irq_domain: correct a minor wrong comment for linear revmap
[deliverable/linux.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55
56 /* Mask out flags that are inappropriate for the given type of inode. */
57 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
58 {
59 if (S_ISDIR(mode))
60 return flags;
61 else if (S_ISREG(mode))
62 return flags & ~FS_DIRSYNC_FL;
63 else
64 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
65 }
66
67 /*
68 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
69 */
70 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
71 {
72 unsigned int iflags = 0;
73
74 if (flags & BTRFS_INODE_SYNC)
75 iflags |= FS_SYNC_FL;
76 if (flags & BTRFS_INODE_IMMUTABLE)
77 iflags |= FS_IMMUTABLE_FL;
78 if (flags & BTRFS_INODE_APPEND)
79 iflags |= FS_APPEND_FL;
80 if (flags & BTRFS_INODE_NODUMP)
81 iflags |= FS_NODUMP_FL;
82 if (flags & BTRFS_INODE_NOATIME)
83 iflags |= FS_NOATIME_FL;
84 if (flags & BTRFS_INODE_DIRSYNC)
85 iflags |= FS_DIRSYNC_FL;
86 if (flags & BTRFS_INODE_NODATACOW)
87 iflags |= FS_NOCOW_FL;
88
89 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
90 iflags |= FS_COMPR_FL;
91 else if (flags & BTRFS_INODE_NOCOMPRESS)
92 iflags |= FS_NOCOMP_FL;
93
94 return iflags;
95 }
96
97 /*
98 * Update inode->i_flags based on the btrfs internal flags.
99 */
100 void btrfs_update_iflags(struct inode *inode)
101 {
102 struct btrfs_inode *ip = BTRFS_I(inode);
103
104 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
105
106 if (ip->flags & BTRFS_INODE_SYNC)
107 inode->i_flags |= S_SYNC;
108 if (ip->flags & BTRFS_INODE_IMMUTABLE)
109 inode->i_flags |= S_IMMUTABLE;
110 if (ip->flags & BTRFS_INODE_APPEND)
111 inode->i_flags |= S_APPEND;
112 if (ip->flags & BTRFS_INODE_NOATIME)
113 inode->i_flags |= S_NOATIME;
114 if (ip->flags & BTRFS_INODE_DIRSYNC)
115 inode->i_flags |= S_DIRSYNC;
116 }
117
118 /*
119 * Inherit flags from the parent inode.
120 *
121 * Currently only the compression flags and the cow flags are inherited.
122 */
123 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
124 {
125 unsigned int flags;
126
127 if (!dir)
128 return;
129
130 flags = BTRFS_I(dir)->flags;
131
132 if (flags & BTRFS_INODE_NOCOMPRESS) {
133 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
134 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
135 } else if (flags & BTRFS_INODE_COMPRESS) {
136 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
137 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
138 }
139
140 if (flags & BTRFS_INODE_NODATACOW)
141 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
142
143 btrfs_update_iflags(inode);
144 }
145
146 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
147 {
148 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
149 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
150
151 if (copy_to_user(arg, &flags, sizeof(flags)))
152 return -EFAULT;
153 return 0;
154 }
155
156 static int check_flags(unsigned int flags)
157 {
158 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
159 FS_NOATIME_FL | FS_NODUMP_FL | \
160 FS_SYNC_FL | FS_DIRSYNC_FL | \
161 FS_NOCOMP_FL | FS_COMPR_FL |
162 FS_NOCOW_FL))
163 return -EOPNOTSUPP;
164
165 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
166 return -EINVAL;
167
168 return 0;
169 }
170
171 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
172 {
173 struct inode *inode = file->f_path.dentry->d_inode;
174 struct btrfs_inode *ip = BTRFS_I(inode);
175 struct btrfs_root *root = ip->root;
176 struct btrfs_trans_handle *trans;
177 unsigned int flags, oldflags;
178 int ret;
179 u64 ip_oldflags;
180 unsigned int i_oldflags;
181
182 if (btrfs_root_readonly(root))
183 return -EROFS;
184
185 if (copy_from_user(&flags, arg, sizeof(flags)))
186 return -EFAULT;
187
188 ret = check_flags(flags);
189 if (ret)
190 return ret;
191
192 if (!inode_owner_or_capable(inode))
193 return -EACCES;
194
195 mutex_lock(&inode->i_mutex);
196
197 ip_oldflags = ip->flags;
198 i_oldflags = inode->i_flags;
199
200 flags = btrfs_mask_flags(inode->i_mode, flags);
201 oldflags = btrfs_flags_to_ioctl(ip->flags);
202 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
203 if (!capable(CAP_LINUX_IMMUTABLE)) {
204 ret = -EPERM;
205 goto out_unlock;
206 }
207 }
208
209 ret = mnt_want_write_file(file);
210 if (ret)
211 goto out_unlock;
212
213 if (flags & FS_SYNC_FL)
214 ip->flags |= BTRFS_INODE_SYNC;
215 else
216 ip->flags &= ~BTRFS_INODE_SYNC;
217 if (flags & FS_IMMUTABLE_FL)
218 ip->flags |= BTRFS_INODE_IMMUTABLE;
219 else
220 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
221 if (flags & FS_APPEND_FL)
222 ip->flags |= BTRFS_INODE_APPEND;
223 else
224 ip->flags &= ~BTRFS_INODE_APPEND;
225 if (flags & FS_NODUMP_FL)
226 ip->flags |= BTRFS_INODE_NODUMP;
227 else
228 ip->flags &= ~BTRFS_INODE_NODUMP;
229 if (flags & FS_NOATIME_FL)
230 ip->flags |= BTRFS_INODE_NOATIME;
231 else
232 ip->flags &= ~BTRFS_INODE_NOATIME;
233 if (flags & FS_DIRSYNC_FL)
234 ip->flags |= BTRFS_INODE_DIRSYNC;
235 else
236 ip->flags &= ~BTRFS_INODE_DIRSYNC;
237 if (flags & FS_NOCOW_FL)
238 ip->flags |= BTRFS_INODE_NODATACOW;
239 else
240 ip->flags &= ~BTRFS_INODE_NODATACOW;
241
242 /*
243 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
244 * flag may be changed automatically if compression code won't make
245 * things smaller.
246 */
247 if (flags & FS_NOCOMP_FL) {
248 ip->flags &= ~BTRFS_INODE_COMPRESS;
249 ip->flags |= BTRFS_INODE_NOCOMPRESS;
250 } else if (flags & FS_COMPR_FL) {
251 ip->flags |= BTRFS_INODE_COMPRESS;
252 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
253 } else {
254 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
255 }
256
257 trans = btrfs_start_transaction(root, 1);
258 if (IS_ERR(trans)) {
259 ret = PTR_ERR(trans);
260 goto out_drop;
261 }
262
263 btrfs_update_iflags(inode);
264 inode_inc_iversion(inode);
265 inode->i_ctime = CURRENT_TIME;
266 ret = btrfs_update_inode(trans, root, inode);
267
268 btrfs_end_transaction(trans, root);
269 out_drop:
270 if (ret) {
271 ip->flags = ip_oldflags;
272 inode->i_flags = i_oldflags;
273 }
274
275 mnt_drop_write_file(file);
276 out_unlock:
277 mutex_unlock(&inode->i_mutex);
278 return ret;
279 }
280
281 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
282 {
283 struct inode *inode = file->f_path.dentry->d_inode;
284
285 return put_user(inode->i_generation, arg);
286 }
287
288 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
289 {
290 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
291 struct btrfs_device *device;
292 struct request_queue *q;
293 struct fstrim_range range;
294 u64 minlen = ULLONG_MAX;
295 u64 num_devices = 0;
296 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
297 int ret;
298
299 if (!capable(CAP_SYS_ADMIN))
300 return -EPERM;
301
302 rcu_read_lock();
303 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
304 dev_list) {
305 if (!device->bdev)
306 continue;
307 q = bdev_get_queue(device->bdev);
308 if (blk_queue_discard(q)) {
309 num_devices++;
310 minlen = min((u64)q->limits.discard_granularity,
311 minlen);
312 }
313 }
314 rcu_read_unlock();
315
316 if (!num_devices)
317 return -EOPNOTSUPP;
318 if (copy_from_user(&range, arg, sizeof(range)))
319 return -EFAULT;
320 if (range.start > total_bytes)
321 return -EINVAL;
322
323 range.len = min(range.len, total_bytes - range.start);
324 range.minlen = max(range.minlen, minlen);
325 ret = btrfs_trim_fs(fs_info->tree_root, &range);
326 if (ret < 0)
327 return ret;
328
329 if (copy_to_user(arg, &range, sizeof(range)))
330 return -EFAULT;
331
332 return 0;
333 }
334
335 static noinline int create_subvol(struct btrfs_root *root,
336 struct dentry *dentry,
337 char *name, int namelen,
338 u64 *async_transid)
339 {
340 struct btrfs_trans_handle *trans;
341 struct btrfs_key key;
342 struct btrfs_root_item root_item;
343 struct btrfs_inode_item *inode_item;
344 struct extent_buffer *leaf;
345 struct btrfs_root *new_root;
346 struct dentry *parent = dentry->d_parent;
347 struct inode *dir;
348 int ret;
349 int err;
350 u64 objectid;
351 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
352 u64 index = 0;
353
354 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
355 if (ret)
356 return ret;
357
358 dir = parent->d_inode;
359
360 /*
361 * 1 - inode item
362 * 2 - refs
363 * 1 - root item
364 * 2 - dir items
365 */
366 trans = btrfs_start_transaction(root, 6);
367 if (IS_ERR(trans))
368 return PTR_ERR(trans);
369
370 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
371 0, objectid, NULL, 0, 0, 0);
372 if (IS_ERR(leaf)) {
373 ret = PTR_ERR(leaf);
374 goto fail;
375 }
376
377 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
378 btrfs_set_header_bytenr(leaf, leaf->start);
379 btrfs_set_header_generation(leaf, trans->transid);
380 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
381 btrfs_set_header_owner(leaf, objectid);
382
383 write_extent_buffer(leaf, root->fs_info->fsid,
384 (unsigned long)btrfs_header_fsid(leaf),
385 BTRFS_FSID_SIZE);
386 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
387 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
388 BTRFS_UUID_SIZE);
389 btrfs_mark_buffer_dirty(leaf);
390
391 inode_item = &root_item.inode;
392 memset(inode_item, 0, sizeof(*inode_item));
393 inode_item->generation = cpu_to_le64(1);
394 inode_item->size = cpu_to_le64(3);
395 inode_item->nlink = cpu_to_le32(1);
396 inode_item->nbytes = cpu_to_le64(root->leafsize);
397 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
398
399 root_item.flags = 0;
400 root_item.byte_limit = 0;
401 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
402
403 btrfs_set_root_bytenr(&root_item, leaf->start);
404 btrfs_set_root_generation(&root_item, trans->transid);
405 btrfs_set_root_level(&root_item, 0);
406 btrfs_set_root_refs(&root_item, 1);
407 btrfs_set_root_used(&root_item, leaf->len);
408 btrfs_set_root_last_snapshot(&root_item, 0);
409
410 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
411 root_item.drop_level = 0;
412
413 btrfs_tree_unlock(leaf);
414 free_extent_buffer(leaf);
415 leaf = NULL;
416
417 btrfs_set_root_dirid(&root_item, new_dirid);
418
419 key.objectid = objectid;
420 key.offset = 0;
421 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
422 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
423 &root_item);
424 if (ret)
425 goto fail;
426
427 key.offset = (u64)-1;
428 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
429 if (IS_ERR(new_root)) {
430 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
431 ret = PTR_ERR(new_root);
432 goto fail;
433 }
434
435 btrfs_record_root_in_trans(trans, new_root);
436
437 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
438 if (ret) {
439 /* We potentially lose an unused inode item here */
440 btrfs_abort_transaction(trans, root, ret);
441 goto fail;
442 }
443
444 /*
445 * insert the directory item
446 */
447 ret = btrfs_set_inode_index(dir, &index);
448 if (ret) {
449 btrfs_abort_transaction(trans, root, ret);
450 goto fail;
451 }
452
453 ret = btrfs_insert_dir_item(trans, root,
454 name, namelen, dir, &key,
455 BTRFS_FT_DIR, index);
456 if (ret) {
457 btrfs_abort_transaction(trans, root, ret);
458 goto fail;
459 }
460
461 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
462 ret = btrfs_update_inode(trans, root, dir);
463 BUG_ON(ret);
464
465 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
466 objectid, root->root_key.objectid,
467 btrfs_ino(dir), index, name, namelen);
468
469 BUG_ON(ret);
470
471 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
472 fail:
473 if (async_transid) {
474 *async_transid = trans->transid;
475 err = btrfs_commit_transaction_async(trans, root, 1);
476 } else {
477 err = btrfs_commit_transaction(trans, root);
478 }
479 if (err && !ret)
480 ret = err;
481 return ret;
482 }
483
484 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
485 char *name, int namelen, u64 *async_transid,
486 bool readonly)
487 {
488 struct inode *inode;
489 struct btrfs_pending_snapshot *pending_snapshot;
490 struct btrfs_trans_handle *trans;
491 int ret;
492
493 if (!root->ref_cows)
494 return -EINVAL;
495
496 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
497 if (!pending_snapshot)
498 return -ENOMEM;
499
500 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
501 pending_snapshot->dentry = dentry;
502 pending_snapshot->root = root;
503 pending_snapshot->readonly = readonly;
504
505 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
506 if (IS_ERR(trans)) {
507 ret = PTR_ERR(trans);
508 goto fail;
509 }
510
511 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
512 BUG_ON(ret);
513
514 spin_lock(&root->fs_info->trans_lock);
515 list_add(&pending_snapshot->list,
516 &trans->transaction->pending_snapshots);
517 spin_unlock(&root->fs_info->trans_lock);
518 if (async_transid) {
519 *async_transid = trans->transid;
520 ret = btrfs_commit_transaction_async(trans,
521 root->fs_info->extent_root, 1);
522 } else {
523 ret = btrfs_commit_transaction(trans,
524 root->fs_info->extent_root);
525 }
526 BUG_ON(ret);
527
528 ret = pending_snapshot->error;
529 if (ret)
530 goto fail;
531
532 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
533 if (ret)
534 goto fail;
535
536 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
537 if (IS_ERR(inode)) {
538 ret = PTR_ERR(inode);
539 goto fail;
540 }
541 BUG_ON(!inode);
542 d_instantiate(dentry, inode);
543 ret = 0;
544 fail:
545 kfree(pending_snapshot);
546 return ret;
547 }
548
549 /* copy of check_sticky in fs/namei.c()
550 * It's inline, so penalty for filesystems that don't use sticky bit is
551 * minimal.
552 */
553 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
554 {
555 uid_t fsuid = current_fsuid();
556
557 if (!(dir->i_mode & S_ISVTX))
558 return 0;
559 if (inode->i_uid == fsuid)
560 return 0;
561 if (dir->i_uid == fsuid)
562 return 0;
563 return !capable(CAP_FOWNER);
564 }
565
566 /* copy of may_delete in fs/namei.c()
567 * Check whether we can remove a link victim from directory dir, check
568 * whether the type of victim is right.
569 * 1. We can't do it if dir is read-only (done in permission())
570 * 2. We should have write and exec permissions on dir
571 * 3. We can't remove anything from append-only dir
572 * 4. We can't do anything with immutable dir (done in permission())
573 * 5. If the sticky bit on dir is set we should either
574 * a. be owner of dir, or
575 * b. be owner of victim, or
576 * c. have CAP_FOWNER capability
577 * 6. If the victim is append-only or immutable we can't do antyhing with
578 * links pointing to it.
579 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
580 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
581 * 9. We can't remove a root or mountpoint.
582 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
583 * nfs_async_unlink().
584 */
585
586 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
587 {
588 int error;
589
590 if (!victim->d_inode)
591 return -ENOENT;
592
593 BUG_ON(victim->d_parent->d_inode != dir);
594 audit_inode_child(victim, dir);
595
596 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
597 if (error)
598 return error;
599 if (IS_APPEND(dir))
600 return -EPERM;
601 if (btrfs_check_sticky(dir, victim->d_inode)||
602 IS_APPEND(victim->d_inode)||
603 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
604 return -EPERM;
605 if (isdir) {
606 if (!S_ISDIR(victim->d_inode->i_mode))
607 return -ENOTDIR;
608 if (IS_ROOT(victim))
609 return -EBUSY;
610 } else if (S_ISDIR(victim->d_inode->i_mode))
611 return -EISDIR;
612 if (IS_DEADDIR(dir))
613 return -ENOENT;
614 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
615 return -EBUSY;
616 return 0;
617 }
618
619 /* copy of may_create in fs/namei.c() */
620 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
621 {
622 if (child->d_inode)
623 return -EEXIST;
624 if (IS_DEADDIR(dir))
625 return -ENOENT;
626 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
627 }
628
629 /*
630 * Create a new subvolume below @parent. This is largely modeled after
631 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
632 * inside this filesystem so it's quite a bit simpler.
633 */
634 static noinline int btrfs_mksubvol(struct path *parent,
635 char *name, int namelen,
636 struct btrfs_root *snap_src,
637 u64 *async_transid, bool readonly)
638 {
639 struct inode *dir = parent->dentry->d_inode;
640 struct dentry *dentry;
641 int error;
642
643 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
644
645 dentry = lookup_one_len(name, parent->dentry, namelen);
646 error = PTR_ERR(dentry);
647 if (IS_ERR(dentry))
648 goto out_unlock;
649
650 error = -EEXIST;
651 if (dentry->d_inode)
652 goto out_dput;
653
654 error = mnt_want_write(parent->mnt);
655 if (error)
656 goto out_dput;
657
658 error = btrfs_may_create(dir, dentry);
659 if (error)
660 goto out_drop_write;
661
662 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
663
664 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
665 goto out_up_read;
666
667 if (snap_src) {
668 error = create_snapshot(snap_src, dentry,
669 name, namelen, async_transid, readonly);
670 } else {
671 error = create_subvol(BTRFS_I(dir)->root, dentry,
672 name, namelen, async_transid);
673 }
674 if (!error)
675 fsnotify_mkdir(dir, dentry);
676 out_up_read:
677 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
678 out_drop_write:
679 mnt_drop_write(parent->mnt);
680 out_dput:
681 dput(dentry);
682 out_unlock:
683 mutex_unlock(&dir->i_mutex);
684 return error;
685 }
686
687 /*
688 * When we're defragging a range, we don't want to kick it off again
689 * if it is really just waiting for delalloc to send it down.
690 * If we find a nice big extent or delalloc range for the bytes in the
691 * file you want to defrag, we return 0 to let you know to skip this
692 * part of the file
693 */
694 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
695 {
696 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
697 struct extent_map *em = NULL;
698 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
699 u64 end;
700
701 read_lock(&em_tree->lock);
702 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
703 read_unlock(&em_tree->lock);
704
705 if (em) {
706 end = extent_map_end(em);
707 free_extent_map(em);
708 if (end - offset > thresh)
709 return 0;
710 }
711 /* if we already have a nice delalloc here, just stop */
712 thresh /= 2;
713 end = count_range_bits(io_tree, &offset, offset + thresh,
714 thresh, EXTENT_DELALLOC, 1);
715 if (end >= thresh)
716 return 0;
717 return 1;
718 }
719
720 /*
721 * helper function to walk through a file and find extents
722 * newer than a specific transid, and smaller than thresh.
723 *
724 * This is used by the defragging code to find new and small
725 * extents
726 */
727 static int find_new_extents(struct btrfs_root *root,
728 struct inode *inode, u64 newer_than,
729 u64 *off, int thresh)
730 {
731 struct btrfs_path *path;
732 struct btrfs_key min_key;
733 struct btrfs_key max_key;
734 struct extent_buffer *leaf;
735 struct btrfs_file_extent_item *extent;
736 int type;
737 int ret;
738 u64 ino = btrfs_ino(inode);
739
740 path = btrfs_alloc_path();
741 if (!path)
742 return -ENOMEM;
743
744 min_key.objectid = ino;
745 min_key.type = BTRFS_EXTENT_DATA_KEY;
746 min_key.offset = *off;
747
748 max_key.objectid = ino;
749 max_key.type = (u8)-1;
750 max_key.offset = (u64)-1;
751
752 path->keep_locks = 1;
753
754 while(1) {
755 ret = btrfs_search_forward(root, &min_key, &max_key,
756 path, 0, newer_than);
757 if (ret != 0)
758 goto none;
759 if (min_key.objectid != ino)
760 goto none;
761 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
762 goto none;
763
764 leaf = path->nodes[0];
765 extent = btrfs_item_ptr(leaf, path->slots[0],
766 struct btrfs_file_extent_item);
767
768 type = btrfs_file_extent_type(leaf, extent);
769 if (type == BTRFS_FILE_EXTENT_REG &&
770 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
771 check_defrag_in_cache(inode, min_key.offset, thresh)) {
772 *off = min_key.offset;
773 btrfs_free_path(path);
774 return 0;
775 }
776
777 if (min_key.offset == (u64)-1)
778 goto none;
779
780 min_key.offset++;
781 btrfs_release_path(path);
782 }
783 none:
784 btrfs_free_path(path);
785 return -ENOENT;
786 }
787
788 /*
789 * Validaty check of prev em and next em:
790 * 1) no prev/next em
791 * 2) prev/next em is an hole/inline extent
792 */
793 static int check_adjacent_extents(struct inode *inode, struct extent_map *em)
794 {
795 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
796 struct extent_map *prev = NULL, *next = NULL;
797 int ret = 0;
798
799 read_lock(&em_tree->lock);
800 prev = lookup_extent_mapping(em_tree, em->start - 1, (u64)-1);
801 next = lookup_extent_mapping(em_tree, em->start + em->len, (u64)-1);
802 read_unlock(&em_tree->lock);
803
804 if ((!prev || prev->block_start >= EXTENT_MAP_LAST_BYTE) &&
805 (!next || next->block_start >= EXTENT_MAP_LAST_BYTE))
806 ret = 1;
807 free_extent_map(prev);
808 free_extent_map(next);
809
810 return ret;
811 }
812
813 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
814 int thresh, u64 *last_len, u64 *skip,
815 u64 *defrag_end)
816 {
817 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
818 struct extent_map *em = NULL;
819 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
820 int ret = 1;
821
822 /*
823 * make sure that once we start defragging an extent, we keep on
824 * defragging it
825 */
826 if (start < *defrag_end)
827 return 1;
828
829 *skip = 0;
830
831 /*
832 * hopefully we have this extent in the tree already, try without
833 * the full extent lock
834 */
835 read_lock(&em_tree->lock);
836 em = lookup_extent_mapping(em_tree, start, len);
837 read_unlock(&em_tree->lock);
838
839 if (!em) {
840 /* get the big lock and read metadata off disk */
841 lock_extent(io_tree, start, start + len - 1);
842 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
843 unlock_extent(io_tree, start, start + len - 1);
844
845 if (IS_ERR(em))
846 return 0;
847 }
848
849 /* this will cover holes, and inline extents */
850 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
851 ret = 0;
852 goto out;
853 }
854
855 /* If we have nothing to merge with us, just skip. */
856 if (check_adjacent_extents(inode, em)) {
857 ret = 0;
858 goto out;
859 }
860
861 /*
862 * we hit a real extent, if it is big don't bother defragging it again
863 */
864 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
865 ret = 0;
866
867 out:
868 /*
869 * last_len ends up being a counter of how many bytes we've defragged.
870 * every time we choose not to defrag an extent, we reset *last_len
871 * so that the next tiny extent will force a defrag.
872 *
873 * The end result of this is that tiny extents before a single big
874 * extent will force at least part of that big extent to be defragged.
875 */
876 if (ret) {
877 *defrag_end = extent_map_end(em);
878 } else {
879 *last_len = 0;
880 *skip = extent_map_end(em);
881 *defrag_end = 0;
882 }
883
884 free_extent_map(em);
885 return ret;
886 }
887
888 /*
889 * it doesn't do much good to defrag one or two pages
890 * at a time. This pulls in a nice chunk of pages
891 * to COW and defrag.
892 *
893 * It also makes sure the delalloc code has enough
894 * dirty data to avoid making new small extents as part
895 * of the defrag
896 *
897 * It's a good idea to start RA on this range
898 * before calling this.
899 */
900 static int cluster_pages_for_defrag(struct inode *inode,
901 struct page **pages,
902 unsigned long start_index,
903 int num_pages)
904 {
905 unsigned long file_end;
906 u64 isize = i_size_read(inode);
907 u64 page_start;
908 u64 page_end;
909 u64 page_cnt;
910 int ret;
911 int i;
912 int i_done;
913 struct btrfs_ordered_extent *ordered;
914 struct extent_state *cached_state = NULL;
915 struct extent_io_tree *tree;
916 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
917
918 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
919 if (!isize || start_index > file_end)
920 return 0;
921
922 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
923
924 ret = btrfs_delalloc_reserve_space(inode,
925 page_cnt << PAGE_CACHE_SHIFT);
926 if (ret)
927 return ret;
928 i_done = 0;
929 tree = &BTRFS_I(inode)->io_tree;
930
931 /* step one, lock all the pages */
932 for (i = 0; i < page_cnt; i++) {
933 struct page *page;
934 again:
935 page = find_or_create_page(inode->i_mapping,
936 start_index + i, mask);
937 if (!page)
938 break;
939
940 page_start = page_offset(page);
941 page_end = page_start + PAGE_CACHE_SIZE - 1;
942 while (1) {
943 lock_extent(tree, page_start, page_end);
944 ordered = btrfs_lookup_ordered_extent(inode,
945 page_start);
946 unlock_extent(tree, page_start, page_end);
947 if (!ordered)
948 break;
949
950 unlock_page(page);
951 btrfs_start_ordered_extent(inode, ordered, 1);
952 btrfs_put_ordered_extent(ordered);
953 lock_page(page);
954 /*
955 * we unlocked the page above, so we need check if
956 * it was released or not.
957 */
958 if (page->mapping != inode->i_mapping) {
959 unlock_page(page);
960 page_cache_release(page);
961 goto again;
962 }
963 }
964
965 if (!PageUptodate(page)) {
966 btrfs_readpage(NULL, page);
967 lock_page(page);
968 if (!PageUptodate(page)) {
969 unlock_page(page);
970 page_cache_release(page);
971 ret = -EIO;
972 break;
973 }
974 }
975
976 if (page->mapping != inode->i_mapping) {
977 unlock_page(page);
978 page_cache_release(page);
979 goto again;
980 }
981
982 pages[i] = page;
983 i_done++;
984 }
985 if (!i_done || ret)
986 goto out;
987
988 if (!(inode->i_sb->s_flags & MS_ACTIVE))
989 goto out;
990
991 /*
992 * so now we have a nice long stream of locked
993 * and up to date pages, lets wait on them
994 */
995 for (i = 0; i < i_done; i++)
996 wait_on_page_writeback(pages[i]);
997
998 page_start = page_offset(pages[0]);
999 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1000
1001 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1002 page_start, page_end - 1, 0, &cached_state);
1003 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1004 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1005 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1006 GFP_NOFS);
1007
1008 if (i_done != page_cnt) {
1009 spin_lock(&BTRFS_I(inode)->lock);
1010 BTRFS_I(inode)->outstanding_extents++;
1011 spin_unlock(&BTRFS_I(inode)->lock);
1012 btrfs_delalloc_release_space(inode,
1013 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1014 }
1015
1016
1017 btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
1018 &cached_state);
1019
1020 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1021 page_start, page_end - 1, &cached_state,
1022 GFP_NOFS);
1023
1024 for (i = 0; i < i_done; i++) {
1025 clear_page_dirty_for_io(pages[i]);
1026 ClearPageChecked(pages[i]);
1027 set_page_extent_mapped(pages[i]);
1028 set_page_dirty(pages[i]);
1029 unlock_page(pages[i]);
1030 page_cache_release(pages[i]);
1031 }
1032 return i_done;
1033 out:
1034 for (i = 0; i < i_done; i++) {
1035 unlock_page(pages[i]);
1036 page_cache_release(pages[i]);
1037 }
1038 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1039 return ret;
1040
1041 }
1042
1043 int btrfs_defrag_file(struct inode *inode, struct file *file,
1044 struct btrfs_ioctl_defrag_range_args *range,
1045 u64 newer_than, unsigned long max_to_defrag)
1046 {
1047 struct btrfs_root *root = BTRFS_I(inode)->root;
1048 struct btrfs_super_block *disk_super;
1049 struct file_ra_state *ra = NULL;
1050 unsigned long last_index;
1051 u64 isize = i_size_read(inode);
1052 u64 features;
1053 u64 last_len = 0;
1054 u64 skip = 0;
1055 u64 defrag_end = 0;
1056 u64 newer_off = range->start;
1057 unsigned long i;
1058 unsigned long ra_index = 0;
1059 int ret;
1060 int defrag_count = 0;
1061 int compress_type = BTRFS_COMPRESS_ZLIB;
1062 int extent_thresh = range->extent_thresh;
1063 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1064 int cluster = max_cluster;
1065 u64 new_align = ~((u64)128 * 1024 - 1);
1066 struct page **pages = NULL;
1067
1068 if (extent_thresh == 0)
1069 extent_thresh = 256 * 1024;
1070
1071 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1072 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1073 return -EINVAL;
1074 if (range->compress_type)
1075 compress_type = range->compress_type;
1076 }
1077
1078 if (isize == 0)
1079 return 0;
1080
1081 /*
1082 * if we were not given a file, allocate a readahead
1083 * context
1084 */
1085 if (!file) {
1086 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1087 if (!ra)
1088 return -ENOMEM;
1089 file_ra_state_init(ra, inode->i_mapping);
1090 } else {
1091 ra = &file->f_ra;
1092 }
1093
1094 pages = kmalloc(sizeof(struct page *) * max_cluster,
1095 GFP_NOFS);
1096 if (!pages) {
1097 ret = -ENOMEM;
1098 goto out_ra;
1099 }
1100
1101 /* find the last page to defrag */
1102 if (range->start + range->len > range->start) {
1103 last_index = min_t(u64, isize - 1,
1104 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1105 } else {
1106 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1107 }
1108
1109 if (newer_than) {
1110 ret = find_new_extents(root, inode, newer_than,
1111 &newer_off, 64 * 1024);
1112 if (!ret) {
1113 range->start = newer_off;
1114 /*
1115 * we always align our defrag to help keep
1116 * the extents in the file evenly spaced
1117 */
1118 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1119 } else
1120 goto out_ra;
1121 } else {
1122 i = range->start >> PAGE_CACHE_SHIFT;
1123 }
1124 if (!max_to_defrag)
1125 max_to_defrag = last_index + 1;
1126
1127 /*
1128 * make writeback starts from i, so the defrag range can be
1129 * written sequentially.
1130 */
1131 if (i < inode->i_mapping->writeback_index)
1132 inode->i_mapping->writeback_index = i;
1133
1134 while (i <= last_index && defrag_count < max_to_defrag &&
1135 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1136 PAGE_CACHE_SHIFT)) {
1137 /*
1138 * make sure we stop running if someone unmounts
1139 * the FS
1140 */
1141 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1142 break;
1143
1144 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1145 PAGE_CACHE_SIZE, extent_thresh,
1146 &last_len, &skip, &defrag_end)) {
1147 unsigned long next;
1148 /*
1149 * the should_defrag function tells us how much to skip
1150 * bump our counter by the suggested amount
1151 */
1152 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1153 i = max(i + 1, next);
1154 continue;
1155 }
1156
1157 if (!newer_than) {
1158 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1159 PAGE_CACHE_SHIFT) - i;
1160 cluster = min(cluster, max_cluster);
1161 } else {
1162 cluster = max_cluster;
1163 }
1164
1165 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1166 BTRFS_I(inode)->force_compress = compress_type;
1167
1168 if (i + cluster > ra_index) {
1169 ra_index = max(i, ra_index);
1170 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1171 cluster);
1172 ra_index += max_cluster;
1173 }
1174
1175 mutex_lock(&inode->i_mutex);
1176 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1177 if (ret < 0) {
1178 mutex_unlock(&inode->i_mutex);
1179 goto out_ra;
1180 }
1181
1182 defrag_count += ret;
1183 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1184 mutex_unlock(&inode->i_mutex);
1185
1186 if (newer_than) {
1187 if (newer_off == (u64)-1)
1188 break;
1189
1190 if (ret > 0)
1191 i += ret;
1192
1193 newer_off = max(newer_off + 1,
1194 (u64)i << PAGE_CACHE_SHIFT);
1195
1196 ret = find_new_extents(root, inode,
1197 newer_than, &newer_off,
1198 64 * 1024);
1199 if (!ret) {
1200 range->start = newer_off;
1201 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1202 } else {
1203 break;
1204 }
1205 } else {
1206 if (ret > 0) {
1207 i += ret;
1208 last_len += ret << PAGE_CACHE_SHIFT;
1209 } else {
1210 i++;
1211 last_len = 0;
1212 }
1213 }
1214 }
1215
1216 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1217 filemap_flush(inode->i_mapping);
1218
1219 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1220 /* the filemap_flush will queue IO into the worker threads, but
1221 * we have to make sure the IO is actually started and that
1222 * ordered extents get created before we return
1223 */
1224 atomic_inc(&root->fs_info->async_submit_draining);
1225 while (atomic_read(&root->fs_info->nr_async_submits) ||
1226 atomic_read(&root->fs_info->async_delalloc_pages)) {
1227 wait_event(root->fs_info->async_submit_wait,
1228 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1229 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1230 }
1231 atomic_dec(&root->fs_info->async_submit_draining);
1232
1233 mutex_lock(&inode->i_mutex);
1234 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1235 mutex_unlock(&inode->i_mutex);
1236 }
1237
1238 disk_super = root->fs_info->super_copy;
1239 features = btrfs_super_incompat_flags(disk_super);
1240 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1241 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1242 btrfs_set_super_incompat_flags(disk_super, features);
1243 }
1244
1245 ret = defrag_count;
1246
1247 out_ra:
1248 if (!file)
1249 kfree(ra);
1250 kfree(pages);
1251 return ret;
1252 }
1253
1254 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1255 void __user *arg)
1256 {
1257 u64 new_size;
1258 u64 old_size;
1259 u64 devid = 1;
1260 struct btrfs_ioctl_vol_args *vol_args;
1261 struct btrfs_trans_handle *trans;
1262 struct btrfs_device *device = NULL;
1263 char *sizestr;
1264 char *devstr = NULL;
1265 int ret = 0;
1266 int mod = 0;
1267
1268 if (root->fs_info->sb->s_flags & MS_RDONLY)
1269 return -EROFS;
1270
1271 if (!capable(CAP_SYS_ADMIN))
1272 return -EPERM;
1273
1274 mutex_lock(&root->fs_info->volume_mutex);
1275 if (root->fs_info->balance_ctl) {
1276 printk(KERN_INFO "btrfs: balance in progress\n");
1277 ret = -EINVAL;
1278 goto out;
1279 }
1280
1281 vol_args = memdup_user(arg, sizeof(*vol_args));
1282 if (IS_ERR(vol_args)) {
1283 ret = PTR_ERR(vol_args);
1284 goto out;
1285 }
1286
1287 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1288
1289 sizestr = vol_args->name;
1290 devstr = strchr(sizestr, ':');
1291 if (devstr) {
1292 char *end;
1293 sizestr = devstr + 1;
1294 *devstr = '\0';
1295 devstr = vol_args->name;
1296 devid = simple_strtoull(devstr, &end, 10);
1297 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1298 (unsigned long long)devid);
1299 }
1300 device = btrfs_find_device(root, devid, NULL, NULL);
1301 if (!device) {
1302 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1303 (unsigned long long)devid);
1304 ret = -EINVAL;
1305 goto out_free;
1306 }
1307 if (!strcmp(sizestr, "max"))
1308 new_size = device->bdev->bd_inode->i_size;
1309 else {
1310 if (sizestr[0] == '-') {
1311 mod = -1;
1312 sizestr++;
1313 } else if (sizestr[0] == '+') {
1314 mod = 1;
1315 sizestr++;
1316 }
1317 new_size = memparse(sizestr, NULL);
1318 if (new_size == 0) {
1319 ret = -EINVAL;
1320 goto out_free;
1321 }
1322 }
1323
1324 old_size = device->total_bytes;
1325
1326 if (mod < 0) {
1327 if (new_size > old_size) {
1328 ret = -EINVAL;
1329 goto out_free;
1330 }
1331 new_size = old_size - new_size;
1332 } else if (mod > 0) {
1333 new_size = old_size + new_size;
1334 }
1335
1336 if (new_size < 256 * 1024 * 1024) {
1337 ret = -EINVAL;
1338 goto out_free;
1339 }
1340 if (new_size > device->bdev->bd_inode->i_size) {
1341 ret = -EFBIG;
1342 goto out_free;
1343 }
1344
1345 do_div(new_size, root->sectorsize);
1346 new_size *= root->sectorsize;
1347
1348 printk(KERN_INFO "btrfs: new size for %s is %llu\n",
1349 device->name, (unsigned long long)new_size);
1350
1351 if (new_size > old_size) {
1352 trans = btrfs_start_transaction(root, 0);
1353 if (IS_ERR(trans)) {
1354 ret = PTR_ERR(trans);
1355 goto out_free;
1356 }
1357 ret = btrfs_grow_device(trans, device, new_size);
1358 btrfs_commit_transaction(trans, root);
1359 } else if (new_size < old_size) {
1360 ret = btrfs_shrink_device(device, new_size);
1361 }
1362
1363 out_free:
1364 kfree(vol_args);
1365 out:
1366 mutex_unlock(&root->fs_info->volume_mutex);
1367 return ret;
1368 }
1369
1370 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1371 char *name,
1372 unsigned long fd,
1373 int subvol,
1374 u64 *transid,
1375 bool readonly)
1376 {
1377 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1378 struct file *src_file;
1379 int namelen;
1380 int ret = 0;
1381
1382 if (root->fs_info->sb->s_flags & MS_RDONLY)
1383 return -EROFS;
1384
1385 namelen = strlen(name);
1386 if (strchr(name, '/')) {
1387 ret = -EINVAL;
1388 goto out;
1389 }
1390
1391 if (name[0] == '.' &&
1392 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1393 ret = -EEXIST;
1394 goto out;
1395 }
1396
1397 if (subvol) {
1398 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1399 NULL, transid, readonly);
1400 } else {
1401 struct inode *src_inode;
1402 src_file = fget(fd);
1403 if (!src_file) {
1404 ret = -EINVAL;
1405 goto out;
1406 }
1407
1408 src_inode = src_file->f_path.dentry->d_inode;
1409 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1410 printk(KERN_INFO "btrfs: Snapshot src from "
1411 "another FS\n");
1412 ret = -EINVAL;
1413 fput(src_file);
1414 goto out;
1415 }
1416 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1417 BTRFS_I(src_inode)->root,
1418 transid, readonly);
1419 fput(src_file);
1420 }
1421 out:
1422 return ret;
1423 }
1424
1425 static noinline int btrfs_ioctl_snap_create(struct file *file,
1426 void __user *arg, int subvol)
1427 {
1428 struct btrfs_ioctl_vol_args *vol_args;
1429 int ret;
1430
1431 vol_args = memdup_user(arg, sizeof(*vol_args));
1432 if (IS_ERR(vol_args))
1433 return PTR_ERR(vol_args);
1434 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1435
1436 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1437 vol_args->fd, subvol,
1438 NULL, false);
1439
1440 kfree(vol_args);
1441 return ret;
1442 }
1443
1444 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1445 void __user *arg, int subvol)
1446 {
1447 struct btrfs_ioctl_vol_args_v2 *vol_args;
1448 int ret;
1449 u64 transid = 0;
1450 u64 *ptr = NULL;
1451 bool readonly = false;
1452
1453 vol_args = memdup_user(arg, sizeof(*vol_args));
1454 if (IS_ERR(vol_args))
1455 return PTR_ERR(vol_args);
1456 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1457
1458 if (vol_args->flags &
1459 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1460 ret = -EOPNOTSUPP;
1461 goto out;
1462 }
1463
1464 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1465 ptr = &transid;
1466 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1467 readonly = true;
1468
1469 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1470 vol_args->fd, subvol,
1471 ptr, readonly);
1472
1473 if (ret == 0 && ptr &&
1474 copy_to_user(arg +
1475 offsetof(struct btrfs_ioctl_vol_args_v2,
1476 transid), ptr, sizeof(*ptr)))
1477 ret = -EFAULT;
1478 out:
1479 kfree(vol_args);
1480 return ret;
1481 }
1482
1483 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1484 void __user *arg)
1485 {
1486 struct inode *inode = fdentry(file)->d_inode;
1487 struct btrfs_root *root = BTRFS_I(inode)->root;
1488 int ret = 0;
1489 u64 flags = 0;
1490
1491 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1492 return -EINVAL;
1493
1494 down_read(&root->fs_info->subvol_sem);
1495 if (btrfs_root_readonly(root))
1496 flags |= BTRFS_SUBVOL_RDONLY;
1497 up_read(&root->fs_info->subvol_sem);
1498
1499 if (copy_to_user(arg, &flags, sizeof(flags)))
1500 ret = -EFAULT;
1501
1502 return ret;
1503 }
1504
1505 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1506 void __user *arg)
1507 {
1508 struct inode *inode = fdentry(file)->d_inode;
1509 struct btrfs_root *root = BTRFS_I(inode)->root;
1510 struct btrfs_trans_handle *trans;
1511 u64 root_flags;
1512 u64 flags;
1513 int ret = 0;
1514
1515 if (root->fs_info->sb->s_flags & MS_RDONLY)
1516 return -EROFS;
1517
1518 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1519 return -EINVAL;
1520
1521 if (copy_from_user(&flags, arg, sizeof(flags)))
1522 return -EFAULT;
1523
1524 if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1525 return -EINVAL;
1526
1527 if (flags & ~BTRFS_SUBVOL_RDONLY)
1528 return -EOPNOTSUPP;
1529
1530 if (!inode_owner_or_capable(inode))
1531 return -EACCES;
1532
1533 down_write(&root->fs_info->subvol_sem);
1534
1535 /* nothing to do */
1536 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1537 goto out;
1538
1539 root_flags = btrfs_root_flags(&root->root_item);
1540 if (flags & BTRFS_SUBVOL_RDONLY)
1541 btrfs_set_root_flags(&root->root_item,
1542 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1543 else
1544 btrfs_set_root_flags(&root->root_item,
1545 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1546
1547 trans = btrfs_start_transaction(root, 1);
1548 if (IS_ERR(trans)) {
1549 ret = PTR_ERR(trans);
1550 goto out_reset;
1551 }
1552
1553 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1554 &root->root_key, &root->root_item);
1555
1556 btrfs_commit_transaction(trans, root);
1557 out_reset:
1558 if (ret)
1559 btrfs_set_root_flags(&root->root_item, root_flags);
1560 out:
1561 up_write(&root->fs_info->subvol_sem);
1562 return ret;
1563 }
1564
1565 /*
1566 * helper to check if the subvolume references other subvolumes
1567 */
1568 static noinline int may_destroy_subvol(struct btrfs_root *root)
1569 {
1570 struct btrfs_path *path;
1571 struct btrfs_key key;
1572 int ret;
1573
1574 path = btrfs_alloc_path();
1575 if (!path)
1576 return -ENOMEM;
1577
1578 key.objectid = root->root_key.objectid;
1579 key.type = BTRFS_ROOT_REF_KEY;
1580 key.offset = (u64)-1;
1581
1582 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1583 &key, path, 0, 0);
1584 if (ret < 0)
1585 goto out;
1586 BUG_ON(ret == 0);
1587
1588 ret = 0;
1589 if (path->slots[0] > 0) {
1590 path->slots[0]--;
1591 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1592 if (key.objectid == root->root_key.objectid &&
1593 key.type == BTRFS_ROOT_REF_KEY)
1594 ret = -ENOTEMPTY;
1595 }
1596 out:
1597 btrfs_free_path(path);
1598 return ret;
1599 }
1600
1601 static noinline int key_in_sk(struct btrfs_key *key,
1602 struct btrfs_ioctl_search_key *sk)
1603 {
1604 struct btrfs_key test;
1605 int ret;
1606
1607 test.objectid = sk->min_objectid;
1608 test.type = sk->min_type;
1609 test.offset = sk->min_offset;
1610
1611 ret = btrfs_comp_cpu_keys(key, &test);
1612 if (ret < 0)
1613 return 0;
1614
1615 test.objectid = sk->max_objectid;
1616 test.type = sk->max_type;
1617 test.offset = sk->max_offset;
1618
1619 ret = btrfs_comp_cpu_keys(key, &test);
1620 if (ret > 0)
1621 return 0;
1622 return 1;
1623 }
1624
1625 static noinline int copy_to_sk(struct btrfs_root *root,
1626 struct btrfs_path *path,
1627 struct btrfs_key *key,
1628 struct btrfs_ioctl_search_key *sk,
1629 char *buf,
1630 unsigned long *sk_offset,
1631 int *num_found)
1632 {
1633 u64 found_transid;
1634 struct extent_buffer *leaf;
1635 struct btrfs_ioctl_search_header sh;
1636 unsigned long item_off;
1637 unsigned long item_len;
1638 int nritems;
1639 int i;
1640 int slot;
1641 int ret = 0;
1642
1643 leaf = path->nodes[0];
1644 slot = path->slots[0];
1645 nritems = btrfs_header_nritems(leaf);
1646
1647 if (btrfs_header_generation(leaf) > sk->max_transid) {
1648 i = nritems;
1649 goto advance_key;
1650 }
1651 found_transid = btrfs_header_generation(leaf);
1652
1653 for (i = slot; i < nritems; i++) {
1654 item_off = btrfs_item_ptr_offset(leaf, i);
1655 item_len = btrfs_item_size_nr(leaf, i);
1656
1657 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1658 item_len = 0;
1659
1660 if (sizeof(sh) + item_len + *sk_offset >
1661 BTRFS_SEARCH_ARGS_BUFSIZE) {
1662 ret = 1;
1663 goto overflow;
1664 }
1665
1666 btrfs_item_key_to_cpu(leaf, key, i);
1667 if (!key_in_sk(key, sk))
1668 continue;
1669
1670 sh.objectid = key->objectid;
1671 sh.offset = key->offset;
1672 sh.type = key->type;
1673 sh.len = item_len;
1674 sh.transid = found_transid;
1675
1676 /* copy search result header */
1677 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1678 *sk_offset += sizeof(sh);
1679
1680 if (item_len) {
1681 char *p = buf + *sk_offset;
1682 /* copy the item */
1683 read_extent_buffer(leaf, p,
1684 item_off, item_len);
1685 *sk_offset += item_len;
1686 }
1687 (*num_found)++;
1688
1689 if (*num_found >= sk->nr_items)
1690 break;
1691 }
1692 advance_key:
1693 ret = 0;
1694 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1695 key->offset++;
1696 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1697 key->offset = 0;
1698 key->type++;
1699 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1700 key->offset = 0;
1701 key->type = 0;
1702 key->objectid++;
1703 } else
1704 ret = 1;
1705 overflow:
1706 return ret;
1707 }
1708
1709 static noinline int search_ioctl(struct inode *inode,
1710 struct btrfs_ioctl_search_args *args)
1711 {
1712 struct btrfs_root *root;
1713 struct btrfs_key key;
1714 struct btrfs_key max_key;
1715 struct btrfs_path *path;
1716 struct btrfs_ioctl_search_key *sk = &args->key;
1717 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1718 int ret;
1719 int num_found = 0;
1720 unsigned long sk_offset = 0;
1721
1722 path = btrfs_alloc_path();
1723 if (!path)
1724 return -ENOMEM;
1725
1726 if (sk->tree_id == 0) {
1727 /* search the root of the inode that was passed */
1728 root = BTRFS_I(inode)->root;
1729 } else {
1730 key.objectid = sk->tree_id;
1731 key.type = BTRFS_ROOT_ITEM_KEY;
1732 key.offset = (u64)-1;
1733 root = btrfs_read_fs_root_no_name(info, &key);
1734 if (IS_ERR(root)) {
1735 printk(KERN_ERR "could not find root %llu\n",
1736 sk->tree_id);
1737 btrfs_free_path(path);
1738 return -ENOENT;
1739 }
1740 }
1741
1742 key.objectid = sk->min_objectid;
1743 key.type = sk->min_type;
1744 key.offset = sk->min_offset;
1745
1746 max_key.objectid = sk->max_objectid;
1747 max_key.type = sk->max_type;
1748 max_key.offset = sk->max_offset;
1749
1750 path->keep_locks = 1;
1751
1752 while(1) {
1753 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1754 sk->min_transid);
1755 if (ret != 0) {
1756 if (ret > 0)
1757 ret = 0;
1758 goto err;
1759 }
1760 ret = copy_to_sk(root, path, &key, sk, args->buf,
1761 &sk_offset, &num_found);
1762 btrfs_release_path(path);
1763 if (ret || num_found >= sk->nr_items)
1764 break;
1765
1766 }
1767 ret = 0;
1768 err:
1769 sk->nr_items = num_found;
1770 btrfs_free_path(path);
1771 return ret;
1772 }
1773
1774 static noinline int btrfs_ioctl_tree_search(struct file *file,
1775 void __user *argp)
1776 {
1777 struct btrfs_ioctl_search_args *args;
1778 struct inode *inode;
1779 int ret;
1780
1781 if (!capable(CAP_SYS_ADMIN))
1782 return -EPERM;
1783
1784 args = memdup_user(argp, sizeof(*args));
1785 if (IS_ERR(args))
1786 return PTR_ERR(args);
1787
1788 inode = fdentry(file)->d_inode;
1789 ret = search_ioctl(inode, args);
1790 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1791 ret = -EFAULT;
1792 kfree(args);
1793 return ret;
1794 }
1795
1796 /*
1797 * Search INODE_REFs to identify path name of 'dirid' directory
1798 * in a 'tree_id' tree. and sets path name to 'name'.
1799 */
1800 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1801 u64 tree_id, u64 dirid, char *name)
1802 {
1803 struct btrfs_root *root;
1804 struct btrfs_key key;
1805 char *ptr;
1806 int ret = -1;
1807 int slot;
1808 int len;
1809 int total_len = 0;
1810 struct btrfs_inode_ref *iref;
1811 struct extent_buffer *l;
1812 struct btrfs_path *path;
1813
1814 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1815 name[0]='\0';
1816 return 0;
1817 }
1818
1819 path = btrfs_alloc_path();
1820 if (!path)
1821 return -ENOMEM;
1822
1823 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1824
1825 key.objectid = tree_id;
1826 key.type = BTRFS_ROOT_ITEM_KEY;
1827 key.offset = (u64)-1;
1828 root = btrfs_read_fs_root_no_name(info, &key);
1829 if (IS_ERR(root)) {
1830 printk(KERN_ERR "could not find root %llu\n", tree_id);
1831 ret = -ENOENT;
1832 goto out;
1833 }
1834
1835 key.objectid = dirid;
1836 key.type = BTRFS_INODE_REF_KEY;
1837 key.offset = (u64)-1;
1838
1839 while(1) {
1840 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1841 if (ret < 0)
1842 goto out;
1843
1844 l = path->nodes[0];
1845 slot = path->slots[0];
1846 if (ret > 0 && slot > 0)
1847 slot--;
1848 btrfs_item_key_to_cpu(l, &key, slot);
1849
1850 if (ret > 0 && (key.objectid != dirid ||
1851 key.type != BTRFS_INODE_REF_KEY)) {
1852 ret = -ENOENT;
1853 goto out;
1854 }
1855
1856 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1857 len = btrfs_inode_ref_name_len(l, iref);
1858 ptr -= len + 1;
1859 total_len += len + 1;
1860 if (ptr < name)
1861 goto out;
1862
1863 *(ptr + len) = '/';
1864 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1865
1866 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1867 break;
1868
1869 btrfs_release_path(path);
1870 key.objectid = key.offset;
1871 key.offset = (u64)-1;
1872 dirid = key.objectid;
1873 }
1874 if (ptr < name)
1875 goto out;
1876 memmove(name, ptr, total_len);
1877 name[total_len]='\0';
1878 ret = 0;
1879 out:
1880 btrfs_free_path(path);
1881 return ret;
1882 }
1883
1884 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1885 void __user *argp)
1886 {
1887 struct btrfs_ioctl_ino_lookup_args *args;
1888 struct inode *inode;
1889 int ret;
1890
1891 if (!capable(CAP_SYS_ADMIN))
1892 return -EPERM;
1893
1894 args = memdup_user(argp, sizeof(*args));
1895 if (IS_ERR(args))
1896 return PTR_ERR(args);
1897
1898 inode = fdentry(file)->d_inode;
1899
1900 if (args->treeid == 0)
1901 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1902
1903 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1904 args->treeid, args->objectid,
1905 args->name);
1906
1907 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1908 ret = -EFAULT;
1909
1910 kfree(args);
1911 return ret;
1912 }
1913
1914 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1915 void __user *arg)
1916 {
1917 struct dentry *parent = fdentry(file);
1918 struct dentry *dentry;
1919 struct inode *dir = parent->d_inode;
1920 struct inode *inode;
1921 struct btrfs_root *root = BTRFS_I(dir)->root;
1922 struct btrfs_root *dest = NULL;
1923 struct btrfs_ioctl_vol_args *vol_args;
1924 struct btrfs_trans_handle *trans;
1925 int namelen;
1926 int ret;
1927 int err = 0;
1928
1929 vol_args = memdup_user(arg, sizeof(*vol_args));
1930 if (IS_ERR(vol_args))
1931 return PTR_ERR(vol_args);
1932
1933 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1934 namelen = strlen(vol_args->name);
1935 if (strchr(vol_args->name, '/') ||
1936 strncmp(vol_args->name, "..", namelen) == 0) {
1937 err = -EINVAL;
1938 goto out;
1939 }
1940
1941 err = mnt_want_write_file(file);
1942 if (err)
1943 goto out;
1944
1945 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1946 dentry = lookup_one_len(vol_args->name, parent, namelen);
1947 if (IS_ERR(dentry)) {
1948 err = PTR_ERR(dentry);
1949 goto out_unlock_dir;
1950 }
1951
1952 if (!dentry->d_inode) {
1953 err = -ENOENT;
1954 goto out_dput;
1955 }
1956
1957 inode = dentry->d_inode;
1958 dest = BTRFS_I(inode)->root;
1959 if (!capable(CAP_SYS_ADMIN)){
1960 /*
1961 * Regular user. Only allow this with a special mount
1962 * option, when the user has write+exec access to the
1963 * subvol root, and when rmdir(2) would have been
1964 * allowed.
1965 *
1966 * Note that this is _not_ check that the subvol is
1967 * empty or doesn't contain data that we wouldn't
1968 * otherwise be able to delete.
1969 *
1970 * Users who want to delete empty subvols should try
1971 * rmdir(2).
1972 */
1973 err = -EPERM;
1974 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1975 goto out_dput;
1976
1977 /*
1978 * Do not allow deletion if the parent dir is the same
1979 * as the dir to be deleted. That means the ioctl
1980 * must be called on the dentry referencing the root
1981 * of the subvol, not a random directory contained
1982 * within it.
1983 */
1984 err = -EINVAL;
1985 if (root == dest)
1986 goto out_dput;
1987
1988 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1989 if (err)
1990 goto out_dput;
1991
1992 /* check if subvolume may be deleted by a non-root user */
1993 err = btrfs_may_delete(dir, dentry, 1);
1994 if (err)
1995 goto out_dput;
1996 }
1997
1998 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1999 err = -EINVAL;
2000 goto out_dput;
2001 }
2002
2003 mutex_lock(&inode->i_mutex);
2004 err = d_invalidate(dentry);
2005 if (err)
2006 goto out_unlock;
2007
2008 down_write(&root->fs_info->subvol_sem);
2009
2010 err = may_destroy_subvol(dest);
2011 if (err)
2012 goto out_up_write;
2013
2014 trans = btrfs_start_transaction(root, 0);
2015 if (IS_ERR(trans)) {
2016 err = PTR_ERR(trans);
2017 goto out_up_write;
2018 }
2019 trans->block_rsv = &root->fs_info->global_block_rsv;
2020
2021 ret = btrfs_unlink_subvol(trans, root, dir,
2022 dest->root_key.objectid,
2023 dentry->d_name.name,
2024 dentry->d_name.len);
2025 if (ret) {
2026 err = ret;
2027 btrfs_abort_transaction(trans, root, ret);
2028 goto out_end_trans;
2029 }
2030
2031 btrfs_record_root_in_trans(trans, dest);
2032
2033 memset(&dest->root_item.drop_progress, 0,
2034 sizeof(dest->root_item.drop_progress));
2035 dest->root_item.drop_level = 0;
2036 btrfs_set_root_refs(&dest->root_item, 0);
2037
2038 if (!xchg(&dest->orphan_item_inserted, 1)) {
2039 ret = btrfs_insert_orphan_item(trans,
2040 root->fs_info->tree_root,
2041 dest->root_key.objectid);
2042 if (ret) {
2043 btrfs_abort_transaction(trans, root, ret);
2044 err = ret;
2045 goto out_end_trans;
2046 }
2047 }
2048 out_end_trans:
2049 ret = btrfs_end_transaction(trans, root);
2050 if (ret && !err)
2051 err = ret;
2052 inode->i_flags |= S_DEAD;
2053 out_up_write:
2054 up_write(&root->fs_info->subvol_sem);
2055 out_unlock:
2056 mutex_unlock(&inode->i_mutex);
2057 if (!err) {
2058 shrink_dcache_sb(root->fs_info->sb);
2059 btrfs_invalidate_inodes(dest);
2060 d_delete(dentry);
2061 }
2062 out_dput:
2063 dput(dentry);
2064 out_unlock_dir:
2065 mutex_unlock(&dir->i_mutex);
2066 mnt_drop_write_file(file);
2067 out:
2068 kfree(vol_args);
2069 return err;
2070 }
2071
2072 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2073 {
2074 struct inode *inode = fdentry(file)->d_inode;
2075 struct btrfs_root *root = BTRFS_I(inode)->root;
2076 struct btrfs_ioctl_defrag_range_args *range;
2077 int ret;
2078
2079 if (btrfs_root_readonly(root))
2080 return -EROFS;
2081
2082 ret = mnt_want_write_file(file);
2083 if (ret)
2084 return ret;
2085
2086 switch (inode->i_mode & S_IFMT) {
2087 case S_IFDIR:
2088 if (!capable(CAP_SYS_ADMIN)) {
2089 ret = -EPERM;
2090 goto out;
2091 }
2092 ret = btrfs_defrag_root(root, 0);
2093 if (ret)
2094 goto out;
2095 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2096 break;
2097 case S_IFREG:
2098 if (!(file->f_mode & FMODE_WRITE)) {
2099 ret = -EINVAL;
2100 goto out;
2101 }
2102
2103 range = kzalloc(sizeof(*range), GFP_KERNEL);
2104 if (!range) {
2105 ret = -ENOMEM;
2106 goto out;
2107 }
2108
2109 if (argp) {
2110 if (copy_from_user(range, argp,
2111 sizeof(*range))) {
2112 ret = -EFAULT;
2113 kfree(range);
2114 goto out;
2115 }
2116 /* compression requires us to start the IO */
2117 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2118 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2119 range->extent_thresh = (u32)-1;
2120 }
2121 } else {
2122 /* the rest are all set to zero by kzalloc */
2123 range->len = (u64)-1;
2124 }
2125 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2126 range, 0, 0);
2127 if (ret > 0)
2128 ret = 0;
2129 kfree(range);
2130 break;
2131 default:
2132 ret = -EINVAL;
2133 }
2134 out:
2135 mnt_drop_write_file(file);
2136 return ret;
2137 }
2138
2139 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2140 {
2141 struct btrfs_ioctl_vol_args *vol_args;
2142 int ret;
2143
2144 if (!capable(CAP_SYS_ADMIN))
2145 return -EPERM;
2146
2147 mutex_lock(&root->fs_info->volume_mutex);
2148 if (root->fs_info->balance_ctl) {
2149 printk(KERN_INFO "btrfs: balance in progress\n");
2150 ret = -EINVAL;
2151 goto out;
2152 }
2153
2154 vol_args = memdup_user(arg, sizeof(*vol_args));
2155 if (IS_ERR(vol_args)) {
2156 ret = PTR_ERR(vol_args);
2157 goto out;
2158 }
2159
2160 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2161 ret = btrfs_init_new_device(root, vol_args->name);
2162
2163 kfree(vol_args);
2164 out:
2165 mutex_unlock(&root->fs_info->volume_mutex);
2166 return ret;
2167 }
2168
2169 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2170 {
2171 struct btrfs_ioctl_vol_args *vol_args;
2172 int ret;
2173
2174 if (!capable(CAP_SYS_ADMIN))
2175 return -EPERM;
2176
2177 if (root->fs_info->sb->s_flags & MS_RDONLY)
2178 return -EROFS;
2179
2180 mutex_lock(&root->fs_info->volume_mutex);
2181 if (root->fs_info->balance_ctl) {
2182 printk(KERN_INFO "btrfs: balance in progress\n");
2183 ret = -EINVAL;
2184 goto out;
2185 }
2186
2187 vol_args = memdup_user(arg, sizeof(*vol_args));
2188 if (IS_ERR(vol_args)) {
2189 ret = PTR_ERR(vol_args);
2190 goto out;
2191 }
2192
2193 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2194 ret = btrfs_rm_device(root, vol_args->name);
2195
2196 kfree(vol_args);
2197 out:
2198 mutex_unlock(&root->fs_info->volume_mutex);
2199 return ret;
2200 }
2201
2202 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2203 {
2204 struct btrfs_ioctl_fs_info_args *fi_args;
2205 struct btrfs_device *device;
2206 struct btrfs_device *next;
2207 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2208 int ret = 0;
2209
2210 if (!capable(CAP_SYS_ADMIN))
2211 return -EPERM;
2212
2213 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2214 if (!fi_args)
2215 return -ENOMEM;
2216
2217 fi_args->num_devices = fs_devices->num_devices;
2218 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2219
2220 mutex_lock(&fs_devices->device_list_mutex);
2221 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2222 if (device->devid > fi_args->max_id)
2223 fi_args->max_id = device->devid;
2224 }
2225 mutex_unlock(&fs_devices->device_list_mutex);
2226
2227 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2228 ret = -EFAULT;
2229
2230 kfree(fi_args);
2231 return ret;
2232 }
2233
2234 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2235 {
2236 struct btrfs_ioctl_dev_info_args *di_args;
2237 struct btrfs_device *dev;
2238 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2239 int ret = 0;
2240 char *s_uuid = NULL;
2241 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2242
2243 if (!capable(CAP_SYS_ADMIN))
2244 return -EPERM;
2245
2246 di_args = memdup_user(arg, sizeof(*di_args));
2247 if (IS_ERR(di_args))
2248 return PTR_ERR(di_args);
2249
2250 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2251 s_uuid = di_args->uuid;
2252
2253 mutex_lock(&fs_devices->device_list_mutex);
2254 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2255 mutex_unlock(&fs_devices->device_list_mutex);
2256
2257 if (!dev) {
2258 ret = -ENODEV;
2259 goto out;
2260 }
2261
2262 di_args->devid = dev->devid;
2263 di_args->bytes_used = dev->bytes_used;
2264 di_args->total_bytes = dev->total_bytes;
2265 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2266 if (dev->name) {
2267 strncpy(di_args->path, dev->name, sizeof(di_args->path));
2268 di_args->path[sizeof(di_args->path) - 1] = 0;
2269 } else {
2270 di_args->path[0] = '\0';
2271 }
2272
2273 out:
2274 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2275 ret = -EFAULT;
2276
2277 kfree(di_args);
2278 return ret;
2279 }
2280
2281 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2282 u64 off, u64 olen, u64 destoff)
2283 {
2284 struct inode *inode = fdentry(file)->d_inode;
2285 struct btrfs_root *root = BTRFS_I(inode)->root;
2286 struct file *src_file;
2287 struct inode *src;
2288 struct btrfs_trans_handle *trans;
2289 struct btrfs_path *path;
2290 struct extent_buffer *leaf;
2291 char *buf;
2292 struct btrfs_key key;
2293 u32 nritems;
2294 int slot;
2295 int ret;
2296 u64 len = olen;
2297 u64 bs = root->fs_info->sb->s_blocksize;
2298 u64 hint_byte;
2299
2300 /*
2301 * TODO:
2302 * - split compressed inline extents. annoying: we need to
2303 * decompress into destination's address_space (the file offset
2304 * may change, so source mapping won't do), then recompress (or
2305 * otherwise reinsert) a subrange.
2306 * - allow ranges within the same file to be cloned (provided
2307 * they don't overlap)?
2308 */
2309
2310 /* the destination must be opened for writing */
2311 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2312 return -EINVAL;
2313
2314 if (btrfs_root_readonly(root))
2315 return -EROFS;
2316
2317 ret = mnt_want_write_file(file);
2318 if (ret)
2319 return ret;
2320
2321 src_file = fget(srcfd);
2322 if (!src_file) {
2323 ret = -EBADF;
2324 goto out_drop_write;
2325 }
2326
2327 src = src_file->f_dentry->d_inode;
2328
2329 ret = -EINVAL;
2330 if (src == inode)
2331 goto out_fput;
2332
2333 /* the src must be open for reading */
2334 if (!(src_file->f_mode & FMODE_READ))
2335 goto out_fput;
2336
2337 /* don't make the dst file partly checksummed */
2338 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2339 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2340 goto out_fput;
2341
2342 ret = -EISDIR;
2343 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2344 goto out_fput;
2345
2346 ret = -EXDEV;
2347 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2348 goto out_fput;
2349
2350 ret = -ENOMEM;
2351 buf = vmalloc(btrfs_level_size(root, 0));
2352 if (!buf)
2353 goto out_fput;
2354
2355 path = btrfs_alloc_path();
2356 if (!path) {
2357 vfree(buf);
2358 goto out_fput;
2359 }
2360 path->reada = 2;
2361
2362 if (inode < src) {
2363 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2364 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2365 } else {
2366 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2367 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2368 }
2369
2370 /* determine range to clone */
2371 ret = -EINVAL;
2372 if (off + len > src->i_size || off + len < off)
2373 goto out_unlock;
2374 if (len == 0)
2375 olen = len = src->i_size - off;
2376 /* if we extend to eof, continue to block boundary */
2377 if (off + len == src->i_size)
2378 len = ALIGN(src->i_size, bs) - off;
2379
2380 /* verify the end result is block aligned */
2381 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2382 !IS_ALIGNED(destoff, bs))
2383 goto out_unlock;
2384
2385 if (destoff > inode->i_size) {
2386 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2387 if (ret)
2388 goto out_unlock;
2389 }
2390
2391 /* truncate page cache pages from target inode range */
2392 truncate_inode_pages_range(&inode->i_data, destoff,
2393 PAGE_CACHE_ALIGN(destoff + len) - 1);
2394
2395 /* do any pending delalloc/csum calc on src, one way or
2396 another, and lock file content */
2397 while (1) {
2398 struct btrfs_ordered_extent *ordered;
2399 lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2400 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2401 if (!ordered &&
2402 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2403 EXTENT_DELALLOC, 0, NULL))
2404 break;
2405 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2406 if (ordered)
2407 btrfs_put_ordered_extent(ordered);
2408 btrfs_wait_ordered_range(src, off, len);
2409 }
2410
2411 /* clone data */
2412 key.objectid = btrfs_ino(src);
2413 key.type = BTRFS_EXTENT_DATA_KEY;
2414 key.offset = 0;
2415
2416 while (1) {
2417 /*
2418 * note the key will change type as we walk through the
2419 * tree.
2420 */
2421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2422 if (ret < 0)
2423 goto out;
2424
2425 nritems = btrfs_header_nritems(path->nodes[0]);
2426 if (path->slots[0] >= nritems) {
2427 ret = btrfs_next_leaf(root, path);
2428 if (ret < 0)
2429 goto out;
2430 if (ret > 0)
2431 break;
2432 nritems = btrfs_header_nritems(path->nodes[0]);
2433 }
2434 leaf = path->nodes[0];
2435 slot = path->slots[0];
2436
2437 btrfs_item_key_to_cpu(leaf, &key, slot);
2438 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2439 key.objectid != btrfs_ino(src))
2440 break;
2441
2442 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2443 struct btrfs_file_extent_item *extent;
2444 int type;
2445 u32 size;
2446 struct btrfs_key new_key;
2447 u64 disko = 0, diskl = 0;
2448 u64 datao = 0, datal = 0;
2449 u8 comp;
2450 u64 endoff;
2451
2452 size = btrfs_item_size_nr(leaf, slot);
2453 read_extent_buffer(leaf, buf,
2454 btrfs_item_ptr_offset(leaf, slot),
2455 size);
2456
2457 extent = btrfs_item_ptr(leaf, slot,
2458 struct btrfs_file_extent_item);
2459 comp = btrfs_file_extent_compression(leaf, extent);
2460 type = btrfs_file_extent_type(leaf, extent);
2461 if (type == BTRFS_FILE_EXTENT_REG ||
2462 type == BTRFS_FILE_EXTENT_PREALLOC) {
2463 disko = btrfs_file_extent_disk_bytenr(leaf,
2464 extent);
2465 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2466 extent);
2467 datao = btrfs_file_extent_offset(leaf, extent);
2468 datal = btrfs_file_extent_num_bytes(leaf,
2469 extent);
2470 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2471 /* take upper bound, may be compressed */
2472 datal = btrfs_file_extent_ram_bytes(leaf,
2473 extent);
2474 }
2475 btrfs_release_path(path);
2476
2477 if (key.offset + datal <= off ||
2478 key.offset >= off+len)
2479 goto next;
2480
2481 memcpy(&new_key, &key, sizeof(new_key));
2482 new_key.objectid = btrfs_ino(inode);
2483 if (off <= key.offset)
2484 new_key.offset = key.offset + destoff - off;
2485 else
2486 new_key.offset = destoff;
2487
2488 /*
2489 * 1 - adjusting old extent (we may have to split it)
2490 * 1 - add new extent
2491 * 1 - inode update
2492 */
2493 trans = btrfs_start_transaction(root, 3);
2494 if (IS_ERR(trans)) {
2495 ret = PTR_ERR(trans);
2496 goto out;
2497 }
2498
2499 if (type == BTRFS_FILE_EXTENT_REG ||
2500 type == BTRFS_FILE_EXTENT_PREALLOC) {
2501 /*
2502 * a | --- range to clone ---| b
2503 * | ------------- extent ------------- |
2504 */
2505
2506 /* substract range b */
2507 if (key.offset + datal > off + len)
2508 datal = off + len - key.offset;
2509
2510 /* substract range a */
2511 if (off > key.offset) {
2512 datao += off - key.offset;
2513 datal -= off - key.offset;
2514 }
2515
2516 ret = btrfs_drop_extents(trans, inode,
2517 new_key.offset,
2518 new_key.offset + datal,
2519 &hint_byte, 1);
2520 if (ret) {
2521 btrfs_abort_transaction(trans, root,
2522 ret);
2523 btrfs_end_transaction(trans, root);
2524 goto out;
2525 }
2526
2527 ret = btrfs_insert_empty_item(trans, root, path,
2528 &new_key, size);
2529 if (ret) {
2530 btrfs_abort_transaction(trans, root,
2531 ret);
2532 btrfs_end_transaction(trans, root);
2533 goto out;
2534 }
2535
2536 leaf = path->nodes[0];
2537 slot = path->slots[0];
2538 write_extent_buffer(leaf, buf,
2539 btrfs_item_ptr_offset(leaf, slot),
2540 size);
2541
2542 extent = btrfs_item_ptr(leaf, slot,
2543 struct btrfs_file_extent_item);
2544
2545 /* disko == 0 means it's a hole */
2546 if (!disko)
2547 datao = 0;
2548
2549 btrfs_set_file_extent_offset(leaf, extent,
2550 datao);
2551 btrfs_set_file_extent_num_bytes(leaf, extent,
2552 datal);
2553 if (disko) {
2554 inode_add_bytes(inode, datal);
2555 ret = btrfs_inc_extent_ref(trans, root,
2556 disko, diskl, 0,
2557 root->root_key.objectid,
2558 btrfs_ino(inode),
2559 new_key.offset - datao,
2560 0);
2561 if (ret) {
2562 btrfs_abort_transaction(trans,
2563 root,
2564 ret);
2565 btrfs_end_transaction(trans,
2566 root);
2567 goto out;
2568
2569 }
2570 }
2571 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2572 u64 skip = 0;
2573 u64 trim = 0;
2574 if (off > key.offset) {
2575 skip = off - key.offset;
2576 new_key.offset += skip;
2577 }
2578
2579 if (key.offset + datal > off+len)
2580 trim = key.offset + datal - (off+len);
2581
2582 if (comp && (skip || trim)) {
2583 ret = -EINVAL;
2584 btrfs_end_transaction(trans, root);
2585 goto out;
2586 }
2587 size -= skip + trim;
2588 datal -= skip + trim;
2589
2590 ret = btrfs_drop_extents(trans, inode,
2591 new_key.offset,
2592 new_key.offset + datal,
2593 &hint_byte, 1);
2594 if (ret) {
2595 btrfs_abort_transaction(trans, root,
2596 ret);
2597 btrfs_end_transaction(trans, root);
2598 goto out;
2599 }
2600
2601 ret = btrfs_insert_empty_item(trans, root, path,
2602 &new_key, size);
2603 if (ret) {
2604 btrfs_abort_transaction(trans, root,
2605 ret);
2606 btrfs_end_transaction(trans, root);
2607 goto out;
2608 }
2609
2610 if (skip) {
2611 u32 start =
2612 btrfs_file_extent_calc_inline_size(0);
2613 memmove(buf+start, buf+start+skip,
2614 datal);
2615 }
2616
2617 leaf = path->nodes[0];
2618 slot = path->slots[0];
2619 write_extent_buffer(leaf, buf,
2620 btrfs_item_ptr_offset(leaf, slot),
2621 size);
2622 inode_add_bytes(inode, datal);
2623 }
2624
2625 btrfs_mark_buffer_dirty(leaf);
2626 btrfs_release_path(path);
2627
2628 inode_inc_iversion(inode);
2629 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2630
2631 /*
2632 * we round up to the block size at eof when
2633 * determining which extents to clone above,
2634 * but shouldn't round up the file size
2635 */
2636 endoff = new_key.offset + datal;
2637 if (endoff > destoff+olen)
2638 endoff = destoff+olen;
2639 if (endoff > inode->i_size)
2640 btrfs_i_size_write(inode, endoff);
2641
2642 ret = btrfs_update_inode(trans, root, inode);
2643 if (ret) {
2644 btrfs_abort_transaction(trans, root, ret);
2645 btrfs_end_transaction(trans, root);
2646 goto out;
2647 }
2648 ret = btrfs_end_transaction(trans, root);
2649 }
2650 next:
2651 btrfs_release_path(path);
2652 key.offset++;
2653 }
2654 ret = 0;
2655 out:
2656 btrfs_release_path(path);
2657 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2658 out_unlock:
2659 mutex_unlock(&src->i_mutex);
2660 mutex_unlock(&inode->i_mutex);
2661 vfree(buf);
2662 btrfs_free_path(path);
2663 out_fput:
2664 fput(src_file);
2665 out_drop_write:
2666 mnt_drop_write_file(file);
2667 return ret;
2668 }
2669
2670 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2671 {
2672 struct btrfs_ioctl_clone_range_args args;
2673
2674 if (copy_from_user(&args, argp, sizeof(args)))
2675 return -EFAULT;
2676 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2677 args.src_length, args.dest_offset);
2678 }
2679
2680 /*
2681 * there are many ways the trans_start and trans_end ioctls can lead
2682 * to deadlocks. They should only be used by applications that
2683 * basically own the machine, and have a very in depth understanding
2684 * of all the possible deadlocks and enospc problems.
2685 */
2686 static long btrfs_ioctl_trans_start(struct file *file)
2687 {
2688 struct inode *inode = fdentry(file)->d_inode;
2689 struct btrfs_root *root = BTRFS_I(inode)->root;
2690 struct btrfs_trans_handle *trans;
2691 int ret;
2692
2693 ret = -EPERM;
2694 if (!capable(CAP_SYS_ADMIN))
2695 goto out;
2696
2697 ret = -EINPROGRESS;
2698 if (file->private_data)
2699 goto out;
2700
2701 ret = -EROFS;
2702 if (btrfs_root_readonly(root))
2703 goto out;
2704
2705 ret = mnt_want_write_file(file);
2706 if (ret)
2707 goto out;
2708
2709 atomic_inc(&root->fs_info->open_ioctl_trans);
2710
2711 ret = -ENOMEM;
2712 trans = btrfs_start_ioctl_transaction(root);
2713 if (IS_ERR(trans))
2714 goto out_drop;
2715
2716 file->private_data = trans;
2717 return 0;
2718
2719 out_drop:
2720 atomic_dec(&root->fs_info->open_ioctl_trans);
2721 mnt_drop_write_file(file);
2722 out:
2723 return ret;
2724 }
2725
2726 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2727 {
2728 struct inode *inode = fdentry(file)->d_inode;
2729 struct btrfs_root *root = BTRFS_I(inode)->root;
2730 struct btrfs_root *new_root;
2731 struct btrfs_dir_item *di;
2732 struct btrfs_trans_handle *trans;
2733 struct btrfs_path *path;
2734 struct btrfs_key location;
2735 struct btrfs_disk_key disk_key;
2736 struct btrfs_super_block *disk_super;
2737 u64 features;
2738 u64 objectid = 0;
2739 u64 dir_id;
2740
2741 if (!capable(CAP_SYS_ADMIN))
2742 return -EPERM;
2743
2744 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2745 return -EFAULT;
2746
2747 if (!objectid)
2748 objectid = root->root_key.objectid;
2749
2750 location.objectid = objectid;
2751 location.type = BTRFS_ROOT_ITEM_KEY;
2752 location.offset = (u64)-1;
2753
2754 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2755 if (IS_ERR(new_root))
2756 return PTR_ERR(new_root);
2757
2758 if (btrfs_root_refs(&new_root->root_item) == 0)
2759 return -ENOENT;
2760
2761 path = btrfs_alloc_path();
2762 if (!path)
2763 return -ENOMEM;
2764 path->leave_spinning = 1;
2765
2766 trans = btrfs_start_transaction(root, 1);
2767 if (IS_ERR(trans)) {
2768 btrfs_free_path(path);
2769 return PTR_ERR(trans);
2770 }
2771
2772 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2773 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2774 dir_id, "default", 7, 1);
2775 if (IS_ERR_OR_NULL(di)) {
2776 btrfs_free_path(path);
2777 btrfs_end_transaction(trans, root);
2778 printk(KERN_ERR "Umm, you don't have the default dir item, "
2779 "this isn't going to work\n");
2780 return -ENOENT;
2781 }
2782
2783 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2784 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2785 btrfs_mark_buffer_dirty(path->nodes[0]);
2786 btrfs_free_path(path);
2787
2788 disk_super = root->fs_info->super_copy;
2789 features = btrfs_super_incompat_flags(disk_super);
2790 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2791 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2792 btrfs_set_super_incompat_flags(disk_super, features);
2793 }
2794 btrfs_end_transaction(trans, root);
2795
2796 return 0;
2797 }
2798
2799 static void get_block_group_info(struct list_head *groups_list,
2800 struct btrfs_ioctl_space_info *space)
2801 {
2802 struct btrfs_block_group_cache *block_group;
2803
2804 space->total_bytes = 0;
2805 space->used_bytes = 0;
2806 space->flags = 0;
2807 list_for_each_entry(block_group, groups_list, list) {
2808 space->flags = block_group->flags;
2809 space->total_bytes += block_group->key.offset;
2810 space->used_bytes +=
2811 btrfs_block_group_used(&block_group->item);
2812 }
2813 }
2814
2815 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2816 {
2817 struct btrfs_ioctl_space_args space_args;
2818 struct btrfs_ioctl_space_info space;
2819 struct btrfs_ioctl_space_info *dest;
2820 struct btrfs_ioctl_space_info *dest_orig;
2821 struct btrfs_ioctl_space_info __user *user_dest;
2822 struct btrfs_space_info *info;
2823 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2824 BTRFS_BLOCK_GROUP_SYSTEM,
2825 BTRFS_BLOCK_GROUP_METADATA,
2826 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2827 int num_types = 4;
2828 int alloc_size;
2829 int ret = 0;
2830 u64 slot_count = 0;
2831 int i, c;
2832
2833 if (copy_from_user(&space_args,
2834 (struct btrfs_ioctl_space_args __user *)arg,
2835 sizeof(space_args)))
2836 return -EFAULT;
2837
2838 for (i = 0; i < num_types; i++) {
2839 struct btrfs_space_info *tmp;
2840
2841 info = NULL;
2842 rcu_read_lock();
2843 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2844 list) {
2845 if (tmp->flags == types[i]) {
2846 info = tmp;
2847 break;
2848 }
2849 }
2850 rcu_read_unlock();
2851
2852 if (!info)
2853 continue;
2854
2855 down_read(&info->groups_sem);
2856 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2857 if (!list_empty(&info->block_groups[c]))
2858 slot_count++;
2859 }
2860 up_read(&info->groups_sem);
2861 }
2862
2863 /* space_slots == 0 means they are asking for a count */
2864 if (space_args.space_slots == 0) {
2865 space_args.total_spaces = slot_count;
2866 goto out;
2867 }
2868
2869 slot_count = min_t(u64, space_args.space_slots, slot_count);
2870
2871 alloc_size = sizeof(*dest) * slot_count;
2872
2873 /* we generally have at most 6 or so space infos, one for each raid
2874 * level. So, a whole page should be more than enough for everyone
2875 */
2876 if (alloc_size > PAGE_CACHE_SIZE)
2877 return -ENOMEM;
2878
2879 space_args.total_spaces = 0;
2880 dest = kmalloc(alloc_size, GFP_NOFS);
2881 if (!dest)
2882 return -ENOMEM;
2883 dest_orig = dest;
2884
2885 /* now we have a buffer to copy into */
2886 for (i = 0; i < num_types; i++) {
2887 struct btrfs_space_info *tmp;
2888
2889 if (!slot_count)
2890 break;
2891
2892 info = NULL;
2893 rcu_read_lock();
2894 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2895 list) {
2896 if (tmp->flags == types[i]) {
2897 info = tmp;
2898 break;
2899 }
2900 }
2901 rcu_read_unlock();
2902
2903 if (!info)
2904 continue;
2905 down_read(&info->groups_sem);
2906 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2907 if (!list_empty(&info->block_groups[c])) {
2908 get_block_group_info(&info->block_groups[c],
2909 &space);
2910 memcpy(dest, &space, sizeof(space));
2911 dest++;
2912 space_args.total_spaces++;
2913 slot_count--;
2914 }
2915 if (!slot_count)
2916 break;
2917 }
2918 up_read(&info->groups_sem);
2919 }
2920
2921 user_dest = (struct btrfs_ioctl_space_info __user *)
2922 (arg + sizeof(struct btrfs_ioctl_space_args));
2923
2924 if (copy_to_user(user_dest, dest_orig, alloc_size))
2925 ret = -EFAULT;
2926
2927 kfree(dest_orig);
2928 out:
2929 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2930 ret = -EFAULT;
2931
2932 return ret;
2933 }
2934
2935 /*
2936 * there are many ways the trans_start and trans_end ioctls can lead
2937 * to deadlocks. They should only be used by applications that
2938 * basically own the machine, and have a very in depth understanding
2939 * of all the possible deadlocks and enospc problems.
2940 */
2941 long btrfs_ioctl_trans_end(struct file *file)
2942 {
2943 struct inode *inode = fdentry(file)->d_inode;
2944 struct btrfs_root *root = BTRFS_I(inode)->root;
2945 struct btrfs_trans_handle *trans;
2946
2947 trans = file->private_data;
2948 if (!trans)
2949 return -EINVAL;
2950 file->private_data = NULL;
2951
2952 btrfs_end_transaction(trans, root);
2953
2954 atomic_dec(&root->fs_info->open_ioctl_trans);
2955
2956 mnt_drop_write_file(file);
2957 return 0;
2958 }
2959
2960 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2961 {
2962 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2963 struct btrfs_trans_handle *trans;
2964 u64 transid;
2965 int ret;
2966
2967 trans = btrfs_start_transaction(root, 0);
2968 if (IS_ERR(trans))
2969 return PTR_ERR(trans);
2970 transid = trans->transid;
2971 ret = btrfs_commit_transaction_async(trans, root, 0);
2972 if (ret) {
2973 btrfs_end_transaction(trans, root);
2974 return ret;
2975 }
2976
2977 if (argp)
2978 if (copy_to_user(argp, &transid, sizeof(transid)))
2979 return -EFAULT;
2980 return 0;
2981 }
2982
2983 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2984 {
2985 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2986 u64 transid;
2987
2988 if (argp) {
2989 if (copy_from_user(&transid, argp, sizeof(transid)))
2990 return -EFAULT;
2991 } else {
2992 transid = 0; /* current trans */
2993 }
2994 return btrfs_wait_for_commit(root, transid);
2995 }
2996
2997 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2998 {
2999 int ret;
3000 struct btrfs_ioctl_scrub_args *sa;
3001
3002 if (!capable(CAP_SYS_ADMIN))
3003 return -EPERM;
3004
3005 sa = memdup_user(arg, sizeof(*sa));
3006 if (IS_ERR(sa))
3007 return PTR_ERR(sa);
3008
3009 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3010 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3011
3012 if (copy_to_user(arg, sa, sizeof(*sa)))
3013 ret = -EFAULT;
3014
3015 kfree(sa);
3016 return ret;
3017 }
3018
3019 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3020 {
3021 if (!capable(CAP_SYS_ADMIN))
3022 return -EPERM;
3023
3024 return btrfs_scrub_cancel(root);
3025 }
3026
3027 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3028 void __user *arg)
3029 {
3030 struct btrfs_ioctl_scrub_args *sa;
3031 int ret;
3032
3033 if (!capable(CAP_SYS_ADMIN))
3034 return -EPERM;
3035
3036 sa = memdup_user(arg, sizeof(*sa));
3037 if (IS_ERR(sa))
3038 return PTR_ERR(sa);
3039
3040 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3041
3042 if (copy_to_user(arg, sa, sizeof(*sa)))
3043 ret = -EFAULT;
3044
3045 kfree(sa);
3046 return ret;
3047 }
3048
3049 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3050 void __user *arg, int reset_after_read)
3051 {
3052 struct btrfs_ioctl_get_dev_stats *sa;
3053 int ret;
3054
3055 if (reset_after_read && !capable(CAP_SYS_ADMIN))
3056 return -EPERM;
3057
3058 sa = memdup_user(arg, sizeof(*sa));
3059 if (IS_ERR(sa))
3060 return PTR_ERR(sa);
3061
3062 ret = btrfs_get_dev_stats(root, sa, reset_after_read);
3063
3064 if (copy_to_user(arg, sa, sizeof(*sa)))
3065 ret = -EFAULT;
3066
3067 kfree(sa);
3068 return ret;
3069 }
3070
3071 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3072 {
3073 int ret = 0;
3074 int i;
3075 u64 rel_ptr;
3076 int size;
3077 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3078 struct inode_fs_paths *ipath = NULL;
3079 struct btrfs_path *path;
3080
3081 if (!capable(CAP_SYS_ADMIN))
3082 return -EPERM;
3083
3084 path = btrfs_alloc_path();
3085 if (!path) {
3086 ret = -ENOMEM;
3087 goto out;
3088 }
3089
3090 ipa = memdup_user(arg, sizeof(*ipa));
3091 if (IS_ERR(ipa)) {
3092 ret = PTR_ERR(ipa);
3093 ipa = NULL;
3094 goto out;
3095 }
3096
3097 size = min_t(u32, ipa->size, 4096);
3098 ipath = init_ipath(size, root, path);
3099 if (IS_ERR(ipath)) {
3100 ret = PTR_ERR(ipath);
3101 ipath = NULL;
3102 goto out;
3103 }
3104
3105 ret = paths_from_inode(ipa->inum, ipath);
3106 if (ret < 0)
3107 goto out;
3108
3109 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3110 rel_ptr = ipath->fspath->val[i] -
3111 (u64)(unsigned long)ipath->fspath->val;
3112 ipath->fspath->val[i] = rel_ptr;
3113 }
3114
3115 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3116 (void *)(unsigned long)ipath->fspath, size);
3117 if (ret) {
3118 ret = -EFAULT;
3119 goto out;
3120 }
3121
3122 out:
3123 btrfs_free_path(path);
3124 free_ipath(ipath);
3125 kfree(ipa);
3126
3127 return ret;
3128 }
3129
3130 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3131 {
3132 struct btrfs_data_container *inodes = ctx;
3133 const size_t c = 3 * sizeof(u64);
3134
3135 if (inodes->bytes_left >= c) {
3136 inodes->bytes_left -= c;
3137 inodes->val[inodes->elem_cnt] = inum;
3138 inodes->val[inodes->elem_cnt + 1] = offset;
3139 inodes->val[inodes->elem_cnt + 2] = root;
3140 inodes->elem_cnt += 3;
3141 } else {
3142 inodes->bytes_missing += c - inodes->bytes_left;
3143 inodes->bytes_left = 0;
3144 inodes->elem_missed += 3;
3145 }
3146
3147 return 0;
3148 }
3149
3150 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3151 void __user *arg)
3152 {
3153 int ret = 0;
3154 int size;
3155 u64 extent_item_pos;
3156 struct btrfs_ioctl_logical_ino_args *loi;
3157 struct btrfs_data_container *inodes = NULL;
3158 struct btrfs_path *path = NULL;
3159 struct btrfs_key key;
3160
3161 if (!capable(CAP_SYS_ADMIN))
3162 return -EPERM;
3163
3164 loi = memdup_user(arg, sizeof(*loi));
3165 if (IS_ERR(loi)) {
3166 ret = PTR_ERR(loi);
3167 loi = NULL;
3168 goto out;
3169 }
3170
3171 path = btrfs_alloc_path();
3172 if (!path) {
3173 ret = -ENOMEM;
3174 goto out;
3175 }
3176
3177 size = min_t(u32, loi->size, 4096);
3178 inodes = init_data_container(size);
3179 if (IS_ERR(inodes)) {
3180 ret = PTR_ERR(inodes);
3181 inodes = NULL;
3182 goto out;
3183 }
3184
3185 ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3186 btrfs_release_path(path);
3187
3188 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3189 ret = -ENOENT;
3190 if (ret < 0)
3191 goto out;
3192
3193 extent_item_pos = loi->logical - key.objectid;
3194 ret = iterate_extent_inodes(root->fs_info, key.objectid,
3195 extent_item_pos, 0, build_ino_list,
3196 inodes);
3197
3198 if (ret < 0)
3199 goto out;
3200
3201 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3202 (void *)(unsigned long)inodes, size);
3203 if (ret)
3204 ret = -EFAULT;
3205
3206 out:
3207 btrfs_free_path(path);
3208 kfree(inodes);
3209 kfree(loi);
3210
3211 return ret;
3212 }
3213
3214 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3215 struct btrfs_ioctl_balance_args *bargs)
3216 {
3217 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3218
3219 bargs->flags = bctl->flags;
3220
3221 if (atomic_read(&fs_info->balance_running))
3222 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3223 if (atomic_read(&fs_info->balance_pause_req))
3224 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3225 if (atomic_read(&fs_info->balance_cancel_req))
3226 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3227
3228 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3229 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3230 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3231
3232 if (lock) {
3233 spin_lock(&fs_info->balance_lock);
3234 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3235 spin_unlock(&fs_info->balance_lock);
3236 } else {
3237 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3238 }
3239 }
3240
3241 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3242 {
3243 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3244 struct btrfs_fs_info *fs_info = root->fs_info;
3245 struct btrfs_ioctl_balance_args *bargs;
3246 struct btrfs_balance_control *bctl;
3247 int ret;
3248
3249 if (!capable(CAP_SYS_ADMIN))
3250 return -EPERM;
3251
3252 if (fs_info->sb->s_flags & MS_RDONLY)
3253 return -EROFS;
3254
3255 ret = mnt_want_write(file->f_path.mnt);
3256 if (ret)
3257 return ret;
3258
3259 mutex_lock(&fs_info->volume_mutex);
3260 mutex_lock(&fs_info->balance_mutex);
3261
3262 if (arg) {
3263 bargs = memdup_user(arg, sizeof(*bargs));
3264 if (IS_ERR(bargs)) {
3265 ret = PTR_ERR(bargs);
3266 goto out;
3267 }
3268
3269 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3270 if (!fs_info->balance_ctl) {
3271 ret = -ENOTCONN;
3272 goto out_bargs;
3273 }
3274
3275 bctl = fs_info->balance_ctl;
3276 spin_lock(&fs_info->balance_lock);
3277 bctl->flags |= BTRFS_BALANCE_RESUME;
3278 spin_unlock(&fs_info->balance_lock);
3279
3280 goto do_balance;
3281 }
3282 } else {
3283 bargs = NULL;
3284 }
3285
3286 if (fs_info->balance_ctl) {
3287 ret = -EINPROGRESS;
3288 goto out_bargs;
3289 }
3290
3291 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3292 if (!bctl) {
3293 ret = -ENOMEM;
3294 goto out_bargs;
3295 }
3296
3297 bctl->fs_info = fs_info;
3298 if (arg) {
3299 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3300 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3301 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3302
3303 bctl->flags = bargs->flags;
3304 } else {
3305 /* balance everything - no filters */
3306 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3307 }
3308
3309 do_balance:
3310 ret = btrfs_balance(bctl, bargs);
3311 /*
3312 * bctl is freed in __cancel_balance or in free_fs_info if
3313 * restriper was paused all the way until unmount
3314 */
3315 if (arg) {
3316 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3317 ret = -EFAULT;
3318 }
3319
3320 out_bargs:
3321 kfree(bargs);
3322 out:
3323 mutex_unlock(&fs_info->balance_mutex);
3324 mutex_unlock(&fs_info->volume_mutex);
3325 mnt_drop_write(file->f_path.mnt);
3326 return ret;
3327 }
3328
3329 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3330 {
3331 if (!capable(CAP_SYS_ADMIN))
3332 return -EPERM;
3333
3334 switch (cmd) {
3335 case BTRFS_BALANCE_CTL_PAUSE:
3336 return btrfs_pause_balance(root->fs_info);
3337 case BTRFS_BALANCE_CTL_CANCEL:
3338 return btrfs_cancel_balance(root->fs_info);
3339 }
3340
3341 return -EINVAL;
3342 }
3343
3344 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3345 void __user *arg)
3346 {
3347 struct btrfs_fs_info *fs_info = root->fs_info;
3348 struct btrfs_ioctl_balance_args *bargs;
3349 int ret = 0;
3350
3351 if (!capable(CAP_SYS_ADMIN))
3352 return -EPERM;
3353
3354 mutex_lock(&fs_info->balance_mutex);
3355 if (!fs_info->balance_ctl) {
3356 ret = -ENOTCONN;
3357 goto out;
3358 }
3359
3360 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3361 if (!bargs) {
3362 ret = -ENOMEM;
3363 goto out;
3364 }
3365
3366 update_ioctl_balance_args(fs_info, 1, bargs);
3367
3368 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3369 ret = -EFAULT;
3370
3371 kfree(bargs);
3372 out:
3373 mutex_unlock(&fs_info->balance_mutex);
3374 return ret;
3375 }
3376
3377 long btrfs_ioctl(struct file *file, unsigned int
3378 cmd, unsigned long arg)
3379 {
3380 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3381 void __user *argp = (void __user *)arg;
3382
3383 switch (cmd) {
3384 case FS_IOC_GETFLAGS:
3385 return btrfs_ioctl_getflags(file, argp);
3386 case FS_IOC_SETFLAGS:
3387 return btrfs_ioctl_setflags(file, argp);
3388 case FS_IOC_GETVERSION:
3389 return btrfs_ioctl_getversion(file, argp);
3390 case FITRIM:
3391 return btrfs_ioctl_fitrim(file, argp);
3392 case BTRFS_IOC_SNAP_CREATE:
3393 return btrfs_ioctl_snap_create(file, argp, 0);
3394 case BTRFS_IOC_SNAP_CREATE_V2:
3395 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3396 case BTRFS_IOC_SUBVOL_CREATE:
3397 return btrfs_ioctl_snap_create(file, argp, 1);
3398 case BTRFS_IOC_SNAP_DESTROY:
3399 return btrfs_ioctl_snap_destroy(file, argp);
3400 case BTRFS_IOC_SUBVOL_GETFLAGS:
3401 return btrfs_ioctl_subvol_getflags(file, argp);
3402 case BTRFS_IOC_SUBVOL_SETFLAGS:
3403 return btrfs_ioctl_subvol_setflags(file, argp);
3404 case BTRFS_IOC_DEFAULT_SUBVOL:
3405 return btrfs_ioctl_default_subvol(file, argp);
3406 case BTRFS_IOC_DEFRAG:
3407 return btrfs_ioctl_defrag(file, NULL);
3408 case BTRFS_IOC_DEFRAG_RANGE:
3409 return btrfs_ioctl_defrag(file, argp);
3410 case BTRFS_IOC_RESIZE:
3411 return btrfs_ioctl_resize(root, argp);
3412 case BTRFS_IOC_ADD_DEV:
3413 return btrfs_ioctl_add_dev(root, argp);
3414 case BTRFS_IOC_RM_DEV:
3415 return btrfs_ioctl_rm_dev(root, argp);
3416 case BTRFS_IOC_FS_INFO:
3417 return btrfs_ioctl_fs_info(root, argp);
3418 case BTRFS_IOC_DEV_INFO:
3419 return btrfs_ioctl_dev_info(root, argp);
3420 case BTRFS_IOC_BALANCE:
3421 return btrfs_ioctl_balance(file, NULL);
3422 case BTRFS_IOC_CLONE:
3423 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3424 case BTRFS_IOC_CLONE_RANGE:
3425 return btrfs_ioctl_clone_range(file, argp);
3426 case BTRFS_IOC_TRANS_START:
3427 return btrfs_ioctl_trans_start(file);
3428 case BTRFS_IOC_TRANS_END:
3429 return btrfs_ioctl_trans_end(file);
3430 case BTRFS_IOC_TREE_SEARCH:
3431 return btrfs_ioctl_tree_search(file, argp);
3432 case BTRFS_IOC_INO_LOOKUP:
3433 return btrfs_ioctl_ino_lookup(file, argp);
3434 case BTRFS_IOC_INO_PATHS:
3435 return btrfs_ioctl_ino_to_path(root, argp);
3436 case BTRFS_IOC_LOGICAL_INO:
3437 return btrfs_ioctl_logical_to_ino(root, argp);
3438 case BTRFS_IOC_SPACE_INFO:
3439 return btrfs_ioctl_space_info(root, argp);
3440 case BTRFS_IOC_SYNC:
3441 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3442 return 0;
3443 case BTRFS_IOC_START_SYNC:
3444 return btrfs_ioctl_start_sync(file, argp);
3445 case BTRFS_IOC_WAIT_SYNC:
3446 return btrfs_ioctl_wait_sync(file, argp);
3447 case BTRFS_IOC_SCRUB:
3448 return btrfs_ioctl_scrub(root, argp);
3449 case BTRFS_IOC_SCRUB_CANCEL:
3450 return btrfs_ioctl_scrub_cancel(root, argp);
3451 case BTRFS_IOC_SCRUB_PROGRESS:
3452 return btrfs_ioctl_scrub_progress(root, argp);
3453 case BTRFS_IOC_BALANCE_V2:
3454 return btrfs_ioctl_balance(file, argp);
3455 case BTRFS_IOC_BALANCE_CTL:
3456 return btrfs_ioctl_balance_ctl(root, arg);
3457 case BTRFS_IOC_BALANCE_PROGRESS:
3458 return btrfs_ioctl_balance_progress(root, argp);
3459 case BTRFS_IOC_GET_DEV_STATS:
3460 return btrfs_ioctl_get_dev_stats(root, argp, 0);
3461 case BTRFS_IOC_GET_AND_RESET_DEV_STATS:
3462 return btrfs_ioctl_get_dev_stats(root, argp, 1);
3463 }
3464
3465 return -ENOTTY;
3466 }
This page took 0.099862 seconds and 5 git commands to generate.