
5289 if (ret < 0) {
5290 err = ret;
5291 goto out;
5292 }
5293
5294 if (ret != 0) {
5295 if (path->slots[0] == 0)
5296 goto not_found;
5297 path->slots[0]--;
5298 }
5299
5300 leaf = path->nodes[0];
5301 item = btrfs_item_ptr(leaf, path->slots[0],
5302 struct btrfs_file_extent_item);
5303 /* are we inside the extent that was found? */
5304 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5305 found_type = btrfs_key_type(&found_key);
5306 if (found_key.objectid != objectid ||
5307 found_type != BTRFS_EXTENT_DATA_KEY) {
5308 goto not_found;
5309 }
5310
5311 found_type = btrfs_file_extent_type(leaf, item);
5312 extent_start = found_key.offset;
5313 compress_type = btrfs_file_extent_compression(leaf, item);
5314 if (found_type == BTRFS_FILE_EXTENT_REG ||
5315 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5316 extent_end = extent_start +
5317 btrfs_file_extent_num_bytes(leaf, item);
5318 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5319 size_t size;
5320 size = btrfs_file_extent_inline_len(leaf, item);
5321 extent_end = (extent_start + size + root->sectorsize - 1) &
5322 ~((u64)root->sectorsize - 1);
5323 }
5324
5325 if (start >= extent_end) {
5326 path->slots[0]++;
5327 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5328 ret = btrfs_next_leaf(root, path);
5329 if (ret < 0) {
5330 err = ret;
5331 goto out;
5332 }
5333 if (ret > 0)
5334 goto not_found;
5335 leaf = path->nodes[0];
5336 }
5337 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5338 if (found_key.objectid != objectid ||
5339 found_key.type != BTRFS_EXTENT_DATA_KEY)
5340 goto not_found;
5341 if (start + len <= found_key.offset)
5342 goto not_found;
5343 em->start = start;
5344 em->len = found_key.offset - start;
5345 goto not_found_em;
5346 }
5347
5348 if (found_type == BTRFS_FILE_EXTENT_REG ||
5349 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5350 em->start = extent_start;
5351 em->len = extent_end - extent_start;
5352 em->orig_start = extent_start -
5353 btrfs_file_extent_offset(leaf, item);
5354 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5355 if (bytenr == 0) {
5356 em->block_start = EXTENT_MAP_HOLE;
5357 goto insert;
5358 }
5359 if (compress_type != BTRFS_COMPRESS_NONE) {
5360 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5361 em->compress_type = compress_type;
5362 em->block_start = bytenr;
5363 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5364 item);
5365 } else {
5366 bytenr += btrfs_file_extent_offset(leaf, item);
5367 em->block_start = bytenr;
5368 em->block_len = em->len;
5369 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5370 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5371 }
5372 goto insert;
5373 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5374 unsigned long ptr;
5375 char *map;
5376 size_t size;
5377 size_t extent_offset;
5378 size_t copy_size;
5379
5380 em->block_start = EXTENT_MAP_INLINE;
5381 if (!page || create) {
5382 em->start = extent_start;
5383 em->len = extent_end - extent_start;
5384 goto out;
5385 }
5386
5387 size = btrfs_file_extent_inline_len(leaf, item);
5388 extent_offset = page_offset(page) + pg_offset - extent_start;
5389 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5390 size - extent_offset);
5391 em->start = extent_start + extent_offset;
5392 em->len = (copy_size + root->sectorsize - 1) &
5393 ~((u64)root->sectorsize - 1);
5394 em->orig_start = EXTENT_MAP_INLINE;
5395 if (compress_type) {
5396 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5397 em->compress_type = compress_type;
5398 }
5399 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5400 if (create == 0 && !PageUptodate(page)) {
5401 if (btrfs_file_extent_compression(leaf, item) !=
5402 BTRFS_COMPRESS_NONE) {
5403 ret = uncompress_inline(path, inode, page,
5404 pg_offset,
5405 extent_offset, item);
5406 BUG_ON(ret); /* -ENOMEM */
5407 } else {
5408 map = kmap(page);
5409 read_extent_buffer(leaf, map + pg_offset, ptr,
5410 copy_size);
5411 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5412 memset(map + pg_offset + copy_size, 0,
5413 PAGE_CACHE_SIZE - pg_offset -
5414 copy_size);
5415 }
5416 kunmap(page);
5417 }
5418 flush_dcache_page(page);
5419 } else if (create && PageUptodate(page)) {
5420 BUG();
5421 if (!trans) {
5422 kunmap(page);
5423 free_extent_map(em);
5424 em = NULL;
5425
5426 btrfs_release_path(path);
5427 trans = btrfs_join_transaction(root);
5428
5429 if (IS_ERR(trans))
5430 return ERR_CAST(trans);
5431 goto again;
5432 }
5433 map = kmap(page);
5434 write_extent_buffer(leaf, map + pg_offset, ptr,
5435 copy_size);
5436 kunmap(page);
5437 btrfs_mark_buffer_dirty(leaf);
5438 }
5439 set_extent_uptodate(io_tree, em->start,
5440 extent_map_end(em) - 1, NULL, GFP_NOFS);
5441 goto insert;
5442 } else {
5443 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5444 WARN_ON(1);
5445 }
5446 not_found:
5447 em->start = start;
5448 em->len = len;
5449 not_found_em:
5450 em->block_start = EXTENT_MAP_HOLE;
5451 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5452 insert:
5453 btrfs_release_path(path);
5454 if (em->start > start || extent_map_end(em) <= start) {
5455 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5456 "[%llu %llu]\n", (unsigned long long)em->start,
5457 (unsigned long long)em->len,
5458 (unsigned long long)start,
5459 (unsigned long long)len);
5460 err = -EIO;
5461 goto out;
5462 }
5463
5464 err = 0;
5465 write_lock(&em_tree->lock);
5466 ret = add_extent_mapping(em_tree, em);
5467 /* it is possible that someone inserted the extent into the tree
5468 * while we had the lock dropped. It is also possible that
5469 * an overlapping map exists in the tree
5470 */
5471 if (ret == -EEXIST) {
5472 struct extent_map *existing;
5473
5474 ret = 0;
5475
5476 existing = lookup_extent_mapping(em_tree, start, len);
5477 if (existing && (existing->start > start ||
5478 existing->start + existing->len <= start)) {
5479 free_extent_map(existing);
5480 existing = NULL;
5481 }
5482 if (!existing) {
5483 existing = lookup_extent_mapping(em_tree, em->start,
5484 em->len);
5485 if (existing) {
5486 err = merge_extent_mapping(em_tree, existing,
5487 em, start,
5488 root->sectorsize);
5489 free_extent_map(existing);
5490 if (err) {
5491 free_extent_map(em);
5492 em = NULL;
5493 }
5494 } else {
5495 err = -EIO;
5496 free_extent_map(em);
5497 em = NULL;
5498 }
5499 } else {
5500 free_extent_map(em);
5501 em = existing;
5502 err = 0;
5503 }
5504 }
5505 write_unlock(&em_tree->lock);
5506 out:
5507
5508 if (em)
5509 trace_btrfs_get_extent(root, em);
5510
5511 if (path)
5512 btrfs_free_path(path);
5513 if (trans) {
5514 ret = btrfs_end_transaction(trans, root);
5515 if (!err)
5516 err = ret;
5517 }
5518 if (err) {
5519 free_extent_map(em);
5520 return ERR_PTR(err);
5521 }
5522 BUG_ON(!em); /* Error is always set */
5523 return em;
5524 }
5525
5526 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5527 size_t pg_offset, u64 start, u64 len,
5528 int create)
5529 {
5530 struct extent_map *em;
5531 struct extent_map *hole_em = NULL;
5532 u64 range_start = start;
5533 u64 end;
5534 u64 found;
5535 u64 found_end;
5536 int err = 0;
5537
5538 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5539 if (IS_ERR(em))
5540 return em;
5541 if (em) {
5542 /*
5543 * if our em maps to a hole, there might
5544 * actually be delalloc bytes behind it
5545 */
5546 if (em->block_start != EXTENT_MAP_HOLE)
5547 return em;
5548 else
5549 hole_em = em;
5550 }
5551
5552 /* check to see if we've wrapped (len == -1 or similar) */
5553 end = start + len;
5554 if (end < start)
5555 end = (u64)-1;
5556 else
5557 end -= 1;
5558
5559 em = NULL;
5560
5561 /* ok, we didn't find anything, lets look for delalloc */
5562 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5563 end, len, EXTENT_DELALLOC, 1);
5564 found_end = range_start + found;
5565 if (found_end < range_start)
5566 found_end = (u64)-1;
5567
5568 /*
5569 * we didn't find anything useful, return
5570 * the original results from get_extent()
5571 */
5572 if (range_start > end || found_end <= start) {
5573 em = hole_em;
5574 hole_em = NULL;
5575 goto out;
5576 }
5577
5578 /* adjust the range_start to make sure it doesn't
5579 * go backwards from the start they passed in
5580 */
5581 range_start = max(start,range_start);
5582 found = found_end - range_start;
5583
5584 if (found > 0) {
5585 u64 hole_start = start;
5586 u64 hole_len = len;
5587
5588 em = alloc_extent_map();
5589 if (!em) {
5590 err = -ENOMEM;
5591 goto out;
5592 }
5593 /*
5594 * when btrfs_get_extent can't find anything it
5595 * returns one huge hole
5596 *
5597 * make sure what it found really fits our range, and
5598 * adjust to make sure it is based on the start from
5599 * the caller
5600 */
5601 if (hole_em) {
5602 u64 calc_end = extent_map_end(hole_em);
5603
5604 if (calc_end <= start || (hole_em->start > end)) {
5605 free_extent_map(hole_em);
5606 hole_em = NULL;
5607 } else {
5608 hole_start = max(hole_em->start, start);
5609 hole_len = calc_end - hole_start;
5610 }
5611 }
5612 em->bdev = NULL;
5613 if (hole_em && range_start > hole_start) {
5614 /* our hole starts before our delalloc, so we
5615 * have to return just the parts of the hole
5616 * that go until the delalloc starts
5617 */
5618 em->len = min(hole_len,
5619 range_start - hole_start);
5620 em->start = hole_start;
5621 em->orig_start = hole_start;
5622 /*
5623 * don't adjust block start at all,
5624 * it is fixed at EXTENT_MAP_HOLE
5625 */
5626 em->block_start = hole_em->block_start;
5627 em->block_len = hole_len;
5628 } else {
5629 em->start = range_start;
5630 em->len = found;
5631 em->orig_start = range_start;
5632 em->block_start = EXTENT_MAP_DELALLOC;
5633 em->block_len = found;
5634 }
5635 } else if (hole_em) {
5636 return hole_em;
5637 }
5638 out:
5639
5640 free_extent_map(hole_em);
5641 if (err) {
5642 free_extent_map(em);
5643 return ERR_PTR(err);
5644 }
5645 return em;
5646 }
5647
5648 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5649 struct extent_map *em,
5650 u64 start, u64 len)
5651 {
5652 struct btrfs_root *root = BTRFS_I(inode)->root;
5653 struct btrfs_trans_handle *trans;
5654 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5655 struct btrfs_key ins;
5656 u64 alloc_hint;
5657 int ret;
5658 bool insert = false;
5659
5660 /*
5661 * Ok if the extent map we looked up is a hole and is for the exact
5662 * range we want, there is no reason to allocate a new one, however if
5663 * it is not right then we need to free this one and drop the cache for
5664 * our range.
5665 */
5666 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5667 em->len != len) {
5668 free_extent_map(em);
5669 em = NULL;
5670 insert = true;
5671 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5672 }
5673
5674 trans = btrfs_join_transaction(root);
5675 if (IS_ERR(trans))
5676 return ERR_CAST(trans);
5677
5678 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5679 btrfs_add_inode_defrag(trans, inode);
5680
5681 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5682
5683 alloc_hint = get_extent_allocation_hint(inode, start, len);
5684 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5685 alloc_hint, &ins, 1);
5686 if (ret) {
5687 em = ERR_PTR(ret);
5688 goto out;
5689 }
5690
5691 if (!em) {
5692 em = alloc_extent_map();
5693 if (!em) {
5694 em = ERR_PTR(-ENOMEM);
5695 goto out;
5696 }
5697 }
5698
5699 em->start = start;
5700 em->orig_start = em->start;
5701 em->len = ins.offset;
5702
5703 em->block_start = ins.objectid;
5704 em->block_len = ins.offset;
5705 em->bdev = root->fs_info->fs_devices->latest_bdev;
5706
5707 /*
5708 * We need to do this because if we're using the original em we searched
5709 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5710 */
5711 em->flags = 0;
5712 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5713
5714 while (insert) {
5715 write_lock(&em_tree->lock);
5716 ret = add_extent_mapping(em_tree, em);
5717 write_unlock(&em_tree->lock);
5718 if (ret != -EEXIST)
5719 break;
5720 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5721 }
5722
5723 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5724 ins.offset, ins.offset, 0);
5725 if (ret) {
5726 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5727 em = ERR_PTR(ret);
5728 }
5729 out:
5730 btrfs_end_transaction(trans, root);
5731 return em;
5732 }
5733
5734 /*
5735 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5736 * block must be cow'd
5737 */
5738 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5739 struct inode *inode, u64 offset, u64 len)
5740 {
5741 struct btrfs_path *path;
5742 int ret;
5743 struct extent_buffer *leaf;
5744 struct btrfs_root *root = BTRFS_I(inode)->root;
5745 struct btrfs_file_extent_item *fi;
5746 struct btrfs_key key;
5747 u64 disk_bytenr;
5748 u64 backref_offset;
5749 u64 extent_end;
5750 u64 num_bytes;
5751 int slot;
5752 int found_type;
5753
5754 path = btrfs_alloc_path();
5755 if (!path)
5756 return -ENOMEM;
5757
5758 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5759 offset, 0);
5760 if (ret < 0)
5761 goto out;
5762
5763 slot = path->slots[0];
5764 if (ret == 1) {
5765 if (slot == 0) {
5766 /* can't find the item, must cow */
5767 ret = 0;
5768 goto out;
5769 }
5770 slot--;
5771 }
5772 ret = 0;
5773 leaf = path->nodes[0];
5774 btrfs_item_key_to_cpu(leaf, &key, slot);
5775 if (key.objectid != btrfs_ino(inode) ||
5776 key.type != BTRFS_EXTENT_DATA_KEY) {
5777 /* not our file or wrong item type, must cow */
5778 goto out;
5779 }
5780
5781 if (key.offset > offset) {
5782 /* Wrong offset, must cow */
5783 goto out;
5784 }
5785
5786 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5787 found_type = btrfs_file_extent_type(leaf, fi);
5788 if (found_type != BTRFS_FILE_EXTENT_REG &&
5789 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5790 /* not a regular extent, must cow */
5791 goto out;
5792 }
5793 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5794 backref_offset = btrfs_file_extent_offset(leaf, fi);
5795
5796 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5797 if (extent_end < offset + len) {
5798 /* extent doesn't include our full range, must cow */
5799 goto out;
5800 }
5801
5802 if (btrfs_extent_readonly(root, disk_bytenr))
5803 goto out;
5804
5805 /*
5806 * look for other files referencing this extent, if we
5807 * find any we must cow
5808 */
5809 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5810 key.offset - backref_offset, disk_bytenr))
5811 goto out;
5812
5813 /*
5814 * adjust disk_bytenr and num_bytes to cover just the bytes
5815 * in this extent we are about to write. If there
5816 * are any csums in that range we have to cow in order
5817 * to keep the csums correct
5818 */
5819 disk_bytenr += backref_offset;
5820 disk_bytenr += offset - key.offset;
5821 num_bytes = min(offset + len, extent_end) - offset;
5822 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5823 goto out;
5824 /*
5825 * all of the above have passed, it is safe to overwrite this extent
5826 * without cow
5827 */
5828 ret = 1;
5829 out:
5830 btrfs_free_path(path);
5831 return ret;
5832 }
5833
5834 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
5835 struct extent_state **cached_state, int writing)
5836 {
5837 struct btrfs_ordered_extent *ordered;
5838 int ret = 0;
5839
5840 while (1) {
5841 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5842 0, cached_state);
5843 /*
5844 * We're concerned with the entire range that we're going to be
5845 * doing DIO to, so we need to make sure theres no ordered
5846 * extents in this range.
5847 */
5848 ordered = btrfs_lookup_ordered_range(inode, lockstart,
5849 lockend - lockstart + 1);
5850
5851 /*
5852 * We need to make sure there are no buffered pages in this
5853 * range either, we could have raced between the invalidate in
5854 * generic_file_direct_write and locking the extent. The
5855 * invalidate needs to happen so that reads after a write do not
5856 * get stale data.
5857 */
5858 if (!ordered && (!writing ||
5859 !test_range_bit(&BTRFS_I(inode)->io_tree,
5860 lockstart, lockend, EXTENT_UPTODATE, 0,
5861 *cached_state)))
5862 break;
5863
5864 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
5865 cached_state, GFP_NOFS);
5866
5867 if (ordered) {
5868 btrfs_start_ordered_extent(inode, ordered, 1);
5869 btrfs_put_ordered_extent(ordered);
5870 } else {
5871 /* Screw you mmap */
5872 ret = filemap_write_and_wait_range(inode->i_mapping,
5873 lockstart,
5874 lockend);
5875 if (ret)
5876 break;
5877
5878 /*
5879 * If we found a page that couldn't be invalidated just
5880 * fall back to buffered.
5881 */
5882 ret = invalidate_inode_pages2_range(inode->i_mapping,
5883 lockstart >> PAGE_CACHE_SHIFT,
5884 lockend >> PAGE_CACHE_SHIFT);
5885 if (ret)
5886 break;
5887 }
5888
5889 cond_resched();
5890 }
5891
5892 return ret;
5893 }
5894
5895 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
5896 u64 len, u64 orig_start,
5897 u64 block_start, u64 block_len,
5898 int type)
5899 {
5900 struct extent_map_tree *em_tree;
5901 struct extent_map *em;
5902 struct btrfs_root *root = BTRFS_I(inode)->root;
5903 int ret;
5904
5905 em_tree = &BTRFS_I(inode)->extent_tree;
5906 em = alloc_extent_map();
5907 if (!em)
5908 return ERR_PTR(-ENOMEM);
5909
5910 em->start = start;
5911 em->orig_start = orig_start;
5912 em->len = len;
5913 em->block_len = block_len;
5914 em->block_start = block_start;
5915 em->bdev = root->fs_info->fs_devices->latest_bdev;
5916 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5917 if (type == BTRFS_ORDERED_PREALLOC)
5918 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5919
5920 do {
5921 btrfs_drop_extent_cache(inode, em->start,
5922 em->start + em->len - 1, 0);
5923 write_lock(&em_tree->lock);
5924 ret = add_extent_mapping(em_tree, em);
5925 write_unlock(&em_tree->lock);
5926 } while (ret == -EEXIST);
5927
5928 if (ret) {
5929 free_extent_map(em);
5930 return ERR_PTR(ret);
5931 }
5932
5933 return em;
5934 }
5935
5936
5937 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5938 struct buffer_head *bh_result, int create)
5939 {
5940 struct extent_map *em;
5941 struct btrfs_root *root = BTRFS_I(inode)->root;
5942 struct extent_state *cached_state = NULL;
5943 u64 start = iblock << inode->i_blkbits;
5944 u64 lockstart, lockend;
5945 u64 len = bh_result->b_size;
5946 struct btrfs_trans_handle *trans;
5947 int unlock_bits = EXTENT_LOCKED;
5948 int ret;
5949
5950 if (create) {
5951 ret = btrfs_delalloc_reserve_space(inode, len);
5952 if (ret)
5953 return ret;
5954 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
5955 } else {
5956 len = min_t(u64, len, root->sectorsize);
5957 }
5958
5959 lockstart = start;
5960 lockend = start + len - 1;
5961
5962 /*
5963 * If this errors out it's because we couldn't invalidate pagecache for
5964 * this range and we need to fallback to buffered.
5965 */
5966 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
5967 return -ENOTBLK;
5968
5969 if (create) {
5970 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
5971 lockend, EXTENT_DELALLOC, NULL,
5972 &cached_state, GFP_NOFS);
5973 if (ret)
5974 goto unlock_err;
5975 }
5976
5977 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5978 if (IS_ERR(em)) {
5979 ret = PTR_ERR(em);
5980 goto unlock_err;
5981 }
5982
5983 /*
5984 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5985 * io. INLINE is special, and we could probably kludge it in here, but
5986 * it's still buffered so for safety lets just fall back to the generic
5987 * buffered path.
5988 *
5989 * For COMPRESSED we _have_ to read the entire extent in so we can
5990 * decompress it, so there will be buffering required no matter what we
5991 * do, so go ahead and fallback to buffered.
5992 *
5993 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5994 * to buffered IO. Don't blame me, this is the price we pay for using
5995 * the generic code.
5996 */
5997 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5998 em->block_start == EXTENT_MAP_INLINE) {
5999 free_extent_map(em);
6000 ret = -ENOTBLK;
6001 goto unlock_err;
6002 }
6003
6004 /* Just a good old fashioned hole, return */
6005 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6006 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6007 free_extent_map(em);
6008 ret = 0;
6009 goto unlock_err;
6010 }
6011
6012 /*
6013 * We don't allocate a new extent in the following cases
6014 *
6015 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6016 * existing extent.
6017 * 2) The extent is marked as PREALLOC. We're good to go here and can
6018 * just use the extent.
6019 *
6020 */
6021 if (!create) {
6022 len = min(len, em->len - (start - em->start));
6023 lockstart = start + len;
6024 goto unlock;
6025 }
6026
6027 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6028 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6029 em->block_start != EXTENT_MAP_HOLE)) {
6030 int type;
6031 int ret;
6032 u64 block_start;
6033
6034 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6035 type = BTRFS_ORDERED_PREALLOC;
6036 else
6037 type = BTRFS_ORDERED_NOCOW;
6038 len = min(len, em->len - (start - em->start));
6039 block_start = em->block_start + (start - em->start);
6040
6041 /*
6042 * we're not going to log anything, but we do need
6043 * to make sure the current transaction stays open
6044 * while we look for nocow cross refs
6045 */
6046 trans = btrfs_join_transaction(root);
6047 if (IS_ERR(trans))
6048 goto must_cow;
6049
6050 if (can_nocow_odirect(trans, inode, start, len) == 1) {
6051 u64 orig_start = em->start;
6052
6053 if (type == BTRFS_ORDERED_PREALLOC) {
6054 free_extent_map(em);
6055 em = create_pinned_em(inode, start, len,
6056 orig_start,
6057 block_start, len, type);
6058 if (IS_ERR(em)) {
6059 btrfs_end_transaction(trans, root);
6060 goto unlock_err;
6061 }
6062 }
6063
6064 ret = btrfs_add_ordered_extent_dio(inode, start,
6065 block_start, len, len, type);
6066 btrfs_end_transaction(trans, root);
6067 if (ret) {
6068 free_extent_map(em);
6069 goto unlock_err;
6070 }
6071 goto unlock;
6072 }
6073 btrfs_end_transaction(trans, root);
6074 }
6075 must_cow:
6076 /*
6077 * this will cow the extent, reset the len in case we changed
6078 * it above
6079 */
6080 len = bh_result->b_size;
6081 em = btrfs_new_extent_direct(inode, em, start, len);
6082 if (IS_ERR(em)) {
6083 ret = PTR_ERR(em);
6084 goto unlock_err;
6085 }
6086 len = min(len, em->len - (start - em->start));
6087 unlock:
6088 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6089 inode->i_blkbits;
6090 bh_result->b_size = len;
6091 bh_result->b_bdev = em->bdev;
6092 set_buffer_mapped(bh_result);
6093 if (create) {
6094 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6095 set_buffer_new(bh_result);
6096
6097 /*
6098 * Need to update the i_size under the extent lock so buffered
6099 * readers will get the updated i_size when we unlock.
6100 */
6101 if (start + len > i_size_read(inode))
6102 i_size_write(inode, start + len);
6103 }
6104
6105 /*
6106 * In the case of write we need to clear and unlock the entire range,
6107 * in the case of read we need to unlock only the end area that we
6108 * aren't using if there is any left over space.
6109 */
6110 if (lockstart < lockend) {
6111 if (create && len < lockend - lockstart) {
6112 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6113 lockstart + len - 1,
6114 unlock_bits | EXTENT_DEFRAG, 1, 0,
6115 &cached_state, GFP_NOFS);
6116 /*
6117 * Beside unlock, we also need to cleanup reserved space
6118 * for the left range by attaching EXTENT_DO_ACCOUNTING.
6119 */
6120 clear_extent_bit(&BTRFS_I(inode)->io_tree,
6121 lockstart + len, lockend,
6122 unlock_bits | EXTENT_DO_ACCOUNTING |
6123 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS);
6124 } else {
6125 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6126 lockend, unlock_bits, 1, 0,
6127 &cached_state, GFP_NOFS);
6128 }
6129 } else {
6130 free_extent_state(cached_state);
6131 }
6132
6133 free_extent_map(em);
6134
6135 return 0;
6136
6137 unlock_err:
6138 if (create)
6139 unlock_bits |= EXTENT_DO_ACCOUNTING;
6140
6141 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6142 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6143 return ret;
6144 }
6145
6146 struct btrfs_dio_private {
6147 struct inode *inode;
6148 u64 logical_offset;
6149 u64 disk_bytenr;
6150 u64 bytes;
6151 void *private;
6152
6153 /* number of bios pending for this dio */
6154 atomic_t pending_bios;
6155
6156 /* IO errors */
6157 int errors;
6158
6159 struct bio *orig_bio;
6160 };
6161
6162 static void btrfs_endio_direct_read(struct bio *bio, int err)
6163 {
6164 struct btrfs_dio_private *dip = bio->bi_private;
6165 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6166 struct bio_vec *bvec = bio->bi_io_vec;
6167 struct inode *inode = dip->inode;
6168 struct btrfs_root *root = BTRFS_I(inode)->root;
6169 u64 start;
6170
6171 start = dip->logical_offset;
6172 do {
6173 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6174 struct page *page = bvec->bv_page;
6175 char *kaddr;
6176 u32 csum = ~(u32)0;
6177 u64 private = ~(u32)0;
6178 unsigned long flags;
6179
6180 if (get_state_private(&BTRFS_I(inode)->io_tree,
6181 start, &private))
6182 goto failed;
6183 local_irq_save(flags);
6184 kaddr = kmap_atomic(page);
6185 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6186 csum, bvec->bv_len);
6187 btrfs_csum_final(csum, (char *)&csum);
6188 kunmap_atomic(kaddr);
6189 local_irq_restore(flags);
6190
6191 flush_dcache_page(bvec->bv_page);
6192 if (csum != private) {
6193 failed:
6194 printk(KERN_ERR "btrfs csum failed ino %llu off"
6195 " %llu csum %u private %u\n",
6196 (unsigned long long)btrfs_ino(inode),
6197 (unsigned long long)start,
6198 csum, (unsigned)private);
6199 err = -EIO;
6200 }
6201 }
6202
6203 start += bvec->bv_len;
6204 bvec++;
6205 } while (bvec <= bvec_end);
6206
6207 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6208 dip->logical_offset + dip->bytes - 1);
6209 bio->bi_private = dip->private;
6210
6211 kfree(dip);
6212
6213 /* If we had a csum failure make sure to clear the uptodate flag */
6214 if (err)
6215 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6216 dio_end_io(bio, err);
6217 }
6218
6219 static void btrfs_endio_direct_write(struct bio *bio, int err)
6220 {
6221 struct btrfs_dio_private *dip = bio->bi_private;
6222 struct inode *inode = dip->inode;
6223 struct btrfs_root *root = BTRFS_I(inode)->root;
6224 struct btrfs_ordered_extent *ordered = NULL;
6225 u64 ordered_offset = dip->logical_offset;
6226 u64 ordered_bytes = dip->bytes;
6227 int ret;
6228
6229 if (err)
6230 goto out_done;
6231 again:
6232 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6233 &ordered_offset,
6234 ordered_bytes, !err);
6235 if (!ret)
6236 goto out_test;
6237
6238 ordered->work.func = finish_ordered_fn;
6239 ordered->work.flags = 0;
6240 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6241 &ordered->work);
6242 out_test:
6243 /*
6244 * our bio might span multiple ordered extents. If we haven't
6245 * completed the accounting for the whole dio, go back and try again
6246 */
6247 if (ordered_offset < dip->logical_offset + dip->bytes) {
6248 ordered_bytes = dip->logical_offset + dip->bytes -
6249 ordered_offset;
6250 ordered = NULL;
6251 goto again;
6252 }
6253 out_done:
6254 bio->bi_private = dip->private;
6255
6256 kfree(dip);
6257
6258 /* If we had an error make sure to clear the uptodate flag */
6259 if (err)
6260 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6261 dio_end_io(bio, err);
6262 }
6263
6264 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6265 struct bio *bio, int mirror_num,
6266 unsigned long bio_flags, u64 offset)
6267 {
6268 int ret;
6269 struct btrfs_root *root = BTRFS_I(inode)->root;
6270 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6271 BUG_ON(ret); /* -ENOMEM */
6272 return 0;
6273 }
6274
6275 static void btrfs_end_dio_bio(struct bio *bio, int err)
6276 {
6277 struct btrfs_dio_private *dip = bio->bi_private;
6278
6279 if (err) {
6280 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6281 "sector %#Lx len %u err no %d\n",
6282 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6283 (unsigned long long)bio->bi_sector, bio->bi_size, err);
6284 dip->errors = 1;
6285
6286 /*
6287 * before atomic variable goto zero, we must make sure
6288 * dip->errors is perceived to be set.
6289 */
6290 smp_mb__before_atomic_dec();
6291 }
6292
6293 /* if there are more bios still pending for this dio, just exit */
6294 if (!atomic_dec_and_test(&dip->pending_bios))
6295 goto out;
6296
6297 if (dip->errors)
6298 bio_io_error(dip->orig_bio);
6299 else {
6300 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6301 bio_endio(dip->orig_bio, 0);
6302 }
6303 out:
6304 bio_put(bio);
6305 }
6306
6307 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6308 u64 first_sector, gfp_t gfp_flags)
6309 {
6310 int nr_vecs = bio_get_nr_vecs(bdev);
6311 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6312 }
6313
6314 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6315 int rw, u64 file_offset, int skip_sum,
6316 int async_submit)
6317 {
6318 int write = rw & REQ_WRITE;
6319 struct btrfs_root *root = BTRFS_I(inode)->root;
6320 int ret;
6321
6322 bio_get(bio);
6323
6324 if (!write) {
6325 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6326 if (ret)
6327 goto err;
6328 }
6329
6330 if (skip_sum)
6331 goto map;
6332
6333 if (write && async_submit) {
6334 ret = btrfs_wq_submit_bio(root->fs_info,
6335 inode, rw, bio, 0, 0,
6336 file_offset,
6337 __btrfs_submit_bio_start_direct_io,
6338 __btrfs_submit_bio_done);
6339 goto err;
6340 } else if (write) {
6341 /*
6342 * If we aren't doing async submit, calculate the csum of the
6343 * bio now.
6344 */
6345 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6346 if (ret)
6347 goto err;
6348 } else if (!skip_sum) {
6349 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
6350 if (ret)
6351 goto err;
6352 }
6353
6354 map:
6355 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6356 err:
6357 bio_put(bio);
6358 return ret;
6359 }
6360
6361 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6362 int skip_sum)
6363 {
6364 struct inode *inode = dip->inode;
6365 struct btrfs_root *root = BTRFS_I(inode)->root;
6366 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6367 struct bio *bio;
6368 struct bio *orig_bio = dip->orig_bio;
6369 struct bio_vec *bvec = orig_bio->bi_io_vec;
6370 u64 start_sector = orig_bio->bi_sector;
6371 u64 file_offset = dip->logical_offset;
6372 u64 submit_len = 0;
6373 u64 map_length;
6374 int nr_pages = 0;
6375 int ret = 0;
6376 int async_submit = 0;
6377
6378 map_length = orig_bio->bi_size;
6379 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6380 &map_length, NULL, 0);
6381 if (ret) {
6382 bio_put(orig_bio);
6383 return -EIO;
6384 }
6385
6386 if (map_length >= orig_bio->bi_size) {
6387 bio = orig_bio;
6388 goto submit;
6389 }
6390
6391 async_submit = 1;
6392 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6393 if (!bio)
6394 return -ENOMEM;
6395 bio->bi_private = dip;
6396 bio->bi_end_io = btrfs_end_dio_bio;
6397 atomic_inc(&dip->pending_bios);
6398
6399 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6400 if (unlikely(map_length < submit_len + bvec->bv_len ||
6401 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6402 bvec->bv_offset) < bvec->bv_len)) {
6403 /*
6404 * inc the count before we submit the bio so
6405 * we know the end IO handler won't happen before
6406 * we inc the count. Otherwise, the dip might get freed
6407 * before we're done setting it up
6408 */
6409 atomic_inc(&dip->pending_bios);
6410 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6411 file_offset, skip_sum,
6412 async_submit);
6413 if (ret) {
6414 bio_put(bio);
6415 atomic_dec(&dip->pending_bios);
6416 goto out_err;
6417 }
6418
6419 start_sector += submit_len >> 9;
6420 file_offset += submit_len;
6421
6422 submit_len = 0;
6423 nr_pages = 0;
6424
6425 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6426 start_sector, GFP_NOFS);
6427 if (!bio)
6428 goto out_err;
6429 bio->bi_private = dip;
6430 bio->bi_end_io = btrfs_end_dio_bio;
6431
6432 map_length = orig_bio->bi_size;
6433 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6434 &map_length, NULL, 0);
6435 if (ret) {
6436 bio_put(bio);
6437 goto out_err;
6438 }
6439 } else {
6440 submit_len += bvec->bv_len;
6441 nr_pages ++;
6442 bvec++;
6443 }
6444 }
6445
6446 submit:
6447 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6448 async_submit);
6449 if (!ret)
6450 return 0;
6451
6452 bio_put(bio);
6453 out_err:
6454 dip->errors = 1;
6455 /*
6456 * before atomic variable goto zero, we must
6457 * make sure dip->errors is perceived to be set.
6458 */
6459 smp_mb__before_atomic_dec();
6460 if (atomic_dec_and_test(&dip->pending_bios))
6461 bio_io_error(dip->orig_bio);
6462
6463 /* bio_end_io() will handle error, so we needn't return it */
6464 return 0;
6465 }
6466
6467 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6468 loff_t file_offset)
6469 {
6470 struct btrfs_root *root = BTRFS_I(inode)->root;
6471 struct btrfs_dio_private *dip;
6472 struct bio_vec *bvec = bio->bi_io_vec;
6473 int skip_sum;
6474 int write = rw & REQ_WRITE;
6475 int ret = 0;
6476
6477 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6478
6479 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6480 if (!dip) {
6481 ret = -ENOMEM;
6482 goto free_ordered;
6483 }
6484
6485 dip->private = bio->bi_private;
6486 dip->inode = inode;
6487 dip->logical_offset = file_offset;
6488
6489 dip->bytes = 0;
6490 do {
6491 dip->bytes += bvec->bv_len;
6492 bvec++;
6493 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6494
6495 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6496 bio->bi_private = dip;
6497 dip->errors = 0;
6498 dip->orig_bio = bio;
6499 atomic_set(&dip->pending_bios, 0);
6500
6501 if (write)
6502 bio->bi_end_io = btrfs_endio_direct_write;
6503 else
6504 bio->bi_end_io = btrfs_endio_direct_read;
6505
6506 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6507 if (!ret)
6508 return;
6509 free_ordered:
6510 /*
6511 * If this is a write, we need to clean up the reserved space and kill
6512 * the ordered extent.
6513 */
6514 if (write) {
6515 struct btrfs_ordered_extent *ordered;
6516 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6517 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6518 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6519 btrfs_free_reserved_extent(root, ordered->start,
6520 ordered->disk_len);
6521 btrfs_put_ordered_extent(ordered);
6522 btrfs_put_ordered_extent(ordered);
6523 }
6524 bio_endio(bio, ret);
6525 }
6526
6527 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6528 const struct iovec *iov, loff_t offset,
6529 unsigned long nr_segs)
6530 {
6531 int seg;
6532 int i;
6533 size_t size;
6534 unsigned long addr;
6535 unsigned blocksize_mask = root->sectorsize - 1;
6536 ssize_t retval = -EINVAL;
6537 loff_t end = offset;
6538
6539 if (offset & blocksize_mask)
6540 goto out;
6541
6542 /* Check the memory alignment. Blocks cannot straddle pages */
6543 for (seg = 0; seg < nr_segs; seg++) {
6544 addr = (unsigned long)iov[seg].iov_base;
6545 size = iov[seg].iov_len;
6546 end += size;
6547 if ((addr & blocksize_mask) || (size & blocksize_mask))
6548 goto out;
6549
6550 /* If this is a write we don't need to check anymore */
6551 if (rw & WRITE)
6552 continue;
6553
6554 /*
6555 * Check to make sure we don't have duplicate iov_base's in this
6556 * iovec, if so return EINVAL, otherwise we'll get csum errors
6557 * when reading back.
6558 */
6559 for (i = seg + 1; i < nr_segs; i++) {
6560 if (iov[seg].iov_base == iov[i].iov_base)
6561 goto out;
6562 }
6563 }
6564 retval = 0;
6565 out:
6566 return retval;
6567 }
6568
6569 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6570 const struct iovec *iov, loff_t offset,
6571 unsigned long nr_segs)
6572 {
6573 struct file *file = iocb->ki_filp;
6574 struct inode *inode = file->f_mapping->host;
6575
6576 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6577 offset, nr_segs))
6578 return 0;
6579
6580 return __blockdev_direct_IO(rw, iocb, inode,
6581 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6582 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6583 btrfs_submit_direct, 0);
6584 }
6585
6586 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6587 __u64 start, __u64 len)
6588 {
6589 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6590 }
6591
6592 int btrfs_readpage(struct file *file, struct page *page)
6593 {
6594 struct extent_io_tree *tree;
6595 tree = &BTRFS_I(page->mapping->host)->io_tree;
6596 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6597 }
6598
6599 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6600 {
6601 struct extent_io_tree *tree;
6602
6603
6604 if (current->flags & PF_MEMALLOC) {
6605 redirty_page_for_writepage(wbc, page);
6606 unlock_page(page);
6607 return 0;
6608 }
6609 tree = &BTRFS_I(page->mapping->host)->io_tree;
6610 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6611 }
6612
6613 int btrfs_writepages(struct address_space *mapping,
6614 struct writeback_control *wbc)
6615 {
6616 struct extent_io_tree *tree;
6617
6618 tree = &BTRFS_I(mapping->host)->io_tree;
6619 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6620 }
6621
6622 static int
6623 btrfs_readpages(struct file *file, struct address_space *mapping,
6624 struct list_head *pages, unsigned nr_pages)
6625 {
6626 struct extent_io_tree *tree;
6627 tree = &BTRFS_I(mapping->host)->io_tree;
6628 return extent_readpages(tree, mapping, pages, nr_pages,
6629 btrfs_get_extent);
6630 }
6631 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6632 {
6633 struct extent_io_tree *tree;
6634 struct extent_map_tree *map;
6635 int ret;
6636
6637 tree = &BTRFS_I(page->mapping->host)->io_tree;
6638 map = &BTRFS_I(page->mapping->host)->extent_tree;
6639 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6640 if (ret == 1) {
6641 ClearPagePrivate(page);
6642 set_page_private(page, 0);
6643 page_cache_release(page);
6644 }
6645 return ret;
6646 }
6647
6648 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6649 {
6650 if (PageWriteback(page) || PageDirty(page))
6651 return 0;
6652 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6653 }
6654
6655 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6656 {
6657 struct inode *inode = page->mapping->host;
6658 struct extent_io_tree *tree;
6659 struct btrfs_ordered_extent *ordered;
6660 struct extent_state *cached_state = NULL;
6661 u64 page_start = page_offset(page);
6662 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6663
6664 /*
6665 * we have the page locked, so new writeback can't start,
6666 * and the dirty bit won't be cleared while we are here.
6667 *
6668 * Wait for IO on this page so that we can safely clear
6669 * the PagePrivate2 bit and do ordered accounting
6670 */
6671 wait_on_page_writeback(page);
6672
6673 tree = &BTRFS_I(inode)->io_tree;
6674 if (offset) {
6675 btrfs_releasepage(page, GFP_NOFS);
6676 return;
6677 }
6678 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6679 ordered = btrfs_lookup_ordered_extent(inode,
6680 page_offset(page));
6681 if (ordered) {
6682 /*
6683 * IO on this page will never be started, so we need
6684 * to account for any ordered extents now
6685 */
6686 clear_extent_bit(tree, page_start, page_end,
6687 EXTENT_DIRTY | EXTENT_DELALLOC |
6688 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
6689 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
6690 /*
6691 * whoever cleared the private bit is responsible
6692 * for the finish_ordered_io
6693 */
6694 if (TestClearPagePrivate2(page) &&
6695 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6696 PAGE_CACHE_SIZE, 1)) {
6697 btrfs_finish_ordered_io(ordered);
6698 }
6699 btrfs_put_ordered_extent(ordered);
6700 cached_state = NULL;
6701 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6702 }
6703 clear_extent_bit(tree, page_start, page_end,
6704 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6705 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
6706 &cached_state, GFP_NOFS);
6707 __btrfs_releasepage(page, GFP_NOFS);
6708
6709 ClearPageChecked(page);
6710 if (PagePrivate(page)) {
6711 ClearPagePrivate(page);
6712 set_page_private(page, 0);
6713 page_cache_release(page);
6714 }
6715 }
6716
6717 /*
6718 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6719 * called from a page fault handler when a page is first dirtied. Hence we must
6720 * be careful to check for EOF conditions here. We set the page up correctly
6721 * for a written page which means we get ENOSPC checking when writing into
6722 * holes and correct delalloc and unwritten extent mapping on filesystems that
6723 * support these features.
6724 *
6725 * We are not allowed to take the i_mutex here so we have to play games to
6726 * protect against truncate races as the page could now be beyond EOF. Because
6727 * vmtruncate() writes the inode size before removing pages, once we have the
6728 * page lock we can determine safely if the page is beyond EOF. If it is not
6729 * beyond EOF, then the page is guaranteed safe against truncation until we
6730 * unlock the page.
6731 */
6732 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6733 {
6734 struct page *page = vmf->page;
6735 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6736 struct btrfs_root *root = BTRFS_I(inode)->root;
6737 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6738 struct btrfs_ordered_extent *ordered;
6739 struct extent_state *cached_state = NULL;
6740 char *kaddr;
6741 unsigned long zero_start;
6742 loff_t size;
6743 int ret;
6744 int reserved = 0;
6745 u64 page_start;
6746 u64 page_end;
6747
6748 sb_start_pagefault(inode->i_sb);
6749 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6750 if (!ret) {
6751 ret = file_update_time(vma->vm_file);
6752 reserved = 1;
6753 }
6754 if (ret) {
6755 if (ret == -ENOMEM)
6756 ret = VM_FAULT_OOM;
6757 else /* -ENOSPC, -EIO, etc */
6758 ret = VM_FAULT_SIGBUS;
6759 if (reserved)
6760 goto out;
6761 goto out_noreserve;
6762 }
6763
6764 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6765 again:
6766 lock_page(page);
6767 size = i_size_read(inode);
6768 page_start = page_offset(page);
6769 page_end = page_start + PAGE_CACHE_SIZE - 1;
6770
6771 if ((page->mapping != inode->i_mapping) ||
6772 (page_start >= size)) {
6773 /* page got truncated out from underneath us */
6774 goto out_unlock;
6775 }
6776 wait_on_page_writeback(page);
6777
6778 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6779 set_page_extent_mapped(page);
6780
6781 /*
6782 * we can't set the delalloc bits if there are pending ordered
6783 * extents. Drop our locks and wait for them to finish
6784 */
6785 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6786 if (ordered) {
6787 unlock_extent_cached(io_tree, page_start, page_end,
6788 &cached_state, GFP_NOFS);
6789 unlock_page(page);
6790 btrfs_start_ordered_extent(inode, ordered, 1);
6791 btrfs_put_ordered_extent(ordered);
6792 goto again;
6793 }
6794
6795 /*
6796 * XXX - page_mkwrite gets called every time the page is dirtied, even
6797 * if it was already dirty, so for space accounting reasons we need to
6798 * clear any delalloc bits for the range we are fixing to save. There
6799 * is probably a better way to do this, but for now keep consistent with
6800 * prepare_pages in the normal write path.
6801 */
6802 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6803 EXTENT_DIRTY | EXTENT_DELALLOC |
6804 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
6805 0, 0, &cached_state, GFP_NOFS);
6806
6807 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6808 &cached_state);
6809 if (ret) {
6810 unlock_extent_cached(io_tree, page_start, page_end,
6811 &cached_state, GFP_NOFS);
6812 ret = VM_FAULT_SIGBUS;
6813 goto out_unlock;
6814 }
6815 ret = 0;
6816
6817 /* page is wholly or partially inside EOF */
6818 if (page_start + PAGE_CACHE_SIZE > size)
6819 zero_start = size & ~PAGE_CACHE_MASK;
6820 else
6821 zero_start = PAGE_CACHE_SIZE;
6822
6823 if (zero_start != PAGE_CACHE_SIZE) {
6824 kaddr = kmap(page);
6825 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6826 flush_dcache_page(page);
6827 kunmap(page);
6828 }
6829 ClearPageChecked(page);
6830 set_page_dirty(page);
6831 SetPageUptodate(page);
6832
6833 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6834 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6835 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
6836
6837 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6838
6839 out_unlock:
6840 if (!ret) {
6841 sb_end_pagefault(inode->i_sb);
6842 return VM_FAULT_LOCKED;
6843 }
6844 unlock_page(page);
6845 out:
6846 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6847 out_noreserve:
6848 sb_end_pagefault(inode->i_sb);
6849 return ret;
6850 }
6851
6852 static int btrfs_truncate(struct inode *inode)
6853 {
6854 struct btrfs_root *root = BTRFS_I(inode)->root;
6855 struct btrfs_block_rsv *rsv;
6856 int ret;
6857 int err = 0;
6858 struct btrfs_trans_handle *trans;
6859 unsigned long nr;
6860 u64 mask = root->sectorsize - 1;
6861 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6862
6863 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
6864 if (ret)
6865 return ret;
6866
6867 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6868 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6869
6870 /*
6871 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6872 * 3 things going on here
6873 *
6874 * 1) We need to reserve space for our orphan item and the space to
6875 * delete our orphan item. Lord knows we don't want to have a dangling
6876 * orphan item because we didn't reserve space to remove it.
6877 *
6878 * 2) We need to reserve space to update our inode.
6879 *
6880 * 3) We need to have something to cache all the space that is going to
6881 * be free'd up by the truncate operation, but also have some slack
6882 * space reserved in case it uses space during the truncate (thank you
6883 * very much snapshotting).
6884 *
6885 * And we need these to all be seperate. The fact is we can use alot of
6886 * space doing the truncate, and we have no earthly idea how much space
6887 * we will use, so we need the truncate reservation to be seperate so it
6888 * doesn't end up using space reserved for updating the inode or
6889 * removing the orphan item. We also need to be able to stop the
6890 * transaction and start a new one, which means we need to be able to
6891 * update the inode several times, and we have no idea of knowing how
6892 * many times that will be, so we can't just reserve 1 item for the
6893 * entirety of the opration, so that has to be done seperately as well.
6894 * Then there is the orphan item, which does indeed need to be held on
6895 * to for the whole operation, and we need nobody to touch this reserved
6896 * space except the orphan code.
6897 *
6898 * So that leaves us with
6899 *
6900 * 1) root->orphan_block_rsv - for the orphan deletion.
6901 * 2) rsv - for the truncate reservation, which we will steal from the
6902 * transaction reservation.
6903 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6904 * updating the inode.
6905 */
6906 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
6907 if (!rsv)
6908 return -ENOMEM;
6909 rsv->size = min_size;
6910 rsv->failfast = 1;
6911
6912 /*
6913 * 1 for the truncate slack space
6914 * 1 for the orphan item we're going to add
6915 * 1 for the orphan item deletion
6916 * 1 for updating the inode.
6917 */
6918 trans = btrfs_start_transaction(root, 4);
6919 if (IS_ERR(trans)) {
6920 err = PTR_ERR(trans);
6921 goto out;
6922 }
6923
6924 /* Migrate the slack space for the truncate to our reserve */
6925 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6926 min_size);
6927 BUG_ON(ret);
6928
6929 ret = btrfs_orphan_add(trans, inode);
6930 if (ret) {
6931 btrfs_end_transaction(trans, root);
6932 goto out;
6933 }
6934
6935 /*
6936 * setattr is responsible for setting the ordered_data_close flag,
6937 * but that is only tested during the last file release. That
6938 * could happen well after the next commit, leaving a great big
6939 * window where new writes may get lost if someone chooses to write
6940 * to this file after truncating to zero
6941 *
6942 * The inode doesn't have any dirty data here, and so if we commit
6943 * this is a noop. If someone immediately starts writing to the inode
6944 * it is very likely we'll catch some of their writes in this
6945 * transaction, and the commit will find this file on the ordered
6946 * data list with good things to send down.
6947 *
6948 * This is a best effort solution, there is still a window where
6949 * using truncate to replace the contents of the file will
6950 * end up with a zero length file after a crash.
6951 */
6952 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6953 &BTRFS_I(inode)->runtime_flags))
6954 btrfs_add_ordered_operation(trans, root, inode);
6955
6956 /*
6957 * So if we truncate and then write and fsync we normally would just
6958 * write the extents that changed, which is a problem if we need to
6959 * first truncate that entire inode. So set this flag so we write out
6960 * all of the extents in the inode to the sync log so we're completely
6961 * safe.
6962 */
6963 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6964 trans->block_rsv = rsv;
6965
6966 while (1) {
6967 ret = btrfs_truncate_inode_items(trans, root, inode,
6968 inode->i_size,
6969 BTRFS_EXTENT_DATA_KEY);
6970 if (ret != -ENOSPC) {
6971 err = ret;
6972 break;
6973 }
6974
6975 trans->block_rsv = &root->fs_info->trans_block_rsv;
6976 ret = btrfs_update_inode(trans, root, inode);
6977 if (ret) {
6978 err = ret;
6979 break;
6980 }
6981
6982 nr = trans->blocks_used;
6983 btrfs_end_transaction(trans, root);
6984 btrfs_btree_balance_dirty(root, nr);
6985
6986 trans = btrfs_start_transaction(root, 2);
6987 if (IS_ERR(trans)) {
6988 ret = err = PTR_ERR(trans);
6989 trans = NULL;
6990 break;
6991 }
6992
6993 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
6994 rsv, min_size);
6995 BUG_ON(ret); /* shouldn't happen */
6996 trans->block_rsv = rsv;
6997 }
6998
6999 if (ret == 0 && inode->i_nlink > 0) {
7000 trans->block_rsv = root->orphan_block_rsv;
7001 ret = btrfs_orphan_del(trans, inode);
7002 if (ret)
7003 err = ret;
7004 } else if (ret && inode->i_nlink > 0) {
7005 /*
7006 * Failed to do the truncate, remove us from the in memory
7007 * orphan list.
7008 */
7009 ret = btrfs_orphan_del(NULL, inode);
7010 }
7011
7012 if (trans) {
7013 trans->block_rsv = &root->fs_info->trans_block_rsv;
7014 ret = btrfs_update_inode(trans, root, inode);
7015 if (ret && !err)
7016 err = ret;
7017
7018 nr = trans->blocks_used;
7019 ret = btrfs_end_transaction(trans, root);
7020 btrfs_btree_balance_dirty(root, nr);
7021 }
7022
7023 out:
7024 btrfs_free_block_rsv(root, rsv);
7025
7026 if (ret && !err)
7027 err = ret;
7028
7029 return err;
7030 }
7031
7032 /*
7033 * create a new subvolume directory/inode (helper for the ioctl).
7034 */
7035 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7036 struct btrfs_root *new_root, u64 new_dirid)
7037 {
7038 struct inode *inode;
7039 int err;
7040 u64 index = 0;
7041
7042 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7043 new_dirid, new_dirid,
7044 S_IFDIR | (~current_umask() & S_IRWXUGO),
7045 &index);
7046 if (IS_ERR(inode))
7047 return PTR_ERR(inode);
7048 inode->i_op = &btrfs_dir_inode_operations;
7049 inode->i_fop = &btrfs_dir_file_operations;
7050
7051 set_nlink(inode, 1);
7052 btrfs_i_size_write(inode, 0);
7053
7054 err = btrfs_update_inode(trans, new_root, inode);
7055
7056 iput(inode);
7057 return err;
7058 }
7059
7060 struct inode *btrfs_alloc_inode(struct super_block *sb)
7061 {
7062 struct btrfs_inode *ei;
7063 struct inode *inode;
7064
7065 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7066 if (!ei)
7067 return NULL;
7068
7069 ei->root = NULL;
7070 ei->generation = 0;
7071 ei->last_trans = 0;
7072 ei->last_sub_trans = 0;
7073 ei->logged_trans = 0;
7074 ei->delalloc_bytes = 0;
7075 ei->disk_i_size = 0;
7076 ei->flags = 0;
7077 ei->csum_bytes = 0;
7078 ei->index_cnt = (u64)-1;
7079 ei->last_unlink_trans = 0;
7080 ei->last_log_commit = 0;
7081
7082 spin_lock_init(&ei->lock);
7083 ei->outstanding_extents = 0;
7084 ei->reserved_extents = 0;
7085
7086 ei->runtime_flags = 0;
7087 ei->force_compress = BTRFS_COMPRESS_NONE;
7088
7089 ei->delayed_node = NULL;
7090
7091 inode = &ei->vfs_inode;
7092 extent_map_tree_init(&ei->extent_tree);
7093 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7094 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7095 ei->io_tree.track_uptodate = 1;
7096 ei->io_failure_tree.track_uptodate = 1;
7097 mutex_init(&ei->log_mutex);
7098 mutex_init(&ei->delalloc_mutex);
7099 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7100 INIT_LIST_HEAD(&ei->delalloc_inodes);
7101 INIT_LIST_HEAD(&ei->ordered_operations);
7102 RB_CLEAR_NODE(&ei->rb_node);
7103
7104 return inode;
7105 }
7106
7107 static void btrfs_i_callback(struct rcu_head *head)
7108 {
7109 struct inode *inode = container_of(head, struct inode, i_rcu);
7110 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7111 }
7112
7113 void btrfs_destroy_inode(struct inode *inode)
7114 {
7115 struct btrfs_ordered_extent *ordered;
7116 struct btrfs_root *root = BTRFS_I(inode)->root;
7117
7118 WARN_ON(!hlist_empty(&inode->i_dentry));
7119 WARN_ON(inode->i_data.nrpages);
7120 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7121 WARN_ON(BTRFS_I(inode)->reserved_extents);
7122 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7123 WARN_ON(BTRFS_I(inode)->csum_bytes);
7124
7125 /*
7126 * This can happen where we create an inode, but somebody else also
7127 * created the same inode and we need to destroy the one we already
7128 * created.
7129 */
7130 if (!root)
7131 goto free;
7132
7133 /*
7134 * Make sure we're properly removed from the ordered operation
7135 * lists.
7136 */
7137 smp_mb();
7138 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7139 spin_lock(&root->fs_info->ordered_extent_lock);
7140 list_del_init(&BTRFS_I(inode)->ordered_operations);
7141 spin_unlock(&root->fs_info->ordered_extent_lock);
7142 }
7143
7144 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7145 &BTRFS_I(inode)->runtime_flags)) {
7146 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7147 (unsigned long long)btrfs_ino(inode));
7148 atomic_dec(&root->orphan_inodes);
7149 }
7150
7151 while (1) {
7152 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7153 if (!ordered)
7154 break;
7155 else {
7156 printk(KERN_ERR "btrfs found ordered "
7157 "extent %llu %llu on inode cleanup\n",
7158 (unsigned long long)ordered->file_offset,
7159 (unsigned long long)ordered->len);
7160 btrfs_remove_ordered_extent(inode, ordered);
7161 btrfs_put_ordered_extent(ordered);
7162 btrfs_put_ordered_extent(ordered);
7163 }
7164 }
7165 inode_tree_del(inode);
7166 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7167 free:
7168 btrfs_remove_delayed_node(inode);
7169 call_rcu(&inode->i_rcu, btrfs_i_callback);
7170 }
7171
7172 int btrfs_drop_inode(struct inode *inode)
7173 {
7174 struct btrfs_root *root = BTRFS_I(inode)->root;
7175
7176 if (btrfs_root_refs(&root->root_item) == 0 &&
7177 !btrfs_is_free_space_inode(inode))
7178 return 1;
7179 else
7180 return generic_drop_inode(inode);
7181 }
7182
7183 static void init_once(void *foo)
7184 {
7185 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7186
7187 inode_init_once(&ei->vfs_inode);
7188 }
7189
7190 void btrfs_destroy_cachep(void)
7191 {
7192 /*
7193 * Make sure all delayed rcu free inodes are flushed before we
7194 * destroy cache.
7195 */
7196 rcu_barrier();
7197 if (btrfs_inode_cachep)
7198 kmem_cache_destroy(btrfs_inode_cachep);
7199 if (btrfs_trans_handle_cachep)
7200 kmem_cache_destroy(btrfs_trans_handle_cachep);
7201 if (btrfs_transaction_cachep)
7202 kmem_cache_destroy(btrfs_transaction_cachep);
7203 if (btrfs_path_cachep)
7204 kmem_cache_destroy(btrfs_path_cachep);
7205 if (btrfs_free_space_cachep)
7206 kmem_cache_destroy(btrfs_free_space_cachep);
7207 }
7208
7209 int btrfs_init_cachep(void)
7210 {
7211 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7212 sizeof(struct btrfs_inode), 0,
7213 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7214 if (!btrfs_inode_cachep)
7215 goto fail;
7216
7217 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
7218 sizeof(struct btrfs_trans_handle), 0,
7219 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7220 if (!btrfs_trans_handle_cachep)
7221 goto fail;
7222
7223 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
7224 sizeof(struct btrfs_transaction), 0,
7225 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7226 if (!btrfs_transaction_cachep)
7227 goto fail;
7228
7229 btrfs_path_cachep = kmem_cache_create("btrfs_path",
7230 sizeof(struct btrfs_path), 0,
7231 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7232 if (!btrfs_path_cachep)
7233 goto fail;
7234
7235 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
7236 sizeof(struct btrfs_free_space), 0,
7237 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7238 if (!btrfs_free_space_cachep)
7239 goto fail;
7240
7241 return 0;
7242 fail:
7243 btrfs_destroy_cachep();
7244 return -ENOMEM;
7245 }
7246
7247 static int btrfs_getattr(struct vfsmount *mnt,
7248 struct dentry *dentry, struct kstat *stat)
7249 {
7250 struct inode *inode = dentry->d_inode;
7251 u32 blocksize = inode->i_sb->s_blocksize;
7252
7253 generic_fillattr(inode, stat);
7254 stat->dev = BTRFS_I(inode)->root->anon_dev;
7255 stat->blksize = PAGE_CACHE_SIZE;
7256 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7257 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7258 return 0;
7259 }
7260
7261 /*
7262 * If a file is moved, it will inherit the cow and compression flags of the new
7263 * directory.
7264 */
7265 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7266 {
7267 struct btrfs_inode *b_dir = BTRFS_I(dir);
7268 struct btrfs_inode *b_inode = BTRFS_I(inode);
7269
7270 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7271 b_inode->flags |= BTRFS_INODE_NODATACOW;
7272 else
7273 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7274
7275 if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7276 b_inode->flags |= BTRFS_INODE_COMPRESS;
7277 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7278 } else {
7279 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7280 BTRFS_INODE_NOCOMPRESS);
7281 }
7282 }
7283
7284 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7285 struct inode *new_dir, struct dentry *new_dentry)
7286 {
7287 struct btrfs_trans_handle *trans;
7288 struct btrfs_root *root = BTRFS_I(old_dir)->root;
7289 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7290 struct inode *new_inode = new_dentry->d_inode;
7291 struct inode *old_inode = old_dentry->d_inode;
7292 struct timespec ctime = CURRENT_TIME;
7293 u64 index = 0;
7294 u64 root_objectid;
7295 int ret;
7296 u64 old_ino = btrfs_ino(old_inode);
7297
7298 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7299 return -EPERM;
7300
7301 /* we only allow rename subvolume link between subvolumes */
7302 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7303 return -EXDEV;
7304
7305 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7306 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7307 return -ENOTEMPTY;
7308
7309 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7310 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7311 return -ENOTEMPTY;
7312 /*
7313 * we're using rename to replace one file with another.
7314 * and the replacement file is large. Start IO on it now so
7315 * we don't add too much work to the end of the transaction
7316 */
7317 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7318 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7319 filemap_flush(old_inode->i_mapping);
7320
7321 /* close the racy window with snapshot create/destroy ioctl */
7322 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7323 down_read(&root->fs_info->subvol_sem);
7324 /*
7325 * We want to reserve the absolute worst case amount of items. So if
7326 * both inodes are subvols and we need to unlink them then that would
7327 * require 4 item modifications, but if they are both normal inodes it
7328 * would require 5 item modifications, so we'll assume their normal
7329 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7330 * should cover the worst case number of items we'll modify.
7331 */
7332 trans = btrfs_start_transaction(root, 20);
7333 if (IS_ERR(trans)) {
7334 ret = PTR_ERR(trans);
7335 goto out_notrans;
7336 }
7337
7338 if (dest != root)
7339 btrfs_record_root_in_trans(trans, dest);
7340
7341 ret = btrfs_set_inode_index(new_dir, &index);
7342 if (ret)
7343 goto out_fail;
7344
7345 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7346 /* force full log commit if subvolume involved. */
7347 root->fs_info->last_trans_log_full_commit = trans->transid;
7348 } else {
7349 ret = btrfs_insert_inode_ref(trans, dest,
7350 new_dentry->d_name.name,
7351 new_dentry->d_name.len,
7352 old_ino,
7353 btrfs_ino(new_dir), index);
7354 if (ret)
7355 goto out_fail;
7356 /*
7357 * this is an ugly little race, but the rename is required
7358 * to make sure that if we crash, the inode is either at the
7359 * old name or the new one. pinning the log transaction lets
7360 * us make sure we don't allow a log commit to come in after
7361 * we unlink the name but before we add the new name back in.
7362 */
7363 btrfs_pin_log_trans(root);
7364 }
7365 /*
7366 * make sure the inode gets flushed if it is replacing
7367 * something.
7368 */
7369 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7370 btrfs_add_ordered_operation(trans, root, old_inode);
7371
7372 inode_inc_iversion(old_dir);
7373 inode_inc_iversion(new_dir);
7374 inode_inc_iversion(old_inode);
7375 old_dir->i_ctime = old_dir->i_mtime = ctime;
7376 new_dir->i_ctime = new_dir->i_mtime = ctime;
7377 old_inode->i_ctime = ctime;
7378
7379 if (old_dentry->d_parent != new_dentry->d_parent)
7380 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7381
7382 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7383 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7384 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7385 old_dentry->d_name.name,
7386 old_dentry->d_name.len);
7387 } else {
7388 ret = __btrfs_unlink_inode(trans, root, old_dir,
7389 old_dentry->d_inode,
7390 old_dentry->d_name.name,
7391 old_dentry->d_name.len);
7392 if (!ret)
7393 ret = btrfs_update_inode(trans, root, old_inode);
7394 }
7395 if (ret) {
7396 btrfs_abort_transaction(trans, root, ret);
7397 goto out_fail;
7398 }
7399
7400 if (new_inode) {
7401 inode_inc_iversion(new_inode);
7402 new_inode->i_ctime = CURRENT_TIME;
7403 if (unlikely(btrfs_ino(new_inode) ==
7404 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7405 root_objectid = BTRFS_I(new_inode)->location.objectid;
7406 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7407 root_objectid,
7408 new_dentry->d_name.name,
7409 new_dentry->d_name.len);
7410 BUG_ON(new_inode->i_nlink == 0);
7411 } else {
7412 ret = btrfs_unlink_inode(trans, dest, new_dir,
7413 new_dentry->d_inode,
7414 new_dentry->d_name.name,
7415 new_dentry->d_name.len);
7416 }
7417 if (!ret && new_inode->i_nlink == 0) {
7418 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7419 BUG_ON(ret);
7420 }
7421 if (ret) {
7422 btrfs_abort_transaction(trans, root, ret);
7423 goto out_fail;
7424 }
7425 }
7426
7427 fixup_inode_flags(new_dir, old_inode);
7428
7429 ret = btrfs_add_link(trans, new_dir, old_inode,
7430 new_dentry->d_name.name,
7431 new_dentry->d_name.len, 0, index);
7432 if (ret) {
7433 btrfs_abort_transaction(trans, root, ret);
7434 goto out_fail;
7435 }
7436
7437 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7438 struct dentry *parent = new_dentry->d_parent;
7439 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7440 btrfs_end_log_trans(root);
7441 }
7442 out_fail:
7443 btrfs_end_transaction(trans, root);
7444 out_notrans:
7445 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7446 up_read(&root->fs_info->subvol_sem);
7447
7448 return ret;
7449 }
7450
7451 /*
7452 * some fairly slow code that needs optimization. This walks the list
7453 * of all the inodes with pending delalloc and forces them to disk.
7454 */
7455 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7456 {
7457 struct list_head *head = &root->fs_info->delalloc_inodes;
7458 struct btrfs_inode *binode;
7459 struct inode *inode;
7460
7461 if (root->fs_info->sb->s_flags & MS_RDONLY)
7462 return -EROFS;
7463
7464 spin_lock(&root->fs_info->delalloc_lock);
7465 while (!list_empty(head)) {
7466 binode = list_entry(head->next, struct btrfs_inode,
7467 delalloc_inodes);
7468 inode = igrab(&binode->vfs_inode);
7469 if (!inode)
7470 list_del_init(&binode->delalloc_inodes);
7471 spin_unlock(&root->fs_info->delalloc_lock);
7472 if (inode) {
7473 filemap_flush(inode->i_mapping);
7474 if (delay_iput)
7475 btrfs_add_delayed_iput(inode);
7476 else
7477 iput(inode);
7478 }
7479 cond_resched();
7480 spin_lock(&root->fs_info->delalloc_lock);
7481 }
7482 spin_unlock(&root->fs_info->delalloc_lock);
7483
7484 /* the filemap_flush will queue IO into the worker threads, but
7485 * we have to make sure the IO is actually started and that
7486 * ordered extents get created before we return
7487 */
7488 atomic_inc(&root->fs_info->async_submit_draining);
7489 while (atomic_read(&root->fs_info->nr_async_submits) ||
7490 atomic_read(&root->fs_info->async_delalloc_pages)) {
7491 wait_event(root->fs_info->async_submit_wait,
7492 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7493 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7494 }
7495 atomic_dec(&root->fs_info->async_submit_draining);
7496 return 0;
7497 }
7498
7499 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7500 const char *symname)
7501 {
7502 struct btrfs_trans_handle *trans;
7503 struct btrfs_root *root = BTRFS_I(dir)->root;
7504 struct btrfs_path *path;
7505 struct btrfs_key key;
7506 struct inode *inode = NULL;
7507 int err;
7508 int drop_inode = 0;
7509 u64 objectid;
7510 u64 index = 0 ;
7511 int name_len;
7512 int datasize;
7513 unsigned long ptr;
7514 struct btrfs_file_extent_item *ei;
7515 struct extent_buffer *leaf;
7516 unsigned long nr = 0;
7517
7518 name_len = strlen(symname) + 1;
7519 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7520 return -ENAMETOOLONG;
7521
7522 /*
7523 * 2 items for inode item and ref
7524 * 2 items for dir items
7525 * 1 item for xattr if selinux is on
7526 */
7527 trans = btrfs_start_transaction(root, 5);
7528 if (IS_ERR(trans))
7529 return PTR_ERR(trans);
7530
7531 err = btrfs_find_free_ino(root, &objectid);
7532 if (err)
7533 goto out_unlock;
7534
7535 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7536 dentry->d_name.len, btrfs_ino(dir), objectid,
7537 S_IFLNK|S_IRWXUGO, &index);
7538 if (IS_ERR(inode)) {
7539 err = PTR_ERR(inode);
7540 goto out_unlock;
7541 }
7542
7543 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7544 if (err) {
7545 drop_inode = 1;
7546 goto out_unlock;
7547 }
7548
7549 /*
7550 * If the active LSM wants to access the inode during
7551 * d_instantiate it needs these. Smack checks to see
7552 * if the filesystem supports xattrs by looking at the
7553 * ops vector.
7554 */
7555 inode->i_fop = &btrfs_file_operations;
7556 inode->i_op = &btrfs_file_inode_operations;
7557
7558 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7559 if (err)
7560 drop_inode = 1;
7561 else {
7562 inode->i_mapping->a_ops = &btrfs_aops;
7563 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7564 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7565 }
7566 if (drop_inode)
7567 goto out_unlock;
7568
7569 path = btrfs_alloc_path();
7570 if (!path) {
7571 err = -ENOMEM;
7572 drop_inode = 1;
7573 goto out_unlock;
7574 }
7575 key.objectid = btrfs_ino(inode);
7576 key.offset = 0;
7577 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7578 datasize = btrfs_file_extent_calc_inline_size(name_len);
7579 err = btrfs_insert_empty_item(trans, root, path, &key,
7580 datasize);
7581 if (err) {
7582 drop_inode = 1;
7583 btrfs_free_path(path);
7584 goto out_unlock;
7585 }
7586 leaf = path->nodes[0];
7587 ei = btrfs_item_ptr(leaf, path->slots[0],
7588 struct btrfs_file_extent_item);
7589 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7590 btrfs_set_file_extent_type(leaf, ei,
7591 BTRFS_FILE_EXTENT_INLINE);
7592 btrfs_set_file_extent_encryption(leaf, ei, 0);
7593 btrfs_set_file_extent_compression(leaf, ei, 0);
7594 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7595 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7596
7597 ptr = btrfs_file_extent_inline_start(ei);
7598 write_extent_buffer(leaf, symname, ptr, name_len);
7599 btrfs_mark_buffer_dirty(leaf);
7600 btrfs_free_path(path);
7601
7602 inode->i_op = &btrfs_symlink_inode_operations;
7603 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7604 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7605 inode_set_bytes(inode, name_len);
7606 btrfs_i_size_write(inode, name_len - 1);
7607 err = btrfs_update_inode(trans, root, inode);
7608 if (err)
7609 drop_inode = 1;
7610
7611 out_unlock:
7612 if (!err)
7613 d_instantiate(dentry, inode);
7614 nr = trans->blocks_used;
7615 btrfs_end_transaction(trans, root);
7616 if (drop_inode) {
7617 inode_dec_link_count(inode);
7618 iput(inode);
7619 }
7620 btrfs_btree_balance_dirty(root, nr);
7621 return err;
7622 }
7623
7624 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7625 u64 start, u64 num_bytes, u64 min_size,
7626 loff_t actual_len, u64 *alloc_hint,
7627 struct btrfs_trans_handle *trans)
7628 {
7629 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7630 struct extent_map *em;
7631 struct btrfs_root *root = BTRFS_I(inode)->root;
7632 struct btrfs_key ins;
7633 u64 cur_offset = start;
7634 u64 i_size;
7635 int ret = 0;
7636 bool own_trans = true;
7637
7638 if (trans)
7639 own_trans = false;
7640 while (num_bytes > 0) {
7641 if (own_trans) {
7642 trans = btrfs_start_transaction(root, 3);
7643 if (IS_ERR(trans)) {
7644 ret = PTR_ERR(trans);
7645 break;
7646 }
7647 }
7648
7649 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7650 0, *alloc_hint, &ins, 1);
7651 if (ret) {
7652 if (own_trans)
7653 btrfs_end_transaction(trans, root);
7654 break;
7655 }
7656
7657 ret = insert_reserved_file_extent(trans, inode,
7658 cur_offset, ins.objectid,
7659 ins.offset, ins.offset,
7660 ins.offset, 0, 0, 0,
7661 BTRFS_FILE_EXTENT_PREALLOC);
7662 if (ret) {
7663 btrfs_abort_transaction(trans, root, ret);
7664 if (own_trans)
7665 btrfs_end_transaction(trans, root);
7666 break;
7667 }
7668 btrfs_drop_extent_cache(inode, cur_offset,
7669 cur_offset + ins.offset -1, 0);
7670
7671 em = alloc_extent_map();
7672 if (!em) {
7673 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
7674 &BTRFS_I(inode)->runtime_flags);
7675 goto next;
7676 }
7677
7678 em->start = cur_offset;
7679 em->orig_start = cur_offset;
7680 em->len = ins.offset;
7681 em->block_start = ins.objectid;
7682 em->block_len = ins.offset;
7683 em->bdev = root->fs_info->fs_devices->latest_bdev;
7684 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7685 em->generation = trans->transid;
7686
7687 while (1) {
7688 write_lock(&em_tree->lock);
7689 ret = add_extent_mapping(em_tree, em);
7690 if (!ret)
7691 list_move(&em->list,
7692 &em_tree->modified_extents);
7693 write_unlock(&em_tree->lock);
7694 if (ret != -EEXIST)
7695 break;
7696 btrfs_drop_extent_cache(inode, cur_offset,
7697 cur_offset + ins.offset - 1,
7698 0);
7699 }
7700 free_extent_map(em);
7701 next:
7702 num_bytes -= ins.offset;
7703 cur_offset += ins.offset;
7704 *alloc_hint = ins.objectid + ins.offset;
7705
7706 inode_inc_iversion(inode);
7707 inode->i_ctime = CURRENT_TIME;
7708 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7709 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7710 (actual_len > inode->i_size) &&
7711 (cur_offset > inode->i_size)) {
7712 if (cur_offset > actual_len)
7713 i_size = actual_len;
7714 else
7715 i_size = cur_offset;
7716 i_size_write(inode, i_size);
7717 btrfs_ordered_update_i_size(inode, i_size, NULL);
7718 }
7719
7720 ret = btrfs_update_inode(trans, root, inode);
7721
7722 if (ret) {
7723 btrfs_abort_transaction(trans, root, ret);
7724 if (own_trans)
7725 btrfs_end_transaction(trans, root);
7726 break;
7727 }
7728
7729 if (own_trans)
7730 btrfs_end_transaction(trans, root);
7731 }
7732 return ret;
7733 }
7734
7735 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7736 u64 start, u64 num_bytes, u64 min_size,
7737 loff_t actual_len, u64 *alloc_hint)
7738 {
7739 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7740 min_size, actual_len, alloc_hint,
7741 NULL);
7742 }
7743
7744 int btrfs_prealloc_file_range_trans(struct inode *inode,
7745 struct btrfs_trans_handle *trans, int mode,
7746 u64 start, u64 num_bytes, u64 min_size,
7747 loff_t actual_len, u64 *alloc_hint)
7748 {
7749 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7750 min_size, actual_len, alloc_hint, trans);
7751 }
7752
7753 static int btrfs_set_page_dirty(struct page *page)
7754 {
7755 return __set_page_dirty_nobuffers(page);
7756 }
7757
7758 static int btrfs_permission(struct inode *inode, int mask)
7759 {
7760 struct btrfs_root *root = BTRFS_I(inode)->root;
7761 umode_t mode = inode->i_mode;
7762
7763 if (mask & MAY_WRITE &&
7764 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7765 if (btrfs_root_readonly(root))
7766 return -EROFS;
7767 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7768 return -EACCES;
7769 }
7770 return generic_permission(inode, mask);
7771 }
7772
7773 static const struct inode_operations btrfs_dir_inode_operations = {
7774 .getattr = btrfs_getattr,
7775 .lookup = btrfs_lookup,
7776 .create = btrfs_create,
7777 .unlink = btrfs_unlink,
7778 .link = btrfs_link,
7779 .mkdir = btrfs_mkdir,
7780 .rmdir = btrfs_rmdir,
7781 .rename = btrfs_rename,
7782 .symlink = btrfs_symlink,
7783 .setattr = btrfs_setattr,
7784 .mknod = btrfs_mknod,
7785 .setxattr = btrfs_setxattr,
7786 .getxattr = btrfs_getxattr,
7787 .listxattr = btrfs_listxattr,
7788 .removexattr = btrfs_removexattr,
7789 .permission = btrfs_permission,
7790 .get_acl = btrfs_get_acl,
7791 };
7792 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7793 .lookup = btrfs_lookup,
7794 .permission = btrfs_permission,
7795 .get_acl = btrfs_get_acl,
7796 };
7797
7798 static const struct file_operations btrfs_dir_file_operations = {
7799 .llseek = generic_file_llseek,
7800 .read = generic_read_dir,
7801 .readdir = btrfs_real_readdir,
7802 .unlocked_ioctl = btrfs_ioctl,
7803 #ifdef CONFIG_COMPAT
7804 .compat_ioctl = btrfs_ioctl,
7805 #endif
7806 .release = btrfs_release_file,
7807 .fsync = btrfs_sync_file,
7808 };
7809
7810 static struct extent_io_ops btrfs_extent_io_ops = {
7811 .fill_delalloc = run_delalloc_range,
7812 .submit_bio_hook = btrfs_submit_bio_hook,
7813 .merge_bio_hook = btrfs_merge_bio_hook,
7814 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7815 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7816 .writepage_start_hook = btrfs_writepage_start_hook,
7817 .set_bit_hook = btrfs_set_bit_hook,
7818 .clear_bit_hook = btrfs_clear_bit_hook,
7819 .merge_extent_hook = btrfs_merge_extent_hook,
7820 .split_extent_hook = btrfs_split_extent_hook,
7821 };
7822
7823 /*
7824 * btrfs doesn't support the bmap operation because swapfiles
7825 * use bmap to make a mapping of extents in the file. They assume
7826 * these extents won't change over the life of the file and they
7827 * use the bmap result to do IO directly to the drive.
7828 *
7829 * the btrfs bmap call would return logical addresses that aren't
7830 * suitable for IO and they also will change frequently as COW
7831 * operations happen. So, swapfile + btrfs == corruption.
7832 *
7833 * For now we're avoiding this by dropping bmap.
7834 */
7835 static const struct address_space_operations btrfs_aops = {
7836 .readpage = btrfs_readpage,
7837 .writepage = btrfs_writepage,
7838 .writepages = btrfs_writepages,
7839 .readpages = btrfs_readpages,
7840 .direct_IO = btrfs_direct_IO,
7841 .invalidatepage = btrfs_invalidatepage,
7842 .releasepage = btrfs_releasepage,
7843 .set_page_dirty = btrfs_set_page_dirty,
7844 .error_remove_page = generic_error_remove_page,
7845 };
7846
7847 static const struct address_space_operations btrfs_symlink_aops = {
7848 .readpage = btrfs_readpage,
7849 .writepage = btrfs_writepage,
7850 .invalidatepage = btrfs_invalidatepage,
7851 .releasepage = btrfs_releasepage,
7852 };
7853
7854 static const struct inode_operations btrfs_file_inode_operations = {
7855 .getattr = btrfs_getattr,
7856 .setattr = btrfs_setattr,
7857 .setxattr = btrfs_setxattr,
7858 .getxattr = btrfs_getxattr,
7859 .listxattr = btrfs_listxattr,
7860 .removexattr = btrfs_removexattr,
7861 .permission = btrfs_permission,
7862 .fiemap = btrfs_fiemap,
7863 .get_acl = btrfs_get_acl,
7864 .update_time = btrfs_update_time,
7865 };
7866 static const struct inode_operations btrfs_special_inode_operations = {
7867 .getattr = btrfs_getattr,
7868 .setattr = btrfs_setattr,
7869 .permission = btrfs_permission,
7870 .setxattr = btrfs_setxattr,
7871 .getxattr = btrfs_getxattr,
7872 .listxattr = btrfs_listxattr,
7873 .removexattr = btrfs_removexattr,
7874 .get_acl = btrfs_get_acl,
7875 .update_time = btrfs_update_time,
7876 };
7877 static const struct inode_operations btrfs_symlink_inode_operations = {
7878 .readlink = generic_readlink,
7879 .follow_link = page_follow_link_light,
7880 .put_link = page_put_link,
7881 .getattr = btrfs_getattr,
7882 .setattr = btrfs_setattr,
7883 .permission = btrfs_permission,
7884 .setxattr = btrfs_setxattr,
7885 .getxattr = btrfs_getxattr,
7886 .listxattr = btrfs_listxattr,
7887 .removexattr = btrfs_removexattr,
7888 .get_acl = btrfs_get_acl,
7889 .update_time = btrfs_update_time,
7890 };
7891
7892 const struct dentry_operations btrfs_dentry_operations = {
7893 .d_delete = btrfs_dentry_delete,
7894 .d_release = btrfs_dentry_release,
7895 };
This page took 0.195754 seconds and 6 git commands to generate.