Btrfs: Fix some data=ordered related data corruptions
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include "ctree.h"
40 #include "disk-io.h"
41 #include "transaction.h"
42 #include "btrfs_inode.h"
43 #include "ioctl.h"
44 #include "print-tree.h"
45 #include "volumes.h"
46 #include "ordered-data.h"
47
48 struct btrfs_iget_args {
49 u64 ino;
50 struct btrfs_root *root;
51 };
52
53 static struct inode_operations btrfs_dir_inode_operations;
54 static struct inode_operations btrfs_symlink_inode_operations;
55 static struct inode_operations btrfs_dir_ro_inode_operations;
56 static struct inode_operations btrfs_special_inode_operations;
57 static struct inode_operations btrfs_file_inode_operations;
58 static struct address_space_operations btrfs_aops;
59 static struct address_space_operations btrfs_symlink_aops;
60 static struct file_operations btrfs_dir_file_operations;
61 static struct extent_io_ops btrfs_extent_io_ops;
62
63 static struct kmem_cache *btrfs_inode_cachep;
64 struct kmem_cache *btrfs_trans_handle_cachep;
65 struct kmem_cache *btrfs_transaction_cachep;
66 struct kmem_cache *btrfs_bit_radix_cachep;
67 struct kmem_cache *btrfs_path_cachep;
68
69 #define S_SHIFT 12
70 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
71 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
72 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
73 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
74 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
75 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
76 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
77 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
78 };
79
80 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
81 int for_del)
82 {
83 u64 total;
84 u64 used;
85 u64 thresh;
86 unsigned long flags;
87 int ret = 0;
88
89 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
90 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
91 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
92 if (for_del)
93 thresh = total * 90;
94 else
95 thresh = total * 85;
96
97 do_div(thresh, 100);
98
99 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
100 ret = -ENOSPC;
101 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
102 return ret;
103 }
104
105 static int cow_file_range(struct inode *inode, u64 start, u64 end)
106 {
107 struct btrfs_root *root = BTRFS_I(inode)->root;
108 struct btrfs_trans_handle *trans;
109 u64 alloc_hint = 0;
110 u64 num_bytes;
111 u64 cur_alloc_size;
112 u64 blocksize = root->sectorsize;
113 u64 orig_num_bytes;
114 struct btrfs_key ins;
115 struct extent_map *em;
116 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
117 int ret = 0;
118
119 trans = btrfs_join_transaction(root, 1);
120 BUG_ON(!trans);
121 btrfs_set_trans_block_group(trans, inode);
122
123 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
124 num_bytes = max(blocksize, num_bytes);
125 orig_num_bytes = num_bytes;
126
127 if (alloc_hint == EXTENT_MAP_INLINE)
128 goto out;
129
130 BUG_ON(num_bytes > btrfs_super_total_bytes(&root->fs_info->super_copy));
131 mutex_lock(&BTRFS_I(inode)->extent_mutex);
132 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1);
133 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
134
135 while(num_bytes > 0) {
136 cur_alloc_size = min(num_bytes, root->fs_info->max_extent);
137 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
138 root->sectorsize, 0, 0,
139 (u64)-1, &ins, 1);
140 if (ret) {
141 WARN_ON(1);
142 goto out;
143 }
144 em = alloc_extent_map(GFP_NOFS);
145 em->start = start;
146 em->len = ins.offset;
147 em->block_start = ins.objectid;
148 em->bdev = root->fs_info->fs_devices->latest_bdev;
149 mutex_lock(&BTRFS_I(inode)->extent_mutex);
150 set_bit(EXTENT_FLAG_PINNED, &em->flags);
151 while(1) {
152 spin_lock(&em_tree->lock);
153 ret = add_extent_mapping(em_tree, em);
154 spin_unlock(&em_tree->lock);
155 if (ret != -EEXIST) {
156 free_extent_map(em);
157 break;
158 }
159 btrfs_drop_extent_cache(inode, start,
160 start + ins.offset - 1);
161 }
162 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
163
164 cur_alloc_size = ins.offset;
165 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
166 ins.offset);
167 BUG_ON(ret);
168 if (num_bytes < cur_alloc_size) {
169 printk("num_bytes %Lu cur_alloc %Lu\n", num_bytes,
170 cur_alloc_size);
171 break;
172 }
173 num_bytes -= cur_alloc_size;
174 alloc_hint = ins.objectid + ins.offset;
175 start += cur_alloc_size;
176 }
177 out:
178 btrfs_end_transaction(trans, root);
179 return ret;
180 }
181
182 static int run_delalloc_nocow(struct inode *inode, u64 start, u64 end)
183 {
184 u64 extent_start;
185 u64 extent_end;
186 u64 bytenr;
187 u64 cow_end;
188 u64 loops = 0;
189 u64 total_fs_bytes;
190 struct btrfs_root *root = BTRFS_I(inode)->root;
191 struct btrfs_block_group_cache *block_group;
192 struct extent_buffer *leaf;
193 int found_type;
194 struct btrfs_path *path;
195 struct btrfs_file_extent_item *item;
196 int ret;
197 int err;
198 struct btrfs_key found_key;
199
200 total_fs_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
201 path = btrfs_alloc_path();
202 BUG_ON(!path);
203 again:
204 ret = btrfs_lookup_file_extent(NULL, root, path,
205 inode->i_ino, start, 0);
206 if (ret < 0) {
207 btrfs_free_path(path);
208 return ret;
209 }
210
211 cow_end = end;
212 if (ret != 0) {
213 if (path->slots[0] == 0)
214 goto not_found;
215 path->slots[0]--;
216 }
217
218 leaf = path->nodes[0];
219 item = btrfs_item_ptr(leaf, path->slots[0],
220 struct btrfs_file_extent_item);
221
222 /* are we inside the extent that was found? */
223 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
224 found_type = btrfs_key_type(&found_key);
225 if (found_key.objectid != inode->i_ino ||
226 found_type != BTRFS_EXTENT_DATA_KEY)
227 goto not_found;
228
229 found_type = btrfs_file_extent_type(leaf, item);
230 extent_start = found_key.offset;
231 if (found_type == BTRFS_FILE_EXTENT_REG) {
232 u64 extent_num_bytes;
233
234 extent_num_bytes = btrfs_file_extent_num_bytes(leaf, item);
235 extent_end = extent_start + extent_num_bytes;
236 err = 0;
237
238 if (loops && start != extent_start)
239 goto not_found;
240
241 if (start < extent_start || start >= extent_end)
242 goto not_found;
243
244 cow_end = min(end, extent_end - 1);
245 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
246 if (bytenr == 0)
247 goto not_found;
248
249 if (btrfs_count_snapshots_in_path(root, path, inode->i_ino,
250 bytenr) != 1) {
251 goto not_found;
252 }
253
254 /*
255 * we may be called by the resizer, make sure we're inside
256 * the limits of the FS
257 */
258 block_group = btrfs_lookup_block_group(root->fs_info,
259 bytenr);
260 if (!block_group || block_group->ro)
261 goto not_found;
262
263 start = extent_end;
264 } else {
265 goto not_found;
266 }
267 loop:
268 if (start > end) {
269 btrfs_free_path(path);
270 return 0;
271 }
272 btrfs_release_path(root, path);
273 loops++;
274 goto again;
275
276 not_found:
277 cow_file_range(inode, start, end);
278 start = end + 1;
279 goto loop;
280 }
281
282 static int run_delalloc_range(struct inode *inode, u64 start, u64 end)
283 {
284 struct btrfs_root *root = BTRFS_I(inode)->root;
285 int ret;
286
287 if (btrfs_test_opt(root, NODATACOW) ||
288 btrfs_test_flag(inode, NODATACOW))
289 ret = run_delalloc_nocow(inode, start, end);
290 else
291 ret = cow_file_range(inode, start, end);
292
293 return ret;
294 }
295
296 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
297 unsigned long old, unsigned long bits)
298 {
299 unsigned long flags;
300 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
301 struct btrfs_root *root = BTRFS_I(inode)->root;
302 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
303 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
304 root->fs_info->delalloc_bytes += end - start + 1;
305 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
306 }
307 return 0;
308 }
309
310 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
311 unsigned long old, unsigned long bits)
312 {
313 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
314 struct btrfs_root *root = BTRFS_I(inode)->root;
315 unsigned long flags;
316
317 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
318 if (end - start + 1 > root->fs_info->delalloc_bytes) {
319 printk("warning: delalloc account %Lu %Lu\n",
320 end - start + 1, root->fs_info->delalloc_bytes);
321 root->fs_info->delalloc_bytes = 0;
322 BTRFS_I(inode)->delalloc_bytes = 0;
323 } else {
324 root->fs_info->delalloc_bytes -= end - start + 1;
325 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
326 }
327 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
328 }
329 return 0;
330 }
331
332 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
333 size_t size, struct bio *bio)
334 {
335 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
336 struct btrfs_mapping_tree *map_tree;
337 u64 logical = bio->bi_sector << 9;
338 u64 length = 0;
339 u64 map_length;
340 int ret;
341
342 length = bio->bi_size;
343 map_tree = &root->fs_info->mapping_tree;
344 map_length = length;
345 ret = btrfs_map_block(map_tree, READ, logical,
346 &map_length, NULL, 0);
347
348 if (map_length < length + size) {
349 return 1;
350 }
351 return 0;
352 }
353
354 int __btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
355 int mirror_num)
356 {
357 struct btrfs_root *root = BTRFS_I(inode)->root;
358 int ret = 0;
359
360 ret = btrfs_csum_one_bio(root, inode, bio);
361 BUG_ON(ret);
362
363 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
364 }
365
366 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
367 int mirror_num)
368 {
369 struct btrfs_root *root = BTRFS_I(inode)->root;
370 int ret = 0;
371
372 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
373 BUG_ON(ret);
374
375 if (!(rw & (1 << BIO_RW))) {
376 goto mapit;
377 }
378
379 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
380 inode, rw, bio, mirror_num,
381 __btrfs_submit_bio_hook);
382 mapit:
383 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
384 }
385
386 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
387 struct inode *inode, u64 file_offset,
388 struct list_head *list)
389 {
390 struct list_head *cur;
391 struct btrfs_ordered_sum *sum;
392
393 btrfs_set_trans_block_group(trans, inode);
394 list_for_each(cur, list) {
395 sum = list_entry(cur, struct btrfs_ordered_sum, list);
396 mutex_lock(&BTRFS_I(inode)->csum_mutex);
397 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
398 inode, sum);
399 mutex_unlock(&BTRFS_I(inode)->csum_mutex);
400 }
401 return 0;
402 }
403
404 struct btrfs_writepage_fixup {
405 struct page *page;
406 struct btrfs_work work;
407 };
408
409 /* see btrfs_writepage_start_hook for details on why this is required */
410 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
411 {
412 struct btrfs_writepage_fixup *fixup;
413 struct btrfs_ordered_extent *ordered;
414 struct page *page;
415 struct inode *inode;
416 u64 page_start;
417 u64 page_end;
418
419 fixup = container_of(work, struct btrfs_writepage_fixup, work);
420 page = fixup->page;
421 again:
422 lock_page(page);
423 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
424 ClearPageChecked(page);
425 goto out_page;
426 }
427
428 inode = page->mapping->host;
429 page_start = page_offset(page);
430 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
431
432 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
433
434 /* already ordered? We're done */
435 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
436 EXTENT_ORDERED, 0)) {
437 goto out;
438 }
439
440 ordered = btrfs_lookup_ordered_extent(inode, page_start);
441 if (ordered) {
442 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
443 page_end, GFP_NOFS);
444 unlock_page(page);
445 btrfs_start_ordered_extent(inode, ordered, 1);
446 goto again;
447 }
448
449 set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start, page_end,
450 GFP_NOFS);
451 ClearPageChecked(page);
452 out:
453 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
454 out_page:
455 unlock_page(page);
456 page_cache_release(page);
457 }
458
459 /*
460 * There are a few paths in the higher layers of the kernel that directly
461 * set the page dirty bit without asking the filesystem if it is a
462 * good idea. This causes problems because we want to make sure COW
463 * properly happens and the data=ordered rules are followed.
464 *
465 * In our case any range that doesn't have the EXTENT_ORDERED bit set
466 * hasn't been properly setup for IO. We kick off an async process
467 * to fix it up. The async helper will wait for ordered extents, set
468 * the delalloc bit and make it safe to write the page.
469 */
470 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
471 {
472 struct inode *inode = page->mapping->host;
473 struct btrfs_writepage_fixup *fixup;
474 struct btrfs_root *root = BTRFS_I(inode)->root;
475 int ret;
476
477 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
478 EXTENT_ORDERED, 0);
479 if (ret)
480 return 0;
481
482 if (PageChecked(page))
483 return -EAGAIN;
484
485 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
486 if (!fixup)
487 return -EAGAIN;
488
489 SetPageChecked(page);
490 page_cache_get(page);
491 fixup->work.func = btrfs_writepage_fixup_worker;
492 fixup->page = page;
493 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
494 return -EAGAIN;
495 }
496
497 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
498 {
499 struct btrfs_root *root = BTRFS_I(inode)->root;
500 struct btrfs_trans_handle *trans;
501 struct btrfs_ordered_extent *ordered_extent;
502 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
503 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
504 struct extent_map *em;
505 struct extent_map *em_orig;
506 u64 alloc_hint = 0;
507 u64 clear_start;
508 u64 clear_end;
509 struct list_head list;
510 struct btrfs_key ins;
511 struct rb_node *rb;
512 int ret;
513
514 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
515 if (!ret)
516 return 0;
517
518 trans = btrfs_join_transaction(root, 1);
519
520 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
521 BUG_ON(!ordered_extent);
522
523 lock_extent(io_tree, ordered_extent->file_offset,
524 ordered_extent->file_offset + ordered_extent->len - 1,
525 GFP_NOFS);
526
527 INIT_LIST_HEAD(&list);
528
529 ins.objectid = ordered_extent->start;
530 ins.offset = ordered_extent->len;
531 ins.type = BTRFS_EXTENT_ITEM_KEY;
532
533 ret = btrfs_alloc_reserved_extent(trans, root, root->root_key.objectid,
534 trans->transid, inode->i_ino,
535 ordered_extent->file_offset, &ins);
536 BUG_ON(ret);
537
538 mutex_lock(&BTRFS_I(inode)->extent_mutex);
539
540 spin_lock(&em_tree->lock);
541 clear_start = ordered_extent->file_offset;
542 clear_end = ordered_extent->file_offset + ordered_extent->len;
543 em = lookup_extent_mapping(em_tree, clear_start,
544 ordered_extent->len);
545 em_orig = em;
546 while(em && clear_start < extent_map_end(em) && clear_end > em->start) {
547 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
548 rb = rb_next(&em->rb_node);
549 if (!rb)
550 break;
551 em = rb_entry(rb, struct extent_map, rb_node);
552 }
553 free_extent_map(em_orig);
554 spin_unlock(&em_tree->lock);
555
556 ret = btrfs_drop_extents(trans, root, inode,
557 ordered_extent->file_offset,
558 ordered_extent->file_offset +
559 ordered_extent->len,
560 ordered_extent->file_offset, &alloc_hint);
561 BUG_ON(ret);
562 ret = btrfs_insert_file_extent(trans, root, inode->i_ino,
563 ordered_extent->file_offset,
564 ordered_extent->start,
565 ordered_extent->len,
566 ordered_extent->len, 0);
567 BUG_ON(ret);
568
569 btrfs_drop_extent_cache(inode, ordered_extent->file_offset,
570 ordered_extent->file_offset +
571 ordered_extent->len - 1);
572 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
573
574 inode->i_blocks += ordered_extent->len >> 9;
575 unlock_extent(io_tree, ordered_extent->file_offset,
576 ordered_extent->file_offset + ordered_extent->len - 1,
577 GFP_NOFS);
578 add_pending_csums(trans, inode, ordered_extent->file_offset,
579 &ordered_extent->list);
580
581 btrfs_ordered_update_i_size(inode, ordered_extent);
582 btrfs_remove_ordered_extent(inode, ordered_extent);
583
584 /* once for us */
585 btrfs_put_ordered_extent(ordered_extent);
586 /* once for the tree */
587 btrfs_put_ordered_extent(ordered_extent);
588
589 btrfs_update_inode(trans, root, inode);
590 btrfs_end_transaction(trans, root);
591 return 0;
592 }
593
594 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
595 struct extent_state *state, int uptodate)
596 {
597 return btrfs_finish_ordered_io(page->mapping->host, start, end);
598 }
599
600 int btrfs_readpage_io_hook(struct page *page, u64 start, u64 end)
601 {
602 int ret = 0;
603 struct inode *inode = page->mapping->host;
604 struct btrfs_root *root = BTRFS_I(inode)->root;
605 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
606 struct btrfs_csum_item *item;
607 struct btrfs_path *path = NULL;
608 u32 csum;
609
610 if (btrfs_test_opt(root, NODATASUM) ||
611 btrfs_test_flag(inode, NODATASUM))
612 return 0;
613
614 path = btrfs_alloc_path();
615 item = btrfs_lookup_csum(NULL, root, path, inode->i_ino, start, 0);
616 if (IS_ERR(item)) {
617 /*
618 * It is possible there is an ordered extent that has
619 * not yet finished for this range in the file. If so,
620 * that extent will have a csum cached, and it will insert
621 * the sum after all the blocks in the extent are fully
622 * on disk. So, look for an ordered extent and use the
623 * sum if found.
624 */
625 ret = btrfs_find_ordered_sum(inode, start, &csum);
626 if (ret == 0)
627 goto found;
628
629 ret = PTR_ERR(item);
630 /* a csum that isn't present is a preallocated region. */
631 if (ret == -ENOENT || ret == -EFBIG)
632 ret = 0;
633 csum = 0;
634 printk("no csum found for inode %lu start %Lu\n", inode->i_ino,
635 start);
636 goto out;
637 }
638 read_extent_buffer(path->nodes[0], &csum, (unsigned long)item,
639 BTRFS_CRC32_SIZE);
640 found:
641 set_state_private(io_tree, start, csum);
642 out:
643 if (path)
644 btrfs_free_path(path);
645 return ret;
646 }
647
648 struct io_failure_record {
649 struct page *page;
650 u64 start;
651 u64 len;
652 u64 logical;
653 int last_mirror;
654 };
655
656 int btrfs_io_failed_hook(struct bio *failed_bio,
657 struct page *page, u64 start, u64 end,
658 struct extent_state *state)
659 {
660 struct io_failure_record *failrec = NULL;
661 u64 private;
662 struct extent_map *em;
663 struct inode *inode = page->mapping->host;
664 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
665 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
666 struct bio *bio;
667 int num_copies;
668 int ret;
669 int rw;
670 u64 logical;
671
672 ret = get_state_private(failure_tree, start, &private);
673 if (ret) {
674 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
675 if (!failrec)
676 return -ENOMEM;
677 failrec->start = start;
678 failrec->len = end - start + 1;
679 failrec->last_mirror = 0;
680
681 spin_lock(&em_tree->lock);
682 em = lookup_extent_mapping(em_tree, start, failrec->len);
683 if (em->start > start || em->start + em->len < start) {
684 free_extent_map(em);
685 em = NULL;
686 }
687 spin_unlock(&em_tree->lock);
688
689 if (!em || IS_ERR(em)) {
690 kfree(failrec);
691 return -EIO;
692 }
693 logical = start - em->start;
694 logical = em->block_start + logical;
695 failrec->logical = logical;
696 free_extent_map(em);
697 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
698 EXTENT_DIRTY, GFP_NOFS);
699 set_state_private(failure_tree, start,
700 (u64)(unsigned long)failrec);
701 } else {
702 failrec = (struct io_failure_record *)(unsigned long)private;
703 }
704 num_copies = btrfs_num_copies(
705 &BTRFS_I(inode)->root->fs_info->mapping_tree,
706 failrec->logical, failrec->len);
707 failrec->last_mirror++;
708 if (!state) {
709 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
710 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
711 failrec->start,
712 EXTENT_LOCKED);
713 if (state && state->start != failrec->start)
714 state = NULL;
715 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
716 }
717 if (!state || failrec->last_mirror > num_copies) {
718 set_state_private(failure_tree, failrec->start, 0);
719 clear_extent_bits(failure_tree, failrec->start,
720 failrec->start + failrec->len - 1,
721 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
722 kfree(failrec);
723 return -EIO;
724 }
725 bio = bio_alloc(GFP_NOFS, 1);
726 bio->bi_private = state;
727 bio->bi_end_io = failed_bio->bi_end_io;
728 bio->bi_sector = failrec->logical >> 9;
729 bio->bi_bdev = failed_bio->bi_bdev;
730 bio->bi_size = 0;
731 bio_add_page(bio, page, failrec->len, start - page_offset(page));
732 if (failed_bio->bi_rw & (1 << BIO_RW))
733 rw = WRITE;
734 else
735 rw = READ;
736
737 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
738 failrec->last_mirror);
739 return 0;
740 }
741
742 int btrfs_clean_io_failures(struct inode *inode, u64 start)
743 {
744 u64 private;
745 u64 private_failure;
746 struct io_failure_record *failure;
747 int ret;
748
749 private = 0;
750 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
751 (u64)-1, 1, EXTENT_DIRTY)) {
752 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
753 start, &private_failure);
754 if (ret == 0) {
755 failure = (struct io_failure_record *)(unsigned long)
756 private_failure;
757 set_state_private(&BTRFS_I(inode)->io_failure_tree,
758 failure->start, 0);
759 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
760 failure->start,
761 failure->start + failure->len - 1,
762 EXTENT_DIRTY | EXTENT_LOCKED,
763 GFP_NOFS);
764 kfree(failure);
765 }
766 }
767 return 0;
768 }
769
770 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
771 struct extent_state *state)
772 {
773 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
774 struct inode *inode = page->mapping->host;
775 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
776 char *kaddr;
777 u64 private = ~(u32)0;
778 int ret;
779 struct btrfs_root *root = BTRFS_I(inode)->root;
780 u32 csum = ~(u32)0;
781 unsigned long flags;
782
783 if (btrfs_test_opt(root, NODATASUM) ||
784 btrfs_test_flag(inode, NODATASUM))
785 return 0;
786 if (state && state->start == start) {
787 private = state->private;
788 ret = 0;
789 } else {
790 ret = get_state_private(io_tree, start, &private);
791 }
792 local_irq_save(flags);
793 kaddr = kmap_atomic(page, KM_IRQ0);
794 if (ret) {
795 goto zeroit;
796 }
797 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
798 btrfs_csum_final(csum, (char *)&csum);
799 if (csum != private) {
800 goto zeroit;
801 }
802 kunmap_atomic(kaddr, KM_IRQ0);
803 local_irq_restore(flags);
804
805 /* if the io failure tree for this inode is non-empty,
806 * check to see if we've recovered from a failed IO
807 */
808 btrfs_clean_io_failures(inode, start);
809 return 0;
810
811 zeroit:
812 printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
813 page->mapping->host->i_ino, (unsigned long long)start, csum,
814 private);
815 memset(kaddr + offset, 1, end - start + 1);
816 flush_dcache_page(page);
817 kunmap_atomic(kaddr, KM_IRQ0);
818 local_irq_restore(flags);
819 if (private == 0)
820 return 0;
821 return -EIO;
822 }
823
824 void btrfs_read_locked_inode(struct inode *inode)
825 {
826 struct btrfs_path *path;
827 struct extent_buffer *leaf;
828 struct btrfs_inode_item *inode_item;
829 struct btrfs_timespec *tspec;
830 struct btrfs_root *root = BTRFS_I(inode)->root;
831 struct btrfs_key location;
832 u64 alloc_group_block;
833 u32 rdev;
834 int ret;
835
836 path = btrfs_alloc_path();
837 BUG_ON(!path);
838 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
839
840 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
841 if (ret)
842 goto make_bad;
843
844 leaf = path->nodes[0];
845 inode_item = btrfs_item_ptr(leaf, path->slots[0],
846 struct btrfs_inode_item);
847
848 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
849 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
850 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
851 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
852 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
853
854 tspec = btrfs_inode_atime(inode_item);
855 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
856 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
857
858 tspec = btrfs_inode_mtime(inode_item);
859 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
860 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
861
862 tspec = btrfs_inode_ctime(inode_item);
863 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
864 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
865
866 inode->i_blocks = btrfs_inode_nblocks(leaf, inode_item);
867 inode->i_generation = btrfs_inode_generation(leaf, inode_item);
868 inode->i_rdev = 0;
869 rdev = btrfs_inode_rdev(leaf, inode_item);
870
871 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
872 BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
873 alloc_group_block);
874 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
875 if (!BTRFS_I(inode)->block_group) {
876 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
877 NULL, 0,
878 BTRFS_BLOCK_GROUP_METADATA, 0);
879 }
880 btrfs_free_path(path);
881 inode_item = NULL;
882
883 switch (inode->i_mode & S_IFMT) {
884 case S_IFREG:
885 inode->i_mapping->a_ops = &btrfs_aops;
886 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
887 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
888 inode->i_fop = &btrfs_file_operations;
889 inode->i_op = &btrfs_file_inode_operations;
890 break;
891 case S_IFDIR:
892 inode->i_fop = &btrfs_dir_file_operations;
893 if (root == root->fs_info->tree_root)
894 inode->i_op = &btrfs_dir_ro_inode_operations;
895 else
896 inode->i_op = &btrfs_dir_inode_operations;
897 break;
898 case S_IFLNK:
899 inode->i_op = &btrfs_symlink_inode_operations;
900 inode->i_mapping->a_ops = &btrfs_symlink_aops;
901 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
902 break;
903 default:
904 init_special_inode(inode, inode->i_mode, rdev);
905 break;
906 }
907 return;
908
909 make_bad:
910 btrfs_free_path(path);
911 make_bad_inode(inode);
912 }
913
914 static void fill_inode_item(struct extent_buffer *leaf,
915 struct btrfs_inode_item *item,
916 struct inode *inode)
917 {
918 btrfs_set_inode_uid(leaf, item, inode->i_uid);
919 btrfs_set_inode_gid(leaf, item, inode->i_gid);
920 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
921 btrfs_set_inode_mode(leaf, item, inode->i_mode);
922 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
923
924 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
925 inode->i_atime.tv_sec);
926 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
927 inode->i_atime.tv_nsec);
928
929 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
930 inode->i_mtime.tv_sec);
931 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
932 inode->i_mtime.tv_nsec);
933
934 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
935 inode->i_ctime.tv_sec);
936 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
937 inode->i_ctime.tv_nsec);
938
939 btrfs_set_inode_nblocks(leaf, item, inode->i_blocks);
940 btrfs_set_inode_generation(leaf, item, inode->i_generation);
941 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
942 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
943 btrfs_set_inode_block_group(leaf, item,
944 BTRFS_I(inode)->block_group->key.objectid);
945 }
946
947 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
948 struct btrfs_root *root,
949 struct inode *inode)
950 {
951 struct btrfs_inode_item *inode_item;
952 struct btrfs_path *path;
953 struct extent_buffer *leaf;
954 int ret;
955
956 path = btrfs_alloc_path();
957 BUG_ON(!path);
958 ret = btrfs_lookup_inode(trans, root, path,
959 &BTRFS_I(inode)->location, 1);
960 if (ret) {
961 if (ret > 0)
962 ret = -ENOENT;
963 goto failed;
964 }
965
966 leaf = path->nodes[0];
967 inode_item = btrfs_item_ptr(leaf, path->slots[0],
968 struct btrfs_inode_item);
969
970 fill_inode_item(leaf, inode_item, inode);
971 btrfs_mark_buffer_dirty(leaf);
972 btrfs_set_inode_last_trans(trans, inode);
973 ret = 0;
974 failed:
975 btrfs_free_path(path);
976 return ret;
977 }
978
979
980 static int btrfs_unlink_trans(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct inode *dir,
983 struct dentry *dentry)
984 {
985 struct btrfs_path *path;
986 const char *name = dentry->d_name.name;
987 int name_len = dentry->d_name.len;
988 int ret = 0;
989 struct extent_buffer *leaf;
990 struct btrfs_dir_item *di;
991 struct btrfs_key key;
992
993 path = btrfs_alloc_path();
994 if (!path) {
995 ret = -ENOMEM;
996 goto err;
997 }
998
999 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
1000 name, name_len, -1);
1001 if (IS_ERR(di)) {
1002 ret = PTR_ERR(di);
1003 goto err;
1004 }
1005 if (!di) {
1006 ret = -ENOENT;
1007 goto err;
1008 }
1009 leaf = path->nodes[0];
1010 btrfs_dir_item_key_to_cpu(leaf, di, &key);
1011 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1012 if (ret)
1013 goto err;
1014 btrfs_release_path(root, path);
1015
1016 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
1017 key.objectid, name, name_len, -1);
1018 if (IS_ERR(di)) {
1019 ret = PTR_ERR(di);
1020 goto err;
1021 }
1022 if (!di) {
1023 ret = -ENOENT;
1024 goto err;
1025 }
1026 ret = btrfs_delete_one_dir_name(trans, root, path, di);
1027 btrfs_release_path(root, path);
1028
1029 dentry->d_inode->i_ctime = dir->i_ctime;
1030 ret = btrfs_del_inode_ref(trans, root, name, name_len,
1031 dentry->d_inode->i_ino,
1032 dentry->d_parent->d_inode->i_ino);
1033 if (ret) {
1034 printk("failed to delete reference to %.*s, "
1035 "inode %lu parent %lu\n", name_len, name,
1036 dentry->d_inode->i_ino,
1037 dentry->d_parent->d_inode->i_ino);
1038 }
1039 err:
1040 btrfs_free_path(path);
1041 if (!ret) {
1042 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
1043 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
1044 btrfs_update_inode(trans, root, dir);
1045 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1046 dentry->d_inode->i_nlink--;
1047 #else
1048 drop_nlink(dentry->d_inode);
1049 #endif
1050 ret = btrfs_update_inode(trans, root, dentry->d_inode);
1051 dir->i_sb->s_dirt = 1;
1052 }
1053 return ret;
1054 }
1055
1056 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
1057 {
1058 struct btrfs_root *root;
1059 struct btrfs_trans_handle *trans;
1060 int ret;
1061 unsigned long nr = 0;
1062
1063 root = BTRFS_I(dir)->root;
1064
1065 ret = btrfs_check_free_space(root, 1, 1);
1066 if (ret)
1067 goto fail;
1068
1069 trans = btrfs_start_transaction(root, 1);
1070
1071 btrfs_set_trans_block_group(trans, dir);
1072 ret = btrfs_unlink_trans(trans, root, dir, dentry);
1073 nr = trans->blocks_used;
1074
1075 btrfs_end_transaction_throttle(trans, root);
1076 fail:
1077 btrfs_btree_balance_dirty(root, nr);
1078 return ret;
1079 }
1080
1081 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
1082 {
1083 struct inode *inode = dentry->d_inode;
1084 int err = 0;
1085 int ret;
1086 struct btrfs_root *root = BTRFS_I(dir)->root;
1087 struct btrfs_trans_handle *trans;
1088 unsigned long nr = 0;
1089
1090 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
1091 return -ENOTEMPTY;
1092 }
1093
1094 ret = btrfs_check_free_space(root, 1, 1);
1095 if (ret)
1096 goto fail;
1097
1098 trans = btrfs_start_transaction(root, 1);
1099 btrfs_set_trans_block_group(trans, dir);
1100
1101 /* now the directory is empty */
1102 err = btrfs_unlink_trans(trans, root, dir, dentry);
1103 if (!err) {
1104 btrfs_i_size_write(inode, 0);
1105 }
1106
1107 nr = trans->blocks_used;
1108 ret = btrfs_end_transaction_throttle(trans, root);
1109 fail:
1110 btrfs_btree_balance_dirty(root, nr);
1111
1112 if (ret && !err)
1113 err = ret;
1114 return err;
1115 }
1116
1117 /*
1118 * this can truncate away extent items, csum items and directory items.
1119 * It starts at a high offset and removes keys until it can't find
1120 * any higher than i_size.
1121 *
1122 * csum items that cross the new i_size are truncated to the new size
1123 * as well.
1124 */
1125 static int btrfs_truncate_in_trans(struct btrfs_trans_handle *trans,
1126 struct btrfs_root *root,
1127 struct inode *inode,
1128 u32 min_type)
1129 {
1130 int ret;
1131 struct btrfs_path *path;
1132 struct btrfs_key key;
1133 struct btrfs_key found_key;
1134 u32 found_type;
1135 struct extent_buffer *leaf;
1136 struct btrfs_file_extent_item *fi;
1137 u64 extent_start = 0;
1138 u64 extent_num_bytes = 0;
1139 u64 item_end = 0;
1140 u64 root_gen = 0;
1141 u64 root_owner = 0;
1142 int found_extent;
1143 int del_item;
1144 int pending_del_nr = 0;
1145 int pending_del_slot = 0;
1146 int extent_type = -1;
1147 u64 mask = root->sectorsize - 1;
1148
1149 btrfs_drop_extent_cache(inode, inode->i_size & (~mask), (u64)-1);
1150 path = btrfs_alloc_path();
1151 path->reada = -1;
1152 BUG_ON(!path);
1153
1154 /* FIXME, add redo link to tree so we don't leak on crash */
1155 key.objectid = inode->i_ino;
1156 key.offset = (u64)-1;
1157 key.type = (u8)-1;
1158
1159 btrfs_init_path(path);
1160 search_again:
1161 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1162 if (ret < 0) {
1163 goto error;
1164 }
1165 if (ret > 0) {
1166 BUG_ON(path->slots[0] == 0);
1167 path->slots[0]--;
1168 }
1169
1170 while(1) {
1171 fi = NULL;
1172 leaf = path->nodes[0];
1173 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1174 found_type = btrfs_key_type(&found_key);
1175
1176 if (found_key.objectid != inode->i_ino)
1177 break;
1178
1179 if (found_type < min_type)
1180 break;
1181
1182 item_end = found_key.offset;
1183 if (found_type == BTRFS_EXTENT_DATA_KEY) {
1184 fi = btrfs_item_ptr(leaf, path->slots[0],
1185 struct btrfs_file_extent_item);
1186 extent_type = btrfs_file_extent_type(leaf, fi);
1187 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1188 item_end +=
1189 btrfs_file_extent_num_bytes(leaf, fi);
1190 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1191 struct btrfs_item *item = btrfs_item_nr(leaf,
1192 path->slots[0]);
1193 item_end += btrfs_file_extent_inline_len(leaf,
1194 item);
1195 }
1196 item_end--;
1197 }
1198 if (found_type == BTRFS_CSUM_ITEM_KEY) {
1199 ret = btrfs_csum_truncate(trans, root, path,
1200 inode->i_size);
1201 BUG_ON(ret);
1202 }
1203 if (item_end < inode->i_size) {
1204 if (found_type == BTRFS_DIR_ITEM_KEY) {
1205 found_type = BTRFS_INODE_ITEM_KEY;
1206 } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
1207 found_type = BTRFS_CSUM_ITEM_KEY;
1208 } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
1209 found_type = BTRFS_XATTR_ITEM_KEY;
1210 } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
1211 found_type = BTRFS_INODE_REF_KEY;
1212 } else if (found_type) {
1213 found_type--;
1214 } else {
1215 break;
1216 }
1217 btrfs_set_key_type(&key, found_type);
1218 goto next;
1219 }
1220 if (found_key.offset >= inode->i_size)
1221 del_item = 1;
1222 else
1223 del_item = 0;
1224 found_extent = 0;
1225
1226 /* FIXME, shrink the extent if the ref count is only 1 */
1227 if (found_type != BTRFS_EXTENT_DATA_KEY)
1228 goto delete;
1229
1230 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
1231 u64 num_dec;
1232 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
1233 if (!del_item) {
1234 u64 orig_num_bytes =
1235 btrfs_file_extent_num_bytes(leaf, fi);
1236 extent_num_bytes = inode->i_size -
1237 found_key.offset + root->sectorsize - 1;
1238 extent_num_bytes = extent_num_bytes &
1239 ~((u64)root->sectorsize - 1);
1240 btrfs_set_file_extent_num_bytes(leaf, fi,
1241 extent_num_bytes);
1242 num_dec = (orig_num_bytes -
1243 extent_num_bytes);
1244 if (extent_start != 0)
1245 dec_i_blocks(inode, num_dec);
1246 btrfs_mark_buffer_dirty(leaf);
1247 } else {
1248 extent_num_bytes =
1249 btrfs_file_extent_disk_num_bytes(leaf,
1250 fi);
1251 /* FIXME blocksize != 4096 */
1252 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
1253 if (extent_start != 0) {
1254 found_extent = 1;
1255 dec_i_blocks(inode, num_dec);
1256 }
1257 root_gen = btrfs_header_generation(leaf);
1258 root_owner = btrfs_header_owner(leaf);
1259 }
1260 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1261 if (!del_item) {
1262 u32 newsize = inode->i_size - found_key.offset;
1263 dec_i_blocks(inode, item_end + 1 -
1264 found_key.offset - newsize);
1265 newsize =
1266 btrfs_file_extent_calc_inline_size(newsize);
1267 ret = btrfs_truncate_item(trans, root, path,
1268 newsize, 1);
1269 BUG_ON(ret);
1270 } else {
1271 dec_i_blocks(inode, item_end + 1 -
1272 found_key.offset);
1273 }
1274 }
1275 delete:
1276 if (del_item) {
1277 if (!pending_del_nr) {
1278 /* no pending yet, add ourselves */
1279 pending_del_slot = path->slots[0];
1280 pending_del_nr = 1;
1281 } else if (pending_del_nr &&
1282 path->slots[0] + 1 == pending_del_slot) {
1283 /* hop on the pending chunk */
1284 pending_del_nr++;
1285 pending_del_slot = path->slots[0];
1286 } else {
1287 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
1288 }
1289 } else {
1290 break;
1291 }
1292 if (found_extent) {
1293 ret = btrfs_free_extent(trans, root, extent_start,
1294 extent_num_bytes,
1295 root_owner,
1296 root_gen, inode->i_ino,
1297 found_key.offset, 0);
1298 BUG_ON(ret);
1299 }
1300 next:
1301 if (path->slots[0] == 0) {
1302 if (pending_del_nr)
1303 goto del_pending;
1304 btrfs_release_path(root, path);
1305 goto search_again;
1306 }
1307
1308 path->slots[0]--;
1309 if (pending_del_nr &&
1310 path->slots[0] + 1 != pending_del_slot) {
1311 struct btrfs_key debug;
1312 del_pending:
1313 btrfs_item_key_to_cpu(path->nodes[0], &debug,
1314 pending_del_slot);
1315 ret = btrfs_del_items(trans, root, path,
1316 pending_del_slot,
1317 pending_del_nr);
1318 BUG_ON(ret);
1319 pending_del_nr = 0;
1320 btrfs_release_path(root, path);
1321 goto search_again;
1322 }
1323 }
1324 ret = 0;
1325 error:
1326 if (pending_del_nr) {
1327 ret = btrfs_del_items(trans, root, path, pending_del_slot,
1328 pending_del_nr);
1329 }
1330 btrfs_free_path(path);
1331 inode->i_sb->s_dirt = 1;
1332 return ret;
1333 }
1334
1335 /*
1336 * taken from block_truncate_page, but does cow as it zeros out
1337 * any bytes left in the last page in the file.
1338 */
1339 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
1340 {
1341 struct inode *inode = mapping->host;
1342 struct btrfs_root *root = BTRFS_I(inode)->root;
1343 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1344 struct btrfs_ordered_extent *ordered;
1345 char *kaddr;
1346 u32 blocksize = root->sectorsize;
1347 pgoff_t index = from >> PAGE_CACHE_SHIFT;
1348 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1349 struct page *page;
1350 int ret = 0;
1351 u64 page_start;
1352 u64 page_end;
1353
1354 if ((offset & (blocksize - 1)) == 0)
1355 goto out;
1356
1357 ret = -ENOMEM;
1358 again:
1359 page = grab_cache_page(mapping, index);
1360 if (!page)
1361 goto out;
1362
1363 page_start = page_offset(page);
1364 page_end = page_start + PAGE_CACHE_SIZE - 1;
1365
1366 if (!PageUptodate(page)) {
1367 ret = btrfs_readpage(NULL, page);
1368 lock_page(page);
1369 if (page->mapping != mapping) {
1370 unlock_page(page);
1371 page_cache_release(page);
1372 goto again;
1373 }
1374 if (!PageUptodate(page)) {
1375 ret = -EIO;
1376 goto out;
1377 }
1378 }
1379 wait_on_page_writeback(page);
1380
1381 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
1382 set_page_extent_mapped(page);
1383
1384 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1385 if (ordered) {
1386 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1387 unlock_page(page);
1388 page_cache_release(page);
1389 btrfs_start_ordered_extent(inode, ordered, 1);
1390 btrfs_put_ordered_extent(ordered);
1391 goto again;
1392 }
1393
1394 set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start,
1395 page_end, GFP_NOFS);
1396 ret = 0;
1397 if (offset != PAGE_CACHE_SIZE) {
1398 kaddr = kmap(page);
1399 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
1400 flush_dcache_page(page);
1401 kunmap(page);
1402 }
1403 ClearPageChecked(page);
1404 set_page_dirty(page);
1405 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
1406
1407 unlock_page(page);
1408 page_cache_release(page);
1409 out:
1410 return ret;
1411 }
1412
1413 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
1414 {
1415 struct inode *inode = dentry->d_inode;
1416 int err;
1417
1418 err = inode_change_ok(inode, attr);
1419 if (err)
1420 return err;
1421
1422 if (S_ISREG(inode->i_mode) &&
1423 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
1424 struct btrfs_trans_handle *trans;
1425 struct btrfs_root *root = BTRFS_I(inode)->root;
1426 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1427
1428 u64 mask = root->sectorsize - 1;
1429 u64 hole_start = (inode->i_size + mask) & ~mask;
1430 u64 block_end = (attr->ia_size + mask) & ~mask;
1431 u64 hole_size;
1432 u64 alloc_hint = 0;
1433
1434 if (attr->ia_size <= hole_start)
1435 goto out;
1436
1437 err = btrfs_check_free_space(root, 1, 0);
1438 if (err)
1439 goto fail;
1440
1441 btrfs_truncate_page(inode->i_mapping, inode->i_size);
1442
1443 hole_size = block_end - hole_start;
1444 btrfs_wait_ordered_range(inode, hole_start, hole_size);
1445 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1446
1447 trans = btrfs_start_transaction(root, 1);
1448 btrfs_set_trans_block_group(trans, inode);
1449 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1450 err = btrfs_drop_extents(trans, root, inode,
1451 hole_start, block_end, hole_start,
1452 &alloc_hint);
1453
1454 if (alloc_hint != EXTENT_MAP_INLINE) {
1455 err = btrfs_insert_file_extent(trans, root,
1456 inode->i_ino,
1457 hole_start, 0, 0,
1458 hole_size, 0);
1459 btrfs_drop_extent_cache(inode, hole_start,
1460 (u64)-1);
1461 btrfs_check_file(root, inode);
1462 }
1463 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1464 btrfs_end_transaction(trans, root);
1465 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
1466 if (err)
1467 return err;
1468 }
1469 out:
1470 err = inode_setattr(inode, attr);
1471 fail:
1472 return err;
1473 }
1474
1475 void btrfs_delete_inode(struct inode *inode)
1476 {
1477 struct btrfs_trans_handle *trans;
1478 struct btrfs_root *root = BTRFS_I(inode)->root;
1479 unsigned long nr;
1480 int ret;
1481
1482 truncate_inode_pages(&inode->i_data, 0);
1483 if (is_bad_inode(inode)) {
1484 goto no_delete;
1485 }
1486 btrfs_wait_ordered_range(inode, 0, (u64)-1);
1487
1488 btrfs_i_size_write(inode, 0);
1489 trans = btrfs_start_transaction(root, 1);
1490
1491 btrfs_set_trans_block_group(trans, inode);
1492 ret = btrfs_truncate_in_trans(trans, root, inode, 0);
1493 if (ret)
1494 goto no_delete_lock;
1495
1496 nr = trans->blocks_used;
1497 clear_inode(inode);
1498
1499 btrfs_end_transaction(trans, root);
1500 btrfs_btree_balance_dirty(root, nr);
1501 return;
1502
1503 no_delete_lock:
1504 nr = trans->blocks_used;
1505 btrfs_end_transaction(trans, root);
1506 btrfs_btree_balance_dirty(root, nr);
1507 no_delete:
1508 clear_inode(inode);
1509 }
1510
1511 /*
1512 * this returns the key found in the dir entry in the location pointer.
1513 * If no dir entries were found, location->objectid is 0.
1514 */
1515 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
1516 struct btrfs_key *location)
1517 {
1518 const char *name = dentry->d_name.name;
1519 int namelen = dentry->d_name.len;
1520 struct btrfs_dir_item *di;
1521 struct btrfs_path *path;
1522 struct btrfs_root *root = BTRFS_I(dir)->root;
1523 int ret = 0;
1524
1525 if (namelen == 1 && strcmp(name, ".") == 0) {
1526 location->objectid = dir->i_ino;
1527 location->type = BTRFS_INODE_ITEM_KEY;
1528 location->offset = 0;
1529 return 0;
1530 }
1531 path = btrfs_alloc_path();
1532 BUG_ON(!path);
1533
1534 if (namelen == 2 && strcmp(name, "..") == 0) {
1535 struct btrfs_key key;
1536 struct extent_buffer *leaf;
1537 u32 nritems;
1538 int slot;
1539
1540 key.objectid = dir->i_ino;
1541 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1542 key.offset = 0;
1543 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1544 BUG_ON(ret == 0);
1545 ret = 0;
1546
1547 leaf = path->nodes[0];
1548 slot = path->slots[0];
1549 nritems = btrfs_header_nritems(leaf);
1550 if (slot >= nritems)
1551 goto out_err;
1552
1553 btrfs_item_key_to_cpu(leaf, &key, slot);
1554 if (key.objectid != dir->i_ino ||
1555 key.type != BTRFS_INODE_REF_KEY) {
1556 goto out_err;
1557 }
1558 location->objectid = key.offset;
1559 location->type = BTRFS_INODE_ITEM_KEY;
1560 location->offset = 0;
1561 goto out;
1562 }
1563
1564 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
1565 namelen, 0);
1566 if (IS_ERR(di))
1567 ret = PTR_ERR(di);
1568 if (!di || IS_ERR(di)) {
1569 goto out_err;
1570 }
1571 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
1572 out:
1573 btrfs_free_path(path);
1574 return ret;
1575 out_err:
1576 location->objectid = 0;
1577 goto out;
1578 }
1579
1580 /*
1581 * when we hit a tree root in a directory, the btrfs part of the inode
1582 * needs to be changed to reflect the root directory of the tree root. This
1583 * is kind of like crossing a mount point.
1584 */
1585 static int fixup_tree_root_location(struct btrfs_root *root,
1586 struct btrfs_key *location,
1587 struct btrfs_root **sub_root,
1588 struct dentry *dentry)
1589 {
1590 struct btrfs_path *path;
1591 struct btrfs_root_item *ri;
1592
1593 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
1594 return 0;
1595 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1596 return 0;
1597
1598 path = btrfs_alloc_path();
1599 BUG_ON(!path);
1600
1601 *sub_root = btrfs_read_fs_root(root->fs_info, location,
1602 dentry->d_name.name,
1603 dentry->d_name.len);
1604 if (IS_ERR(*sub_root))
1605 return PTR_ERR(*sub_root);
1606
1607 ri = &(*sub_root)->root_item;
1608 location->objectid = btrfs_root_dirid(ri);
1609 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1610 location->offset = 0;
1611
1612 btrfs_free_path(path);
1613 return 0;
1614 }
1615
1616 static int btrfs_init_locked_inode(struct inode *inode, void *p)
1617 {
1618 struct btrfs_iget_args *args = p;
1619 inode->i_ino = args->ino;
1620 BTRFS_I(inode)->root = args->root;
1621 BTRFS_I(inode)->delalloc_bytes = 0;
1622 BTRFS_I(inode)->disk_i_size = 0;
1623 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1624 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1625 inode->i_mapping, GFP_NOFS);
1626 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1627 inode->i_mapping, GFP_NOFS);
1628 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1629 mutex_init(&BTRFS_I(inode)->csum_mutex);
1630 mutex_init(&BTRFS_I(inode)->extent_mutex);
1631 return 0;
1632 }
1633
1634 static int btrfs_find_actor(struct inode *inode, void *opaque)
1635 {
1636 struct btrfs_iget_args *args = opaque;
1637 return (args->ino == inode->i_ino &&
1638 args->root == BTRFS_I(inode)->root);
1639 }
1640
1641 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
1642 u64 root_objectid)
1643 {
1644 struct btrfs_iget_args args;
1645 args.ino = objectid;
1646 args.root = btrfs_lookup_fs_root(btrfs_sb(s)->fs_info, root_objectid);
1647
1648 if (!args.root)
1649 return NULL;
1650
1651 return ilookup5(s, objectid, btrfs_find_actor, (void *)&args);
1652 }
1653
1654 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
1655 struct btrfs_root *root)
1656 {
1657 struct inode *inode;
1658 struct btrfs_iget_args args;
1659 args.ino = objectid;
1660 args.root = root;
1661
1662 inode = iget5_locked(s, objectid, btrfs_find_actor,
1663 btrfs_init_locked_inode,
1664 (void *)&args);
1665 return inode;
1666 }
1667
1668 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
1669 struct nameidata *nd)
1670 {
1671 struct inode * inode;
1672 struct btrfs_inode *bi = BTRFS_I(dir);
1673 struct btrfs_root *root = bi->root;
1674 struct btrfs_root *sub_root = root;
1675 struct btrfs_key location;
1676 int ret;
1677
1678 if (dentry->d_name.len > BTRFS_NAME_LEN)
1679 return ERR_PTR(-ENAMETOOLONG);
1680
1681 ret = btrfs_inode_by_name(dir, dentry, &location);
1682
1683 if (ret < 0)
1684 return ERR_PTR(ret);
1685
1686 inode = NULL;
1687 if (location.objectid) {
1688 ret = fixup_tree_root_location(root, &location, &sub_root,
1689 dentry);
1690 if (ret < 0)
1691 return ERR_PTR(ret);
1692 if (ret > 0)
1693 return ERR_PTR(-ENOENT);
1694 inode = btrfs_iget_locked(dir->i_sb, location.objectid,
1695 sub_root);
1696 if (!inode)
1697 return ERR_PTR(-EACCES);
1698 if (inode->i_state & I_NEW) {
1699 /* the inode and parent dir are two different roots */
1700 if (sub_root != root) {
1701 igrab(inode);
1702 sub_root->inode = inode;
1703 }
1704 BTRFS_I(inode)->root = sub_root;
1705 memcpy(&BTRFS_I(inode)->location, &location,
1706 sizeof(location));
1707 btrfs_read_locked_inode(inode);
1708 unlock_new_inode(inode);
1709 }
1710 }
1711 return d_splice_alias(inode, dentry);
1712 }
1713
1714 static unsigned char btrfs_filetype_table[] = {
1715 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
1716 };
1717
1718 static int btrfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
1719 {
1720 struct inode *inode = filp->f_dentry->d_inode;
1721 struct btrfs_root *root = BTRFS_I(inode)->root;
1722 struct btrfs_item *item;
1723 struct btrfs_dir_item *di;
1724 struct btrfs_key key;
1725 struct btrfs_key found_key;
1726 struct btrfs_path *path;
1727 int ret;
1728 u32 nritems;
1729 struct extent_buffer *leaf;
1730 int slot;
1731 int advance;
1732 unsigned char d_type;
1733 int over = 0;
1734 u32 di_cur;
1735 u32 di_total;
1736 u32 di_len;
1737 int key_type = BTRFS_DIR_INDEX_KEY;
1738 char tmp_name[32];
1739 char *name_ptr;
1740 int name_len;
1741
1742 /* FIXME, use a real flag for deciding about the key type */
1743 if (root->fs_info->tree_root == root)
1744 key_type = BTRFS_DIR_ITEM_KEY;
1745
1746 /* special case for "." */
1747 if (filp->f_pos == 0) {
1748 over = filldir(dirent, ".", 1,
1749 1, inode->i_ino,
1750 DT_DIR);
1751 if (over)
1752 return 0;
1753 filp->f_pos = 1;
1754 }
1755
1756 key.objectid = inode->i_ino;
1757 path = btrfs_alloc_path();
1758 path->reada = 2;
1759
1760 /* special case for .., just use the back ref */
1761 if (filp->f_pos == 1) {
1762 btrfs_set_key_type(&key, BTRFS_INODE_REF_KEY);
1763 key.offset = 0;
1764 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1765 BUG_ON(ret == 0);
1766 leaf = path->nodes[0];
1767 slot = path->slots[0];
1768 nritems = btrfs_header_nritems(leaf);
1769 if (slot >= nritems) {
1770 btrfs_release_path(root, path);
1771 goto read_dir_items;
1772 }
1773 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1774 btrfs_release_path(root, path);
1775 if (found_key.objectid != key.objectid ||
1776 found_key.type != BTRFS_INODE_REF_KEY)
1777 goto read_dir_items;
1778 over = filldir(dirent, "..", 2,
1779 2, found_key.offset, DT_DIR);
1780 if (over)
1781 goto nopos;
1782 filp->f_pos = 2;
1783 }
1784
1785 read_dir_items:
1786 btrfs_set_key_type(&key, key_type);
1787 key.offset = filp->f_pos;
1788
1789 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1790 if (ret < 0)
1791 goto err;
1792 advance = 0;
1793 while(1) {
1794 leaf = path->nodes[0];
1795 nritems = btrfs_header_nritems(leaf);
1796 slot = path->slots[0];
1797 if (advance || slot >= nritems) {
1798 if (slot >= nritems -1) {
1799 ret = btrfs_next_leaf(root, path);
1800 if (ret)
1801 break;
1802 leaf = path->nodes[0];
1803 nritems = btrfs_header_nritems(leaf);
1804 slot = path->slots[0];
1805 } else {
1806 slot++;
1807 path->slots[0]++;
1808 }
1809 }
1810 advance = 1;
1811 item = btrfs_item_nr(leaf, slot);
1812 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1813
1814 if (found_key.objectid != key.objectid)
1815 break;
1816 if (btrfs_key_type(&found_key) != key_type)
1817 break;
1818 if (found_key.offset < filp->f_pos)
1819 continue;
1820
1821 filp->f_pos = found_key.offset;
1822 advance = 1;
1823 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
1824 di_cur = 0;
1825 di_total = btrfs_item_size(leaf, item);
1826 while(di_cur < di_total) {
1827 struct btrfs_key location;
1828
1829 name_len = btrfs_dir_name_len(leaf, di);
1830 if (name_len < 32) {
1831 name_ptr = tmp_name;
1832 } else {
1833 name_ptr = kmalloc(name_len, GFP_NOFS);
1834 BUG_ON(!name_ptr);
1835 }
1836 read_extent_buffer(leaf, name_ptr,
1837 (unsigned long)(di + 1), name_len);
1838
1839 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
1840 btrfs_dir_item_key_to_cpu(leaf, di, &location);
1841 over = filldir(dirent, name_ptr, name_len,
1842 found_key.offset,
1843 location.objectid,
1844 d_type);
1845
1846 if (name_ptr != tmp_name)
1847 kfree(name_ptr);
1848
1849 if (over)
1850 goto nopos;
1851 di_len = btrfs_dir_name_len(leaf, di) +
1852 btrfs_dir_data_len(leaf, di) +sizeof(*di);
1853 di_cur += di_len;
1854 di = (struct btrfs_dir_item *)((char *)di + di_len);
1855 }
1856 }
1857 if (key_type == BTRFS_DIR_INDEX_KEY)
1858 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
1859 else
1860 filp->f_pos++;
1861 nopos:
1862 ret = 0;
1863 err:
1864 btrfs_free_path(path);
1865 return ret;
1866 }
1867
1868 int btrfs_write_inode(struct inode *inode, int wait)
1869 {
1870 struct btrfs_root *root = BTRFS_I(inode)->root;
1871 struct btrfs_trans_handle *trans;
1872 int ret = 0;
1873
1874 if (wait) {
1875 trans = btrfs_join_transaction(root, 1);
1876 btrfs_set_trans_block_group(trans, inode);
1877 ret = btrfs_commit_transaction(trans, root);
1878 }
1879 return ret;
1880 }
1881
1882 /*
1883 * This is somewhat expensive, updating the tree every time the
1884 * inode changes. But, it is most likely to find the inode in cache.
1885 * FIXME, needs more benchmarking...there are no reasons other than performance
1886 * to keep or drop this code.
1887 */
1888 void btrfs_dirty_inode(struct inode *inode)
1889 {
1890 struct btrfs_root *root = BTRFS_I(inode)->root;
1891 struct btrfs_trans_handle *trans;
1892
1893 trans = btrfs_join_transaction(root, 1);
1894 btrfs_set_trans_block_group(trans, inode);
1895 btrfs_update_inode(trans, root, inode);
1896 btrfs_end_transaction(trans, root);
1897 }
1898
1899 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
1900 struct btrfs_root *root,
1901 const char *name, int name_len,
1902 u64 ref_objectid,
1903 u64 objectid,
1904 struct btrfs_block_group_cache *group,
1905 int mode)
1906 {
1907 struct inode *inode;
1908 struct btrfs_inode_item *inode_item;
1909 struct btrfs_block_group_cache *new_inode_group;
1910 struct btrfs_key *location;
1911 struct btrfs_path *path;
1912 struct btrfs_inode_ref *ref;
1913 struct btrfs_key key[2];
1914 u32 sizes[2];
1915 unsigned long ptr;
1916 int ret;
1917 int owner;
1918
1919 path = btrfs_alloc_path();
1920 BUG_ON(!path);
1921
1922 inode = new_inode(root->fs_info->sb);
1923 if (!inode)
1924 return ERR_PTR(-ENOMEM);
1925
1926 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
1927 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
1928 inode->i_mapping, GFP_NOFS);
1929 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
1930 inode->i_mapping, GFP_NOFS);
1931 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
1932 mutex_init(&BTRFS_I(inode)->csum_mutex);
1933 mutex_init(&BTRFS_I(inode)->extent_mutex);
1934 BTRFS_I(inode)->delalloc_bytes = 0;
1935 BTRFS_I(inode)->disk_i_size = 0;
1936 BTRFS_I(inode)->root = root;
1937
1938 if (mode & S_IFDIR)
1939 owner = 0;
1940 else
1941 owner = 1;
1942 new_inode_group = btrfs_find_block_group(root, group, 0,
1943 BTRFS_BLOCK_GROUP_METADATA, owner);
1944 if (!new_inode_group) {
1945 printk("find_block group failed\n");
1946 new_inode_group = group;
1947 }
1948 BTRFS_I(inode)->block_group = new_inode_group;
1949 BTRFS_I(inode)->flags = 0;
1950
1951 key[0].objectid = objectid;
1952 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
1953 key[0].offset = 0;
1954
1955 key[1].objectid = objectid;
1956 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
1957 key[1].offset = ref_objectid;
1958
1959 sizes[0] = sizeof(struct btrfs_inode_item);
1960 sizes[1] = name_len + sizeof(*ref);
1961
1962 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
1963 if (ret != 0)
1964 goto fail;
1965
1966 if (objectid > root->highest_inode)
1967 root->highest_inode = objectid;
1968
1969 inode->i_uid = current->fsuid;
1970 inode->i_gid = current->fsgid;
1971 inode->i_mode = mode;
1972 inode->i_ino = objectid;
1973 inode->i_blocks = 0;
1974 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1975 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1976 struct btrfs_inode_item);
1977 fill_inode_item(path->nodes[0], inode_item, inode);
1978
1979 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
1980 struct btrfs_inode_ref);
1981 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
1982 ptr = (unsigned long)(ref + 1);
1983 write_extent_buffer(path->nodes[0], name, ptr, name_len);
1984
1985 btrfs_mark_buffer_dirty(path->nodes[0]);
1986 btrfs_free_path(path);
1987
1988 location = &BTRFS_I(inode)->location;
1989 location->objectid = objectid;
1990 location->offset = 0;
1991 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
1992
1993 insert_inode_hash(inode);
1994 return inode;
1995 fail:
1996 btrfs_free_path(path);
1997 return ERR_PTR(ret);
1998 }
1999
2000 static inline u8 btrfs_inode_type(struct inode *inode)
2001 {
2002 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
2003 }
2004
2005 static int btrfs_add_link(struct btrfs_trans_handle *trans,
2006 struct dentry *dentry, struct inode *inode,
2007 int add_backref)
2008 {
2009 int ret;
2010 struct btrfs_key key;
2011 struct btrfs_root *root = BTRFS_I(dentry->d_parent->d_inode)->root;
2012 struct inode *parent_inode;
2013
2014 key.objectid = inode->i_ino;
2015 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
2016 key.offset = 0;
2017
2018 ret = btrfs_insert_dir_item(trans, root,
2019 dentry->d_name.name, dentry->d_name.len,
2020 dentry->d_parent->d_inode->i_ino,
2021 &key, btrfs_inode_type(inode));
2022 if (ret == 0) {
2023 if (add_backref) {
2024 ret = btrfs_insert_inode_ref(trans, root,
2025 dentry->d_name.name,
2026 dentry->d_name.len,
2027 inode->i_ino,
2028 dentry->d_parent->d_inode->i_ino);
2029 }
2030 parent_inode = dentry->d_parent->d_inode;
2031 btrfs_i_size_write(parent_inode, parent_inode->i_size +
2032 dentry->d_name.len * 2);
2033 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
2034 ret = btrfs_update_inode(trans, root,
2035 dentry->d_parent->d_inode);
2036 }
2037 return ret;
2038 }
2039
2040 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
2041 struct dentry *dentry, struct inode *inode,
2042 int backref)
2043 {
2044 int err = btrfs_add_link(trans, dentry, inode, backref);
2045 if (!err) {
2046 d_instantiate(dentry, inode);
2047 return 0;
2048 }
2049 if (err > 0)
2050 err = -EEXIST;
2051 return err;
2052 }
2053
2054 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
2055 int mode, dev_t rdev)
2056 {
2057 struct btrfs_trans_handle *trans;
2058 struct btrfs_root *root = BTRFS_I(dir)->root;
2059 struct inode *inode = NULL;
2060 int err;
2061 int drop_inode = 0;
2062 u64 objectid;
2063 unsigned long nr = 0;
2064
2065 if (!new_valid_dev(rdev))
2066 return -EINVAL;
2067
2068 err = btrfs_check_free_space(root, 1, 0);
2069 if (err)
2070 goto fail;
2071
2072 trans = btrfs_start_transaction(root, 1);
2073 btrfs_set_trans_block_group(trans, dir);
2074
2075 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2076 if (err) {
2077 err = -ENOSPC;
2078 goto out_unlock;
2079 }
2080
2081 inode = btrfs_new_inode(trans, root, dentry->d_name.name,
2082 dentry->d_name.len,
2083 dentry->d_parent->d_inode->i_ino, objectid,
2084 BTRFS_I(dir)->block_group, mode);
2085 err = PTR_ERR(inode);
2086 if (IS_ERR(inode))
2087 goto out_unlock;
2088
2089 btrfs_set_trans_block_group(trans, inode);
2090 err = btrfs_add_nondir(trans, dentry, inode, 0);
2091 if (err)
2092 drop_inode = 1;
2093 else {
2094 inode->i_op = &btrfs_special_inode_operations;
2095 init_special_inode(inode, inode->i_mode, rdev);
2096 btrfs_update_inode(trans, root, inode);
2097 }
2098 dir->i_sb->s_dirt = 1;
2099 btrfs_update_inode_block_group(trans, inode);
2100 btrfs_update_inode_block_group(trans, dir);
2101 out_unlock:
2102 nr = trans->blocks_used;
2103 btrfs_end_transaction_throttle(trans, root);
2104 fail:
2105 if (drop_inode) {
2106 inode_dec_link_count(inode);
2107 iput(inode);
2108 }
2109 btrfs_btree_balance_dirty(root, nr);
2110 return err;
2111 }
2112
2113 static int btrfs_create(struct inode *dir, struct dentry *dentry,
2114 int mode, struct nameidata *nd)
2115 {
2116 struct btrfs_trans_handle *trans;
2117 struct btrfs_root *root = BTRFS_I(dir)->root;
2118 struct inode *inode = NULL;
2119 int err;
2120 int drop_inode = 0;
2121 unsigned long nr = 0;
2122 u64 objectid;
2123
2124 err = btrfs_check_free_space(root, 1, 0);
2125 if (err)
2126 goto fail;
2127 trans = btrfs_start_transaction(root, 1);
2128 btrfs_set_trans_block_group(trans, dir);
2129
2130 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2131 if (err) {
2132 err = -ENOSPC;
2133 goto out_unlock;
2134 }
2135
2136 inode = btrfs_new_inode(trans, root, dentry->d_name.name,
2137 dentry->d_name.len,
2138 dentry->d_parent->d_inode->i_ino,
2139 objectid, BTRFS_I(dir)->block_group, mode);
2140 err = PTR_ERR(inode);
2141 if (IS_ERR(inode))
2142 goto out_unlock;
2143
2144 btrfs_set_trans_block_group(trans, inode);
2145 err = btrfs_add_nondir(trans, dentry, inode, 0);
2146 if (err)
2147 drop_inode = 1;
2148 else {
2149 inode->i_mapping->a_ops = &btrfs_aops;
2150 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2151 inode->i_fop = &btrfs_file_operations;
2152 inode->i_op = &btrfs_file_inode_operations;
2153 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2154 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2155 inode->i_mapping, GFP_NOFS);
2156 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2157 inode->i_mapping, GFP_NOFS);
2158 mutex_init(&BTRFS_I(inode)->csum_mutex);
2159 mutex_init(&BTRFS_I(inode)->extent_mutex);
2160 BTRFS_I(inode)->delalloc_bytes = 0;
2161 BTRFS_I(inode)->disk_i_size = 0;
2162 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2163 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2164 }
2165 dir->i_sb->s_dirt = 1;
2166 btrfs_update_inode_block_group(trans, inode);
2167 btrfs_update_inode_block_group(trans, dir);
2168 out_unlock:
2169 nr = trans->blocks_used;
2170 btrfs_end_transaction_throttle(trans, root);
2171 fail:
2172 if (drop_inode) {
2173 inode_dec_link_count(inode);
2174 iput(inode);
2175 }
2176 btrfs_btree_balance_dirty(root, nr);
2177 return err;
2178 }
2179
2180 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
2181 struct dentry *dentry)
2182 {
2183 struct btrfs_trans_handle *trans;
2184 struct btrfs_root *root = BTRFS_I(dir)->root;
2185 struct inode *inode = old_dentry->d_inode;
2186 unsigned long nr = 0;
2187 int err;
2188 int drop_inode = 0;
2189
2190 if (inode->i_nlink == 0)
2191 return -ENOENT;
2192
2193 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2194 inode->i_nlink++;
2195 #else
2196 inc_nlink(inode);
2197 #endif
2198 err = btrfs_check_free_space(root, 1, 0);
2199 if (err)
2200 goto fail;
2201 trans = btrfs_start_transaction(root, 1);
2202
2203 btrfs_set_trans_block_group(trans, dir);
2204 atomic_inc(&inode->i_count);
2205 err = btrfs_add_nondir(trans, dentry, inode, 1);
2206
2207 if (err)
2208 drop_inode = 1;
2209
2210 dir->i_sb->s_dirt = 1;
2211 btrfs_update_inode_block_group(trans, dir);
2212 err = btrfs_update_inode(trans, root, inode);
2213
2214 if (err)
2215 drop_inode = 1;
2216
2217 nr = trans->blocks_used;
2218 btrfs_end_transaction_throttle(trans, root);
2219 fail:
2220 if (drop_inode) {
2221 inode_dec_link_count(inode);
2222 iput(inode);
2223 }
2224 btrfs_btree_balance_dirty(root, nr);
2225 return err;
2226 }
2227
2228 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2229 {
2230 struct inode *inode = NULL;
2231 struct btrfs_trans_handle *trans;
2232 struct btrfs_root *root = BTRFS_I(dir)->root;
2233 int err = 0;
2234 int drop_on_err = 0;
2235 u64 objectid = 0;
2236 unsigned long nr = 1;
2237
2238 err = btrfs_check_free_space(root, 1, 0);
2239 if (err)
2240 goto out_unlock;
2241
2242 trans = btrfs_start_transaction(root, 1);
2243 btrfs_set_trans_block_group(trans, dir);
2244
2245 if (IS_ERR(trans)) {
2246 err = PTR_ERR(trans);
2247 goto out_unlock;
2248 }
2249
2250 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
2251 if (err) {
2252 err = -ENOSPC;
2253 goto out_unlock;
2254 }
2255
2256 inode = btrfs_new_inode(trans, root, dentry->d_name.name,
2257 dentry->d_name.len,
2258 dentry->d_parent->d_inode->i_ino, objectid,
2259 BTRFS_I(dir)->block_group, S_IFDIR | mode);
2260 if (IS_ERR(inode)) {
2261 err = PTR_ERR(inode);
2262 goto out_fail;
2263 }
2264
2265 drop_on_err = 1;
2266 inode->i_op = &btrfs_dir_inode_operations;
2267 inode->i_fop = &btrfs_dir_file_operations;
2268 btrfs_set_trans_block_group(trans, inode);
2269
2270 btrfs_i_size_write(inode, 0);
2271 err = btrfs_update_inode(trans, root, inode);
2272 if (err)
2273 goto out_fail;
2274
2275 err = btrfs_add_link(trans, dentry, inode, 0);
2276 if (err)
2277 goto out_fail;
2278
2279 d_instantiate(dentry, inode);
2280 drop_on_err = 0;
2281 dir->i_sb->s_dirt = 1;
2282 btrfs_update_inode_block_group(trans, inode);
2283 btrfs_update_inode_block_group(trans, dir);
2284
2285 out_fail:
2286 nr = trans->blocks_used;
2287 btrfs_end_transaction_throttle(trans, root);
2288
2289 out_unlock:
2290 if (drop_on_err)
2291 iput(inode);
2292 btrfs_btree_balance_dirty(root, nr);
2293 return err;
2294 }
2295
2296 static int merge_extent_mapping(struct extent_map_tree *em_tree,
2297 struct extent_map *existing,
2298 struct extent_map *em,
2299 u64 map_start, u64 map_len)
2300 {
2301 u64 start_diff;
2302
2303 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
2304 start_diff = map_start - em->start;
2305 em->start = map_start;
2306 em->len = map_len;
2307 if (em->block_start < EXTENT_MAP_LAST_BYTE)
2308 em->block_start += start_diff;
2309 return add_extent_mapping(em_tree, em);
2310 }
2311
2312 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2313 size_t pg_offset, u64 start, u64 len,
2314 int create)
2315 {
2316 int ret;
2317 int err = 0;
2318 u64 bytenr;
2319 u64 extent_start = 0;
2320 u64 extent_end = 0;
2321 u64 objectid = inode->i_ino;
2322 u32 found_type;
2323 struct btrfs_path *path = NULL;
2324 struct btrfs_root *root = BTRFS_I(inode)->root;
2325 struct btrfs_file_extent_item *item;
2326 struct extent_buffer *leaf;
2327 struct btrfs_key found_key;
2328 struct extent_map *em = NULL;
2329 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2330 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2331 struct btrfs_trans_handle *trans = NULL;
2332
2333 again:
2334 spin_lock(&em_tree->lock);
2335 em = lookup_extent_mapping(em_tree, start, len);
2336 if (em)
2337 em->bdev = root->fs_info->fs_devices->latest_bdev;
2338 spin_unlock(&em_tree->lock);
2339
2340 if (em) {
2341 if (em->start > start || em->start + em->len <= start)
2342 free_extent_map(em);
2343 else if (em->block_start == EXTENT_MAP_INLINE && page)
2344 free_extent_map(em);
2345 else
2346 goto out;
2347 }
2348 em = alloc_extent_map(GFP_NOFS);
2349 if (!em) {
2350 err = -ENOMEM;
2351 goto out;
2352 }
2353 em->bdev = root->fs_info->fs_devices->latest_bdev;
2354 em->start = EXTENT_MAP_HOLE;
2355 em->len = (u64)-1;
2356
2357 if (!path) {
2358 path = btrfs_alloc_path();
2359 BUG_ON(!path);
2360 }
2361
2362 ret = btrfs_lookup_file_extent(trans, root, path,
2363 objectid, start, trans != NULL);
2364 if (ret < 0) {
2365 err = ret;
2366 goto out;
2367 }
2368
2369 if (ret != 0) {
2370 if (path->slots[0] == 0)
2371 goto not_found;
2372 path->slots[0]--;
2373 }
2374
2375 leaf = path->nodes[0];
2376 item = btrfs_item_ptr(leaf, path->slots[0],
2377 struct btrfs_file_extent_item);
2378 /* are we inside the extent that was found? */
2379 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2380 found_type = btrfs_key_type(&found_key);
2381 if (found_key.objectid != objectid ||
2382 found_type != BTRFS_EXTENT_DATA_KEY) {
2383 goto not_found;
2384 }
2385
2386 found_type = btrfs_file_extent_type(leaf, item);
2387 extent_start = found_key.offset;
2388 if (found_type == BTRFS_FILE_EXTENT_REG) {
2389 extent_end = extent_start +
2390 btrfs_file_extent_num_bytes(leaf, item);
2391 err = 0;
2392 if (start < extent_start || start >= extent_end) {
2393 em->start = start;
2394 if (start < extent_start) {
2395 if (start + len <= extent_start)
2396 goto not_found;
2397 em->len = extent_end - extent_start;
2398 } else {
2399 em->len = len;
2400 }
2401 goto not_found_em;
2402 }
2403 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
2404 if (bytenr == 0) {
2405 em->start = extent_start;
2406 em->len = extent_end - extent_start;
2407 em->block_start = EXTENT_MAP_HOLE;
2408 goto insert;
2409 }
2410 bytenr += btrfs_file_extent_offset(leaf, item);
2411 em->block_start = bytenr;
2412 em->start = extent_start;
2413 em->len = extent_end - extent_start;
2414 goto insert;
2415 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
2416 u64 page_start;
2417 unsigned long ptr;
2418 char *map;
2419 size_t size;
2420 size_t extent_offset;
2421 size_t copy_size;
2422
2423 size = btrfs_file_extent_inline_len(leaf, btrfs_item_nr(leaf,
2424 path->slots[0]));
2425 extent_end = (extent_start + size + root->sectorsize - 1) &
2426 ~((u64)root->sectorsize - 1);
2427 if (start < extent_start || start >= extent_end) {
2428 em->start = start;
2429 if (start < extent_start) {
2430 if (start + len <= extent_start)
2431 goto not_found;
2432 em->len = extent_end - extent_start;
2433 } else {
2434 em->len = len;
2435 }
2436 goto not_found_em;
2437 }
2438 em->block_start = EXTENT_MAP_INLINE;
2439
2440 if (!page) {
2441 em->start = extent_start;
2442 em->len = size;
2443 goto out;
2444 }
2445
2446 page_start = page_offset(page) + pg_offset;
2447 extent_offset = page_start - extent_start;
2448 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
2449 size - extent_offset);
2450 em->start = extent_start + extent_offset;
2451 em->len = (copy_size + root->sectorsize - 1) &
2452 ~((u64)root->sectorsize - 1);
2453 map = kmap(page);
2454 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
2455 if (create == 0 && !PageUptodate(page)) {
2456 read_extent_buffer(leaf, map + pg_offset, ptr,
2457 copy_size);
2458 flush_dcache_page(page);
2459 } else if (create && PageUptodate(page)) {
2460 if (!trans) {
2461 kunmap(page);
2462 free_extent_map(em);
2463 em = NULL;
2464 btrfs_release_path(root, path);
2465 trans = btrfs_join_transaction(root, 1);
2466 goto again;
2467 }
2468 write_extent_buffer(leaf, map + pg_offset, ptr,
2469 copy_size);
2470 btrfs_mark_buffer_dirty(leaf);
2471 }
2472 kunmap(page);
2473 set_extent_uptodate(io_tree, em->start,
2474 extent_map_end(em) - 1, GFP_NOFS);
2475 goto insert;
2476 } else {
2477 printk("unkknown found_type %d\n", found_type);
2478 WARN_ON(1);
2479 }
2480 not_found:
2481 em->start = start;
2482 em->len = len;
2483 not_found_em:
2484 em->block_start = EXTENT_MAP_HOLE;
2485 insert:
2486 btrfs_release_path(root, path);
2487 if (em->start > start || extent_map_end(em) <= start) {
2488 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
2489 err = -EIO;
2490 goto out;
2491 }
2492
2493 err = 0;
2494 spin_lock(&em_tree->lock);
2495 ret = add_extent_mapping(em_tree, em);
2496 /* it is possible that someone inserted the extent into the tree
2497 * while we had the lock dropped. It is also possible that
2498 * an overlapping map exists in the tree
2499 */
2500 if (ret == -EEXIST) {
2501 struct extent_map *existing;
2502
2503 ret = 0;
2504
2505 existing = lookup_extent_mapping(em_tree, start, len);
2506 if (existing && (existing->start > start ||
2507 existing->start + existing->len <= start)) {
2508 free_extent_map(existing);
2509 existing = NULL;
2510 }
2511 if (!existing) {
2512 existing = lookup_extent_mapping(em_tree, em->start,
2513 em->len);
2514 if (existing) {
2515 err = merge_extent_mapping(em_tree, existing,
2516 em, start,
2517 root->sectorsize);
2518 free_extent_map(existing);
2519 if (err) {
2520 free_extent_map(em);
2521 em = NULL;
2522 }
2523 } else {
2524 err = -EIO;
2525 printk("failing to insert %Lu %Lu\n",
2526 start, len);
2527 free_extent_map(em);
2528 em = NULL;
2529 }
2530 } else {
2531 free_extent_map(em);
2532 em = existing;
2533 err = 0;
2534 }
2535 }
2536 spin_unlock(&em_tree->lock);
2537 out:
2538 if (path)
2539 btrfs_free_path(path);
2540 if (trans) {
2541 ret = btrfs_end_transaction(trans, root);
2542 if (!err) {
2543 err = ret;
2544 }
2545 }
2546 if (err) {
2547 free_extent_map(em);
2548 WARN_ON(1);
2549 return ERR_PTR(err);
2550 }
2551 return em;
2552 }
2553
2554 #if 0 /* waiting for O_DIRECT reads */
2555 static int btrfs_get_block(struct inode *inode, sector_t iblock,
2556 struct buffer_head *bh_result, int create)
2557 {
2558 struct extent_map *em;
2559 u64 start = (u64)iblock << inode->i_blkbits;
2560 struct btrfs_multi_bio *multi = NULL;
2561 struct btrfs_root *root = BTRFS_I(inode)->root;
2562 u64 len;
2563 u64 logical;
2564 u64 map_length;
2565 int ret = 0;
2566
2567 em = btrfs_get_extent(inode, NULL, 0, start, bh_result->b_size, 0);
2568
2569 if (!em || IS_ERR(em))
2570 goto out;
2571
2572 if (em->start > start || em->start + em->len <= start) {
2573 goto out;
2574 }
2575
2576 if (em->block_start == EXTENT_MAP_INLINE) {
2577 ret = -EINVAL;
2578 goto out;
2579 }
2580
2581 len = em->start + em->len - start;
2582 len = min_t(u64, len, INT_LIMIT(typeof(bh_result->b_size)));
2583
2584 if (em->block_start == EXTENT_MAP_HOLE ||
2585 em->block_start == EXTENT_MAP_DELALLOC) {
2586 bh_result->b_size = len;
2587 goto out;
2588 }
2589
2590 logical = start - em->start;
2591 logical = em->block_start + logical;
2592
2593 map_length = len;
2594 ret = btrfs_map_block(&root->fs_info->mapping_tree, READ,
2595 logical, &map_length, &multi, 0);
2596 BUG_ON(ret);
2597 bh_result->b_blocknr = multi->stripes[0].physical >> inode->i_blkbits;
2598 bh_result->b_size = min(map_length, len);
2599
2600 bh_result->b_bdev = multi->stripes[0].dev->bdev;
2601 set_buffer_mapped(bh_result);
2602 kfree(multi);
2603 out:
2604 free_extent_map(em);
2605 return ret;
2606 }
2607 #endif
2608
2609 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
2610 const struct iovec *iov, loff_t offset,
2611 unsigned long nr_segs)
2612 {
2613 return -EINVAL;
2614 #if 0
2615 struct file *file = iocb->ki_filp;
2616 struct inode *inode = file->f_mapping->host;
2617
2618 if (rw == WRITE)
2619 return -EINVAL;
2620
2621 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2622 offset, nr_segs, btrfs_get_block, NULL);
2623 #endif
2624 }
2625
2626 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
2627 {
2628 return extent_bmap(mapping, iblock, btrfs_get_extent);
2629 }
2630
2631 int btrfs_readpage(struct file *file, struct page *page)
2632 {
2633 struct extent_io_tree *tree;
2634 tree = &BTRFS_I(page->mapping->host)->io_tree;
2635 return extent_read_full_page(tree, page, btrfs_get_extent);
2636 }
2637
2638 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
2639 {
2640 struct extent_io_tree *tree;
2641
2642
2643 if (current->flags & PF_MEMALLOC) {
2644 redirty_page_for_writepage(wbc, page);
2645 unlock_page(page);
2646 return 0;
2647 }
2648 tree = &BTRFS_I(page->mapping->host)->io_tree;
2649 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
2650 }
2651
2652 int btrfs_writepages(struct address_space *mapping,
2653 struct writeback_control *wbc)
2654 {
2655 struct extent_io_tree *tree;
2656 tree = &BTRFS_I(mapping->host)->io_tree;
2657 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
2658 }
2659
2660 static int
2661 btrfs_readpages(struct file *file, struct address_space *mapping,
2662 struct list_head *pages, unsigned nr_pages)
2663 {
2664 struct extent_io_tree *tree;
2665 tree = &BTRFS_I(mapping->host)->io_tree;
2666 return extent_readpages(tree, mapping, pages, nr_pages,
2667 btrfs_get_extent);
2668 }
2669 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2670 {
2671 struct extent_io_tree *tree;
2672 struct extent_map_tree *map;
2673 int ret;
2674
2675 tree = &BTRFS_I(page->mapping->host)->io_tree;
2676 map = &BTRFS_I(page->mapping->host)->extent_tree;
2677 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
2678 if (ret == 1) {
2679 ClearPagePrivate(page);
2680 set_page_private(page, 0);
2681 page_cache_release(page);
2682 }
2683 return ret;
2684 }
2685
2686 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
2687 {
2688 return __btrfs_releasepage(page, gfp_flags);
2689 }
2690
2691 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
2692 {
2693 struct extent_io_tree *tree;
2694 struct btrfs_ordered_extent *ordered;
2695 u64 page_start = page_offset(page);
2696 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2697
2698 wait_on_page_writeback(page);
2699 tree = &BTRFS_I(page->mapping->host)->io_tree;
2700 if (offset) {
2701 btrfs_releasepage(page, GFP_NOFS);
2702 return;
2703 }
2704
2705 lock_extent(tree, page_start, page_end, GFP_NOFS);
2706 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
2707 page_offset(page));
2708 if (ordered) {
2709 /*
2710 * IO on this page will never be started, so we need
2711 * to account for any ordered extents now
2712 */
2713 clear_extent_bit(tree, page_start, page_end,
2714 EXTENT_DIRTY | EXTENT_DELALLOC |
2715 EXTENT_LOCKED, 1, 0, GFP_NOFS);
2716 btrfs_finish_ordered_io(page->mapping->host,
2717 page_start, page_end);
2718 btrfs_put_ordered_extent(ordered);
2719 lock_extent(tree, page_start, page_end, GFP_NOFS);
2720 }
2721 clear_extent_bit(tree, page_start, page_end,
2722 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2723 EXTENT_ORDERED,
2724 1, 1, GFP_NOFS);
2725 __btrfs_releasepage(page, GFP_NOFS);
2726
2727 ClearPageChecked(page);
2728 if (PagePrivate(page)) {
2729 ClearPagePrivate(page);
2730 set_page_private(page, 0);
2731 page_cache_release(page);
2732 }
2733 }
2734
2735 /*
2736 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
2737 * called from a page fault handler when a page is first dirtied. Hence we must
2738 * be careful to check for EOF conditions here. We set the page up correctly
2739 * for a written page which means we get ENOSPC checking when writing into
2740 * holes and correct delalloc and unwritten extent mapping on filesystems that
2741 * support these features.
2742 *
2743 * We are not allowed to take the i_mutex here so we have to play games to
2744 * protect against truncate races as the page could now be beyond EOF. Because
2745 * vmtruncate() writes the inode size before removing pages, once we have the
2746 * page lock we can determine safely if the page is beyond EOF. If it is not
2747 * beyond EOF, then the page is guaranteed safe against truncation until we
2748 * unlock the page.
2749 */
2750 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
2751 {
2752 struct inode *inode = fdentry(vma->vm_file)->d_inode;
2753 struct btrfs_root *root = BTRFS_I(inode)->root;
2754 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2755 struct btrfs_ordered_extent *ordered;
2756 char *kaddr;
2757 unsigned long zero_start;
2758 loff_t size;
2759 int ret;
2760 u64 page_start;
2761 u64 page_end;
2762
2763 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
2764 if (ret)
2765 goto out;
2766
2767 ret = -EINVAL;
2768 again:
2769 lock_page(page);
2770 size = i_size_read(inode);
2771 page_start = page_offset(page);
2772 page_end = page_start + PAGE_CACHE_SIZE - 1;
2773
2774 if ((page->mapping != inode->i_mapping) ||
2775 (page_start >= size)) {
2776 /* page got truncated out from underneath us */
2777 goto out_unlock;
2778 }
2779 wait_on_page_writeback(page);
2780
2781 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2782 set_page_extent_mapped(page);
2783
2784 /*
2785 * we can't set the delalloc bits if there are pending ordered
2786 * extents. Drop our locks and wait for them to finish
2787 */
2788 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2789 if (ordered) {
2790 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2791 unlock_page(page);
2792 btrfs_start_ordered_extent(inode, ordered, 1);
2793 btrfs_put_ordered_extent(ordered);
2794 goto again;
2795 }
2796
2797 set_extent_delalloc(&BTRFS_I(inode)->io_tree, page_start,
2798 page_end, GFP_NOFS);
2799 ret = 0;
2800
2801 /* page is wholly or partially inside EOF */
2802 if (page_start + PAGE_CACHE_SIZE > size)
2803 zero_start = size & ~PAGE_CACHE_MASK;
2804 else
2805 zero_start = PAGE_CACHE_SIZE;
2806
2807 if (zero_start != PAGE_CACHE_SIZE) {
2808 kaddr = kmap(page);
2809 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
2810 flush_dcache_page(page);
2811 kunmap(page);
2812 }
2813 ClearPageChecked(page);
2814 set_page_dirty(page);
2815 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2816
2817 out_unlock:
2818 unlock_page(page);
2819 out:
2820 return ret;
2821 }
2822
2823 static void btrfs_truncate(struct inode *inode)
2824 {
2825 struct btrfs_root *root = BTRFS_I(inode)->root;
2826 int ret;
2827 struct btrfs_trans_handle *trans;
2828 unsigned long nr;
2829 u64 mask = root->sectorsize - 1;
2830
2831 if (!S_ISREG(inode->i_mode))
2832 return;
2833 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2834 return;
2835
2836 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2837 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
2838
2839 trans = btrfs_start_transaction(root, 1);
2840 btrfs_set_trans_block_group(trans, inode);
2841 btrfs_i_size_write(inode, inode->i_size);
2842
2843 /* FIXME, add redo link to tree so we don't leak on crash */
2844 ret = btrfs_truncate_in_trans(trans, root, inode,
2845 BTRFS_EXTENT_DATA_KEY);
2846 btrfs_update_inode(trans, root, inode);
2847 nr = trans->blocks_used;
2848
2849 ret = btrfs_end_transaction_throttle(trans, root);
2850 BUG_ON(ret);
2851 btrfs_btree_balance_dirty(root, nr);
2852 }
2853
2854 /*
2855 * Invalidate a single dcache entry at the root of the filesystem.
2856 * Needed after creation of snapshot or subvolume.
2857 */
2858 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
2859 int namelen)
2860 {
2861 struct dentry *alias, *entry;
2862 struct qstr qstr;
2863
2864 alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
2865 if (alias) {
2866 qstr.name = name;
2867 qstr.len = namelen;
2868 /* change me if btrfs ever gets a d_hash operation */
2869 qstr.hash = full_name_hash(qstr.name, qstr.len);
2870 entry = d_lookup(alias, &qstr);
2871 dput(alias);
2872 if (entry) {
2873 d_invalidate(entry);
2874 dput(entry);
2875 }
2876 }
2877 }
2878
2879 int btrfs_create_subvol_root(struct btrfs_root *new_root,
2880 struct btrfs_trans_handle *trans, u64 new_dirid,
2881 struct btrfs_block_group_cache *block_group)
2882 {
2883 struct inode *inode;
2884 int ret;
2885
2886 inode = btrfs_new_inode(trans, new_root, "..", 2, new_dirid,
2887 new_dirid, block_group, S_IFDIR | 0700);
2888 if (IS_ERR(inode))
2889 return PTR_ERR(inode);
2890 inode->i_op = &btrfs_dir_inode_operations;
2891 inode->i_fop = &btrfs_dir_file_operations;
2892 new_root->inode = inode;
2893
2894 ret = btrfs_insert_inode_ref(trans, new_root, "..", 2, new_dirid,
2895 new_dirid);
2896 inode->i_nlink = 1;
2897 btrfs_i_size_write(inode, 0);
2898
2899 return btrfs_update_inode(trans, new_root, inode);
2900 }
2901
2902 unsigned long btrfs_force_ra(struct address_space *mapping,
2903 struct file_ra_state *ra, struct file *file,
2904 pgoff_t offset, pgoff_t last_index)
2905 {
2906 pgoff_t req_size = last_index - offset + 1;
2907
2908 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
2909 offset = page_cache_readahead(mapping, ra, file, offset, req_size);
2910 return offset;
2911 #else
2912 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
2913 return offset + req_size;
2914 #endif
2915 }
2916
2917 struct inode *btrfs_alloc_inode(struct super_block *sb)
2918 {
2919 struct btrfs_inode *ei;
2920
2921 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
2922 if (!ei)
2923 return NULL;
2924 ei->last_trans = 0;
2925 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2926 return &ei->vfs_inode;
2927 }
2928
2929 void btrfs_destroy_inode(struct inode *inode)
2930 {
2931 struct btrfs_ordered_extent *ordered;
2932 WARN_ON(!list_empty(&inode->i_dentry));
2933 WARN_ON(inode->i_data.nrpages);
2934
2935 while(1) {
2936 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
2937 if (!ordered)
2938 break;
2939 else {
2940 printk("found ordered extent %Lu %Lu\n",
2941 ordered->file_offset, ordered->len);
2942 btrfs_remove_ordered_extent(inode, ordered);
2943 btrfs_put_ordered_extent(ordered);
2944 btrfs_put_ordered_extent(ordered);
2945 }
2946 }
2947 btrfs_drop_extent_cache(inode, 0, (u64)-1);
2948 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
2949 }
2950
2951 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
2952 static void init_once(struct kmem_cache * cachep, void *foo)
2953 #else
2954 static void init_once(void * foo, struct kmem_cache * cachep,
2955 unsigned long flags)
2956 #endif
2957 {
2958 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
2959
2960 inode_init_once(&ei->vfs_inode);
2961 }
2962
2963 void btrfs_destroy_cachep(void)
2964 {
2965 if (btrfs_inode_cachep)
2966 kmem_cache_destroy(btrfs_inode_cachep);
2967 if (btrfs_trans_handle_cachep)
2968 kmem_cache_destroy(btrfs_trans_handle_cachep);
2969 if (btrfs_transaction_cachep)
2970 kmem_cache_destroy(btrfs_transaction_cachep);
2971 if (btrfs_bit_radix_cachep)
2972 kmem_cache_destroy(btrfs_bit_radix_cachep);
2973 if (btrfs_path_cachep)
2974 kmem_cache_destroy(btrfs_path_cachep);
2975 }
2976
2977 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
2978 unsigned long extra_flags,
2979 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
2980 void (*ctor)(struct kmem_cache *, void *)
2981 #else
2982 void (*ctor)(void *, struct kmem_cache *,
2983 unsigned long)
2984 #endif
2985 )
2986 {
2987 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
2988 SLAB_MEM_SPREAD | extra_flags), ctor
2989 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
2990 ,NULL
2991 #endif
2992 );
2993 }
2994
2995 int btrfs_init_cachep(void)
2996 {
2997 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
2998 sizeof(struct btrfs_inode),
2999 0, init_once);
3000 if (!btrfs_inode_cachep)
3001 goto fail;
3002 btrfs_trans_handle_cachep =
3003 btrfs_cache_create("btrfs_trans_handle_cache",
3004 sizeof(struct btrfs_trans_handle),
3005 0, NULL);
3006 if (!btrfs_trans_handle_cachep)
3007 goto fail;
3008 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
3009 sizeof(struct btrfs_transaction),
3010 0, NULL);
3011 if (!btrfs_transaction_cachep)
3012 goto fail;
3013 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
3014 sizeof(struct btrfs_path),
3015 0, NULL);
3016 if (!btrfs_path_cachep)
3017 goto fail;
3018 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
3019 SLAB_DESTROY_BY_RCU, NULL);
3020 if (!btrfs_bit_radix_cachep)
3021 goto fail;
3022 return 0;
3023 fail:
3024 btrfs_destroy_cachep();
3025 return -ENOMEM;
3026 }
3027
3028 static int btrfs_getattr(struct vfsmount *mnt,
3029 struct dentry *dentry, struct kstat *stat)
3030 {
3031 struct inode *inode = dentry->d_inode;
3032 generic_fillattr(inode, stat);
3033 stat->blksize = PAGE_CACHE_SIZE;
3034 stat->blocks = inode->i_blocks + (BTRFS_I(inode)->delalloc_bytes >> 9);
3035 return 0;
3036 }
3037
3038 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
3039 struct inode * new_dir,struct dentry *new_dentry)
3040 {
3041 struct btrfs_trans_handle *trans;
3042 struct btrfs_root *root = BTRFS_I(old_dir)->root;
3043 struct inode *new_inode = new_dentry->d_inode;
3044 struct inode *old_inode = old_dentry->d_inode;
3045 struct timespec ctime = CURRENT_TIME;
3046 int ret;
3047
3048 if (S_ISDIR(old_inode->i_mode) && new_inode &&
3049 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
3050 return -ENOTEMPTY;
3051 }
3052
3053 ret = btrfs_check_free_space(root, 1, 0);
3054 if (ret)
3055 goto out_unlock;
3056
3057 trans = btrfs_start_transaction(root, 1);
3058
3059 btrfs_set_trans_block_group(trans, new_dir);
3060
3061 old_dentry->d_inode->i_nlink++;
3062 old_dir->i_ctime = old_dir->i_mtime = ctime;
3063 new_dir->i_ctime = new_dir->i_mtime = ctime;
3064 old_inode->i_ctime = ctime;
3065
3066 ret = btrfs_unlink_trans(trans, root, old_dir, old_dentry);
3067 if (ret)
3068 goto out_fail;
3069
3070 if (new_inode) {
3071 new_inode->i_ctime = CURRENT_TIME;
3072 ret = btrfs_unlink_trans(trans, root, new_dir, new_dentry);
3073 if (ret)
3074 goto out_fail;
3075 }
3076 ret = btrfs_add_link(trans, new_dentry, old_inode, 1);
3077 if (ret)
3078 goto out_fail;
3079
3080 out_fail:
3081 btrfs_end_transaction(trans, root);
3082 out_unlock:
3083 return ret;
3084 }
3085
3086 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
3087 const char *symname)
3088 {
3089 struct btrfs_trans_handle *trans;
3090 struct btrfs_root *root = BTRFS_I(dir)->root;
3091 struct btrfs_path *path;
3092 struct btrfs_key key;
3093 struct inode *inode = NULL;
3094 int err;
3095 int drop_inode = 0;
3096 u64 objectid;
3097 int name_len;
3098 int datasize;
3099 unsigned long ptr;
3100 struct btrfs_file_extent_item *ei;
3101 struct extent_buffer *leaf;
3102 unsigned long nr = 0;
3103
3104 name_len = strlen(symname) + 1;
3105 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
3106 return -ENAMETOOLONG;
3107
3108 err = btrfs_check_free_space(root, 1, 0);
3109 if (err)
3110 goto out_fail;
3111
3112 trans = btrfs_start_transaction(root, 1);
3113 btrfs_set_trans_block_group(trans, dir);
3114
3115 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3116 if (err) {
3117 err = -ENOSPC;
3118 goto out_unlock;
3119 }
3120
3121 inode = btrfs_new_inode(trans, root, dentry->d_name.name,
3122 dentry->d_name.len,
3123 dentry->d_parent->d_inode->i_ino, objectid,
3124 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO);
3125 err = PTR_ERR(inode);
3126 if (IS_ERR(inode))
3127 goto out_unlock;
3128
3129 btrfs_set_trans_block_group(trans, inode);
3130 err = btrfs_add_nondir(trans, dentry, inode, 0);
3131 if (err)
3132 drop_inode = 1;
3133 else {
3134 inode->i_mapping->a_ops = &btrfs_aops;
3135 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3136 inode->i_fop = &btrfs_file_operations;
3137 inode->i_op = &btrfs_file_inode_operations;
3138 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3139 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3140 inode->i_mapping, GFP_NOFS);
3141 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3142 inode->i_mapping, GFP_NOFS);
3143 mutex_init(&BTRFS_I(inode)->csum_mutex);
3144 mutex_init(&BTRFS_I(inode)->extent_mutex);
3145 BTRFS_I(inode)->delalloc_bytes = 0;
3146 BTRFS_I(inode)->disk_i_size = 0;
3147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3148 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3149 }
3150 dir->i_sb->s_dirt = 1;
3151 btrfs_update_inode_block_group(trans, inode);
3152 btrfs_update_inode_block_group(trans, dir);
3153 if (drop_inode)
3154 goto out_unlock;
3155
3156 path = btrfs_alloc_path();
3157 BUG_ON(!path);
3158 key.objectid = inode->i_ino;
3159 key.offset = 0;
3160 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
3161 datasize = btrfs_file_extent_calc_inline_size(name_len);
3162 err = btrfs_insert_empty_item(trans, root, path, &key,
3163 datasize);
3164 if (err) {
3165 drop_inode = 1;
3166 goto out_unlock;
3167 }
3168 leaf = path->nodes[0];
3169 ei = btrfs_item_ptr(leaf, path->slots[0],
3170 struct btrfs_file_extent_item);
3171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
3172 btrfs_set_file_extent_type(leaf, ei,
3173 BTRFS_FILE_EXTENT_INLINE);
3174 ptr = btrfs_file_extent_inline_start(ei);
3175 write_extent_buffer(leaf, symname, ptr, name_len);
3176 btrfs_mark_buffer_dirty(leaf);
3177 btrfs_free_path(path);
3178
3179 inode->i_op = &btrfs_symlink_inode_operations;
3180 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3181 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3182 btrfs_i_size_write(inode, name_len - 1);
3183 err = btrfs_update_inode(trans, root, inode);
3184 if (err)
3185 drop_inode = 1;
3186
3187 out_unlock:
3188 nr = trans->blocks_used;
3189 btrfs_end_transaction_throttle(trans, root);
3190 out_fail:
3191 if (drop_inode) {
3192 inode_dec_link_count(inode);
3193 iput(inode);
3194 }
3195 btrfs_btree_balance_dirty(root, nr);
3196 return err;
3197 }
3198
3199 static int btrfs_set_page_dirty(struct page *page)
3200 {
3201 return __set_page_dirty_nobuffers(page);
3202 }
3203
3204 static int btrfs_permission(struct inode *inode, int mask,
3205 struct nameidata *nd)
3206 {
3207 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
3208 return -EACCES;
3209 return generic_permission(inode, mask, NULL);
3210 }
3211
3212 static struct inode_operations btrfs_dir_inode_operations = {
3213 .lookup = btrfs_lookup,
3214 .create = btrfs_create,
3215 .unlink = btrfs_unlink,
3216 .link = btrfs_link,
3217 .mkdir = btrfs_mkdir,
3218 .rmdir = btrfs_rmdir,
3219 .rename = btrfs_rename,
3220 .symlink = btrfs_symlink,
3221 .setattr = btrfs_setattr,
3222 .mknod = btrfs_mknod,
3223 .setxattr = generic_setxattr,
3224 .getxattr = generic_getxattr,
3225 .listxattr = btrfs_listxattr,
3226 .removexattr = generic_removexattr,
3227 .permission = btrfs_permission,
3228 };
3229 static struct inode_operations btrfs_dir_ro_inode_operations = {
3230 .lookup = btrfs_lookup,
3231 .permission = btrfs_permission,
3232 };
3233 static struct file_operations btrfs_dir_file_operations = {
3234 .llseek = generic_file_llseek,
3235 .read = generic_read_dir,
3236 .readdir = btrfs_readdir,
3237 .unlocked_ioctl = btrfs_ioctl,
3238 #ifdef CONFIG_COMPAT
3239 .compat_ioctl = btrfs_ioctl,
3240 #endif
3241 .release = btrfs_release_file,
3242 };
3243
3244 static struct extent_io_ops btrfs_extent_io_ops = {
3245 .fill_delalloc = run_delalloc_range,
3246 .submit_bio_hook = btrfs_submit_bio_hook,
3247 .merge_bio_hook = btrfs_merge_bio_hook,
3248 .readpage_io_hook = btrfs_readpage_io_hook,
3249 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
3250 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
3251 .writepage_start_hook = btrfs_writepage_start_hook,
3252 .readpage_io_failed_hook = btrfs_io_failed_hook,
3253 .set_bit_hook = btrfs_set_bit_hook,
3254 .clear_bit_hook = btrfs_clear_bit_hook,
3255 };
3256
3257 static struct address_space_operations btrfs_aops = {
3258 .readpage = btrfs_readpage,
3259 .writepage = btrfs_writepage,
3260 .writepages = btrfs_writepages,
3261 .readpages = btrfs_readpages,
3262 .sync_page = block_sync_page,
3263 .bmap = btrfs_bmap,
3264 .direct_IO = btrfs_direct_IO,
3265 .invalidatepage = btrfs_invalidatepage,
3266 .releasepage = btrfs_releasepage,
3267 .set_page_dirty = btrfs_set_page_dirty,
3268 };
3269
3270 static struct address_space_operations btrfs_symlink_aops = {
3271 .readpage = btrfs_readpage,
3272 .writepage = btrfs_writepage,
3273 .invalidatepage = btrfs_invalidatepage,
3274 .releasepage = btrfs_releasepage,
3275 };
3276
3277 static struct inode_operations btrfs_file_inode_operations = {
3278 .truncate = btrfs_truncate,
3279 .getattr = btrfs_getattr,
3280 .setattr = btrfs_setattr,
3281 .setxattr = generic_setxattr,
3282 .getxattr = generic_getxattr,
3283 .listxattr = btrfs_listxattr,
3284 .removexattr = generic_removexattr,
3285 .permission = btrfs_permission,
3286 };
3287 static struct inode_operations btrfs_special_inode_operations = {
3288 .getattr = btrfs_getattr,
3289 .setattr = btrfs_setattr,
3290 .permission = btrfs_permission,
3291 };
3292 static struct inode_operations btrfs_symlink_inode_operations = {
3293 .readlink = generic_readlink,
3294 .follow_link = page_follow_link_light,
3295 .put_link = page_put_link,
3296 .permission = btrfs_permission,
3297 };
This page took 0.127877 seconds and 6 git commands to generate.