Merge branch 'pm-cpufreq'
[deliverable/linux.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64 * structures are incorrect, as the timespec structure from userspace
65 * is 4 bytes too small. We define these alternatives here to teach
66 * the kernel about the 32-bit struct packing.
67 */
68 struct btrfs_ioctl_timespec_32 {
69 __u64 sec;
70 __u32 nsec;
71 } __attribute__ ((__packed__));
72
73 struct btrfs_ioctl_received_subvol_args_32 {
74 char uuid[BTRFS_UUID_SIZE]; /* in */
75 __u64 stransid; /* in */
76 __u64 rtransid; /* out */
77 struct btrfs_ioctl_timespec_32 stime; /* in */
78 struct btrfs_ioctl_timespec_32 rtime; /* out */
79 __u64 flags; /* in */
80 __u64 reserved[16]; /* in */
81 } __attribute__ ((__packed__));
82
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86
87
88 static int btrfs_clone(struct inode *src, struct inode *inode,
89 u64 off, u64 olen, u64 olen_aligned, u64 destoff);
90
91 /* Mask out flags that are inappropriate for the given type of inode. */
92 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
93 {
94 if (S_ISDIR(mode))
95 return flags;
96 else if (S_ISREG(mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101
102 /*
103 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
104 */
105 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
106 {
107 unsigned int iflags = 0;
108
109 if (flags & BTRFS_INODE_SYNC)
110 iflags |= FS_SYNC_FL;
111 if (flags & BTRFS_INODE_IMMUTABLE)
112 iflags |= FS_IMMUTABLE_FL;
113 if (flags & BTRFS_INODE_APPEND)
114 iflags |= FS_APPEND_FL;
115 if (flags & BTRFS_INODE_NODUMP)
116 iflags |= FS_NODUMP_FL;
117 if (flags & BTRFS_INODE_NOATIME)
118 iflags |= FS_NOATIME_FL;
119 if (flags & BTRFS_INODE_DIRSYNC)
120 iflags |= FS_DIRSYNC_FL;
121 if (flags & BTRFS_INODE_NODATACOW)
122 iflags |= FS_NOCOW_FL;
123
124 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
125 iflags |= FS_COMPR_FL;
126 else if (flags & BTRFS_INODE_NOCOMPRESS)
127 iflags |= FS_NOCOMP_FL;
128
129 return iflags;
130 }
131
132 /*
133 * Update inode->i_flags based on the btrfs internal flags.
134 */
135 void btrfs_update_iflags(struct inode *inode)
136 {
137 struct btrfs_inode *ip = BTRFS_I(inode);
138
139 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
140
141 if (ip->flags & BTRFS_INODE_SYNC)
142 inode->i_flags |= S_SYNC;
143 if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 inode->i_flags |= S_IMMUTABLE;
145 if (ip->flags & BTRFS_INODE_APPEND)
146 inode->i_flags |= S_APPEND;
147 if (ip->flags & BTRFS_INODE_NOATIME)
148 inode->i_flags |= S_NOATIME;
149 if (ip->flags & BTRFS_INODE_DIRSYNC)
150 inode->i_flags |= S_DIRSYNC;
151 }
152
153 /*
154 * Inherit flags from the parent inode.
155 *
156 * Currently only the compression flags and the cow flags are inherited.
157 */
158 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
159 {
160 unsigned int flags;
161
162 if (!dir)
163 return;
164
165 flags = BTRFS_I(dir)->flags;
166
167 if (flags & BTRFS_INODE_NOCOMPRESS) {
168 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
169 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
170 } else if (flags & BTRFS_INODE_COMPRESS) {
171 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
172 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
173 }
174
175 if (flags & BTRFS_INODE_NODATACOW) {
176 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
177 if (S_ISREG(inode->i_mode))
178 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
179 }
180
181 btrfs_update_iflags(inode);
182 }
183
184 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
185 {
186 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
187 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
188
189 if (copy_to_user(arg, &flags, sizeof(flags)))
190 return -EFAULT;
191 return 0;
192 }
193
194 static int check_flags(unsigned int flags)
195 {
196 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
197 FS_NOATIME_FL | FS_NODUMP_FL | \
198 FS_SYNC_FL | FS_DIRSYNC_FL | \
199 FS_NOCOMP_FL | FS_COMPR_FL |
200 FS_NOCOW_FL))
201 return -EOPNOTSUPP;
202
203 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
204 return -EINVAL;
205
206 return 0;
207 }
208
209 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
210 {
211 struct inode *inode = file_inode(file);
212 struct btrfs_inode *ip = BTRFS_I(inode);
213 struct btrfs_root *root = ip->root;
214 struct btrfs_trans_handle *trans;
215 unsigned int flags, oldflags;
216 int ret;
217 u64 ip_oldflags;
218 unsigned int i_oldflags;
219 umode_t mode;
220
221 if (!inode_owner_or_capable(inode))
222 return -EPERM;
223
224 if (btrfs_root_readonly(root))
225 return -EROFS;
226
227 if (copy_from_user(&flags, arg, sizeof(flags)))
228 return -EFAULT;
229
230 ret = check_flags(flags);
231 if (ret)
232 return ret;
233
234 ret = mnt_want_write_file(file);
235 if (ret)
236 return ret;
237
238 mutex_lock(&inode->i_mutex);
239
240 ip_oldflags = ip->flags;
241 i_oldflags = inode->i_flags;
242 mode = inode->i_mode;
243
244 flags = btrfs_mask_flags(inode->i_mode, flags);
245 oldflags = btrfs_flags_to_ioctl(ip->flags);
246 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
247 if (!capable(CAP_LINUX_IMMUTABLE)) {
248 ret = -EPERM;
249 goto out_unlock;
250 }
251 }
252
253 if (flags & FS_SYNC_FL)
254 ip->flags |= BTRFS_INODE_SYNC;
255 else
256 ip->flags &= ~BTRFS_INODE_SYNC;
257 if (flags & FS_IMMUTABLE_FL)
258 ip->flags |= BTRFS_INODE_IMMUTABLE;
259 else
260 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
261 if (flags & FS_APPEND_FL)
262 ip->flags |= BTRFS_INODE_APPEND;
263 else
264 ip->flags &= ~BTRFS_INODE_APPEND;
265 if (flags & FS_NODUMP_FL)
266 ip->flags |= BTRFS_INODE_NODUMP;
267 else
268 ip->flags &= ~BTRFS_INODE_NODUMP;
269 if (flags & FS_NOATIME_FL)
270 ip->flags |= BTRFS_INODE_NOATIME;
271 else
272 ip->flags &= ~BTRFS_INODE_NOATIME;
273 if (flags & FS_DIRSYNC_FL)
274 ip->flags |= BTRFS_INODE_DIRSYNC;
275 else
276 ip->flags &= ~BTRFS_INODE_DIRSYNC;
277 if (flags & FS_NOCOW_FL) {
278 if (S_ISREG(mode)) {
279 /*
280 * It's safe to turn csums off here, no extents exist.
281 * Otherwise we want the flag to reflect the real COW
282 * status of the file and will not set it.
283 */
284 if (inode->i_size == 0)
285 ip->flags |= BTRFS_INODE_NODATACOW
286 | BTRFS_INODE_NODATASUM;
287 } else {
288 ip->flags |= BTRFS_INODE_NODATACOW;
289 }
290 } else {
291 /*
292 * Revert back under same assuptions as above
293 */
294 if (S_ISREG(mode)) {
295 if (inode->i_size == 0)
296 ip->flags &= ~(BTRFS_INODE_NODATACOW
297 | BTRFS_INODE_NODATASUM);
298 } else {
299 ip->flags &= ~BTRFS_INODE_NODATACOW;
300 }
301 }
302
303 /*
304 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
305 * flag may be changed automatically if compression code won't make
306 * things smaller.
307 */
308 if (flags & FS_NOCOMP_FL) {
309 ip->flags &= ~BTRFS_INODE_COMPRESS;
310 ip->flags |= BTRFS_INODE_NOCOMPRESS;
311
312 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
313 if (ret && ret != -ENODATA)
314 goto out_drop;
315 } else if (flags & FS_COMPR_FL) {
316 const char *comp;
317
318 ip->flags |= BTRFS_INODE_COMPRESS;
319 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
320
321 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
322 comp = "lzo";
323 else
324 comp = "zlib";
325 ret = btrfs_set_prop(inode, "btrfs.compression",
326 comp, strlen(comp), 0);
327 if (ret)
328 goto out_drop;
329
330 } else {
331 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
332 }
333
334 trans = btrfs_start_transaction(root, 1);
335 if (IS_ERR(trans)) {
336 ret = PTR_ERR(trans);
337 goto out_drop;
338 }
339
340 btrfs_update_iflags(inode);
341 inode_inc_iversion(inode);
342 inode->i_ctime = CURRENT_TIME;
343 ret = btrfs_update_inode(trans, root, inode);
344
345 btrfs_end_transaction(trans, root);
346 out_drop:
347 if (ret) {
348 ip->flags = ip_oldflags;
349 inode->i_flags = i_oldflags;
350 }
351
352 out_unlock:
353 mutex_unlock(&inode->i_mutex);
354 mnt_drop_write_file(file);
355 return ret;
356 }
357
358 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
359 {
360 struct inode *inode = file_inode(file);
361
362 return put_user(inode->i_generation, arg);
363 }
364
365 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
366 {
367 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
368 struct btrfs_device *device;
369 struct request_queue *q;
370 struct fstrim_range range;
371 u64 minlen = ULLONG_MAX;
372 u64 num_devices = 0;
373 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
374 int ret;
375
376 if (!capable(CAP_SYS_ADMIN))
377 return -EPERM;
378
379 rcu_read_lock();
380 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
381 dev_list) {
382 if (!device->bdev)
383 continue;
384 q = bdev_get_queue(device->bdev);
385 if (blk_queue_discard(q)) {
386 num_devices++;
387 minlen = min((u64)q->limits.discard_granularity,
388 minlen);
389 }
390 }
391 rcu_read_unlock();
392
393 if (!num_devices)
394 return -EOPNOTSUPP;
395 if (copy_from_user(&range, arg, sizeof(range)))
396 return -EFAULT;
397 if (range.start > total_bytes ||
398 range.len < fs_info->sb->s_blocksize)
399 return -EINVAL;
400
401 range.len = min(range.len, total_bytes - range.start);
402 range.minlen = max(range.minlen, minlen);
403 ret = btrfs_trim_fs(fs_info->tree_root, &range);
404 if (ret < 0)
405 return ret;
406
407 if (copy_to_user(arg, &range, sizeof(range)))
408 return -EFAULT;
409
410 return 0;
411 }
412
413 int btrfs_is_empty_uuid(u8 *uuid)
414 {
415 int i;
416
417 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
418 if (uuid[i])
419 return 0;
420 }
421 return 1;
422 }
423
424 static noinline int create_subvol(struct inode *dir,
425 struct dentry *dentry,
426 char *name, int namelen,
427 u64 *async_transid,
428 struct btrfs_qgroup_inherit *inherit)
429 {
430 struct btrfs_trans_handle *trans;
431 struct btrfs_key key;
432 struct btrfs_root_item root_item;
433 struct btrfs_inode_item *inode_item;
434 struct extent_buffer *leaf;
435 struct btrfs_root *root = BTRFS_I(dir)->root;
436 struct btrfs_root *new_root;
437 struct btrfs_block_rsv block_rsv;
438 struct timespec cur_time = CURRENT_TIME;
439 struct inode *inode;
440 int ret;
441 int err;
442 u64 objectid;
443 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
444 u64 index = 0;
445 u64 qgroup_reserved;
446 uuid_le new_uuid;
447
448 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
449 if (ret)
450 return ret;
451
452 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
453 /*
454 * The same as the snapshot creation, please see the comment
455 * of create_snapshot().
456 */
457 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
458 8, &qgroup_reserved, false);
459 if (ret)
460 return ret;
461
462 trans = btrfs_start_transaction(root, 0);
463 if (IS_ERR(trans)) {
464 ret = PTR_ERR(trans);
465 btrfs_subvolume_release_metadata(root, &block_rsv,
466 qgroup_reserved);
467 return ret;
468 }
469 trans->block_rsv = &block_rsv;
470 trans->bytes_reserved = block_rsv.size;
471
472 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
473 if (ret)
474 goto fail;
475
476 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
477 0, objectid, NULL, 0, 0, 0);
478 if (IS_ERR(leaf)) {
479 ret = PTR_ERR(leaf);
480 goto fail;
481 }
482
483 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
484 btrfs_set_header_bytenr(leaf, leaf->start);
485 btrfs_set_header_generation(leaf, trans->transid);
486 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
487 btrfs_set_header_owner(leaf, objectid);
488
489 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
490 BTRFS_FSID_SIZE);
491 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
492 btrfs_header_chunk_tree_uuid(leaf),
493 BTRFS_UUID_SIZE);
494 btrfs_mark_buffer_dirty(leaf);
495
496 memset(&root_item, 0, sizeof(root_item));
497
498 inode_item = &root_item.inode;
499 btrfs_set_stack_inode_generation(inode_item, 1);
500 btrfs_set_stack_inode_size(inode_item, 3);
501 btrfs_set_stack_inode_nlink(inode_item, 1);
502 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
503 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
504
505 btrfs_set_root_flags(&root_item, 0);
506 btrfs_set_root_limit(&root_item, 0);
507 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
508
509 btrfs_set_root_bytenr(&root_item, leaf->start);
510 btrfs_set_root_generation(&root_item, trans->transid);
511 btrfs_set_root_level(&root_item, 0);
512 btrfs_set_root_refs(&root_item, 1);
513 btrfs_set_root_used(&root_item, leaf->len);
514 btrfs_set_root_last_snapshot(&root_item, 0);
515
516 btrfs_set_root_generation_v2(&root_item,
517 btrfs_root_generation(&root_item));
518 uuid_le_gen(&new_uuid);
519 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
520 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
521 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
522 root_item.ctime = root_item.otime;
523 btrfs_set_root_ctransid(&root_item, trans->transid);
524 btrfs_set_root_otransid(&root_item, trans->transid);
525
526 btrfs_tree_unlock(leaf);
527 free_extent_buffer(leaf);
528 leaf = NULL;
529
530 btrfs_set_root_dirid(&root_item, new_dirid);
531
532 key.objectid = objectid;
533 key.offset = 0;
534 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
535 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
536 &root_item);
537 if (ret)
538 goto fail;
539
540 key.offset = (u64)-1;
541 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
542 if (IS_ERR(new_root)) {
543 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
544 ret = PTR_ERR(new_root);
545 goto fail;
546 }
547
548 btrfs_record_root_in_trans(trans, new_root);
549
550 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
551 if (ret) {
552 /* We potentially lose an unused inode item here */
553 btrfs_abort_transaction(trans, root, ret);
554 goto fail;
555 }
556
557 /*
558 * insert the directory item
559 */
560 ret = btrfs_set_inode_index(dir, &index);
561 if (ret) {
562 btrfs_abort_transaction(trans, root, ret);
563 goto fail;
564 }
565
566 ret = btrfs_insert_dir_item(trans, root,
567 name, namelen, dir, &key,
568 BTRFS_FT_DIR, index);
569 if (ret) {
570 btrfs_abort_transaction(trans, root, ret);
571 goto fail;
572 }
573
574 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
575 ret = btrfs_update_inode(trans, root, dir);
576 BUG_ON(ret);
577
578 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
579 objectid, root->root_key.objectid,
580 btrfs_ino(dir), index, name, namelen);
581 BUG_ON(ret);
582
583 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
584 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
585 objectid);
586 if (ret)
587 btrfs_abort_transaction(trans, root, ret);
588
589 fail:
590 trans->block_rsv = NULL;
591 trans->bytes_reserved = 0;
592 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
593
594 if (async_transid) {
595 *async_transid = trans->transid;
596 err = btrfs_commit_transaction_async(trans, root, 1);
597 if (err)
598 err = btrfs_commit_transaction(trans, root);
599 } else {
600 err = btrfs_commit_transaction(trans, root);
601 }
602 if (err && !ret)
603 ret = err;
604
605 if (!ret) {
606 inode = btrfs_lookup_dentry(dir, dentry);
607 if (IS_ERR(inode))
608 return PTR_ERR(inode);
609 d_instantiate(dentry, inode);
610 }
611 return ret;
612 }
613
614 static void btrfs_wait_nocow_write(struct btrfs_root *root)
615 {
616 s64 writers;
617 DEFINE_WAIT(wait);
618
619 do {
620 prepare_to_wait(&root->subv_writers->wait, &wait,
621 TASK_UNINTERRUPTIBLE);
622
623 writers = percpu_counter_sum(&root->subv_writers->counter);
624 if (writers)
625 schedule();
626
627 finish_wait(&root->subv_writers->wait, &wait);
628 } while (writers);
629 }
630
631 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
632 struct dentry *dentry, char *name, int namelen,
633 u64 *async_transid, bool readonly,
634 struct btrfs_qgroup_inherit *inherit)
635 {
636 struct inode *inode;
637 struct btrfs_pending_snapshot *pending_snapshot;
638 struct btrfs_trans_handle *trans;
639 int ret;
640
641 if (!root->ref_cows)
642 return -EINVAL;
643
644 atomic_inc(&root->will_be_snapshoted);
645 smp_mb__after_atomic_inc();
646 btrfs_wait_nocow_write(root);
647
648 ret = btrfs_start_delalloc_inodes(root, 0);
649 if (ret)
650 goto out;
651
652 btrfs_wait_ordered_extents(root, -1);
653
654 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
655 if (!pending_snapshot) {
656 ret = -ENOMEM;
657 goto out;
658 }
659
660 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
661 BTRFS_BLOCK_RSV_TEMP);
662 /*
663 * 1 - parent dir inode
664 * 2 - dir entries
665 * 1 - root item
666 * 2 - root ref/backref
667 * 1 - root of snapshot
668 * 1 - UUID item
669 */
670 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
671 &pending_snapshot->block_rsv, 8,
672 &pending_snapshot->qgroup_reserved,
673 false);
674 if (ret)
675 goto free;
676
677 pending_snapshot->dentry = dentry;
678 pending_snapshot->root = root;
679 pending_snapshot->readonly = readonly;
680 pending_snapshot->dir = dir;
681 pending_snapshot->inherit = inherit;
682
683 trans = btrfs_start_transaction(root, 0);
684 if (IS_ERR(trans)) {
685 ret = PTR_ERR(trans);
686 goto fail;
687 }
688
689 spin_lock(&root->fs_info->trans_lock);
690 list_add(&pending_snapshot->list,
691 &trans->transaction->pending_snapshots);
692 spin_unlock(&root->fs_info->trans_lock);
693 if (async_transid) {
694 *async_transid = trans->transid;
695 ret = btrfs_commit_transaction_async(trans,
696 root->fs_info->extent_root, 1);
697 if (ret)
698 ret = btrfs_commit_transaction(trans, root);
699 } else {
700 ret = btrfs_commit_transaction(trans,
701 root->fs_info->extent_root);
702 }
703 if (ret)
704 goto fail;
705
706 ret = pending_snapshot->error;
707 if (ret)
708 goto fail;
709
710 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
711 if (ret)
712 goto fail;
713
714 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
715 if (IS_ERR(inode)) {
716 ret = PTR_ERR(inode);
717 goto fail;
718 }
719
720 d_instantiate(dentry, inode);
721 ret = 0;
722 fail:
723 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
724 &pending_snapshot->block_rsv,
725 pending_snapshot->qgroup_reserved);
726 free:
727 kfree(pending_snapshot);
728 out:
729 atomic_dec(&root->will_be_snapshoted);
730 return ret;
731 }
732
733 /* copy of check_sticky in fs/namei.c()
734 * It's inline, so penalty for filesystems that don't use sticky bit is
735 * minimal.
736 */
737 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
738 {
739 kuid_t fsuid = current_fsuid();
740
741 if (!(dir->i_mode & S_ISVTX))
742 return 0;
743 if (uid_eq(inode->i_uid, fsuid))
744 return 0;
745 if (uid_eq(dir->i_uid, fsuid))
746 return 0;
747 return !capable(CAP_FOWNER);
748 }
749
750 /* copy of may_delete in fs/namei.c()
751 * Check whether we can remove a link victim from directory dir, check
752 * whether the type of victim is right.
753 * 1. We can't do it if dir is read-only (done in permission())
754 * 2. We should have write and exec permissions on dir
755 * 3. We can't remove anything from append-only dir
756 * 4. We can't do anything with immutable dir (done in permission())
757 * 5. If the sticky bit on dir is set we should either
758 * a. be owner of dir, or
759 * b. be owner of victim, or
760 * c. have CAP_FOWNER capability
761 * 6. If the victim is append-only or immutable we can't do antyhing with
762 * links pointing to it.
763 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
764 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
765 * 9. We can't remove a root or mountpoint.
766 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
767 * nfs_async_unlink().
768 */
769
770 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
771 {
772 int error;
773
774 if (!victim->d_inode)
775 return -ENOENT;
776
777 BUG_ON(victim->d_parent->d_inode != dir);
778 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
779
780 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
781 if (error)
782 return error;
783 if (IS_APPEND(dir))
784 return -EPERM;
785 if (btrfs_check_sticky(dir, victim->d_inode)||
786 IS_APPEND(victim->d_inode)||
787 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
788 return -EPERM;
789 if (isdir) {
790 if (!S_ISDIR(victim->d_inode->i_mode))
791 return -ENOTDIR;
792 if (IS_ROOT(victim))
793 return -EBUSY;
794 } else if (S_ISDIR(victim->d_inode->i_mode))
795 return -EISDIR;
796 if (IS_DEADDIR(dir))
797 return -ENOENT;
798 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
799 return -EBUSY;
800 return 0;
801 }
802
803 /* copy of may_create in fs/namei.c() */
804 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
805 {
806 if (child->d_inode)
807 return -EEXIST;
808 if (IS_DEADDIR(dir))
809 return -ENOENT;
810 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
811 }
812
813 /*
814 * Create a new subvolume below @parent. This is largely modeled after
815 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
816 * inside this filesystem so it's quite a bit simpler.
817 */
818 static noinline int btrfs_mksubvol(struct path *parent,
819 char *name, int namelen,
820 struct btrfs_root *snap_src,
821 u64 *async_transid, bool readonly,
822 struct btrfs_qgroup_inherit *inherit)
823 {
824 struct inode *dir = parent->dentry->d_inode;
825 struct dentry *dentry;
826 int error;
827
828 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
829 if (error == -EINTR)
830 return error;
831
832 dentry = lookup_one_len(name, parent->dentry, namelen);
833 error = PTR_ERR(dentry);
834 if (IS_ERR(dentry))
835 goto out_unlock;
836
837 error = -EEXIST;
838 if (dentry->d_inode)
839 goto out_dput;
840
841 error = btrfs_may_create(dir, dentry);
842 if (error)
843 goto out_dput;
844
845 /*
846 * even if this name doesn't exist, we may get hash collisions.
847 * check for them now when we can safely fail
848 */
849 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
850 dir->i_ino, name,
851 namelen);
852 if (error)
853 goto out_dput;
854
855 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
856
857 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
858 goto out_up_read;
859
860 if (snap_src) {
861 error = create_snapshot(snap_src, dir, dentry, name, namelen,
862 async_transid, readonly, inherit);
863 } else {
864 error = create_subvol(dir, dentry, name, namelen,
865 async_transid, inherit);
866 }
867 if (!error)
868 fsnotify_mkdir(dir, dentry);
869 out_up_read:
870 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
871 out_dput:
872 dput(dentry);
873 out_unlock:
874 mutex_unlock(&dir->i_mutex);
875 return error;
876 }
877
878 /*
879 * When we're defragging a range, we don't want to kick it off again
880 * if it is really just waiting for delalloc to send it down.
881 * If we find a nice big extent or delalloc range for the bytes in the
882 * file you want to defrag, we return 0 to let you know to skip this
883 * part of the file
884 */
885 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
886 {
887 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
888 struct extent_map *em = NULL;
889 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 u64 end;
891
892 read_lock(&em_tree->lock);
893 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
894 read_unlock(&em_tree->lock);
895
896 if (em) {
897 end = extent_map_end(em);
898 free_extent_map(em);
899 if (end - offset > thresh)
900 return 0;
901 }
902 /* if we already have a nice delalloc here, just stop */
903 thresh /= 2;
904 end = count_range_bits(io_tree, &offset, offset + thresh,
905 thresh, EXTENT_DELALLOC, 1);
906 if (end >= thresh)
907 return 0;
908 return 1;
909 }
910
911 /*
912 * helper function to walk through a file and find extents
913 * newer than a specific transid, and smaller than thresh.
914 *
915 * This is used by the defragging code to find new and small
916 * extents
917 */
918 static int find_new_extents(struct btrfs_root *root,
919 struct inode *inode, u64 newer_than,
920 u64 *off, int thresh)
921 {
922 struct btrfs_path *path;
923 struct btrfs_key min_key;
924 struct extent_buffer *leaf;
925 struct btrfs_file_extent_item *extent;
926 int type;
927 int ret;
928 u64 ino = btrfs_ino(inode);
929
930 path = btrfs_alloc_path();
931 if (!path)
932 return -ENOMEM;
933
934 min_key.objectid = ino;
935 min_key.type = BTRFS_EXTENT_DATA_KEY;
936 min_key.offset = *off;
937
938 while (1) {
939 path->keep_locks = 1;
940 ret = btrfs_search_forward(root, &min_key, path, newer_than);
941 if (ret != 0)
942 goto none;
943 path->keep_locks = 0;
944 btrfs_unlock_up_safe(path, 1);
945 process_slot:
946 if (min_key.objectid != ino)
947 goto none;
948 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
949 goto none;
950
951 leaf = path->nodes[0];
952 extent = btrfs_item_ptr(leaf, path->slots[0],
953 struct btrfs_file_extent_item);
954
955 type = btrfs_file_extent_type(leaf, extent);
956 if (type == BTRFS_FILE_EXTENT_REG &&
957 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
958 check_defrag_in_cache(inode, min_key.offset, thresh)) {
959 *off = min_key.offset;
960 btrfs_free_path(path);
961 return 0;
962 }
963
964 path->slots[0]++;
965 if (path->slots[0] < btrfs_header_nritems(leaf)) {
966 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
967 goto process_slot;
968 }
969
970 if (min_key.offset == (u64)-1)
971 goto none;
972
973 min_key.offset++;
974 btrfs_release_path(path);
975 }
976 none:
977 btrfs_free_path(path);
978 return -ENOENT;
979 }
980
981 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
982 {
983 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
984 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
985 struct extent_map *em;
986 u64 len = PAGE_CACHE_SIZE;
987
988 /*
989 * hopefully we have this extent in the tree already, try without
990 * the full extent lock
991 */
992 read_lock(&em_tree->lock);
993 em = lookup_extent_mapping(em_tree, start, len);
994 read_unlock(&em_tree->lock);
995
996 if (!em) {
997 struct extent_state *cached = NULL;
998 u64 end = start + len - 1;
999
1000 /* get the big lock and read metadata off disk */
1001 lock_extent_bits(io_tree, start, end, 0, &cached);
1002 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1003 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1004
1005 if (IS_ERR(em))
1006 return NULL;
1007 }
1008
1009 return em;
1010 }
1011
1012 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1013 {
1014 struct extent_map *next;
1015 bool ret = true;
1016
1017 /* this is the last extent */
1018 if (em->start + em->len >= i_size_read(inode))
1019 return false;
1020
1021 next = defrag_lookup_extent(inode, em->start + em->len);
1022 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE ||
1023 (em->block_start + em->block_len == next->block_start))
1024 ret = false;
1025
1026 free_extent_map(next);
1027 return ret;
1028 }
1029
1030 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
1031 u64 *last_len, u64 *skip, u64 *defrag_end,
1032 int compress)
1033 {
1034 struct extent_map *em;
1035 int ret = 1;
1036 bool next_mergeable = true;
1037
1038 /*
1039 * make sure that once we start defragging an extent, we keep on
1040 * defragging it
1041 */
1042 if (start < *defrag_end)
1043 return 1;
1044
1045 *skip = 0;
1046
1047 em = defrag_lookup_extent(inode, start);
1048 if (!em)
1049 return 0;
1050
1051 /* this will cover holes, and inline extents */
1052 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1053 ret = 0;
1054 goto out;
1055 }
1056
1057 next_mergeable = defrag_check_next_extent(inode, em);
1058
1059 /*
1060 * we hit a real extent, if it is big or the next extent is not a
1061 * real extent, don't bother defragging it
1062 */
1063 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1064 (em->len >= thresh || !next_mergeable))
1065 ret = 0;
1066 out:
1067 /*
1068 * last_len ends up being a counter of how many bytes we've defragged.
1069 * every time we choose not to defrag an extent, we reset *last_len
1070 * so that the next tiny extent will force a defrag.
1071 *
1072 * The end result of this is that tiny extents before a single big
1073 * extent will force at least part of that big extent to be defragged.
1074 */
1075 if (ret) {
1076 *defrag_end = extent_map_end(em);
1077 } else {
1078 *last_len = 0;
1079 *skip = extent_map_end(em);
1080 *defrag_end = 0;
1081 }
1082
1083 free_extent_map(em);
1084 return ret;
1085 }
1086
1087 /*
1088 * it doesn't do much good to defrag one or two pages
1089 * at a time. This pulls in a nice chunk of pages
1090 * to COW and defrag.
1091 *
1092 * It also makes sure the delalloc code has enough
1093 * dirty data to avoid making new small extents as part
1094 * of the defrag
1095 *
1096 * It's a good idea to start RA on this range
1097 * before calling this.
1098 */
1099 static int cluster_pages_for_defrag(struct inode *inode,
1100 struct page **pages,
1101 unsigned long start_index,
1102 unsigned long num_pages)
1103 {
1104 unsigned long file_end;
1105 u64 isize = i_size_read(inode);
1106 u64 page_start;
1107 u64 page_end;
1108 u64 page_cnt;
1109 int ret;
1110 int i;
1111 int i_done;
1112 struct btrfs_ordered_extent *ordered;
1113 struct extent_state *cached_state = NULL;
1114 struct extent_io_tree *tree;
1115 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1116
1117 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1118 if (!isize || start_index > file_end)
1119 return 0;
1120
1121 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1122
1123 ret = btrfs_delalloc_reserve_space(inode,
1124 page_cnt << PAGE_CACHE_SHIFT);
1125 if (ret)
1126 return ret;
1127 i_done = 0;
1128 tree = &BTRFS_I(inode)->io_tree;
1129
1130 /* step one, lock all the pages */
1131 for (i = 0; i < page_cnt; i++) {
1132 struct page *page;
1133 again:
1134 page = find_or_create_page(inode->i_mapping,
1135 start_index + i, mask);
1136 if (!page)
1137 break;
1138
1139 page_start = page_offset(page);
1140 page_end = page_start + PAGE_CACHE_SIZE - 1;
1141 while (1) {
1142 lock_extent_bits(tree, page_start, page_end,
1143 0, &cached_state);
1144 ordered = btrfs_lookup_ordered_extent(inode,
1145 page_start);
1146 unlock_extent_cached(tree, page_start, page_end,
1147 &cached_state, GFP_NOFS);
1148 if (!ordered)
1149 break;
1150
1151 unlock_page(page);
1152 btrfs_start_ordered_extent(inode, ordered, 1);
1153 btrfs_put_ordered_extent(ordered);
1154 lock_page(page);
1155 /*
1156 * we unlocked the page above, so we need check if
1157 * it was released or not.
1158 */
1159 if (page->mapping != inode->i_mapping) {
1160 unlock_page(page);
1161 page_cache_release(page);
1162 goto again;
1163 }
1164 }
1165
1166 if (!PageUptodate(page)) {
1167 btrfs_readpage(NULL, page);
1168 lock_page(page);
1169 if (!PageUptodate(page)) {
1170 unlock_page(page);
1171 page_cache_release(page);
1172 ret = -EIO;
1173 break;
1174 }
1175 }
1176
1177 if (page->mapping != inode->i_mapping) {
1178 unlock_page(page);
1179 page_cache_release(page);
1180 goto again;
1181 }
1182
1183 pages[i] = page;
1184 i_done++;
1185 }
1186 if (!i_done || ret)
1187 goto out;
1188
1189 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1190 goto out;
1191
1192 /*
1193 * so now we have a nice long stream of locked
1194 * and up to date pages, lets wait on them
1195 */
1196 for (i = 0; i < i_done; i++)
1197 wait_on_page_writeback(pages[i]);
1198
1199 page_start = page_offset(pages[0]);
1200 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1201
1202 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1203 page_start, page_end - 1, 0, &cached_state);
1204 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1205 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1206 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1207 &cached_state, GFP_NOFS);
1208
1209 if (i_done != page_cnt) {
1210 spin_lock(&BTRFS_I(inode)->lock);
1211 BTRFS_I(inode)->outstanding_extents++;
1212 spin_unlock(&BTRFS_I(inode)->lock);
1213 btrfs_delalloc_release_space(inode,
1214 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1215 }
1216
1217
1218 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1219 &cached_state, GFP_NOFS);
1220
1221 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1222 page_start, page_end - 1, &cached_state,
1223 GFP_NOFS);
1224
1225 for (i = 0; i < i_done; i++) {
1226 clear_page_dirty_for_io(pages[i]);
1227 ClearPageChecked(pages[i]);
1228 set_page_extent_mapped(pages[i]);
1229 set_page_dirty(pages[i]);
1230 unlock_page(pages[i]);
1231 page_cache_release(pages[i]);
1232 }
1233 return i_done;
1234 out:
1235 for (i = 0; i < i_done; i++) {
1236 unlock_page(pages[i]);
1237 page_cache_release(pages[i]);
1238 }
1239 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1240 return ret;
1241
1242 }
1243
1244 int btrfs_defrag_file(struct inode *inode, struct file *file,
1245 struct btrfs_ioctl_defrag_range_args *range,
1246 u64 newer_than, unsigned long max_to_defrag)
1247 {
1248 struct btrfs_root *root = BTRFS_I(inode)->root;
1249 struct file_ra_state *ra = NULL;
1250 unsigned long last_index;
1251 u64 isize = i_size_read(inode);
1252 u64 last_len = 0;
1253 u64 skip = 0;
1254 u64 defrag_end = 0;
1255 u64 newer_off = range->start;
1256 unsigned long i;
1257 unsigned long ra_index = 0;
1258 int ret;
1259 int defrag_count = 0;
1260 int compress_type = BTRFS_COMPRESS_ZLIB;
1261 int extent_thresh = range->extent_thresh;
1262 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1263 unsigned long cluster = max_cluster;
1264 u64 new_align = ~((u64)128 * 1024 - 1);
1265 struct page **pages = NULL;
1266
1267 if (isize == 0)
1268 return 0;
1269
1270 if (range->start >= isize)
1271 return -EINVAL;
1272
1273 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1274 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1275 return -EINVAL;
1276 if (range->compress_type)
1277 compress_type = range->compress_type;
1278 }
1279
1280 if (extent_thresh == 0)
1281 extent_thresh = 256 * 1024;
1282
1283 /*
1284 * if we were not given a file, allocate a readahead
1285 * context
1286 */
1287 if (!file) {
1288 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1289 if (!ra)
1290 return -ENOMEM;
1291 file_ra_state_init(ra, inode->i_mapping);
1292 } else {
1293 ra = &file->f_ra;
1294 }
1295
1296 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1297 GFP_NOFS);
1298 if (!pages) {
1299 ret = -ENOMEM;
1300 goto out_ra;
1301 }
1302
1303 /* find the last page to defrag */
1304 if (range->start + range->len > range->start) {
1305 last_index = min_t(u64, isize - 1,
1306 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1307 } else {
1308 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1309 }
1310
1311 if (newer_than) {
1312 ret = find_new_extents(root, inode, newer_than,
1313 &newer_off, 64 * 1024);
1314 if (!ret) {
1315 range->start = newer_off;
1316 /*
1317 * we always align our defrag to help keep
1318 * the extents in the file evenly spaced
1319 */
1320 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1321 } else
1322 goto out_ra;
1323 } else {
1324 i = range->start >> PAGE_CACHE_SHIFT;
1325 }
1326 if (!max_to_defrag)
1327 max_to_defrag = last_index + 1;
1328
1329 /*
1330 * make writeback starts from i, so the defrag range can be
1331 * written sequentially.
1332 */
1333 if (i < inode->i_mapping->writeback_index)
1334 inode->i_mapping->writeback_index = i;
1335
1336 while (i <= last_index && defrag_count < max_to_defrag &&
1337 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1338 PAGE_CACHE_SHIFT)) {
1339 /*
1340 * make sure we stop running if someone unmounts
1341 * the FS
1342 */
1343 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1344 break;
1345
1346 if (btrfs_defrag_cancelled(root->fs_info)) {
1347 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1348 ret = -EAGAIN;
1349 break;
1350 }
1351
1352 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1353 extent_thresh, &last_len, &skip,
1354 &defrag_end, range->flags &
1355 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1356 unsigned long next;
1357 /*
1358 * the should_defrag function tells us how much to skip
1359 * bump our counter by the suggested amount
1360 */
1361 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1362 i = max(i + 1, next);
1363 continue;
1364 }
1365
1366 if (!newer_than) {
1367 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1368 PAGE_CACHE_SHIFT) - i;
1369 cluster = min(cluster, max_cluster);
1370 } else {
1371 cluster = max_cluster;
1372 }
1373
1374 if (i + cluster > ra_index) {
1375 ra_index = max(i, ra_index);
1376 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1377 cluster);
1378 ra_index += max_cluster;
1379 }
1380
1381 mutex_lock(&inode->i_mutex);
1382 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1383 BTRFS_I(inode)->force_compress = compress_type;
1384 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1385 if (ret < 0) {
1386 mutex_unlock(&inode->i_mutex);
1387 goto out_ra;
1388 }
1389
1390 defrag_count += ret;
1391 balance_dirty_pages_ratelimited(inode->i_mapping);
1392 mutex_unlock(&inode->i_mutex);
1393
1394 if (newer_than) {
1395 if (newer_off == (u64)-1)
1396 break;
1397
1398 if (ret > 0)
1399 i += ret;
1400
1401 newer_off = max(newer_off + 1,
1402 (u64)i << PAGE_CACHE_SHIFT);
1403
1404 ret = find_new_extents(root, inode,
1405 newer_than, &newer_off,
1406 64 * 1024);
1407 if (!ret) {
1408 range->start = newer_off;
1409 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1410 } else {
1411 break;
1412 }
1413 } else {
1414 if (ret > 0) {
1415 i += ret;
1416 last_len += ret << PAGE_CACHE_SHIFT;
1417 } else {
1418 i++;
1419 last_len = 0;
1420 }
1421 }
1422 }
1423
1424 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1425 filemap_flush(inode->i_mapping);
1426 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1427 &BTRFS_I(inode)->runtime_flags))
1428 filemap_flush(inode->i_mapping);
1429 }
1430
1431 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1432 /* the filemap_flush will queue IO into the worker threads, but
1433 * we have to make sure the IO is actually started and that
1434 * ordered extents get created before we return
1435 */
1436 atomic_inc(&root->fs_info->async_submit_draining);
1437 while (atomic_read(&root->fs_info->nr_async_submits) ||
1438 atomic_read(&root->fs_info->async_delalloc_pages)) {
1439 wait_event(root->fs_info->async_submit_wait,
1440 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1441 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1442 }
1443 atomic_dec(&root->fs_info->async_submit_draining);
1444 }
1445
1446 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1447 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1448 }
1449
1450 ret = defrag_count;
1451
1452 out_ra:
1453 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1454 mutex_lock(&inode->i_mutex);
1455 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1456 mutex_unlock(&inode->i_mutex);
1457 }
1458 if (!file)
1459 kfree(ra);
1460 kfree(pages);
1461 return ret;
1462 }
1463
1464 static noinline int btrfs_ioctl_resize(struct file *file,
1465 void __user *arg)
1466 {
1467 u64 new_size;
1468 u64 old_size;
1469 u64 devid = 1;
1470 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1471 struct btrfs_ioctl_vol_args *vol_args;
1472 struct btrfs_trans_handle *trans;
1473 struct btrfs_device *device = NULL;
1474 char *sizestr;
1475 char *devstr = NULL;
1476 int ret = 0;
1477 int mod = 0;
1478
1479 if (!capable(CAP_SYS_ADMIN))
1480 return -EPERM;
1481
1482 ret = mnt_want_write_file(file);
1483 if (ret)
1484 return ret;
1485
1486 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1487 1)) {
1488 mnt_drop_write_file(file);
1489 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1490 }
1491
1492 mutex_lock(&root->fs_info->volume_mutex);
1493 vol_args = memdup_user(arg, sizeof(*vol_args));
1494 if (IS_ERR(vol_args)) {
1495 ret = PTR_ERR(vol_args);
1496 goto out;
1497 }
1498
1499 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1500
1501 sizestr = vol_args->name;
1502 devstr = strchr(sizestr, ':');
1503 if (devstr) {
1504 char *end;
1505 sizestr = devstr + 1;
1506 *devstr = '\0';
1507 devstr = vol_args->name;
1508 devid = simple_strtoull(devstr, &end, 10);
1509 if (!devid) {
1510 ret = -EINVAL;
1511 goto out_free;
1512 }
1513 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1514 }
1515
1516 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1517 if (!device) {
1518 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1519 devid);
1520 ret = -ENODEV;
1521 goto out_free;
1522 }
1523
1524 if (!device->writeable) {
1525 btrfs_info(root->fs_info,
1526 "resizer unable to apply on readonly device %llu",
1527 devid);
1528 ret = -EPERM;
1529 goto out_free;
1530 }
1531
1532 if (!strcmp(sizestr, "max"))
1533 new_size = device->bdev->bd_inode->i_size;
1534 else {
1535 if (sizestr[0] == '-') {
1536 mod = -1;
1537 sizestr++;
1538 } else if (sizestr[0] == '+') {
1539 mod = 1;
1540 sizestr++;
1541 }
1542 new_size = memparse(sizestr, NULL);
1543 if (new_size == 0) {
1544 ret = -EINVAL;
1545 goto out_free;
1546 }
1547 }
1548
1549 if (device->is_tgtdev_for_dev_replace) {
1550 ret = -EPERM;
1551 goto out_free;
1552 }
1553
1554 old_size = device->total_bytes;
1555
1556 if (mod < 0) {
1557 if (new_size > old_size) {
1558 ret = -EINVAL;
1559 goto out_free;
1560 }
1561 new_size = old_size - new_size;
1562 } else if (mod > 0) {
1563 if (new_size > ULLONG_MAX - old_size) {
1564 ret = -EINVAL;
1565 goto out_free;
1566 }
1567 new_size = old_size + new_size;
1568 }
1569
1570 if (new_size < 256 * 1024 * 1024) {
1571 ret = -EINVAL;
1572 goto out_free;
1573 }
1574 if (new_size > device->bdev->bd_inode->i_size) {
1575 ret = -EFBIG;
1576 goto out_free;
1577 }
1578
1579 do_div(new_size, root->sectorsize);
1580 new_size *= root->sectorsize;
1581
1582 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1583 rcu_str_deref(device->name), new_size);
1584
1585 if (new_size > old_size) {
1586 trans = btrfs_start_transaction(root, 0);
1587 if (IS_ERR(trans)) {
1588 ret = PTR_ERR(trans);
1589 goto out_free;
1590 }
1591 ret = btrfs_grow_device(trans, device, new_size);
1592 btrfs_commit_transaction(trans, root);
1593 } else if (new_size < old_size) {
1594 ret = btrfs_shrink_device(device, new_size);
1595 } /* equal, nothing need to do */
1596
1597 out_free:
1598 kfree(vol_args);
1599 out:
1600 mutex_unlock(&root->fs_info->volume_mutex);
1601 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1602 mnt_drop_write_file(file);
1603 return ret;
1604 }
1605
1606 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1607 char *name, unsigned long fd, int subvol,
1608 u64 *transid, bool readonly,
1609 struct btrfs_qgroup_inherit *inherit)
1610 {
1611 int namelen;
1612 int ret = 0;
1613
1614 ret = mnt_want_write_file(file);
1615 if (ret)
1616 goto out;
1617
1618 namelen = strlen(name);
1619 if (strchr(name, '/')) {
1620 ret = -EINVAL;
1621 goto out_drop_write;
1622 }
1623
1624 if (name[0] == '.' &&
1625 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1626 ret = -EEXIST;
1627 goto out_drop_write;
1628 }
1629
1630 if (subvol) {
1631 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1632 NULL, transid, readonly, inherit);
1633 } else {
1634 struct fd src = fdget(fd);
1635 struct inode *src_inode;
1636 if (!src.file) {
1637 ret = -EINVAL;
1638 goto out_drop_write;
1639 }
1640
1641 src_inode = file_inode(src.file);
1642 if (src_inode->i_sb != file_inode(file)->i_sb) {
1643 btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1644 "Snapshot src from another FS");
1645 ret = -EXDEV;
1646 } else if (!inode_owner_or_capable(src_inode)) {
1647 /*
1648 * Subvolume creation is not restricted, but snapshots
1649 * are limited to own subvolumes only
1650 */
1651 ret = -EPERM;
1652 } else {
1653 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1654 BTRFS_I(src_inode)->root,
1655 transid, readonly, inherit);
1656 }
1657 fdput(src);
1658 }
1659 out_drop_write:
1660 mnt_drop_write_file(file);
1661 out:
1662 return ret;
1663 }
1664
1665 static noinline int btrfs_ioctl_snap_create(struct file *file,
1666 void __user *arg, int subvol)
1667 {
1668 struct btrfs_ioctl_vol_args *vol_args;
1669 int ret;
1670
1671 vol_args = memdup_user(arg, sizeof(*vol_args));
1672 if (IS_ERR(vol_args))
1673 return PTR_ERR(vol_args);
1674 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1675
1676 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1677 vol_args->fd, subvol,
1678 NULL, false, NULL);
1679
1680 kfree(vol_args);
1681 return ret;
1682 }
1683
1684 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1685 void __user *arg, int subvol)
1686 {
1687 struct btrfs_ioctl_vol_args_v2 *vol_args;
1688 int ret;
1689 u64 transid = 0;
1690 u64 *ptr = NULL;
1691 bool readonly = false;
1692 struct btrfs_qgroup_inherit *inherit = NULL;
1693
1694 vol_args = memdup_user(arg, sizeof(*vol_args));
1695 if (IS_ERR(vol_args))
1696 return PTR_ERR(vol_args);
1697 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1698
1699 if (vol_args->flags &
1700 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1701 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1702 ret = -EOPNOTSUPP;
1703 goto out;
1704 }
1705
1706 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1707 ptr = &transid;
1708 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1709 readonly = true;
1710 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1711 if (vol_args->size > PAGE_CACHE_SIZE) {
1712 ret = -EINVAL;
1713 goto out;
1714 }
1715 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1716 if (IS_ERR(inherit)) {
1717 ret = PTR_ERR(inherit);
1718 goto out;
1719 }
1720 }
1721
1722 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1723 vol_args->fd, subvol, ptr,
1724 readonly, inherit);
1725
1726 if (ret == 0 && ptr &&
1727 copy_to_user(arg +
1728 offsetof(struct btrfs_ioctl_vol_args_v2,
1729 transid), ptr, sizeof(*ptr)))
1730 ret = -EFAULT;
1731 out:
1732 kfree(vol_args);
1733 kfree(inherit);
1734 return ret;
1735 }
1736
1737 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1738 void __user *arg)
1739 {
1740 struct inode *inode = file_inode(file);
1741 struct btrfs_root *root = BTRFS_I(inode)->root;
1742 int ret = 0;
1743 u64 flags = 0;
1744
1745 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1746 return -EINVAL;
1747
1748 down_read(&root->fs_info->subvol_sem);
1749 if (btrfs_root_readonly(root))
1750 flags |= BTRFS_SUBVOL_RDONLY;
1751 up_read(&root->fs_info->subvol_sem);
1752
1753 if (copy_to_user(arg, &flags, sizeof(flags)))
1754 ret = -EFAULT;
1755
1756 return ret;
1757 }
1758
1759 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1760 void __user *arg)
1761 {
1762 struct inode *inode = file_inode(file);
1763 struct btrfs_root *root = BTRFS_I(inode)->root;
1764 struct btrfs_trans_handle *trans;
1765 u64 root_flags;
1766 u64 flags;
1767 int ret = 0;
1768
1769 if (!inode_owner_or_capable(inode))
1770 return -EPERM;
1771
1772 ret = mnt_want_write_file(file);
1773 if (ret)
1774 goto out;
1775
1776 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1777 ret = -EINVAL;
1778 goto out_drop_write;
1779 }
1780
1781 if (copy_from_user(&flags, arg, sizeof(flags))) {
1782 ret = -EFAULT;
1783 goto out_drop_write;
1784 }
1785
1786 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1787 ret = -EINVAL;
1788 goto out_drop_write;
1789 }
1790
1791 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1792 ret = -EOPNOTSUPP;
1793 goto out_drop_write;
1794 }
1795
1796 down_write(&root->fs_info->subvol_sem);
1797
1798 /* nothing to do */
1799 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1800 goto out_drop_sem;
1801
1802 root_flags = btrfs_root_flags(&root->root_item);
1803 if (flags & BTRFS_SUBVOL_RDONLY) {
1804 btrfs_set_root_flags(&root->root_item,
1805 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1806 } else {
1807 /*
1808 * Block RO -> RW transition if this subvolume is involved in
1809 * send
1810 */
1811 spin_lock(&root->root_item_lock);
1812 if (root->send_in_progress == 0) {
1813 btrfs_set_root_flags(&root->root_item,
1814 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1815 spin_unlock(&root->root_item_lock);
1816 } else {
1817 spin_unlock(&root->root_item_lock);
1818 btrfs_warn(root->fs_info,
1819 "Attempt to set subvolume %llu read-write during send",
1820 root->root_key.objectid);
1821 ret = -EPERM;
1822 goto out_drop_sem;
1823 }
1824 }
1825
1826 trans = btrfs_start_transaction(root, 1);
1827 if (IS_ERR(trans)) {
1828 ret = PTR_ERR(trans);
1829 goto out_reset;
1830 }
1831
1832 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1833 &root->root_key, &root->root_item);
1834
1835 btrfs_commit_transaction(trans, root);
1836 out_reset:
1837 if (ret)
1838 btrfs_set_root_flags(&root->root_item, root_flags);
1839 out_drop_sem:
1840 up_write(&root->fs_info->subvol_sem);
1841 out_drop_write:
1842 mnt_drop_write_file(file);
1843 out:
1844 return ret;
1845 }
1846
1847 /*
1848 * helper to check if the subvolume references other subvolumes
1849 */
1850 static noinline int may_destroy_subvol(struct btrfs_root *root)
1851 {
1852 struct btrfs_path *path;
1853 struct btrfs_dir_item *di;
1854 struct btrfs_key key;
1855 u64 dir_id;
1856 int ret;
1857
1858 path = btrfs_alloc_path();
1859 if (!path)
1860 return -ENOMEM;
1861
1862 /* Make sure this root isn't set as the default subvol */
1863 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1864 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1865 dir_id, "default", 7, 0);
1866 if (di && !IS_ERR(di)) {
1867 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1868 if (key.objectid == root->root_key.objectid) {
1869 ret = -EPERM;
1870 btrfs_err(root->fs_info, "deleting default subvolume "
1871 "%llu is not allowed", key.objectid);
1872 goto out;
1873 }
1874 btrfs_release_path(path);
1875 }
1876
1877 key.objectid = root->root_key.objectid;
1878 key.type = BTRFS_ROOT_REF_KEY;
1879 key.offset = (u64)-1;
1880
1881 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1882 &key, path, 0, 0);
1883 if (ret < 0)
1884 goto out;
1885 BUG_ON(ret == 0);
1886
1887 ret = 0;
1888 if (path->slots[0] > 0) {
1889 path->slots[0]--;
1890 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1891 if (key.objectid == root->root_key.objectid &&
1892 key.type == BTRFS_ROOT_REF_KEY)
1893 ret = -ENOTEMPTY;
1894 }
1895 out:
1896 btrfs_free_path(path);
1897 return ret;
1898 }
1899
1900 static noinline int key_in_sk(struct btrfs_key *key,
1901 struct btrfs_ioctl_search_key *sk)
1902 {
1903 struct btrfs_key test;
1904 int ret;
1905
1906 test.objectid = sk->min_objectid;
1907 test.type = sk->min_type;
1908 test.offset = sk->min_offset;
1909
1910 ret = btrfs_comp_cpu_keys(key, &test);
1911 if (ret < 0)
1912 return 0;
1913
1914 test.objectid = sk->max_objectid;
1915 test.type = sk->max_type;
1916 test.offset = sk->max_offset;
1917
1918 ret = btrfs_comp_cpu_keys(key, &test);
1919 if (ret > 0)
1920 return 0;
1921 return 1;
1922 }
1923
1924 static noinline int copy_to_sk(struct btrfs_root *root,
1925 struct btrfs_path *path,
1926 struct btrfs_key *key,
1927 struct btrfs_ioctl_search_key *sk,
1928 char *buf,
1929 unsigned long *sk_offset,
1930 int *num_found)
1931 {
1932 u64 found_transid;
1933 struct extent_buffer *leaf;
1934 struct btrfs_ioctl_search_header sh;
1935 unsigned long item_off;
1936 unsigned long item_len;
1937 int nritems;
1938 int i;
1939 int slot;
1940 int ret = 0;
1941
1942 leaf = path->nodes[0];
1943 slot = path->slots[0];
1944 nritems = btrfs_header_nritems(leaf);
1945
1946 if (btrfs_header_generation(leaf) > sk->max_transid) {
1947 i = nritems;
1948 goto advance_key;
1949 }
1950 found_transid = btrfs_header_generation(leaf);
1951
1952 for (i = slot; i < nritems; i++) {
1953 item_off = btrfs_item_ptr_offset(leaf, i);
1954 item_len = btrfs_item_size_nr(leaf, i);
1955
1956 btrfs_item_key_to_cpu(leaf, key, i);
1957 if (!key_in_sk(key, sk))
1958 continue;
1959
1960 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1961 item_len = 0;
1962
1963 if (sizeof(sh) + item_len + *sk_offset >
1964 BTRFS_SEARCH_ARGS_BUFSIZE) {
1965 ret = 1;
1966 goto overflow;
1967 }
1968
1969 sh.objectid = key->objectid;
1970 sh.offset = key->offset;
1971 sh.type = key->type;
1972 sh.len = item_len;
1973 sh.transid = found_transid;
1974
1975 /* copy search result header */
1976 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1977 *sk_offset += sizeof(sh);
1978
1979 if (item_len) {
1980 char *p = buf + *sk_offset;
1981 /* copy the item */
1982 read_extent_buffer(leaf, p,
1983 item_off, item_len);
1984 *sk_offset += item_len;
1985 }
1986 (*num_found)++;
1987
1988 if (*num_found >= sk->nr_items)
1989 break;
1990 }
1991 advance_key:
1992 ret = 0;
1993 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1994 key->offset++;
1995 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1996 key->offset = 0;
1997 key->type++;
1998 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1999 key->offset = 0;
2000 key->type = 0;
2001 key->objectid++;
2002 } else
2003 ret = 1;
2004 overflow:
2005 return ret;
2006 }
2007
2008 static noinline int search_ioctl(struct inode *inode,
2009 struct btrfs_ioctl_search_args *args)
2010 {
2011 struct btrfs_root *root;
2012 struct btrfs_key key;
2013 struct btrfs_path *path;
2014 struct btrfs_ioctl_search_key *sk = &args->key;
2015 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2016 int ret;
2017 int num_found = 0;
2018 unsigned long sk_offset = 0;
2019
2020 path = btrfs_alloc_path();
2021 if (!path)
2022 return -ENOMEM;
2023
2024 if (sk->tree_id == 0) {
2025 /* search the root of the inode that was passed */
2026 root = BTRFS_I(inode)->root;
2027 } else {
2028 key.objectid = sk->tree_id;
2029 key.type = BTRFS_ROOT_ITEM_KEY;
2030 key.offset = (u64)-1;
2031 root = btrfs_read_fs_root_no_name(info, &key);
2032 if (IS_ERR(root)) {
2033 printk(KERN_ERR "BTRFS: could not find root %llu\n",
2034 sk->tree_id);
2035 btrfs_free_path(path);
2036 return -ENOENT;
2037 }
2038 }
2039
2040 key.objectid = sk->min_objectid;
2041 key.type = sk->min_type;
2042 key.offset = sk->min_offset;
2043
2044 path->keep_locks = 1;
2045
2046 while (1) {
2047 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2048 if (ret != 0) {
2049 if (ret > 0)
2050 ret = 0;
2051 goto err;
2052 }
2053 ret = copy_to_sk(root, path, &key, sk, args->buf,
2054 &sk_offset, &num_found);
2055 btrfs_release_path(path);
2056 if (ret || num_found >= sk->nr_items)
2057 break;
2058
2059 }
2060 ret = 0;
2061 err:
2062 sk->nr_items = num_found;
2063 btrfs_free_path(path);
2064 return ret;
2065 }
2066
2067 static noinline int btrfs_ioctl_tree_search(struct file *file,
2068 void __user *argp)
2069 {
2070 struct btrfs_ioctl_search_args *args;
2071 struct inode *inode;
2072 int ret;
2073
2074 if (!capable(CAP_SYS_ADMIN))
2075 return -EPERM;
2076
2077 args = memdup_user(argp, sizeof(*args));
2078 if (IS_ERR(args))
2079 return PTR_ERR(args);
2080
2081 inode = file_inode(file);
2082 ret = search_ioctl(inode, args);
2083 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2084 ret = -EFAULT;
2085 kfree(args);
2086 return ret;
2087 }
2088
2089 /*
2090 * Search INODE_REFs to identify path name of 'dirid' directory
2091 * in a 'tree_id' tree. and sets path name to 'name'.
2092 */
2093 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2094 u64 tree_id, u64 dirid, char *name)
2095 {
2096 struct btrfs_root *root;
2097 struct btrfs_key key;
2098 char *ptr;
2099 int ret = -1;
2100 int slot;
2101 int len;
2102 int total_len = 0;
2103 struct btrfs_inode_ref *iref;
2104 struct extent_buffer *l;
2105 struct btrfs_path *path;
2106
2107 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2108 name[0]='\0';
2109 return 0;
2110 }
2111
2112 path = btrfs_alloc_path();
2113 if (!path)
2114 return -ENOMEM;
2115
2116 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2117
2118 key.objectid = tree_id;
2119 key.type = BTRFS_ROOT_ITEM_KEY;
2120 key.offset = (u64)-1;
2121 root = btrfs_read_fs_root_no_name(info, &key);
2122 if (IS_ERR(root)) {
2123 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2124 ret = -ENOENT;
2125 goto out;
2126 }
2127
2128 key.objectid = dirid;
2129 key.type = BTRFS_INODE_REF_KEY;
2130 key.offset = (u64)-1;
2131
2132 while (1) {
2133 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2134 if (ret < 0)
2135 goto out;
2136 else if (ret > 0) {
2137 ret = btrfs_previous_item(root, path, dirid,
2138 BTRFS_INODE_REF_KEY);
2139 if (ret < 0)
2140 goto out;
2141 else if (ret > 0) {
2142 ret = -ENOENT;
2143 goto out;
2144 }
2145 }
2146
2147 l = path->nodes[0];
2148 slot = path->slots[0];
2149 btrfs_item_key_to_cpu(l, &key, slot);
2150
2151 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2152 len = btrfs_inode_ref_name_len(l, iref);
2153 ptr -= len + 1;
2154 total_len += len + 1;
2155 if (ptr < name) {
2156 ret = -ENAMETOOLONG;
2157 goto out;
2158 }
2159
2160 *(ptr + len) = '/';
2161 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2162
2163 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2164 break;
2165
2166 btrfs_release_path(path);
2167 key.objectid = key.offset;
2168 key.offset = (u64)-1;
2169 dirid = key.objectid;
2170 }
2171 memmove(name, ptr, total_len);
2172 name[total_len] = '\0';
2173 ret = 0;
2174 out:
2175 btrfs_free_path(path);
2176 return ret;
2177 }
2178
2179 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2180 void __user *argp)
2181 {
2182 struct btrfs_ioctl_ino_lookup_args *args;
2183 struct inode *inode;
2184 int ret;
2185
2186 if (!capable(CAP_SYS_ADMIN))
2187 return -EPERM;
2188
2189 args = memdup_user(argp, sizeof(*args));
2190 if (IS_ERR(args))
2191 return PTR_ERR(args);
2192
2193 inode = file_inode(file);
2194
2195 if (args->treeid == 0)
2196 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2197
2198 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2199 args->treeid, args->objectid,
2200 args->name);
2201
2202 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2203 ret = -EFAULT;
2204
2205 kfree(args);
2206 return ret;
2207 }
2208
2209 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2210 void __user *arg)
2211 {
2212 struct dentry *parent = file->f_path.dentry;
2213 struct dentry *dentry;
2214 struct inode *dir = parent->d_inode;
2215 struct inode *inode;
2216 struct btrfs_root *root = BTRFS_I(dir)->root;
2217 struct btrfs_root *dest = NULL;
2218 struct btrfs_ioctl_vol_args *vol_args;
2219 struct btrfs_trans_handle *trans;
2220 struct btrfs_block_rsv block_rsv;
2221 u64 qgroup_reserved;
2222 int namelen;
2223 int ret;
2224 int err = 0;
2225
2226 vol_args = memdup_user(arg, sizeof(*vol_args));
2227 if (IS_ERR(vol_args))
2228 return PTR_ERR(vol_args);
2229
2230 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2231 namelen = strlen(vol_args->name);
2232 if (strchr(vol_args->name, '/') ||
2233 strncmp(vol_args->name, "..", namelen) == 0) {
2234 err = -EINVAL;
2235 goto out;
2236 }
2237
2238 err = mnt_want_write_file(file);
2239 if (err)
2240 goto out;
2241
2242 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2243 if (err == -EINTR)
2244 goto out_drop_write;
2245 dentry = lookup_one_len(vol_args->name, parent, namelen);
2246 if (IS_ERR(dentry)) {
2247 err = PTR_ERR(dentry);
2248 goto out_unlock_dir;
2249 }
2250
2251 if (!dentry->d_inode) {
2252 err = -ENOENT;
2253 goto out_dput;
2254 }
2255
2256 inode = dentry->d_inode;
2257 dest = BTRFS_I(inode)->root;
2258 if (!capable(CAP_SYS_ADMIN)) {
2259 /*
2260 * Regular user. Only allow this with a special mount
2261 * option, when the user has write+exec access to the
2262 * subvol root, and when rmdir(2) would have been
2263 * allowed.
2264 *
2265 * Note that this is _not_ check that the subvol is
2266 * empty or doesn't contain data that we wouldn't
2267 * otherwise be able to delete.
2268 *
2269 * Users who want to delete empty subvols should try
2270 * rmdir(2).
2271 */
2272 err = -EPERM;
2273 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2274 goto out_dput;
2275
2276 /*
2277 * Do not allow deletion if the parent dir is the same
2278 * as the dir to be deleted. That means the ioctl
2279 * must be called on the dentry referencing the root
2280 * of the subvol, not a random directory contained
2281 * within it.
2282 */
2283 err = -EINVAL;
2284 if (root == dest)
2285 goto out_dput;
2286
2287 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2288 if (err)
2289 goto out_dput;
2290 }
2291
2292 /* check if subvolume may be deleted by a user */
2293 err = btrfs_may_delete(dir, dentry, 1);
2294 if (err)
2295 goto out_dput;
2296
2297 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2298 err = -EINVAL;
2299 goto out_dput;
2300 }
2301
2302 mutex_lock(&inode->i_mutex);
2303 err = d_invalidate(dentry);
2304 if (err)
2305 goto out_unlock;
2306
2307 down_write(&root->fs_info->subvol_sem);
2308
2309 err = may_destroy_subvol(dest);
2310 if (err)
2311 goto out_up_write;
2312
2313 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2314 /*
2315 * One for dir inode, two for dir entries, two for root
2316 * ref/backref.
2317 */
2318 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2319 5, &qgroup_reserved, true);
2320 if (err)
2321 goto out_up_write;
2322
2323 trans = btrfs_start_transaction(root, 0);
2324 if (IS_ERR(trans)) {
2325 err = PTR_ERR(trans);
2326 goto out_release;
2327 }
2328 trans->block_rsv = &block_rsv;
2329 trans->bytes_reserved = block_rsv.size;
2330
2331 ret = btrfs_unlink_subvol(trans, root, dir,
2332 dest->root_key.objectid,
2333 dentry->d_name.name,
2334 dentry->d_name.len);
2335 if (ret) {
2336 err = ret;
2337 btrfs_abort_transaction(trans, root, ret);
2338 goto out_end_trans;
2339 }
2340
2341 btrfs_record_root_in_trans(trans, dest);
2342
2343 memset(&dest->root_item.drop_progress, 0,
2344 sizeof(dest->root_item.drop_progress));
2345 dest->root_item.drop_level = 0;
2346 btrfs_set_root_refs(&dest->root_item, 0);
2347
2348 if (!xchg(&dest->orphan_item_inserted, 1)) {
2349 ret = btrfs_insert_orphan_item(trans,
2350 root->fs_info->tree_root,
2351 dest->root_key.objectid);
2352 if (ret) {
2353 btrfs_abort_transaction(trans, root, ret);
2354 err = ret;
2355 goto out_end_trans;
2356 }
2357 }
2358
2359 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2360 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2361 dest->root_key.objectid);
2362 if (ret && ret != -ENOENT) {
2363 btrfs_abort_transaction(trans, root, ret);
2364 err = ret;
2365 goto out_end_trans;
2366 }
2367 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2368 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2369 dest->root_item.received_uuid,
2370 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2371 dest->root_key.objectid);
2372 if (ret && ret != -ENOENT) {
2373 btrfs_abort_transaction(trans, root, ret);
2374 err = ret;
2375 goto out_end_trans;
2376 }
2377 }
2378
2379 out_end_trans:
2380 trans->block_rsv = NULL;
2381 trans->bytes_reserved = 0;
2382 ret = btrfs_end_transaction(trans, root);
2383 if (ret && !err)
2384 err = ret;
2385 inode->i_flags |= S_DEAD;
2386 out_release:
2387 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2388 out_up_write:
2389 up_write(&root->fs_info->subvol_sem);
2390 out_unlock:
2391 mutex_unlock(&inode->i_mutex);
2392 if (!err) {
2393 shrink_dcache_sb(root->fs_info->sb);
2394 btrfs_invalidate_inodes(dest);
2395 d_delete(dentry);
2396
2397 /* the last ref */
2398 if (dest->cache_inode) {
2399 iput(dest->cache_inode);
2400 dest->cache_inode = NULL;
2401 }
2402 }
2403 out_dput:
2404 dput(dentry);
2405 out_unlock_dir:
2406 mutex_unlock(&dir->i_mutex);
2407 out_drop_write:
2408 mnt_drop_write_file(file);
2409 out:
2410 kfree(vol_args);
2411 return err;
2412 }
2413
2414 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2415 {
2416 struct inode *inode = file_inode(file);
2417 struct btrfs_root *root = BTRFS_I(inode)->root;
2418 struct btrfs_ioctl_defrag_range_args *range;
2419 int ret;
2420
2421 ret = mnt_want_write_file(file);
2422 if (ret)
2423 return ret;
2424
2425 if (btrfs_root_readonly(root)) {
2426 ret = -EROFS;
2427 goto out;
2428 }
2429
2430 switch (inode->i_mode & S_IFMT) {
2431 case S_IFDIR:
2432 if (!capable(CAP_SYS_ADMIN)) {
2433 ret = -EPERM;
2434 goto out;
2435 }
2436 ret = btrfs_defrag_root(root);
2437 if (ret)
2438 goto out;
2439 ret = btrfs_defrag_root(root->fs_info->extent_root);
2440 break;
2441 case S_IFREG:
2442 if (!(file->f_mode & FMODE_WRITE)) {
2443 ret = -EINVAL;
2444 goto out;
2445 }
2446
2447 range = kzalloc(sizeof(*range), GFP_KERNEL);
2448 if (!range) {
2449 ret = -ENOMEM;
2450 goto out;
2451 }
2452
2453 if (argp) {
2454 if (copy_from_user(range, argp,
2455 sizeof(*range))) {
2456 ret = -EFAULT;
2457 kfree(range);
2458 goto out;
2459 }
2460 /* compression requires us to start the IO */
2461 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2462 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2463 range->extent_thresh = (u32)-1;
2464 }
2465 } else {
2466 /* the rest are all set to zero by kzalloc */
2467 range->len = (u64)-1;
2468 }
2469 ret = btrfs_defrag_file(file_inode(file), file,
2470 range, 0, 0);
2471 if (ret > 0)
2472 ret = 0;
2473 kfree(range);
2474 break;
2475 default:
2476 ret = -EINVAL;
2477 }
2478 out:
2479 mnt_drop_write_file(file);
2480 return ret;
2481 }
2482
2483 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2484 {
2485 struct btrfs_ioctl_vol_args *vol_args;
2486 int ret;
2487
2488 if (!capable(CAP_SYS_ADMIN))
2489 return -EPERM;
2490
2491 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2492 1)) {
2493 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2494 }
2495
2496 mutex_lock(&root->fs_info->volume_mutex);
2497 vol_args = memdup_user(arg, sizeof(*vol_args));
2498 if (IS_ERR(vol_args)) {
2499 ret = PTR_ERR(vol_args);
2500 goto out;
2501 }
2502
2503 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2504 ret = btrfs_init_new_device(root, vol_args->name);
2505
2506 kfree(vol_args);
2507 out:
2508 mutex_unlock(&root->fs_info->volume_mutex);
2509 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2510 return ret;
2511 }
2512
2513 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2514 {
2515 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2516 struct btrfs_ioctl_vol_args *vol_args;
2517 int ret;
2518
2519 if (!capable(CAP_SYS_ADMIN))
2520 return -EPERM;
2521
2522 ret = mnt_want_write_file(file);
2523 if (ret)
2524 return ret;
2525
2526 vol_args = memdup_user(arg, sizeof(*vol_args));
2527 if (IS_ERR(vol_args)) {
2528 ret = PTR_ERR(vol_args);
2529 goto out;
2530 }
2531
2532 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2533
2534 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2535 1)) {
2536 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2537 goto out;
2538 }
2539
2540 mutex_lock(&root->fs_info->volume_mutex);
2541 ret = btrfs_rm_device(root, vol_args->name);
2542 mutex_unlock(&root->fs_info->volume_mutex);
2543 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2544
2545 out:
2546 kfree(vol_args);
2547 mnt_drop_write_file(file);
2548 return ret;
2549 }
2550
2551 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2552 {
2553 struct btrfs_ioctl_fs_info_args *fi_args;
2554 struct btrfs_device *device;
2555 struct btrfs_device *next;
2556 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2557 int ret = 0;
2558
2559 if (!capable(CAP_SYS_ADMIN))
2560 return -EPERM;
2561
2562 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2563 if (!fi_args)
2564 return -ENOMEM;
2565
2566 mutex_lock(&fs_devices->device_list_mutex);
2567 fi_args->num_devices = fs_devices->num_devices;
2568 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2569
2570 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2571 if (device->devid > fi_args->max_id)
2572 fi_args->max_id = device->devid;
2573 }
2574 mutex_unlock(&fs_devices->device_list_mutex);
2575
2576 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2577 ret = -EFAULT;
2578
2579 kfree(fi_args);
2580 return ret;
2581 }
2582
2583 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2584 {
2585 struct btrfs_ioctl_dev_info_args *di_args;
2586 struct btrfs_device *dev;
2587 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2588 int ret = 0;
2589 char *s_uuid = NULL;
2590
2591 if (!capable(CAP_SYS_ADMIN))
2592 return -EPERM;
2593
2594 di_args = memdup_user(arg, sizeof(*di_args));
2595 if (IS_ERR(di_args))
2596 return PTR_ERR(di_args);
2597
2598 if (!btrfs_is_empty_uuid(di_args->uuid))
2599 s_uuid = di_args->uuid;
2600
2601 mutex_lock(&fs_devices->device_list_mutex);
2602 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2603
2604 if (!dev) {
2605 ret = -ENODEV;
2606 goto out;
2607 }
2608
2609 di_args->devid = dev->devid;
2610 di_args->bytes_used = dev->bytes_used;
2611 di_args->total_bytes = dev->total_bytes;
2612 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2613 if (dev->name) {
2614 struct rcu_string *name;
2615
2616 rcu_read_lock();
2617 name = rcu_dereference(dev->name);
2618 strncpy(di_args->path, name->str, sizeof(di_args->path));
2619 rcu_read_unlock();
2620 di_args->path[sizeof(di_args->path) - 1] = 0;
2621 } else {
2622 di_args->path[0] = '\0';
2623 }
2624
2625 out:
2626 mutex_unlock(&fs_devices->device_list_mutex);
2627 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2628 ret = -EFAULT;
2629
2630 kfree(di_args);
2631 return ret;
2632 }
2633
2634 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2635 {
2636 struct page *page;
2637 pgoff_t index;
2638 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2639
2640 index = off >> PAGE_CACHE_SHIFT;
2641
2642 page = grab_cache_page(inode->i_mapping, index);
2643 if (!page)
2644 return NULL;
2645
2646 if (!PageUptodate(page)) {
2647 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2648 0))
2649 return NULL;
2650 lock_page(page);
2651 if (!PageUptodate(page)) {
2652 unlock_page(page);
2653 page_cache_release(page);
2654 return NULL;
2655 }
2656 }
2657 unlock_page(page);
2658
2659 return page;
2660 }
2661
2662 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2663 {
2664 /* do any pending delalloc/csum calc on src, one way or
2665 another, and lock file content */
2666 while (1) {
2667 struct btrfs_ordered_extent *ordered;
2668 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2669 ordered = btrfs_lookup_first_ordered_extent(inode,
2670 off + len - 1);
2671 if (!ordered &&
2672 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2673 off + len - 1, EXTENT_DELALLOC, 0, NULL))
2674 break;
2675 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2676 if (ordered)
2677 btrfs_put_ordered_extent(ordered);
2678 btrfs_wait_ordered_range(inode, off, len);
2679 }
2680 }
2681
2682 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2683 struct inode *inode2, u64 loff2, u64 len)
2684 {
2685 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2686 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2687
2688 mutex_unlock(&inode1->i_mutex);
2689 mutex_unlock(&inode2->i_mutex);
2690 }
2691
2692 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2693 struct inode *inode2, u64 loff2, u64 len)
2694 {
2695 if (inode1 < inode2) {
2696 swap(inode1, inode2);
2697 swap(loff1, loff2);
2698 }
2699
2700 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2701 lock_extent_range(inode1, loff1, len);
2702 if (inode1 != inode2) {
2703 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2704 lock_extent_range(inode2, loff2, len);
2705 }
2706 }
2707
2708 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2709 u64 dst_loff, u64 len)
2710 {
2711 int ret = 0;
2712 struct page *src_page, *dst_page;
2713 unsigned int cmp_len = PAGE_CACHE_SIZE;
2714 void *addr, *dst_addr;
2715
2716 while (len) {
2717 if (len < PAGE_CACHE_SIZE)
2718 cmp_len = len;
2719
2720 src_page = extent_same_get_page(src, loff);
2721 if (!src_page)
2722 return -EINVAL;
2723 dst_page = extent_same_get_page(dst, dst_loff);
2724 if (!dst_page) {
2725 page_cache_release(src_page);
2726 return -EINVAL;
2727 }
2728 addr = kmap_atomic(src_page);
2729 dst_addr = kmap_atomic(dst_page);
2730
2731 flush_dcache_page(src_page);
2732 flush_dcache_page(dst_page);
2733
2734 if (memcmp(addr, dst_addr, cmp_len))
2735 ret = BTRFS_SAME_DATA_DIFFERS;
2736
2737 kunmap_atomic(addr);
2738 kunmap_atomic(dst_addr);
2739 page_cache_release(src_page);
2740 page_cache_release(dst_page);
2741
2742 if (ret)
2743 break;
2744
2745 loff += cmp_len;
2746 dst_loff += cmp_len;
2747 len -= cmp_len;
2748 }
2749
2750 return ret;
2751 }
2752
2753 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2754 {
2755 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2756
2757 if (off + len > inode->i_size || off + len < off)
2758 return -EINVAL;
2759 /* Check that we are block aligned - btrfs_clone() requires this */
2760 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2761 return -EINVAL;
2762
2763 return 0;
2764 }
2765
2766 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2767 struct inode *dst, u64 dst_loff)
2768 {
2769 int ret;
2770
2771 /*
2772 * btrfs_clone() can't handle extents in the same file
2773 * yet. Once that works, we can drop this check and replace it
2774 * with a check for the same inode, but overlapping extents.
2775 */
2776 if (src == dst)
2777 return -EINVAL;
2778
2779 btrfs_double_lock(src, loff, dst, dst_loff, len);
2780
2781 ret = extent_same_check_offsets(src, loff, len);
2782 if (ret)
2783 goto out_unlock;
2784
2785 ret = extent_same_check_offsets(dst, dst_loff, len);
2786 if (ret)
2787 goto out_unlock;
2788
2789 /* don't make the dst file partly checksummed */
2790 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2791 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2792 ret = -EINVAL;
2793 goto out_unlock;
2794 }
2795
2796 ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2797 if (ret == 0)
2798 ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2799
2800 out_unlock:
2801 btrfs_double_unlock(src, loff, dst, dst_loff, len);
2802
2803 return ret;
2804 }
2805
2806 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
2807
2808 static long btrfs_ioctl_file_extent_same(struct file *file,
2809 struct btrfs_ioctl_same_args __user *argp)
2810 {
2811 struct btrfs_ioctl_same_args *same;
2812 struct btrfs_ioctl_same_extent_info *info;
2813 struct inode *src = file_inode(file);
2814 u64 off;
2815 u64 len;
2816 int i;
2817 int ret;
2818 unsigned long size;
2819 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2820 bool is_admin = capable(CAP_SYS_ADMIN);
2821 u16 count;
2822
2823 if (!(file->f_mode & FMODE_READ))
2824 return -EINVAL;
2825
2826 ret = mnt_want_write_file(file);
2827 if (ret)
2828 return ret;
2829
2830 if (get_user(count, &argp->dest_count)) {
2831 ret = -EFAULT;
2832 goto out;
2833 }
2834
2835 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2836
2837 same = memdup_user(argp, size);
2838
2839 if (IS_ERR(same)) {
2840 ret = PTR_ERR(same);
2841 goto out;
2842 }
2843
2844 off = same->logical_offset;
2845 len = same->length;
2846
2847 /*
2848 * Limit the total length we will dedupe for each operation.
2849 * This is intended to bound the total time spent in this
2850 * ioctl to something sane.
2851 */
2852 if (len > BTRFS_MAX_DEDUPE_LEN)
2853 len = BTRFS_MAX_DEDUPE_LEN;
2854
2855 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2856 /*
2857 * Btrfs does not support blocksize < page_size. As a
2858 * result, btrfs_cmp_data() won't correctly handle
2859 * this situation without an update.
2860 */
2861 ret = -EINVAL;
2862 goto out;
2863 }
2864
2865 ret = -EISDIR;
2866 if (S_ISDIR(src->i_mode))
2867 goto out;
2868
2869 ret = -EACCES;
2870 if (!S_ISREG(src->i_mode))
2871 goto out;
2872
2873 /* pre-format output fields to sane values */
2874 for (i = 0; i < count; i++) {
2875 same->info[i].bytes_deduped = 0ULL;
2876 same->info[i].status = 0;
2877 }
2878
2879 for (i = 0, info = same->info; i < count; i++, info++) {
2880 struct inode *dst;
2881 struct fd dst_file = fdget(info->fd);
2882 if (!dst_file.file) {
2883 info->status = -EBADF;
2884 continue;
2885 }
2886 dst = file_inode(dst_file.file);
2887
2888 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
2889 info->status = -EINVAL;
2890 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
2891 info->status = -EXDEV;
2892 } else if (S_ISDIR(dst->i_mode)) {
2893 info->status = -EISDIR;
2894 } else if (!S_ISREG(dst->i_mode)) {
2895 info->status = -EACCES;
2896 } else {
2897 info->status = btrfs_extent_same(src, off, len, dst,
2898 info->logical_offset);
2899 if (info->status == 0)
2900 info->bytes_deduped += len;
2901 }
2902 fdput(dst_file);
2903 }
2904
2905 ret = copy_to_user(argp, same, size);
2906 if (ret)
2907 ret = -EFAULT;
2908
2909 out:
2910 mnt_drop_write_file(file);
2911 return ret;
2912 }
2913
2914 /**
2915 * btrfs_clone() - clone a range from inode file to another
2916 *
2917 * @src: Inode to clone from
2918 * @inode: Inode to clone to
2919 * @off: Offset within source to start clone from
2920 * @olen: Original length, passed by user, of range to clone
2921 * @olen_aligned: Block-aligned value of olen, extent_same uses
2922 * identical values here
2923 * @destoff: Offset within @inode to start clone
2924 */
2925 static int btrfs_clone(struct inode *src, struct inode *inode,
2926 u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2927 {
2928 struct btrfs_root *root = BTRFS_I(inode)->root;
2929 struct btrfs_path *path = NULL;
2930 struct extent_buffer *leaf;
2931 struct btrfs_trans_handle *trans;
2932 char *buf = NULL;
2933 struct btrfs_key key;
2934 u32 nritems;
2935 int slot;
2936 int ret;
2937 u64 len = olen_aligned;
2938
2939 ret = -ENOMEM;
2940 buf = vmalloc(btrfs_level_size(root, 0));
2941 if (!buf)
2942 return ret;
2943
2944 path = btrfs_alloc_path();
2945 if (!path) {
2946 vfree(buf);
2947 return ret;
2948 }
2949
2950 path->reada = 2;
2951 /* clone data */
2952 key.objectid = btrfs_ino(src);
2953 key.type = BTRFS_EXTENT_DATA_KEY;
2954 key.offset = 0;
2955
2956 while (1) {
2957 /*
2958 * note the key will change type as we walk through the
2959 * tree.
2960 */
2961 path->leave_spinning = 1;
2962 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2963 0, 0);
2964 if (ret < 0)
2965 goto out;
2966
2967 nritems = btrfs_header_nritems(path->nodes[0]);
2968 process_slot:
2969 if (path->slots[0] >= nritems) {
2970 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2971 if (ret < 0)
2972 goto out;
2973 if (ret > 0)
2974 break;
2975 nritems = btrfs_header_nritems(path->nodes[0]);
2976 }
2977 leaf = path->nodes[0];
2978 slot = path->slots[0];
2979
2980 btrfs_item_key_to_cpu(leaf, &key, slot);
2981 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2982 key.objectid != btrfs_ino(src))
2983 break;
2984
2985 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2986 struct btrfs_file_extent_item *extent;
2987 int type;
2988 u32 size;
2989 struct btrfs_key new_key;
2990 u64 disko = 0, diskl = 0;
2991 u64 datao = 0, datal = 0;
2992 u8 comp;
2993 u64 endoff;
2994
2995 extent = btrfs_item_ptr(leaf, slot,
2996 struct btrfs_file_extent_item);
2997 comp = btrfs_file_extent_compression(leaf, extent);
2998 type = btrfs_file_extent_type(leaf, extent);
2999 if (type == BTRFS_FILE_EXTENT_REG ||
3000 type == BTRFS_FILE_EXTENT_PREALLOC) {
3001 disko = btrfs_file_extent_disk_bytenr(leaf,
3002 extent);
3003 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3004 extent);
3005 datao = btrfs_file_extent_offset(leaf, extent);
3006 datal = btrfs_file_extent_num_bytes(leaf,
3007 extent);
3008 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3009 /* take upper bound, may be compressed */
3010 datal = btrfs_file_extent_ram_bytes(leaf,
3011 extent);
3012 }
3013
3014 if (key.offset + datal <= off ||
3015 key.offset >= off + len - 1) {
3016 path->slots[0]++;
3017 goto process_slot;
3018 }
3019
3020 size = btrfs_item_size_nr(leaf, slot);
3021 read_extent_buffer(leaf, buf,
3022 btrfs_item_ptr_offset(leaf, slot),
3023 size);
3024
3025 btrfs_release_path(path);
3026 path->leave_spinning = 0;
3027
3028 memcpy(&new_key, &key, sizeof(new_key));
3029 new_key.objectid = btrfs_ino(inode);
3030 if (off <= key.offset)
3031 new_key.offset = key.offset + destoff - off;
3032 else
3033 new_key.offset = destoff;
3034
3035 /*
3036 * 1 - adjusting old extent (we may have to split it)
3037 * 1 - add new extent
3038 * 1 - inode update
3039 */
3040 trans = btrfs_start_transaction(root, 3);
3041 if (IS_ERR(trans)) {
3042 ret = PTR_ERR(trans);
3043 goto out;
3044 }
3045
3046 if (type == BTRFS_FILE_EXTENT_REG ||
3047 type == BTRFS_FILE_EXTENT_PREALLOC) {
3048 /*
3049 * a | --- range to clone ---| b
3050 * | ------------- extent ------------- |
3051 */
3052
3053 /* substract range b */
3054 if (key.offset + datal > off + len)
3055 datal = off + len - key.offset;
3056
3057 /* substract range a */
3058 if (off > key.offset) {
3059 datao += off - key.offset;
3060 datal -= off - key.offset;
3061 }
3062
3063 ret = btrfs_drop_extents(trans, root, inode,
3064 new_key.offset,
3065 new_key.offset + datal,
3066 1);
3067 if (ret) {
3068 if (ret != -EINVAL)
3069 btrfs_abort_transaction(trans,
3070 root, ret);
3071 btrfs_end_transaction(trans, root);
3072 goto out;
3073 }
3074
3075 ret = btrfs_insert_empty_item(trans, root, path,
3076 &new_key, size);
3077 if (ret) {
3078 btrfs_abort_transaction(trans, root,
3079 ret);
3080 btrfs_end_transaction(trans, root);
3081 goto out;
3082 }
3083
3084 leaf = path->nodes[0];
3085 slot = path->slots[0];
3086 write_extent_buffer(leaf, buf,
3087 btrfs_item_ptr_offset(leaf, slot),
3088 size);
3089
3090 extent = btrfs_item_ptr(leaf, slot,
3091 struct btrfs_file_extent_item);
3092
3093 /* disko == 0 means it's a hole */
3094 if (!disko)
3095 datao = 0;
3096
3097 btrfs_set_file_extent_offset(leaf, extent,
3098 datao);
3099 btrfs_set_file_extent_num_bytes(leaf, extent,
3100 datal);
3101 if (disko) {
3102 inode_add_bytes(inode, datal);
3103 ret = btrfs_inc_extent_ref(trans, root,
3104 disko, diskl, 0,
3105 root->root_key.objectid,
3106 btrfs_ino(inode),
3107 new_key.offset - datao,
3108 0);
3109 if (ret) {
3110 btrfs_abort_transaction(trans,
3111 root,
3112 ret);
3113 btrfs_end_transaction(trans,
3114 root);
3115 goto out;
3116
3117 }
3118 }
3119 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3120 u64 skip = 0;
3121 u64 trim = 0;
3122 if (off > key.offset) {
3123 skip = off - key.offset;
3124 new_key.offset += skip;
3125 }
3126
3127 if (key.offset + datal > off + len)
3128 trim = key.offset + datal - (off + len);
3129
3130 if (comp && (skip || trim)) {
3131 ret = -EINVAL;
3132 btrfs_end_transaction(trans, root);
3133 goto out;
3134 }
3135 size -= skip + trim;
3136 datal -= skip + trim;
3137
3138 ret = btrfs_drop_extents(trans, root, inode,
3139 new_key.offset,
3140 new_key.offset + datal,
3141 1);
3142 if (ret) {
3143 btrfs_abort_transaction(trans, root,
3144 ret);
3145 btrfs_end_transaction(trans, root);
3146 goto out;
3147 }
3148
3149 ret = btrfs_insert_empty_item(trans, root, path,
3150 &new_key, size);
3151 if (ret) {
3152 btrfs_abort_transaction(trans, root,
3153 ret);
3154 btrfs_end_transaction(trans, root);
3155 goto out;
3156 }
3157
3158 if (skip) {
3159 u32 start =
3160 btrfs_file_extent_calc_inline_size(0);
3161 memmove(buf+start, buf+start+skip,
3162 datal);
3163 }
3164
3165 leaf = path->nodes[0];
3166 slot = path->slots[0];
3167 write_extent_buffer(leaf, buf,
3168 btrfs_item_ptr_offset(leaf, slot),
3169 size);
3170 inode_add_bytes(inode, datal);
3171 }
3172
3173 btrfs_mark_buffer_dirty(leaf);
3174 btrfs_release_path(path);
3175
3176 inode_inc_iversion(inode);
3177 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3178
3179 /*
3180 * we round up to the block size at eof when
3181 * determining which extents to clone above,
3182 * but shouldn't round up the file size
3183 */
3184 endoff = new_key.offset + datal;
3185 if (endoff > destoff+olen)
3186 endoff = destoff+olen;
3187 if (endoff > inode->i_size)
3188 btrfs_i_size_write(inode, endoff);
3189
3190 ret = btrfs_update_inode(trans, root, inode);
3191 if (ret) {
3192 btrfs_abort_transaction(trans, root, ret);
3193 btrfs_end_transaction(trans, root);
3194 goto out;
3195 }
3196 ret = btrfs_end_transaction(trans, root);
3197 }
3198 btrfs_release_path(path);
3199 key.offset++;
3200 }
3201 ret = 0;
3202
3203 out:
3204 btrfs_release_path(path);
3205 btrfs_free_path(path);
3206 vfree(buf);
3207 return ret;
3208 }
3209
3210 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3211 u64 off, u64 olen, u64 destoff)
3212 {
3213 struct inode *inode = file_inode(file);
3214 struct btrfs_root *root = BTRFS_I(inode)->root;
3215 struct fd src_file;
3216 struct inode *src;
3217 int ret;
3218 u64 len = olen;
3219 u64 bs = root->fs_info->sb->s_blocksize;
3220 int same_inode = 0;
3221
3222 /*
3223 * TODO:
3224 * - split compressed inline extents. annoying: we need to
3225 * decompress into destination's address_space (the file offset
3226 * may change, so source mapping won't do), then recompress (or
3227 * otherwise reinsert) a subrange.
3228 *
3229 * - split destination inode's inline extents. The inline extents can
3230 * be either compressed or non-compressed.
3231 */
3232
3233 /* the destination must be opened for writing */
3234 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3235 return -EINVAL;
3236
3237 if (btrfs_root_readonly(root))
3238 return -EROFS;
3239
3240 ret = mnt_want_write_file(file);
3241 if (ret)
3242 return ret;
3243
3244 src_file = fdget(srcfd);
3245 if (!src_file.file) {
3246 ret = -EBADF;
3247 goto out_drop_write;
3248 }
3249
3250 ret = -EXDEV;
3251 if (src_file.file->f_path.mnt != file->f_path.mnt)
3252 goto out_fput;
3253
3254 src = file_inode(src_file.file);
3255
3256 ret = -EINVAL;
3257 if (src == inode)
3258 same_inode = 1;
3259
3260 /* the src must be open for reading */
3261 if (!(src_file.file->f_mode & FMODE_READ))
3262 goto out_fput;
3263
3264 /* don't make the dst file partly checksummed */
3265 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3266 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3267 goto out_fput;
3268
3269 ret = -EISDIR;
3270 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3271 goto out_fput;
3272
3273 ret = -EXDEV;
3274 if (src->i_sb != inode->i_sb)
3275 goto out_fput;
3276
3277 if (!same_inode) {
3278 if (inode < src) {
3279 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3280 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3281 } else {
3282 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3283 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3284 }
3285 } else {
3286 mutex_lock(&src->i_mutex);
3287 }
3288
3289 /* determine range to clone */
3290 ret = -EINVAL;
3291 if (off + len > src->i_size || off + len < off)
3292 goto out_unlock;
3293 if (len == 0)
3294 olen = len = src->i_size - off;
3295 /* if we extend to eof, continue to block boundary */
3296 if (off + len == src->i_size)
3297 len = ALIGN(src->i_size, bs) - off;
3298
3299 /* verify the end result is block aligned */
3300 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3301 !IS_ALIGNED(destoff, bs))
3302 goto out_unlock;
3303
3304 /* verify if ranges are overlapped within the same file */
3305 if (same_inode) {
3306 if (destoff + len > off && destoff < off + len)
3307 goto out_unlock;
3308 }
3309
3310 if (destoff > inode->i_size) {
3311 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3312 if (ret)
3313 goto out_unlock;
3314 }
3315
3316 /* truncate page cache pages from target inode range */
3317 truncate_inode_pages_range(&inode->i_data, destoff,
3318 PAGE_CACHE_ALIGN(destoff + len) - 1);
3319
3320 lock_extent_range(src, off, len);
3321
3322 ret = btrfs_clone(src, inode, off, olen, len, destoff);
3323
3324 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3325 out_unlock:
3326 if (!same_inode) {
3327 if (inode < src) {
3328 mutex_unlock(&src->i_mutex);
3329 mutex_unlock(&inode->i_mutex);
3330 } else {
3331 mutex_unlock(&inode->i_mutex);
3332 mutex_unlock(&src->i_mutex);
3333 }
3334 } else {
3335 mutex_unlock(&src->i_mutex);
3336 }
3337 out_fput:
3338 fdput(src_file);
3339 out_drop_write:
3340 mnt_drop_write_file(file);
3341 return ret;
3342 }
3343
3344 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3345 {
3346 struct btrfs_ioctl_clone_range_args args;
3347
3348 if (copy_from_user(&args, argp, sizeof(args)))
3349 return -EFAULT;
3350 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3351 args.src_length, args.dest_offset);
3352 }
3353
3354 /*
3355 * there are many ways the trans_start and trans_end ioctls can lead
3356 * to deadlocks. They should only be used by applications that
3357 * basically own the machine, and have a very in depth understanding
3358 * of all the possible deadlocks and enospc problems.
3359 */
3360 static long btrfs_ioctl_trans_start(struct file *file)
3361 {
3362 struct inode *inode = file_inode(file);
3363 struct btrfs_root *root = BTRFS_I(inode)->root;
3364 struct btrfs_trans_handle *trans;
3365 int ret;
3366
3367 ret = -EPERM;
3368 if (!capable(CAP_SYS_ADMIN))
3369 goto out;
3370
3371 ret = -EINPROGRESS;
3372 if (file->private_data)
3373 goto out;
3374
3375 ret = -EROFS;
3376 if (btrfs_root_readonly(root))
3377 goto out;
3378
3379 ret = mnt_want_write_file(file);
3380 if (ret)
3381 goto out;
3382
3383 atomic_inc(&root->fs_info->open_ioctl_trans);
3384
3385 ret = -ENOMEM;
3386 trans = btrfs_start_ioctl_transaction(root);
3387 if (IS_ERR(trans))
3388 goto out_drop;
3389
3390 file->private_data = trans;
3391 return 0;
3392
3393 out_drop:
3394 atomic_dec(&root->fs_info->open_ioctl_trans);
3395 mnt_drop_write_file(file);
3396 out:
3397 return ret;
3398 }
3399
3400 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3401 {
3402 struct inode *inode = file_inode(file);
3403 struct btrfs_root *root = BTRFS_I(inode)->root;
3404 struct btrfs_root *new_root;
3405 struct btrfs_dir_item *di;
3406 struct btrfs_trans_handle *trans;
3407 struct btrfs_path *path;
3408 struct btrfs_key location;
3409 struct btrfs_disk_key disk_key;
3410 u64 objectid = 0;
3411 u64 dir_id;
3412 int ret;
3413
3414 if (!capable(CAP_SYS_ADMIN))
3415 return -EPERM;
3416
3417 ret = mnt_want_write_file(file);
3418 if (ret)
3419 return ret;
3420
3421 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3422 ret = -EFAULT;
3423 goto out;
3424 }
3425
3426 if (!objectid)
3427 objectid = BTRFS_FS_TREE_OBJECTID;
3428
3429 location.objectid = objectid;
3430 location.type = BTRFS_ROOT_ITEM_KEY;
3431 location.offset = (u64)-1;
3432
3433 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3434 if (IS_ERR(new_root)) {
3435 ret = PTR_ERR(new_root);
3436 goto out;
3437 }
3438
3439 path = btrfs_alloc_path();
3440 if (!path) {
3441 ret = -ENOMEM;
3442 goto out;
3443 }
3444 path->leave_spinning = 1;
3445
3446 trans = btrfs_start_transaction(root, 1);
3447 if (IS_ERR(trans)) {
3448 btrfs_free_path(path);
3449 ret = PTR_ERR(trans);
3450 goto out;
3451 }
3452
3453 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3454 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3455 dir_id, "default", 7, 1);
3456 if (IS_ERR_OR_NULL(di)) {
3457 btrfs_free_path(path);
3458 btrfs_end_transaction(trans, root);
3459 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3460 "item, this isn't going to work");
3461 ret = -ENOENT;
3462 goto out;
3463 }
3464
3465 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3466 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3467 btrfs_mark_buffer_dirty(path->nodes[0]);
3468 btrfs_free_path(path);
3469
3470 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3471 btrfs_end_transaction(trans, root);
3472 out:
3473 mnt_drop_write_file(file);
3474 return ret;
3475 }
3476
3477 void btrfs_get_block_group_info(struct list_head *groups_list,
3478 struct btrfs_ioctl_space_info *space)
3479 {
3480 struct btrfs_block_group_cache *block_group;
3481
3482 space->total_bytes = 0;
3483 space->used_bytes = 0;
3484 space->flags = 0;
3485 list_for_each_entry(block_group, groups_list, list) {
3486 space->flags = block_group->flags;
3487 space->total_bytes += block_group->key.offset;
3488 space->used_bytes +=
3489 btrfs_block_group_used(&block_group->item);
3490 }
3491 }
3492
3493 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3494 {
3495 struct btrfs_ioctl_space_args space_args;
3496 struct btrfs_ioctl_space_info space;
3497 struct btrfs_ioctl_space_info *dest;
3498 struct btrfs_ioctl_space_info *dest_orig;
3499 struct btrfs_ioctl_space_info __user *user_dest;
3500 struct btrfs_space_info *info;
3501 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3502 BTRFS_BLOCK_GROUP_SYSTEM,
3503 BTRFS_BLOCK_GROUP_METADATA,
3504 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3505 int num_types = 4;
3506 int alloc_size;
3507 int ret = 0;
3508 u64 slot_count = 0;
3509 int i, c;
3510
3511 if (copy_from_user(&space_args,
3512 (struct btrfs_ioctl_space_args __user *)arg,
3513 sizeof(space_args)))
3514 return -EFAULT;
3515
3516 for (i = 0; i < num_types; i++) {
3517 struct btrfs_space_info *tmp;
3518
3519 info = NULL;
3520 rcu_read_lock();
3521 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3522 list) {
3523 if (tmp->flags == types[i]) {
3524 info = tmp;
3525 break;
3526 }
3527 }
3528 rcu_read_unlock();
3529
3530 if (!info)
3531 continue;
3532
3533 down_read(&info->groups_sem);
3534 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3535 if (!list_empty(&info->block_groups[c]))
3536 slot_count++;
3537 }
3538 up_read(&info->groups_sem);
3539 }
3540
3541 /* space_slots == 0 means they are asking for a count */
3542 if (space_args.space_slots == 0) {
3543 space_args.total_spaces = slot_count;
3544 goto out;
3545 }
3546
3547 slot_count = min_t(u64, space_args.space_slots, slot_count);
3548
3549 alloc_size = sizeof(*dest) * slot_count;
3550
3551 /* we generally have at most 6 or so space infos, one for each raid
3552 * level. So, a whole page should be more than enough for everyone
3553 */
3554 if (alloc_size > PAGE_CACHE_SIZE)
3555 return -ENOMEM;
3556
3557 space_args.total_spaces = 0;
3558 dest = kmalloc(alloc_size, GFP_NOFS);
3559 if (!dest)
3560 return -ENOMEM;
3561 dest_orig = dest;
3562
3563 /* now we have a buffer to copy into */
3564 for (i = 0; i < num_types; i++) {
3565 struct btrfs_space_info *tmp;
3566
3567 if (!slot_count)
3568 break;
3569
3570 info = NULL;
3571 rcu_read_lock();
3572 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3573 list) {
3574 if (tmp->flags == types[i]) {
3575 info = tmp;
3576 break;
3577 }
3578 }
3579 rcu_read_unlock();
3580
3581 if (!info)
3582 continue;
3583 down_read(&info->groups_sem);
3584 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3585 if (!list_empty(&info->block_groups[c])) {
3586 btrfs_get_block_group_info(
3587 &info->block_groups[c], &space);
3588 memcpy(dest, &space, sizeof(space));
3589 dest++;
3590 space_args.total_spaces++;
3591 slot_count--;
3592 }
3593 if (!slot_count)
3594 break;
3595 }
3596 up_read(&info->groups_sem);
3597 }
3598
3599 user_dest = (struct btrfs_ioctl_space_info __user *)
3600 (arg + sizeof(struct btrfs_ioctl_space_args));
3601
3602 if (copy_to_user(user_dest, dest_orig, alloc_size))
3603 ret = -EFAULT;
3604
3605 kfree(dest_orig);
3606 out:
3607 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3608 ret = -EFAULT;
3609
3610 return ret;
3611 }
3612
3613 /*
3614 * there are many ways the trans_start and trans_end ioctls can lead
3615 * to deadlocks. They should only be used by applications that
3616 * basically own the machine, and have a very in depth understanding
3617 * of all the possible deadlocks and enospc problems.
3618 */
3619 long btrfs_ioctl_trans_end(struct file *file)
3620 {
3621 struct inode *inode = file_inode(file);
3622 struct btrfs_root *root = BTRFS_I(inode)->root;
3623 struct btrfs_trans_handle *trans;
3624
3625 trans = file->private_data;
3626 if (!trans)
3627 return -EINVAL;
3628 file->private_data = NULL;
3629
3630 btrfs_end_transaction(trans, root);
3631
3632 atomic_dec(&root->fs_info->open_ioctl_trans);
3633
3634 mnt_drop_write_file(file);
3635 return 0;
3636 }
3637
3638 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3639 void __user *argp)
3640 {
3641 struct btrfs_trans_handle *trans;
3642 u64 transid;
3643 int ret;
3644
3645 trans = btrfs_attach_transaction_barrier(root);
3646 if (IS_ERR(trans)) {
3647 if (PTR_ERR(trans) != -ENOENT)
3648 return PTR_ERR(trans);
3649
3650 /* No running transaction, don't bother */
3651 transid = root->fs_info->last_trans_committed;
3652 goto out;
3653 }
3654 transid = trans->transid;
3655 ret = btrfs_commit_transaction_async(trans, root, 0);
3656 if (ret) {
3657 btrfs_end_transaction(trans, root);
3658 return ret;
3659 }
3660 out:
3661 if (argp)
3662 if (copy_to_user(argp, &transid, sizeof(transid)))
3663 return -EFAULT;
3664 return 0;
3665 }
3666
3667 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3668 void __user *argp)
3669 {
3670 u64 transid;
3671
3672 if (argp) {
3673 if (copy_from_user(&transid, argp, sizeof(transid)))
3674 return -EFAULT;
3675 } else {
3676 transid = 0; /* current trans */
3677 }
3678 return btrfs_wait_for_commit(root, transid);
3679 }
3680
3681 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3682 {
3683 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3684 struct btrfs_ioctl_scrub_args *sa;
3685 int ret;
3686
3687 if (!capable(CAP_SYS_ADMIN))
3688 return -EPERM;
3689
3690 sa = memdup_user(arg, sizeof(*sa));
3691 if (IS_ERR(sa))
3692 return PTR_ERR(sa);
3693
3694 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3695 ret = mnt_want_write_file(file);
3696 if (ret)
3697 goto out;
3698 }
3699
3700 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3701 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3702 0);
3703
3704 if (copy_to_user(arg, sa, sizeof(*sa)))
3705 ret = -EFAULT;
3706
3707 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3708 mnt_drop_write_file(file);
3709 out:
3710 kfree(sa);
3711 return ret;
3712 }
3713
3714 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3715 {
3716 if (!capable(CAP_SYS_ADMIN))
3717 return -EPERM;
3718
3719 return btrfs_scrub_cancel(root->fs_info);
3720 }
3721
3722 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3723 void __user *arg)
3724 {
3725 struct btrfs_ioctl_scrub_args *sa;
3726 int ret;
3727
3728 if (!capable(CAP_SYS_ADMIN))
3729 return -EPERM;
3730
3731 sa = memdup_user(arg, sizeof(*sa));
3732 if (IS_ERR(sa))
3733 return PTR_ERR(sa);
3734
3735 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3736
3737 if (copy_to_user(arg, sa, sizeof(*sa)))
3738 ret = -EFAULT;
3739
3740 kfree(sa);
3741 return ret;
3742 }
3743
3744 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3745 void __user *arg)
3746 {
3747 struct btrfs_ioctl_get_dev_stats *sa;
3748 int ret;
3749
3750 sa = memdup_user(arg, sizeof(*sa));
3751 if (IS_ERR(sa))
3752 return PTR_ERR(sa);
3753
3754 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3755 kfree(sa);
3756 return -EPERM;
3757 }
3758
3759 ret = btrfs_get_dev_stats(root, sa);
3760
3761 if (copy_to_user(arg, sa, sizeof(*sa)))
3762 ret = -EFAULT;
3763
3764 kfree(sa);
3765 return ret;
3766 }
3767
3768 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3769 {
3770 struct btrfs_ioctl_dev_replace_args *p;
3771 int ret;
3772
3773 if (!capable(CAP_SYS_ADMIN))
3774 return -EPERM;
3775
3776 p = memdup_user(arg, sizeof(*p));
3777 if (IS_ERR(p))
3778 return PTR_ERR(p);
3779
3780 switch (p->cmd) {
3781 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3782 if (root->fs_info->sb->s_flags & MS_RDONLY) {
3783 ret = -EROFS;
3784 goto out;
3785 }
3786 if (atomic_xchg(
3787 &root->fs_info->mutually_exclusive_operation_running,
3788 1)) {
3789 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3790 } else {
3791 ret = btrfs_dev_replace_start(root, p);
3792 atomic_set(
3793 &root->fs_info->mutually_exclusive_operation_running,
3794 0);
3795 }
3796 break;
3797 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3798 btrfs_dev_replace_status(root->fs_info, p);
3799 ret = 0;
3800 break;
3801 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3802 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3803 break;
3804 default:
3805 ret = -EINVAL;
3806 break;
3807 }
3808
3809 if (copy_to_user(arg, p, sizeof(*p)))
3810 ret = -EFAULT;
3811 out:
3812 kfree(p);
3813 return ret;
3814 }
3815
3816 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3817 {
3818 int ret = 0;
3819 int i;
3820 u64 rel_ptr;
3821 int size;
3822 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3823 struct inode_fs_paths *ipath = NULL;
3824 struct btrfs_path *path;
3825
3826 if (!capable(CAP_DAC_READ_SEARCH))
3827 return -EPERM;
3828
3829 path = btrfs_alloc_path();
3830 if (!path) {
3831 ret = -ENOMEM;
3832 goto out;
3833 }
3834
3835 ipa = memdup_user(arg, sizeof(*ipa));
3836 if (IS_ERR(ipa)) {
3837 ret = PTR_ERR(ipa);
3838 ipa = NULL;
3839 goto out;
3840 }
3841
3842 size = min_t(u32, ipa->size, 4096);
3843 ipath = init_ipath(size, root, path);
3844 if (IS_ERR(ipath)) {
3845 ret = PTR_ERR(ipath);
3846 ipath = NULL;
3847 goto out;
3848 }
3849
3850 ret = paths_from_inode(ipa->inum, ipath);
3851 if (ret < 0)
3852 goto out;
3853
3854 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3855 rel_ptr = ipath->fspath->val[i] -
3856 (u64)(unsigned long)ipath->fspath->val;
3857 ipath->fspath->val[i] = rel_ptr;
3858 }
3859
3860 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3861 (void *)(unsigned long)ipath->fspath, size);
3862 if (ret) {
3863 ret = -EFAULT;
3864 goto out;
3865 }
3866
3867 out:
3868 btrfs_free_path(path);
3869 free_ipath(ipath);
3870 kfree(ipa);
3871
3872 return ret;
3873 }
3874
3875 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3876 {
3877 struct btrfs_data_container *inodes = ctx;
3878 const size_t c = 3 * sizeof(u64);
3879
3880 if (inodes->bytes_left >= c) {
3881 inodes->bytes_left -= c;
3882 inodes->val[inodes->elem_cnt] = inum;
3883 inodes->val[inodes->elem_cnt + 1] = offset;
3884 inodes->val[inodes->elem_cnt + 2] = root;
3885 inodes->elem_cnt += 3;
3886 } else {
3887 inodes->bytes_missing += c - inodes->bytes_left;
3888 inodes->bytes_left = 0;
3889 inodes->elem_missed += 3;
3890 }
3891
3892 return 0;
3893 }
3894
3895 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3896 void __user *arg)
3897 {
3898 int ret = 0;
3899 int size;
3900 struct btrfs_ioctl_logical_ino_args *loi;
3901 struct btrfs_data_container *inodes = NULL;
3902 struct btrfs_path *path = NULL;
3903
3904 if (!capable(CAP_SYS_ADMIN))
3905 return -EPERM;
3906
3907 loi = memdup_user(arg, sizeof(*loi));
3908 if (IS_ERR(loi)) {
3909 ret = PTR_ERR(loi);
3910 loi = NULL;
3911 goto out;
3912 }
3913
3914 path = btrfs_alloc_path();
3915 if (!path) {
3916 ret = -ENOMEM;
3917 goto out;
3918 }
3919
3920 size = min_t(u32, loi->size, 64 * 1024);
3921 inodes = init_data_container(size);
3922 if (IS_ERR(inodes)) {
3923 ret = PTR_ERR(inodes);
3924 inodes = NULL;
3925 goto out;
3926 }
3927
3928 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3929 build_ino_list, inodes);
3930 if (ret == -EINVAL)
3931 ret = -ENOENT;
3932 if (ret < 0)
3933 goto out;
3934
3935 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3936 (void *)(unsigned long)inodes, size);
3937 if (ret)
3938 ret = -EFAULT;
3939
3940 out:
3941 btrfs_free_path(path);
3942 vfree(inodes);
3943 kfree(loi);
3944
3945 return ret;
3946 }
3947
3948 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3949 struct btrfs_ioctl_balance_args *bargs)
3950 {
3951 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3952
3953 bargs->flags = bctl->flags;
3954
3955 if (atomic_read(&fs_info->balance_running))
3956 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3957 if (atomic_read(&fs_info->balance_pause_req))
3958 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3959 if (atomic_read(&fs_info->balance_cancel_req))
3960 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3961
3962 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3963 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3964 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3965
3966 if (lock) {
3967 spin_lock(&fs_info->balance_lock);
3968 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3969 spin_unlock(&fs_info->balance_lock);
3970 } else {
3971 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3972 }
3973 }
3974
3975 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3976 {
3977 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3978 struct btrfs_fs_info *fs_info = root->fs_info;
3979 struct btrfs_ioctl_balance_args *bargs;
3980 struct btrfs_balance_control *bctl;
3981 bool need_unlock; /* for mut. excl. ops lock */
3982 int ret;
3983
3984 if (!capable(CAP_SYS_ADMIN))
3985 return -EPERM;
3986
3987 ret = mnt_want_write_file(file);
3988 if (ret)
3989 return ret;
3990
3991 again:
3992 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3993 mutex_lock(&fs_info->volume_mutex);
3994 mutex_lock(&fs_info->balance_mutex);
3995 need_unlock = true;
3996 goto locked;
3997 }
3998
3999 /*
4000 * mut. excl. ops lock is locked. Three possibilites:
4001 * (1) some other op is running
4002 * (2) balance is running
4003 * (3) balance is paused -- special case (think resume)
4004 */
4005 mutex_lock(&fs_info->balance_mutex);
4006 if (fs_info->balance_ctl) {
4007 /* this is either (2) or (3) */
4008 if (!atomic_read(&fs_info->balance_running)) {
4009 mutex_unlock(&fs_info->balance_mutex);
4010 if (!mutex_trylock(&fs_info->volume_mutex))
4011 goto again;
4012 mutex_lock(&fs_info->balance_mutex);
4013
4014 if (fs_info->balance_ctl &&
4015 !atomic_read(&fs_info->balance_running)) {
4016 /* this is (3) */
4017 need_unlock = false;
4018 goto locked;
4019 }
4020
4021 mutex_unlock(&fs_info->balance_mutex);
4022 mutex_unlock(&fs_info->volume_mutex);
4023 goto again;
4024 } else {
4025 /* this is (2) */
4026 mutex_unlock(&fs_info->balance_mutex);
4027 ret = -EINPROGRESS;
4028 goto out;
4029 }
4030 } else {
4031 /* this is (1) */
4032 mutex_unlock(&fs_info->balance_mutex);
4033 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4034 goto out;
4035 }
4036
4037 locked:
4038 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4039
4040 if (arg) {
4041 bargs = memdup_user(arg, sizeof(*bargs));
4042 if (IS_ERR(bargs)) {
4043 ret = PTR_ERR(bargs);
4044 goto out_unlock;
4045 }
4046
4047 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4048 if (!fs_info->balance_ctl) {
4049 ret = -ENOTCONN;
4050 goto out_bargs;
4051 }
4052
4053 bctl = fs_info->balance_ctl;
4054 spin_lock(&fs_info->balance_lock);
4055 bctl->flags |= BTRFS_BALANCE_RESUME;
4056 spin_unlock(&fs_info->balance_lock);
4057
4058 goto do_balance;
4059 }
4060 } else {
4061 bargs = NULL;
4062 }
4063
4064 if (fs_info->balance_ctl) {
4065 ret = -EINPROGRESS;
4066 goto out_bargs;
4067 }
4068
4069 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4070 if (!bctl) {
4071 ret = -ENOMEM;
4072 goto out_bargs;
4073 }
4074
4075 bctl->fs_info = fs_info;
4076 if (arg) {
4077 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4078 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4079 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4080
4081 bctl->flags = bargs->flags;
4082 } else {
4083 /* balance everything - no filters */
4084 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4085 }
4086
4087 do_balance:
4088 /*
4089 * Ownership of bctl and mutually_exclusive_operation_running
4090 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4091 * or, if restriper was paused all the way until unmount, in
4092 * free_fs_info. mutually_exclusive_operation_running is
4093 * cleared in __cancel_balance.
4094 */
4095 need_unlock = false;
4096
4097 ret = btrfs_balance(bctl, bargs);
4098
4099 if (arg) {
4100 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4101 ret = -EFAULT;
4102 }
4103
4104 out_bargs:
4105 kfree(bargs);
4106 out_unlock:
4107 mutex_unlock(&fs_info->balance_mutex);
4108 mutex_unlock(&fs_info->volume_mutex);
4109 if (need_unlock)
4110 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4111 out:
4112 mnt_drop_write_file(file);
4113 return ret;
4114 }
4115
4116 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4117 {
4118 if (!capable(CAP_SYS_ADMIN))
4119 return -EPERM;
4120
4121 switch (cmd) {
4122 case BTRFS_BALANCE_CTL_PAUSE:
4123 return btrfs_pause_balance(root->fs_info);
4124 case BTRFS_BALANCE_CTL_CANCEL:
4125 return btrfs_cancel_balance(root->fs_info);
4126 }
4127
4128 return -EINVAL;
4129 }
4130
4131 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4132 void __user *arg)
4133 {
4134 struct btrfs_fs_info *fs_info = root->fs_info;
4135 struct btrfs_ioctl_balance_args *bargs;
4136 int ret = 0;
4137
4138 if (!capable(CAP_SYS_ADMIN))
4139 return -EPERM;
4140
4141 mutex_lock(&fs_info->balance_mutex);
4142 if (!fs_info->balance_ctl) {
4143 ret = -ENOTCONN;
4144 goto out;
4145 }
4146
4147 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4148 if (!bargs) {
4149 ret = -ENOMEM;
4150 goto out;
4151 }
4152
4153 update_ioctl_balance_args(fs_info, 1, bargs);
4154
4155 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4156 ret = -EFAULT;
4157
4158 kfree(bargs);
4159 out:
4160 mutex_unlock(&fs_info->balance_mutex);
4161 return ret;
4162 }
4163
4164 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4165 {
4166 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4167 struct btrfs_ioctl_quota_ctl_args *sa;
4168 struct btrfs_trans_handle *trans = NULL;
4169 int ret;
4170 int err;
4171
4172 if (!capable(CAP_SYS_ADMIN))
4173 return -EPERM;
4174
4175 ret = mnt_want_write_file(file);
4176 if (ret)
4177 return ret;
4178
4179 sa = memdup_user(arg, sizeof(*sa));
4180 if (IS_ERR(sa)) {
4181 ret = PTR_ERR(sa);
4182 goto drop_write;
4183 }
4184
4185 down_write(&root->fs_info->subvol_sem);
4186 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4187 if (IS_ERR(trans)) {
4188 ret = PTR_ERR(trans);
4189 goto out;
4190 }
4191
4192 switch (sa->cmd) {
4193 case BTRFS_QUOTA_CTL_ENABLE:
4194 ret = btrfs_quota_enable(trans, root->fs_info);
4195 break;
4196 case BTRFS_QUOTA_CTL_DISABLE:
4197 ret = btrfs_quota_disable(trans, root->fs_info);
4198 break;
4199 default:
4200 ret = -EINVAL;
4201 break;
4202 }
4203
4204 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4205 if (err && !ret)
4206 ret = err;
4207 out:
4208 kfree(sa);
4209 up_write(&root->fs_info->subvol_sem);
4210 drop_write:
4211 mnt_drop_write_file(file);
4212 return ret;
4213 }
4214
4215 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4216 {
4217 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4218 struct btrfs_ioctl_qgroup_assign_args *sa;
4219 struct btrfs_trans_handle *trans;
4220 int ret;
4221 int err;
4222
4223 if (!capable(CAP_SYS_ADMIN))
4224 return -EPERM;
4225
4226 ret = mnt_want_write_file(file);
4227 if (ret)
4228 return ret;
4229
4230 sa = memdup_user(arg, sizeof(*sa));
4231 if (IS_ERR(sa)) {
4232 ret = PTR_ERR(sa);
4233 goto drop_write;
4234 }
4235
4236 trans = btrfs_join_transaction(root);
4237 if (IS_ERR(trans)) {
4238 ret = PTR_ERR(trans);
4239 goto out;
4240 }
4241
4242 /* FIXME: check if the IDs really exist */
4243 if (sa->assign) {
4244 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4245 sa->src, sa->dst);
4246 } else {
4247 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4248 sa->src, sa->dst);
4249 }
4250
4251 err = btrfs_end_transaction(trans, root);
4252 if (err && !ret)
4253 ret = err;
4254
4255 out:
4256 kfree(sa);
4257 drop_write:
4258 mnt_drop_write_file(file);
4259 return ret;
4260 }
4261
4262 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4263 {
4264 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4265 struct btrfs_ioctl_qgroup_create_args *sa;
4266 struct btrfs_trans_handle *trans;
4267 int ret;
4268 int err;
4269
4270 if (!capable(CAP_SYS_ADMIN))
4271 return -EPERM;
4272
4273 ret = mnt_want_write_file(file);
4274 if (ret)
4275 return ret;
4276
4277 sa = memdup_user(arg, sizeof(*sa));
4278 if (IS_ERR(sa)) {
4279 ret = PTR_ERR(sa);
4280 goto drop_write;
4281 }
4282
4283 if (!sa->qgroupid) {
4284 ret = -EINVAL;
4285 goto out;
4286 }
4287
4288 trans = btrfs_join_transaction(root);
4289 if (IS_ERR(trans)) {
4290 ret = PTR_ERR(trans);
4291 goto out;
4292 }
4293
4294 /* FIXME: check if the IDs really exist */
4295 if (sa->create) {
4296 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4297 NULL);
4298 } else {
4299 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4300 }
4301
4302 err = btrfs_end_transaction(trans, root);
4303 if (err && !ret)
4304 ret = err;
4305
4306 out:
4307 kfree(sa);
4308 drop_write:
4309 mnt_drop_write_file(file);
4310 return ret;
4311 }
4312
4313 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4314 {
4315 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4316 struct btrfs_ioctl_qgroup_limit_args *sa;
4317 struct btrfs_trans_handle *trans;
4318 int ret;
4319 int err;
4320 u64 qgroupid;
4321
4322 if (!capable(CAP_SYS_ADMIN))
4323 return -EPERM;
4324
4325 ret = mnt_want_write_file(file);
4326 if (ret)
4327 return ret;
4328
4329 sa = memdup_user(arg, sizeof(*sa));
4330 if (IS_ERR(sa)) {
4331 ret = PTR_ERR(sa);
4332 goto drop_write;
4333 }
4334
4335 trans = btrfs_join_transaction(root);
4336 if (IS_ERR(trans)) {
4337 ret = PTR_ERR(trans);
4338 goto out;
4339 }
4340
4341 qgroupid = sa->qgroupid;
4342 if (!qgroupid) {
4343 /* take the current subvol as qgroup */
4344 qgroupid = root->root_key.objectid;
4345 }
4346
4347 /* FIXME: check if the IDs really exist */
4348 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4349
4350 err = btrfs_end_transaction(trans, root);
4351 if (err && !ret)
4352 ret = err;
4353
4354 out:
4355 kfree(sa);
4356 drop_write:
4357 mnt_drop_write_file(file);
4358 return ret;
4359 }
4360
4361 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4362 {
4363 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4364 struct btrfs_ioctl_quota_rescan_args *qsa;
4365 int ret;
4366
4367 if (!capable(CAP_SYS_ADMIN))
4368 return -EPERM;
4369
4370 ret = mnt_want_write_file(file);
4371 if (ret)
4372 return ret;
4373
4374 qsa = memdup_user(arg, sizeof(*qsa));
4375 if (IS_ERR(qsa)) {
4376 ret = PTR_ERR(qsa);
4377 goto drop_write;
4378 }
4379
4380 if (qsa->flags) {
4381 ret = -EINVAL;
4382 goto out;
4383 }
4384
4385 ret = btrfs_qgroup_rescan(root->fs_info);
4386
4387 out:
4388 kfree(qsa);
4389 drop_write:
4390 mnt_drop_write_file(file);
4391 return ret;
4392 }
4393
4394 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4395 {
4396 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4397 struct btrfs_ioctl_quota_rescan_args *qsa;
4398 int ret = 0;
4399
4400 if (!capable(CAP_SYS_ADMIN))
4401 return -EPERM;
4402
4403 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4404 if (!qsa)
4405 return -ENOMEM;
4406
4407 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4408 qsa->flags = 1;
4409 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4410 }
4411
4412 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4413 ret = -EFAULT;
4414
4415 kfree(qsa);
4416 return ret;
4417 }
4418
4419 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4420 {
4421 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4422
4423 if (!capable(CAP_SYS_ADMIN))
4424 return -EPERM;
4425
4426 return btrfs_qgroup_wait_for_completion(root->fs_info);
4427 }
4428
4429 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4430 struct btrfs_ioctl_received_subvol_args *sa)
4431 {
4432 struct inode *inode = file_inode(file);
4433 struct btrfs_root *root = BTRFS_I(inode)->root;
4434 struct btrfs_root_item *root_item = &root->root_item;
4435 struct btrfs_trans_handle *trans;
4436 struct timespec ct = CURRENT_TIME;
4437 int ret = 0;
4438 int received_uuid_changed;
4439
4440 if (!inode_owner_or_capable(inode))
4441 return -EPERM;
4442
4443 ret = mnt_want_write_file(file);
4444 if (ret < 0)
4445 return ret;
4446
4447 down_write(&root->fs_info->subvol_sem);
4448
4449 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4450 ret = -EINVAL;
4451 goto out;
4452 }
4453
4454 if (btrfs_root_readonly(root)) {
4455 ret = -EROFS;
4456 goto out;
4457 }
4458
4459 /*
4460 * 1 - root item
4461 * 2 - uuid items (received uuid + subvol uuid)
4462 */
4463 trans = btrfs_start_transaction(root, 3);
4464 if (IS_ERR(trans)) {
4465 ret = PTR_ERR(trans);
4466 trans = NULL;
4467 goto out;
4468 }
4469
4470 sa->rtransid = trans->transid;
4471 sa->rtime.sec = ct.tv_sec;
4472 sa->rtime.nsec = ct.tv_nsec;
4473
4474 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4475 BTRFS_UUID_SIZE);
4476 if (received_uuid_changed &&
4477 !btrfs_is_empty_uuid(root_item->received_uuid))
4478 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4479 root_item->received_uuid,
4480 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4481 root->root_key.objectid);
4482 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4483 btrfs_set_root_stransid(root_item, sa->stransid);
4484 btrfs_set_root_rtransid(root_item, sa->rtransid);
4485 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4486 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4487 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4488 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4489
4490 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4491 &root->root_key, &root->root_item);
4492 if (ret < 0) {
4493 btrfs_end_transaction(trans, root);
4494 goto out;
4495 }
4496 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4497 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4498 sa->uuid,
4499 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4500 root->root_key.objectid);
4501 if (ret < 0 && ret != -EEXIST) {
4502 btrfs_abort_transaction(trans, root, ret);
4503 goto out;
4504 }
4505 }
4506 ret = btrfs_commit_transaction(trans, root);
4507 if (ret < 0) {
4508 btrfs_abort_transaction(trans, root, ret);
4509 goto out;
4510 }
4511
4512 out:
4513 up_write(&root->fs_info->subvol_sem);
4514 mnt_drop_write_file(file);
4515 return ret;
4516 }
4517
4518 #ifdef CONFIG_64BIT
4519 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4520 void __user *arg)
4521 {
4522 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4523 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4524 int ret = 0;
4525
4526 args32 = memdup_user(arg, sizeof(*args32));
4527 if (IS_ERR(args32)) {
4528 ret = PTR_ERR(args32);
4529 args32 = NULL;
4530 goto out;
4531 }
4532
4533 args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4534 if (IS_ERR(args64)) {
4535 ret = PTR_ERR(args64);
4536 args64 = NULL;
4537 goto out;
4538 }
4539
4540 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4541 args64->stransid = args32->stransid;
4542 args64->rtransid = args32->rtransid;
4543 args64->stime.sec = args32->stime.sec;
4544 args64->stime.nsec = args32->stime.nsec;
4545 args64->rtime.sec = args32->rtime.sec;
4546 args64->rtime.nsec = args32->rtime.nsec;
4547 args64->flags = args32->flags;
4548
4549 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4550 if (ret)
4551 goto out;
4552
4553 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4554 args32->stransid = args64->stransid;
4555 args32->rtransid = args64->rtransid;
4556 args32->stime.sec = args64->stime.sec;
4557 args32->stime.nsec = args64->stime.nsec;
4558 args32->rtime.sec = args64->rtime.sec;
4559 args32->rtime.nsec = args64->rtime.nsec;
4560 args32->flags = args64->flags;
4561
4562 ret = copy_to_user(arg, args32, sizeof(*args32));
4563 if (ret)
4564 ret = -EFAULT;
4565
4566 out:
4567 kfree(args32);
4568 kfree(args64);
4569 return ret;
4570 }
4571 #endif
4572
4573 static long btrfs_ioctl_set_received_subvol(struct file *file,
4574 void __user *arg)
4575 {
4576 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4577 int ret = 0;
4578
4579 sa = memdup_user(arg, sizeof(*sa));
4580 if (IS_ERR(sa)) {
4581 ret = PTR_ERR(sa);
4582 sa = NULL;
4583 goto out;
4584 }
4585
4586 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4587
4588 if (ret)
4589 goto out;
4590
4591 ret = copy_to_user(arg, sa, sizeof(*sa));
4592 if (ret)
4593 ret = -EFAULT;
4594
4595 out:
4596 kfree(sa);
4597 return ret;
4598 }
4599
4600 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4601 {
4602 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4603 size_t len;
4604 int ret;
4605 char label[BTRFS_LABEL_SIZE];
4606
4607 spin_lock(&root->fs_info->super_lock);
4608 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4609 spin_unlock(&root->fs_info->super_lock);
4610
4611 len = strnlen(label, BTRFS_LABEL_SIZE);
4612
4613 if (len == BTRFS_LABEL_SIZE) {
4614 btrfs_warn(root->fs_info,
4615 "label is too long, return the first %zu bytes", --len);
4616 }
4617
4618 ret = copy_to_user(arg, label, len);
4619
4620 return ret ? -EFAULT : 0;
4621 }
4622
4623 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4624 {
4625 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4626 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4627 struct btrfs_trans_handle *trans;
4628 char label[BTRFS_LABEL_SIZE];
4629 int ret;
4630
4631 if (!capable(CAP_SYS_ADMIN))
4632 return -EPERM;
4633
4634 if (copy_from_user(label, arg, sizeof(label)))
4635 return -EFAULT;
4636
4637 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4638 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
4639 BTRFS_LABEL_SIZE - 1);
4640 return -EINVAL;
4641 }
4642
4643 ret = mnt_want_write_file(file);
4644 if (ret)
4645 return ret;
4646
4647 trans = btrfs_start_transaction(root, 0);
4648 if (IS_ERR(trans)) {
4649 ret = PTR_ERR(trans);
4650 goto out_unlock;
4651 }
4652
4653 spin_lock(&root->fs_info->super_lock);
4654 strcpy(super_block->label, label);
4655 spin_unlock(&root->fs_info->super_lock);
4656 ret = btrfs_commit_transaction(trans, root);
4657
4658 out_unlock:
4659 mnt_drop_write_file(file);
4660 return ret;
4661 }
4662
4663 #define INIT_FEATURE_FLAGS(suffix) \
4664 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4665 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4666 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4667
4668 static int btrfs_ioctl_get_supported_features(struct file *file,
4669 void __user *arg)
4670 {
4671 static struct btrfs_ioctl_feature_flags features[3] = {
4672 INIT_FEATURE_FLAGS(SUPP),
4673 INIT_FEATURE_FLAGS(SAFE_SET),
4674 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4675 };
4676
4677 if (copy_to_user(arg, &features, sizeof(features)))
4678 return -EFAULT;
4679
4680 return 0;
4681 }
4682
4683 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
4684 {
4685 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4686 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4687 struct btrfs_ioctl_feature_flags features;
4688
4689 features.compat_flags = btrfs_super_compat_flags(super_block);
4690 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4691 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4692
4693 if (copy_to_user(arg, &features, sizeof(features)))
4694 return -EFAULT;
4695
4696 return 0;
4697 }
4698
4699 static int check_feature_bits(struct btrfs_root *root,
4700 enum btrfs_feature_set set,
4701 u64 change_mask, u64 flags, u64 supported_flags,
4702 u64 safe_set, u64 safe_clear)
4703 {
4704 const char *type = btrfs_feature_set_names[set];
4705 char *names;
4706 u64 disallowed, unsupported;
4707 u64 set_mask = flags & change_mask;
4708 u64 clear_mask = ~flags & change_mask;
4709
4710 unsupported = set_mask & ~supported_flags;
4711 if (unsupported) {
4712 names = btrfs_printable_features(set, unsupported);
4713 if (names) {
4714 btrfs_warn(root->fs_info,
4715 "this kernel does not support the %s feature bit%s",
4716 names, strchr(names, ',') ? "s" : "");
4717 kfree(names);
4718 } else
4719 btrfs_warn(root->fs_info,
4720 "this kernel does not support %s bits 0x%llx",
4721 type, unsupported);
4722 return -EOPNOTSUPP;
4723 }
4724
4725 disallowed = set_mask & ~safe_set;
4726 if (disallowed) {
4727 names = btrfs_printable_features(set, disallowed);
4728 if (names) {
4729 btrfs_warn(root->fs_info,
4730 "can't set the %s feature bit%s while mounted",
4731 names, strchr(names, ',') ? "s" : "");
4732 kfree(names);
4733 } else
4734 btrfs_warn(root->fs_info,
4735 "can't set %s bits 0x%llx while mounted",
4736 type, disallowed);
4737 return -EPERM;
4738 }
4739
4740 disallowed = clear_mask & ~safe_clear;
4741 if (disallowed) {
4742 names = btrfs_printable_features(set, disallowed);
4743 if (names) {
4744 btrfs_warn(root->fs_info,
4745 "can't clear the %s feature bit%s while mounted",
4746 names, strchr(names, ',') ? "s" : "");
4747 kfree(names);
4748 } else
4749 btrfs_warn(root->fs_info,
4750 "can't clear %s bits 0x%llx while mounted",
4751 type, disallowed);
4752 return -EPERM;
4753 }
4754
4755 return 0;
4756 }
4757
4758 #define check_feature(root, change_mask, flags, mask_base) \
4759 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
4760 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4761 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4762 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4763
4764 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4765 {
4766 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4767 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4768 struct btrfs_ioctl_feature_flags flags[2];
4769 struct btrfs_trans_handle *trans;
4770 u64 newflags;
4771 int ret;
4772
4773 if (!capable(CAP_SYS_ADMIN))
4774 return -EPERM;
4775
4776 if (copy_from_user(flags, arg, sizeof(flags)))
4777 return -EFAULT;
4778
4779 /* Nothing to do */
4780 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4781 !flags[0].incompat_flags)
4782 return 0;
4783
4784 ret = check_feature(root, flags[0].compat_flags,
4785 flags[1].compat_flags, COMPAT);
4786 if (ret)
4787 return ret;
4788
4789 ret = check_feature(root, flags[0].compat_ro_flags,
4790 flags[1].compat_ro_flags, COMPAT_RO);
4791 if (ret)
4792 return ret;
4793
4794 ret = check_feature(root, flags[0].incompat_flags,
4795 flags[1].incompat_flags, INCOMPAT);
4796 if (ret)
4797 return ret;
4798
4799 trans = btrfs_start_transaction(root, 0);
4800 if (IS_ERR(trans))
4801 return PTR_ERR(trans);
4802
4803 spin_lock(&root->fs_info->super_lock);
4804 newflags = btrfs_super_compat_flags(super_block);
4805 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4806 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4807 btrfs_set_super_compat_flags(super_block, newflags);
4808
4809 newflags = btrfs_super_compat_ro_flags(super_block);
4810 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4811 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4812 btrfs_set_super_compat_ro_flags(super_block, newflags);
4813
4814 newflags = btrfs_super_incompat_flags(super_block);
4815 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4816 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4817 btrfs_set_super_incompat_flags(super_block, newflags);
4818 spin_unlock(&root->fs_info->super_lock);
4819
4820 return btrfs_commit_transaction(trans, root);
4821 }
4822
4823 long btrfs_ioctl(struct file *file, unsigned int
4824 cmd, unsigned long arg)
4825 {
4826 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4827 void __user *argp = (void __user *)arg;
4828
4829 switch (cmd) {
4830 case FS_IOC_GETFLAGS:
4831 return btrfs_ioctl_getflags(file, argp);
4832 case FS_IOC_SETFLAGS:
4833 return btrfs_ioctl_setflags(file, argp);
4834 case FS_IOC_GETVERSION:
4835 return btrfs_ioctl_getversion(file, argp);
4836 case FITRIM:
4837 return btrfs_ioctl_fitrim(file, argp);
4838 case BTRFS_IOC_SNAP_CREATE:
4839 return btrfs_ioctl_snap_create(file, argp, 0);
4840 case BTRFS_IOC_SNAP_CREATE_V2:
4841 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4842 case BTRFS_IOC_SUBVOL_CREATE:
4843 return btrfs_ioctl_snap_create(file, argp, 1);
4844 case BTRFS_IOC_SUBVOL_CREATE_V2:
4845 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4846 case BTRFS_IOC_SNAP_DESTROY:
4847 return btrfs_ioctl_snap_destroy(file, argp);
4848 case BTRFS_IOC_SUBVOL_GETFLAGS:
4849 return btrfs_ioctl_subvol_getflags(file, argp);
4850 case BTRFS_IOC_SUBVOL_SETFLAGS:
4851 return btrfs_ioctl_subvol_setflags(file, argp);
4852 case BTRFS_IOC_DEFAULT_SUBVOL:
4853 return btrfs_ioctl_default_subvol(file, argp);
4854 case BTRFS_IOC_DEFRAG:
4855 return btrfs_ioctl_defrag(file, NULL);
4856 case BTRFS_IOC_DEFRAG_RANGE:
4857 return btrfs_ioctl_defrag(file, argp);
4858 case BTRFS_IOC_RESIZE:
4859 return btrfs_ioctl_resize(file, argp);
4860 case BTRFS_IOC_ADD_DEV:
4861 return btrfs_ioctl_add_dev(root, argp);
4862 case BTRFS_IOC_RM_DEV:
4863 return btrfs_ioctl_rm_dev(file, argp);
4864 case BTRFS_IOC_FS_INFO:
4865 return btrfs_ioctl_fs_info(root, argp);
4866 case BTRFS_IOC_DEV_INFO:
4867 return btrfs_ioctl_dev_info(root, argp);
4868 case BTRFS_IOC_BALANCE:
4869 return btrfs_ioctl_balance(file, NULL);
4870 case BTRFS_IOC_CLONE:
4871 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4872 case BTRFS_IOC_CLONE_RANGE:
4873 return btrfs_ioctl_clone_range(file, argp);
4874 case BTRFS_IOC_TRANS_START:
4875 return btrfs_ioctl_trans_start(file);
4876 case BTRFS_IOC_TRANS_END:
4877 return btrfs_ioctl_trans_end(file);
4878 case BTRFS_IOC_TREE_SEARCH:
4879 return btrfs_ioctl_tree_search(file, argp);
4880 case BTRFS_IOC_INO_LOOKUP:
4881 return btrfs_ioctl_ino_lookup(file, argp);
4882 case BTRFS_IOC_INO_PATHS:
4883 return btrfs_ioctl_ino_to_path(root, argp);
4884 case BTRFS_IOC_LOGICAL_INO:
4885 return btrfs_ioctl_logical_to_ino(root, argp);
4886 case BTRFS_IOC_SPACE_INFO:
4887 return btrfs_ioctl_space_info(root, argp);
4888 case BTRFS_IOC_SYNC: {
4889 int ret;
4890
4891 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
4892 if (ret)
4893 return ret;
4894 ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
4895 return ret;
4896 }
4897 case BTRFS_IOC_START_SYNC:
4898 return btrfs_ioctl_start_sync(root, argp);
4899 case BTRFS_IOC_WAIT_SYNC:
4900 return btrfs_ioctl_wait_sync(root, argp);
4901 case BTRFS_IOC_SCRUB:
4902 return btrfs_ioctl_scrub(file, argp);
4903 case BTRFS_IOC_SCRUB_CANCEL:
4904 return btrfs_ioctl_scrub_cancel(root, argp);
4905 case BTRFS_IOC_SCRUB_PROGRESS:
4906 return btrfs_ioctl_scrub_progress(root, argp);
4907 case BTRFS_IOC_BALANCE_V2:
4908 return btrfs_ioctl_balance(file, argp);
4909 case BTRFS_IOC_BALANCE_CTL:
4910 return btrfs_ioctl_balance_ctl(root, arg);
4911 case BTRFS_IOC_BALANCE_PROGRESS:
4912 return btrfs_ioctl_balance_progress(root, argp);
4913 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4914 return btrfs_ioctl_set_received_subvol(file, argp);
4915 #ifdef CONFIG_64BIT
4916 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4917 return btrfs_ioctl_set_received_subvol_32(file, argp);
4918 #endif
4919 case BTRFS_IOC_SEND:
4920 return btrfs_ioctl_send(file, argp);
4921 case BTRFS_IOC_GET_DEV_STATS:
4922 return btrfs_ioctl_get_dev_stats(root, argp);
4923 case BTRFS_IOC_QUOTA_CTL:
4924 return btrfs_ioctl_quota_ctl(file, argp);
4925 case BTRFS_IOC_QGROUP_ASSIGN:
4926 return btrfs_ioctl_qgroup_assign(file, argp);
4927 case BTRFS_IOC_QGROUP_CREATE:
4928 return btrfs_ioctl_qgroup_create(file, argp);
4929 case BTRFS_IOC_QGROUP_LIMIT:
4930 return btrfs_ioctl_qgroup_limit(file, argp);
4931 case BTRFS_IOC_QUOTA_RESCAN:
4932 return btrfs_ioctl_quota_rescan(file, argp);
4933 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4934 return btrfs_ioctl_quota_rescan_status(file, argp);
4935 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4936 return btrfs_ioctl_quota_rescan_wait(file, argp);
4937 case BTRFS_IOC_DEV_REPLACE:
4938 return btrfs_ioctl_dev_replace(root, argp);
4939 case BTRFS_IOC_GET_FSLABEL:
4940 return btrfs_ioctl_get_fslabel(file, argp);
4941 case BTRFS_IOC_SET_FSLABEL:
4942 return btrfs_ioctl_set_fslabel(file, argp);
4943 case BTRFS_IOC_FILE_EXTENT_SAME:
4944 return btrfs_ioctl_file_extent_same(file, argp);
4945 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4946 return btrfs_ioctl_get_supported_features(file, argp);
4947 case BTRFS_IOC_GET_FEATURES:
4948 return btrfs_ioctl_get_features(file, argp);
4949 case BTRFS_IOC_SET_FEATURES:
4950 return btrfs_ioctl_set_features(file, argp);
4951 }
4952
4953 return -ENOTTY;
4954 }
This page took 0.156506 seconds and 5 git commands to generate.