Merge remote-tracking branches 'regulator/fix/bcm590xx', 'regulator/fix/s2m' and...
[deliverable/linux.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61
62 static int btrfs_clone(struct inode *src, struct inode *inode,
63 u64 off, u64 olen, u64 olen_aligned, u64 destoff);
64
65 /* Mask out flags that are inappropriate for the given type of inode. */
66 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
67 {
68 if (S_ISDIR(mode))
69 return flags;
70 else if (S_ISREG(mode))
71 return flags & ~FS_DIRSYNC_FL;
72 else
73 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
74 }
75
76 /*
77 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
78 */
79 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
80 {
81 unsigned int iflags = 0;
82
83 if (flags & BTRFS_INODE_SYNC)
84 iflags |= FS_SYNC_FL;
85 if (flags & BTRFS_INODE_IMMUTABLE)
86 iflags |= FS_IMMUTABLE_FL;
87 if (flags & BTRFS_INODE_APPEND)
88 iflags |= FS_APPEND_FL;
89 if (flags & BTRFS_INODE_NODUMP)
90 iflags |= FS_NODUMP_FL;
91 if (flags & BTRFS_INODE_NOATIME)
92 iflags |= FS_NOATIME_FL;
93 if (flags & BTRFS_INODE_DIRSYNC)
94 iflags |= FS_DIRSYNC_FL;
95 if (flags & BTRFS_INODE_NODATACOW)
96 iflags |= FS_NOCOW_FL;
97
98 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
99 iflags |= FS_COMPR_FL;
100 else if (flags & BTRFS_INODE_NOCOMPRESS)
101 iflags |= FS_NOCOMP_FL;
102
103 return iflags;
104 }
105
106 /*
107 * Update inode->i_flags based on the btrfs internal flags.
108 */
109 void btrfs_update_iflags(struct inode *inode)
110 {
111 struct btrfs_inode *ip = BTRFS_I(inode);
112
113 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
114
115 if (ip->flags & BTRFS_INODE_SYNC)
116 inode->i_flags |= S_SYNC;
117 if (ip->flags & BTRFS_INODE_IMMUTABLE)
118 inode->i_flags |= S_IMMUTABLE;
119 if (ip->flags & BTRFS_INODE_APPEND)
120 inode->i_flags |= S_APPEND;
121 if (ip->flags & BTRFS_INODE_NOATIME)
122 inode->i_flags |= S_NOATIME;
123 if (ip->flags & BTRFS_INODE_DIRSYNC)
124 inode->i_flags |= S_DIRSYNC;
125 }
126
127 /*
128 * Inherit flags from the parent inode.
129 *
130 * Currently only the compression flags and the cow flags are inherited.
131 */
132 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
133 {
134 unsigned int flags;
135
136 if (!dir)
137 return;
138
139 flags = BTRFS_I(dir)->flags;
140
141 if (flags & BTRFS_INODE_NOCOMPRESS) {
142 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
143 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
144 } else if (flags & BTRFS_INODE_COMPRESS) {
145 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
146 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
147 }
148
149 if (flags & BTRFS_INODE_NODATACOW) {
150 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
151 if (S_ISREG(inode->i_mode))
152 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
153 }
154
155 btrfs_update_iflags(inode);
156 }
157
158 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
159 {
160 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
161 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
162
163 if (copy_to_user(arg, &flags, sizeof(flags)))
164 return -EFAULT;
165 return 0;
166 }
167
168 static int check_flags(unsigned int flags)
169 {
170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 FS_NOATIME_FL | FS_NODUMP_FL | \
172 FS_SYNC_FL | FS_DIRSYNC_FL | \
173 FS_NOCOMP_FL | FS_COMPR_FL |
174 FS_NOCOW_FL))
175 return -EOPNOTSUPP;
176
177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 return -EINVAL;
179
180 return 0;
181 }
182
183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
184 {
185 struct inode *inode = file_inode(file);
186 struct btrfs_inode *ip = BTRFS_I(inode);
187 struct btrfs_root *root = ip->root;
188 struct btrfs_trans_handle *trans;
189 unsigned int flags, oldflags;
190 int ret;
191 u64 ip_oldflags;
192 unsigned int i_oldflags;
193 umode_t mode;
194
195 if (!inode_owner_or_capable(inode))
196 return -EPERM;
197
198 if (btrfs_root_readonly(root))
199 return -EROFS;
200
201 if (copy_from_user(&flags, arg, sizeof(flags)))
202 return -EFAULT;
203
204 ret = check_flags(flags);
205 if (ret)
206 return ret;
207
208 ret = mnt_want_write_file(file);
209 if (ret)
210 return ret;
211
212 mutex_lock(&inode->i_mutex);
213
214 ip_oldflags = ip->flags;
215 i_oldflags = inode->i_flags;
216 mode = inode->i_mode;
217
218 flags = btrfs_mask_flags(inode->i_mode, flags);
219 oldflags = btrfs_flags_to_ioctl(ip->flags);
220 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
221 if (!capable(CAP_LINUX_IMMUTABLE)) {
222 ret = -EPERM;
223 goto out_unlock;
224 }
225 }
226
227 if (flags & FS_SYNC_FL)
228 ip->flags |= BTRFS_INODE_SYNC;
229 else
230 ip->flags &= ~BTRFS_INODE_SYNC;
231 if (flags & FS_IMMUTABLE_FL)
232 ip->flags |= BTRFS_INODE_IMMUTABLE;
233 else
234 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
235 if (flags & FS_APPEND_FL)
236 ip->flags |= BTRFS_INODE_APPEND;
237 else
238 ip->flags &= ~BTRFS_INODE_APPEND;
239 if (flags & FS_NODUMP_FL)
240 ip->flags |= BTRFS_INODE_NODUMP;
241 else
242 ip->flags &= ~BTRFS_INODE_NODUMP;
243 if (flags & FS_NOATIME_FL)
244 ip->flags |= BTRFS_INODE_NOATIME;
245 else
246 ip->flags &= ~BTRFS_INODE_NOATIME;
247 if (flags & FS_DIRSYNC_FL)
248 ip->flags |= BTRFS_INODE_DIRSYNC;
249 else
250 ip->flags &= ~BTRFS_INODE_DIRSYNC;
251 if (flags & FS_NOCOW_FL) {
252 if (S_ISREG(mode)) {
253 /*
254 * It's safe to turn csums off here, no extents exist.
255 * Otherwise we want the flag to reflect the real COW
256 * status of the file and will not set it.
257 */
258 if (inode->i_size == 0)
259 ip->flags |= BTRFS_INODE_NODATACOW
260 | BTRFS_INODE_NODATASUM;
261 } else {
262 ip->flags |= BTRFS_INODE_NODATACOW;
263 }
264 } else {
265 /*
266 * Revert back under same assuptions as above
267 */
268 if (S_ISREG(mode)) {
269 if (inode->i_size == 0)
270 ip->flags &= ~(BTRFS_INODE_NODATACOW
271 | BTRFS_INODE_NODATASUM);
272 } else {
273 ip->flags &= ~BTRFS_INODE_NODATACOW;
274 }
275 }
276
277 /*
278 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
279 * flag may be changed automatically if compression code won't make
280 * things smaller.
281 */
282 if (flags & FS_NOCOMP_FL) {
283 ip->flags &= ~BTRFS_INODE_COMPRESS;
284 ip->flags |= BTRFS_INODE_NOCOMPRESS;
285
286 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
287 if (ret && ret != -ENODATA)
288 goto out_drop;
289 } else if (flags & FS_COMPR_FL) {
290 const char *comp;
291
292 ip->flags |= BTRFS_INODE_COMPRESS;
293 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
294
295 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
296 comp = "lzo";
297 else
298 comp = "zlib";
299 ret = btrfs_set_prop(inode, "btrfs.compression",
300 comp, strlen(comp), 0);
301 if (ret)
302 goto out_drop;
303
304 } else {
305 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
306 }
307
308 trans = btrfs_start_transaction(root, 1);
309 if (IS_ERR(trans)) {
310 ret = PTR_ERR(trans);
311 goto out_drop;
312 }
313
314 btrfs_update_iflags(inode);
315 inode_inc_iversion(inode);
316 inode->i_ctime = CURRENT_TIME;
317 ret = btrfs_update_inode(trans, root, inode);
318
319 btrfs_end_transaction(trans, root);
320 out_drop:
321 if (ret) {
322 ip->flags = ip_oldflags;
323 inode->i_flags = i_oldflags;
324 }
325
326 out_unlock:
327 mutex_unlock(&inode->i_mutex);
328 mnt_drop_write_file(file);
329 return ret;
330 }
331
332 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
333 {
334 struct inode *inode = file_inode(file);
335
336 return put_user(inode->i_generation, arg);
337 }
338
339 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
340 {
341 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
342 struct btrfs_device *device;
343 struct request_queue *q;
344 struct fstrim_range range;
345 u64 minlen = ULLONG_MAX;
346 u64 num_devices = 0;
347 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
348 int ret;
349
350 if (!capable(CAP_SYS_ADMIN))
351 return -EPERM;
352
353 rcu_read_lock();
354 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
355 dev_list) {
356 if (!device->bdev)
357 continue;
358 q = bdev_get_queue(device->bdev);
359 if (blk_queue_discard(q)) {
360 num_devices++;
361 minlen = min((u64)q->limits.discard_granularity,
362 minlen);
363 }
364 }
365 rcu_read_unlock();
366
367 if (!num_devices)
368 return -EOPNOTSUPP;
369 if (copy_from_user(&range, arg, sizeof(range)))
370 return -EFAULT;
371 if (range.start > total_bytes ||
372 range.len < fs_info->sb->s_blocksize)
373 return -EINVAL;
374
375 range.len = min(range.len, total_bytes - range.start);
376 range.minlen = max(range.minlen, minlen);
377 ret = btrfs_trim_fs(fs_info->tree_root, &range);
378 if (ret < 0)
379 return ret;
380
381 if (copy_to_user(arg, &range, sizeof(range)))
382 return -EFAULT;
383
384 return 0;
385 }
386
387 int btrfs_is_empty_uuid(u8 *uuid)
388 {
389 int i;
390
391 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
392 if (uuid[i])
393 return 0;
394 }
395 return 1;
396 }
397
398 static noinline int create_subvol(struct inode *dir,
399 struct dentry *dentry,
400 char *name, int namelen,
401 u64 *async_transid,
402 struct btrfs_qgroup_inherit *inherit)
403 {
404 struct btrfs_trans_handle *trans;
405 struct btrfs_key key;
406 struct btrfs_root_item root_item;
407 struct btrfs_inode_item *inode_item;
408 struct extent_buffer *leaf;
409 struct btrfs_root *root = BTRFS_I(dir)->root;
410 struct btrfs_root *new_root;
411 struct btrfs_block_rsv block_rsv;
412 struct timespec cur_time = CURRENT_TIME;
413 struct inode *inode;
414 int ret;
415 int err;
416 u64 objectid;
417 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
418 u64 index = 0;
419 u64 qgroup_reserved;
420 uuid_le new_uuid;
421
422 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
423 if (ret)
424 return ret;
425
426 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
427 /*
428 * The same as the snapshot creation, please see the comment
429 * of create_snapshot().
430 */
431 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
432 8, &qgroup_reserved, false);
433 if (ret)
434 return ret;
435
436 trans = btrfs_start_transaction(root, 0);
437 if (IS_ERR(trans)) {
438 ret = PTR_ERR(trans);
439 btrfs_subvolume_release_metadata(root, &block_rsv,
440 qgroup_reserved);
441 return ret;
442 }
443 trans->block_rsv = &block_rsv;
444 trans->bytes_reserved = block_rsv.size;
445
446 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
447 if (ret)
448 goto fail;
449
450 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
451 0, objectid, NULL, 0, 0, 0);
452 if (IS_ERR(leaf)) {
453 ret = PTR_ERR(leaf);
454 goto fail;
455 }
456
457 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
458 btrfs_set_header_bytenr(leaf, leaf->start);
459 btrfs_set_header_generation(leaf, trans->transid);
460 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
461 btrfs_set_header_owner(leaf, objectid);
462
463 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
464 BTRFS_FSID_SIZE);
465 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
466 btrfs_header_chunk_tree_uuid(leaf),
467 BTRFS_UUID_SIZE);
468 btrfs_mark_buffer_dirty(leaf);
469
470 memset(&root_item, 0, sizeof(root_item));
471
472 inode_item = &root_item.inode;
473 btrfs_set_stack_inode_generation(inode_item, 1);
474 btrfs_set_stack_inode_size(inode_item, 3);
475 btrfs_set_stack_inode_nlink(inode_item, 1);
476 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
477 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
478
479 btrfs_set_root_flags(&root_item, 0);
480 btrfs_set_root_limit(&root_item, 0);
481 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
482
483 btrfs_set_root_bytenr(&root_item, leaf->start);
484 btrfs_set_root_generation(&root_item, trans->transid);
485 btrfs_set_root_level(&root_item, 0);
486 btrfs_set_root_refs(&root_item, 1);
487 btrfs_set_root_used(&root_item, leaf->len);
488 btrfs_set_root_last_snapshot(&root_item, 0);
489
490 btrfs_set_root_generation_v2(&root_item,
491 btrfs_root_generation(&root_item));
492 uuid_le_gen(&new_uuid);
493 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
494 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
495 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
496 root_item.ctime = root_item.otime;
497 btrfs_set_root_ctransid(&root_item, trans->transid);
498 btrfs_set_root_otransid(&root_item, trans->transid);
499
500 btrfs_tree_unlock(leaf);
501 free_extent_buffer(leaf);
502 leaf = NULL;
503
504 btrfs_set_root_dirid(&root_item, new_dirid);
505
506 key.objectid = objectid;
507 key.offset = 0;
508 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
509 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
510 &root_item);
511 if (ret)
512 goto fail;
513
514 key.offset = (u64)-1;
515 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
516 if (IS_ERR(new_root)) {
517 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
518 ret = PTR_ERR(new_root);
519 goto fail;
520 }
521
522 btrfs_record_root_in_trans(trans, new_root);
523
524 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
525 if (ret) {
526 /* We potentially lose an unused inode item here */
527 btrfs_abort_transaction(trans, root, ret);
528 goto fail;
529 }
530
531 /*
532 * insert the directory item
533 */
534 ret = btrfs_set_inode_index(dir, &index);
535 if (ret) {
536 btrfs_abort_transaction(trans, root, ret);
537 goto fail;
538 }
539
540 ret = btrfs_insert_dir_item(trans, root,
541 name, namelen, dir, &key,
542 BTRFS_FT_DIR, index);
543 if (ret) {
544 btrfs_abort_transaction(trans, root, ret);
545 goto fail;
546 }
547
548 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
549 ret = btrfs_update_inode(trans, root, dir);
550 BUG_ON(ret);
551
552 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
553 objectid, root->root_key.objectid,
554 btrfs_ino(dir), index, name, namelen);
555 BUG_ON(ret);
556
557 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
558 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
559 objectid);
560 if (ret)
561 btrfs_abort_transaction(trans, root, ret);
562
563 fail:
564 trans->block_rsv = NULL;
565 trans->bytes_reserved = 0;
566 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
567
568 if (async_transid) {
569 *async_transid = trans->transid;
570 err = btrfs_commit_transaction_async(trans, root, 1);
571 if (err)
572 err = btrfs_commit_transaction(trans, root);
573 } else {
574 err = btrfs_commit_transaction(trans, root);
575 }
576 if (err && !ret)
577 ret = err;
578
579 if (!ret) {
580 inode = btrfs_lookup_dentry(dir, dentry);
581 if (IS_ERR(inode))
582 return PTR_ERR(inode);
583 d_instantiate(dentry, inode);
584 }
585 return ret;
586 }
587
588 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
589 struct dentry *dentry, char *name, int namelen,
590 u64 *async_transid, bool readonly,
591 struct btrfs_qgroup_inherit *inherit)
592 {
593 struct inode *inode;
594 struct btrfs_pending_snapshot *pending_snapshot;
595 struct btrfs_trans_handle *trans;
596 int ret;
597
598 if (!root->ref_cows)
599 return -EINVAL;
600
601 ret = btrfs_start_delalloc_inodes(root, 0);
602 if (ret)
603 return ret;
604
605 btrfs_wait_ordered_extents(root, -1);
606
607 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
608 if (!pending_snapshot)
609 return -ENOMEM;
610
611 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
612 BTRFS_BLOCK_RSV_TEMP);
613 /*
614 * 1 - parent dir inode
615 * 2 - dir entries
616 * 1 - root item
617 * 2 - root ref/backref
618 * 1 - root of snapshot
619 * 1 - UUID item
620 */
621 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
622 &pending_snapshot->block_rsv, 8,
623 &pending_snapshot->qgroup_reserved,
624 false);
625 if (ret)
626 goto out;
627
628 pending_snapshot->dentry = dentry;
629 pending_snapshot->root = root;
630 pending_snapshot->readonly = readonly;
631 pending_snapshot->dir = dir;
632 pending_snapshot->inherit = inherit;
633
634 trans = btrfs_start_transaction(root, 0);
635 if (IS_ERR(trans)) {
636 ret = PTR_ERR(trans);
637 goto fail;
638 }
639
640 spin_lock(&root->fs_info->trans_lock);
641 list_add(&pending_snapshot->list,
642 &trans->transaction->pending_snapshots);
643 spin_unlock(&root->fs_info->trans_lock);
644 if (async_transid) {
645 *async_transid = trans->transid;
646 ret = btrfs_commit_transaction_async(trans,
647 root->fs_info->extent_root, 1);
648 if (ret)
649 ret = btrfs_commit_transaction(trans, root);
650 } else {
651 ret = btrfs_commit_transaction(trans,
652 root->fs_info->extent_root);
653 }
654 if (ret)
655 goto fail;
656
657 ret = pending_snapshot->error;
658 if (ret)
659 goto fail;
660
661 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
662 if (ret)
663 goto fail;
664
665 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
666 if (IS_ERR(inode)) {
667 ret = PTR_ERR(inode);
668 goto fail;
669 }
670
671 d_instantiate(dentry, inode);
672 ret = 0;
673 fail:
674 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
675 &pending_snapshot->block_rsv,
676 pending_snapshot->qgroup_reserved);
677 out:
678 kfree(pending_snapshot);
679 return ret;
680 }
681
682 /* copy of check_sticky in fs/namei.c()
683 * It's inline, so penalty for filesystems that don't use sticky bit is
684 * minimal.
685 */
686 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
687 {
688 kuid_t fsuid = current_fsuid();
689
690 if (!(dir->i_mode & S_ISVTX))
691 return 0;
692 if (uid_eq(inode->i_uid, fsuid))
693 return 0;
694 if (uid_eq(dir->i_uid, fsuid))
695 return 0;
696 return !capable(CAP_FOWNER);
697 }
698
699 /* copy of may_delete in fs/namei.c()
700 * Check whether we can remove a link victim from directory dir, check
701 * whether the type of victim is right.
702 * 1. We can't do it if dir is read-only (done in permission())
703 * 2. We should have write and exec permissions on dir
704 * 3. We can't remove anything from append-only dir
705 * 4. We can't do anything with immutable dir (done in permission())
706 * 5. If the sticky bit on dir is set we should either
707 * a. be owner of dir, or
708 * b. be owner of victim, or
709 * c. have CAP_FOWNER capability
710 * 6. If the victim is append-only or immutable we can't do antyhing with
711 * links pointing to it.
712 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
713 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
714 * 9. We can't remove a root or mountpoint.
715 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
716 * nfs_async_unlink().
717 */
718
719 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
720 {
721 int error;
722
723 if (!victim->d_inode)
724 return -ENOENT;
725
726 BUG_ON(victim->d_parent->d_inode != dir);
727 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
728
729 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
730 if (error)
731 return error;
732 if (IS_APPEND(dir))
733 return -EPERM;
734 if (btrfs_check_sticky(dir, victim->d_inode)||
735 IS_APPEND(victim->d_inode)||
736 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
737 return -EPERM;
738 if (isdir) {
739 if (!S_ISDIR(victim->d_inode->i_mode))
740 return -ENOTDIR;
741 if (IS_ROOT(victim))
742 return -EBUSY;
743 } else if (S_ISDIR(victim->d_inode->i_mode))
744 return -EISDIR;
745 if (IS_DEADDIR(dir))
746 return -ENOENT;
747 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
748 return -EBUSY;
749 return 0;
750 }
751
752 /* copy of may_create in fs/namei.c() */
753 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
754 {
755 if (child->d_inode)
756 return -EEXIST;
757 if (IS_DEADDIR(dir))
758 return -ENOENT;
759 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
760 }
761
762 /*
763 * Create a new subvolume below @parent. This is largely modeled after
764 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
765 * inside this filesystem so it's quite a bit simpler.
766 */
767 static noinline int btrfs_mksubvol(struct path *parent,
768 char *name, int namelen,
769 struct btrfs_root *snap_src,
770 u64 *async_transid, bool readonly,
771 struct btrfs_qgroup_inherit *inherit)
772 {
773 struct inode *dir = parent->dentry->d_inode;
774 struct dentry *dentry;
775 int error;
776
777 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
778 if (error == -EINTR)
779 return error;
780
781 dentry = lookup_one_len(name, parent->dentry, namelen);
782 error = PTR_ERR(dentry);
783 if (IS_ERR(dentry))
784 goto out_unlock;
785
786 error = -EEXIST;
787 if (dentry->d_inode)
788 goto out_dput;
789
790 error = btrfs_may_create(dir, dentry);
791 if (error)
792 goto out_dput;
793
794 /*
795 * even if this name doesn't exist, we may get hash collisions.
796 * check for them now when we can safely fail
797 */
798 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
799 dir->i_ino, name,
800 namelen);
801 if (error)
802 goto out_dput;
803
804 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
805
806 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
807 goto out_up_read;
808
809 if (snap_src) {
810 error = create_snapshot(snap_src, dir, dentry, name, namelen,
811 async_transid, readonly, inherit);
812 } else {
813 error = create_subvol(dir, dentry, name, namelen,
814 async_transid, inherit);
815 }
816 if (!error)
817 fsnotify_mkdir(dir, dentry);
818 out_up_read:
819 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
820 out_dput:
821 dput(dentry);
822 out_unlock:
823 mutex_unlock(&dir->i_mutex);
824 return error;
825 }
826
827 /*
828 * When we're defragging a range, we don't want to kick it off again
829 * if it is really just waiting for delalloc to send it down.
830 * If we find a nice big extent or delalloc range for the bytes in the
831 * file you want to defrag, we return 0 to let you know to skip this
832 * part of the file
833 */
834 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
835 {
836 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
837 struct extent_map *em = NULL;
838 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
839 u64 end;
840
841 read_lock(&em_tree->lock);
842 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
843 read_unlock(&em_tree->lock);
844
845 if (em) {
846 end = extent_map_end(em);
847 free_extent_map(em);
848 if (end - offset > thresh)
849 return 0;
850 }
851 /* if we already have a nice delalloc here, just stop */
852 thresh /= 2;
853 end = count_range_bits(io_tree, &offset, offset + thresh,
854 thresh, EXTENT_DELALLOC, 1);
855 if (end >= thresh)
856 return 0;
857 return 1;
858 }
859
860 /*
861 * helper function to walk through a file and find extents
862 * newer than a specific transid, and smaller than thresh.
863 *
864 * This is used by the defragging code to find new and small
865 * extents
866 */
867 static int find_new_extents(struct btrfs_root *root,
868 struct inode *inode, u64 newer_than,
869 u64 *off, int thresh)
870 {
871 struct btrfs_path *path;
872 struct btrfs_key min_key;
873 struct extent_buffer *leaf;
874 struct btrfs_file_extent_item *extent;
875 int type;
876 int ret;
877 u64 ino = btrfs_ino(inode);
878
879 path = btrfs_alloc_path();
880 if (!path)
881 return -ENOMEM;
882
883 min_key.objectid = ino;
884 min_key.type = BTRFS_EXTENT_DATA_KEY;
885 min_key.offset = *off;
886
887 path->keep_locks = 1;
888
889 while (1) {
890 ret = btrfs_search_forward(root, &min_key, path, newer_than);
891 if (ret != 0)
892 goto none;
893 if (min_key.objectid != ino)
894 goto none;
895 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
896 goto none;
897
898 leaf = path->nodes[0];
899 extent = btrfs_item_ptr(leaf, path->slots[0],
900 struct btrfs_file_extent_item);
901
902 type = btrfs_file_extent_type(leaf, extent);
903 if (type == BTRFS_FILE_EXTENT_REG &&
904 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
905 check_defrag_in_cache(inode, min_key.offset, thresh)) {
906 *off = min_key.offset;
907 btrfs_free_path(path);
908 return 0;
909 }
910
911 if (min_key.offset == (u64)-1)
912 goto none;
913
914 min_key.offset++;
915 btrfs_release_path(path);
916 }
917 none:
918 btrfs_free_path(path);
919 return -ENOENT;
920 }
921
922 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
923 {
924 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
925 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
926 struct extent_map *em;
927 u64 len = PAGE_CACHE_SIZE;
928
929 /*
930 * hopefully we have this extent in the tree already, try without
931 * the full extent lock
932 */
933 read_lock(&em_tree->lock);
934 em = lookup_extent_mapping(em_tree, start, len);
935 read_unlock(&em_tree->lock);
936
937 if (!em) {
938 /* get the big lock and read metadata off disk */
939 lock_extent(io_tree, start, start + len - 1);
940 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
941 unlock_extent(io_tree, start, start + len - 1);
942
943 if (IS_ERR(em))
944 return NULL;
945 }
946
947 return em;
948 }
949
950 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
951 {
952 struct extent_map *next;
953 bool ret = true;
954
955 /* this is the last extent */
956 if (em->start + em->len >= i_size_read(inode))
957 return false;
958
959 next = defrag_lookup_extent(inode, em->start + em->len);
960 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
961 ret = false;
962
963 free_extent_map(next);
964 return ret;
965 }
966
967 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
968 u64 *last_len, u64 *skip, u64 *defrag_end,
969 int compress)
970 {
971 struct extent_map *em;
972 int ret = 1;
973 bool next_mergeable = true;
974
975 /*
976 * make sure that once we start defragging an extent, we keep on
977 * defragging it
978 */
979 if (start < *defrag_end)
980 return 1;
981
982 *skip = 0;
983
984 em = defrag_lookup_extent(inode, start);
985 if (!em)
986 return 0;
987
988 /* this will cover holes, and inline extents */
989 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
990 ret = 0;
991 goto out;
992 }
993
994 next_mergeable = defrag_check_next_extent(inode, em);
995
996 /*
997 * we hit a real extent, if it is big or the next extent is not a
998 * real extent, don't bother defragging it
999 */
1000 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1001 (em->len >= thresh || !next_mergeable))
1002 ret = 0;
1003 out:
1004 /*
1005 * last_len ends up being a counter of how many bytes we've defragged.
1006 * every time we choose not to defrag an extent, we reset *last_len
1007 * so that the next tiny extent will force a defrag.
1008 *
1009 * The end result of this is that tiny extents before a single big
1010 * extent will force at least part of that big extent to be defragged.
1011 */
1012 if (ret) {
1013 *defrag_end = extent_map_end(em);
1014 } else {
1015 *last_len = 0;
1016 *skip = extent_map_end(em);
1017 *defrag_end = 0;
1018 }
1019
1020 free_extent_map(em);
1021 return ret;
1022 }
1023
1024 /*
1025 * it doesn't do much good to defrag one or two pages
1026 * at a time. This pulls in a nice chunk of pages
1027 * to COW and defrag.
1028 *
1029 * It also makes sure the delalloc code has enough
1030 * dirty data to avoid making new small extents as part
1031 * of the defrag
1032 *
1033 * It's a good idea to start RA on this range
1034 * before calling this.
1035 */
1036 static int cluster_pages_for_defrag(struct inode *inode,
1037 struct page **pages,
1038 unsigned long start_index,
1039 unsigned long num_pages)
1040 {
1041 unsigned long file_end;
1042 u64 isize = i_size_read(inode);
1043 u64 page_start;
1044 u64 page_end;
1045 u64 page_cnt;
1046 int ret;
1047 int i;
1048 int i_done;
1049 struct btrfs_ordered_extent *ordered;
1050 struct extent_state *cached_state = NULL;
1051 struct extent_io_tree *tree;
1052 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1053
1054 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1055 if (!isize || start_index > file_end)
1056 return 0;
1057
1058 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1059
1060 ret = btrfs_delalloc_reserve_space(inode,
1061 page_cnt << PAGE_CACHE_SHIFT);
1062 if (ret)
1063 return ret;
1064 i_done = 0;
1065 tree = &BTRFS_I(inode)->io_tree;
1066
1067 /* step one, lock all the pages */
1068 for (i = 0; i < page_cnt; i++) {
1069 struct page *page;
1070 again:
1071 page = find_or_create_page(inode->i_mapping,
1072 start_index + i, mask);
1073 if (!page)
1074 break;
1075
1076 page_start = page_offset(page);
1077 page_end = page_start + PAGE_CACHE_SIZE - 1;
1078 while (1) {
1079 lock_extent(tree, page_start, page_end);
1080 ordered = btrfs_lookup_ordered_extent(inode,
1081 page_start);
1082 unlock_extent(tree, page_start, page_end);
1083 if (!ordered)
1084 break;
1085
1086 unlock_page(page);
1087 btrfs_start_ordered_extent(inode, ordered, 1);
1088 btrfs_put_ordered_extent(ordered);
1089 lock_page(page);
1090 /*
1091 * we unlocked the page above, so we need check if
1092 * it was released or not.
1093 */
1094 if (page->mapping != inode->i_mapping) {
1095 unlock_page(page);
1096 page_cache_release(page);
1097 goto again;
1098 }
1099 }
1100
1101 if (!PageUptodate(page)) {
1102 btrfs_readpage(NULL, page);
1103 lock_page(page);
1104 if (!PageUptodate(page)) {
1105 unlock_page(page);
1106 page_cache_release(page);
1107 ret = -EIO;
1108 break;
1109 }
1110 }
1111
1112 if (page->mapping != inode->i_mapping) {
1113 unlock_page(page);
1114 page_cache_release(page);
1115 goto again;
1116 }
1117
1118 pages[i] = page;
1119 i_done++;
1120 }
1121 if (!i_done || ret)
1122 goto out;
1123
1124 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1125 goto out;
1126
1127 /*
1128 * so now we have a nice long stream of locked
1129 * and up to date pages, lets wait on them
1130 */
1131 for (i = 0; i < i_done; i++)
1132 wait_on_page_writeback(pages[i]);
1133
1134 page_start = page_offset(pages[0]);
1135 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1136
1137 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1138 page_start, page_end - 1, 0, &cached_state);
1139 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1140 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1141 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1142 &cached_state, GFP_NOFS);
1143
1144 if (i_done != page_cnt) {
1145 spin_lock(&BTRFS_I(inode)->lock);
1146 BTRFS_I(inode)->outstanding_extents++;
1147 spin_unlock(&BTRFS_I(inode)->lock);
1148 btrfs_delalloc_release_space(inode,
1149 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1150 }
1151
1152
1153 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1154 &cached_state, GFP_NOFS);
1155
1156 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1157 page_start, page_end - 1, &cached_state,
1158 GFP_NOFS);
1159
1160 for (i = 0; i < i_done; i++) {
1161 clear_page_dirty_for_io(pages[i]);
1162 ClearPageChecked(pages[i]);
1163 set_page_extent_mapped(pages[i]);
1164 set_page_dirty(pages[i]);
1165 unlock_page(pages[i]);
1166 page_cache_release(pages[i]);
1167 }
1168 return i_done;
1169 out:
1170 for (i = 0; i < i_done; i++) {
1171 unlock_page(pages[i]);
1172 page_cache_release(pages[i]);
1173 }
1174 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1175 return ret;
1176
1177 }
1178
1179 int btrfs_defrag_file(struct inode *inode, struct file *file,
1180 struct btrfs_ioctl_defrag_range_args *range,
1181 u64 newer_than, unsigned long max_to_defrag)
1182 {
1183 struct btrfs_root *root = BTRFS_I(inode)->root;
1184 struct file_ra_state *ra = NULL;
1185 unsigned long last_index;
1186 u64 isize = i_size_read(inode);
1187 u64 last_len = 0;
1188 u64 skip = 0;
1189 u64 defrag_end = 0;
1190 u64 newer_off = range->start;
1191 unsigned long i;
1192 unsigned long ra_index = 0;
1193 int ret;
1194 int defrag_count = 0;
1195 int compress_type = BTRFS_COMPRESS_ZLIB;
1196 int extent_thresh = range->extent_thresh;
1197 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1198 unsigned long cluster = max_cluster;
1199 u64 new_align = ~((u64)128 * 1024 - 1);
1200 struct page **pages = NULL;
1201
1202 if (isize == 0)
1203 return 0;
1204
1205 if (range->start >= isize)
1206 return -EINVAL;
1207
1208 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1209 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1210 return -EINVAL;
1211 if (range->compress_type)
1212 compress_type = range->compress_type;
1213 }
1214
1215 if (extent_thresh == 0)
1216 extent_thresh = 256 * 1024;
1217
1218 /*
1219 * if we were not given a file, allocate a readahead
1220 * context
1221 */
1222 if (!file) {
1223 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1224 if (!ra)
1225 return -ENOMEM;
1226 file_ra_state_init(ra, inode->i_mapping);
1227 } else {
1228 ra = &file->f_ra;
1229 }
1230
1231 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1232 GFP_NOFS);
1233 if (!pages) {
1234 ret = -ENOMEM;
1235 goto out_ra;
1236 }
1237
1238 /* find the last page to defrag */
1239 if (range->start + range->len > range->start) {
1240 last_index = min_t(u64, isize - 1,
1241 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1242 } else {
1243 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1244 }
1245
1246 if (newer_than) {
1247 ret = find_new_extents(root, inode, newer_than,
1248 &newer_off, 64 * 1024);
1249 if (!ret) {
1250 range->start = newer_off;
1251 /*
1252 * we always align our defrag to help keep
1253 * the extents in the file evenly spaced
1254 */
1255 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1256 } else
1257 goto out_ra;
1258 } else {
1259 i = range->start >> PAGE_CACHE_SHIFT;
1260 }
1261 if (!max_to_defrag)
1262 max_to_defrag = last_index + 1;
1263
1264 /*
1265 * make writeback starts from i, so the defrag range can be
1266 * written sequentially.
1267 */
1268 if (i < inode->i_mapping->writeback_index)
1269 inode->i_mapping->writeback_index = i;
1270
1271 while (i <= last_index && defrag_count < max_to_defrag &&
1272 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1273 PAGE_CACHE_SHIFT)) {
1274 /*
1275 * make sure we stop running if someone unmounts
1276 * the FS
1277 */
1278 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1279 break;
1280
1281 if (btrfs_defrag_cancelled(root->fs_info)) {
1282 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1283 ret = -EAGAIN;
1284 break;
1285 }
1286
1287 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1288 extent_thresh, &last_len, &skip,
1289 &defrag_end, range->flags &
1290 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1291 unsigned long next;
1292 /*
1293 * the should_defrag function tells us how much to skip
1294 * bump our counter by the suggested amount
1295 */
1296 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1297 i = max(i + 1, next);
1298 continue;
1299 }
1300
1301 if (!newer_than) {
1302 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1303 PAGE_CACHE_SHIFT) - i;
1304 cluster = min(cluster, max_cluster);
1305 } else {
1306 cluster = max_cluster;
1307 }
1308
1309 if (i + cluster > ra_index) {
1310 ra_index = max(i, ra_index);
1311 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1312 cluster);
1313 ra_index += max_cluster;
1314 }
1315
1316 mutex_lock(&inode->i_mutex);
1317 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1318 BTRFS_I(inode)->force_compress = compress_type;
1319 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1320 if (ret < 0) {
1321 mutex_unlock(&inode->i_mutex);
1322 goto out_ra;
1323 }
1324
1325 defrag_count += ret;
1326 balance_dirty_pages_ratelimited(inode->i_mapping);
1327 mutex_unlock(&inode->i_mutex);
1328
1329 if (newer_than) {
1330 if (newer_off == (u64)-1)
1331 break;
1332
1333 if (ret > 0)
1334 i += ret;
1335
1336 newer_off = max(newer_off + 1,
1337 (u64)i << PAGE_CACHE_SHIFT);
1338
1339 ret = find_new_extents(root, inode,
1340 newer_than, &newer_off,
1341 64 * 1024);
1342 if (!ret) {
1343 range->start = newer_off;
1344 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1345 } else {
1346 break;
1347 }
1348 } else {
1349 if (ret > 0) {
1350 i += ret;
1351 last_len += ret << PAGE_CACHE_SHIFT;
1352 } else {
1353 i++;
1354 last_len = 0;
1355 }
1356 }
1357 }
1358
1359 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1360 filemap_flush(inode->i_mapping);
1361
1362 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1363 /* the filemap_flush will queue IO into the worker threads, but
1364 * we have to make sure the IO is actually started and that
1365 * ordered extents get created before we return
1366 */
1367 atomic_inc(&root->fs_info->async_submit_draining);
1368 while (atomic_read(&root->fs_info->nr_async_submits) ||
1369 atomic_read(&root->fs_info->async_delalloc_pages)) {
1370 wait_event(root->fs_info->async_submit_wait,
1371 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1372 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1373 }
1374 atomic_dec(&root->fs_info->async_submit_draining);
1375 }
1376
1377 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1378 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1379 }
1380
1381 ret = defrag_count;
1382
1383 out_ra:
1384 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1385 mutex_lock(&inode->i_mutex);
1386 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1387 mutex_unlock(&inode->i_mutex);
1388 }
1389 if (!file)
1390 kfree(ra);
1391 kfree(pages);
1392 return ret;
1393 }
1394
1395 static noinline int btrfs_ioctl_resize(struct file *file,
1396 void __user *arg)
1397 {
1398 u64 new_size;
1399 u64 old_size;
1400 u64 devid = 1;
1401 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1402 struct btrfs_ioctl_vol_args *vol_args;
1403 struct btrfs_trans_handle *trans;
1404 struct btrfs_device *device = NULL;
1405 char *sizestr;
1406 char *devstr = NULL;
1407 int ret = 0;
1408 int mod = 0;
1409
1410 if (!capable(CAP_SYS_ADMIN))
1411 return -EPERM;
1412
1413 ret = mnt_want_write_file(file);
1414 if (ret)
1415 return ret;
1416
1417 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1418 1)) {
1419 mnt_drop_write_file(file);
1420 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1421 }
1422
1423 mutex_lock(&root->fs_info->volume_mutex);
1424 vol_args = memdup_user(arg, sizeof(*vol_args));
1425 if (IS_ERR(vol_args)) {
1426 ret = PTR_ERR(vol_args);
1427 goto out;
1428 }
1429
1430 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1431
1432 sizestr = vol_args->name;
1433 devstr = strchr(sizestr, ':');
1434 if (devstr) {
1435 char *end;
1436 sizestr = devstr + 1;
1437 *devstr = '\0';
1438 devstr = vol_args->name;
1439 devid = simple_strtoull(devstr, &end, 10);
1440 if (!devid) {
1441 ret = -EINVAL;
1442 goto out_free;
1443 }
1444 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1445 }
1446
1447 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1448 if (!device) {
1449 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1450 devid);
1451 ret = -ENODEV;
1452 goto out_free;
1453 }
1454
1455 if (!device->writeable) {
1456 btrfs_info(root->fs_info,
1457 "resizer unable to apply on readonly device %llu",
1458 devid);
1459 ret = -EPERM;
1460 goto out_free;
1461 }
1462
1463 if (!strcmp(sizestr, "max"))
1464 new_size = device->bdev->bd_inode->i_size;
1465 else {
1466 if (sizestr[0] == '-') {
1467 mod = -1;
1468 sizestr++;
1469 } else if (sizestr[0] == '+') {
1470 mod = 1;
1471 sizestr++;
1472 }
1473 new_size = memparse(sizestr, NULL);
1474 if (new_size == 0) {
1475 ret = -EINVAL;
1476 goto out_free;
1477 }
1478 }
1479
1480 if (device->is_tgtdev_for_dev_replace) {
1481 ret = -EPERM;
1482 goto out_free;
1483 }
1484
1485 old_size = device->total_bytes;
1486
1487 if (mod < 0) {
1488 if (new_size > old_size) {
1489 ret = -EINVAL;
1490 goto out_free;
1491 }
1492 new_size = old_size - new_size;
1493 } else if (mod > 0) {
1494 if (new_size > ULLONG_MAX - old_size) {
1495 ret = -EINVAL;
1496 goto out_free;
1497 }
1498 new_size = old_size + new_size;
1499 }
1500
1501 if (new_size < 256 * 1024 * 1024) {
1502 ret = -EINVAL;
1503 goto out_free;
1504 }
1505 if (new_size > device->bdev->bd_inode->i_size) {
1506 ret = -EFBIG;
1507 goto out_free;
1508 }
1509
1510 do_div(new_size, root->sectorsize);
1511 new_size *= root->sectorsize;
1512
1513 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1514 rcu_str_deref(device->name), new_size);
1515
1516 if (new_size > old_size) {
1517 trans = btrfs_start_transaction(root, 0);
1518 if (IS_ERR(trans)) {
1519 ret = PTR_ERR(trans);
1520 goto out_free;
1521 }
1522 ret = btrfs_grow_device(trans, device, new_size);
1523 btrfs_commit_transaction(trans, root);
1524 } else if (new_size < old_size) {
1525 ret = btrfs_shrink_device(device, new_size);
1526 } /* equal, nothing need to do */
1527
1528 out_free:
1529 kfree(vol_args);
1530 out:
1531 mutex_unlock(&root->fs_info->volume_mutex);
1532 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1533 mnt_drop_write_file(file);
1534 return ret;
1535 }
1536
1537 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1538 char *name, unsigned long fd, int subvol,
1539 u64 *transid, bool readonly,
1540 struct btrfs_qgroup_inherit *inherit)
1541 {
1542 int namelen;
1543 int ret = 0;
1544
1545 ret = mnt_want_write_file(file);
1546 if (ret)
1547 goto out;
1548
1549 namelen = strlen(name);
1550 if (strchr(name, '/')) {
1551 ret = -EINVAL;
1552 goto out_drop_write;
1553 }
1554
1555 if (name[0] == '.' &&
1556 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1557 ret = -EEXIST;
1558 goto out_drop_write;
1559 }
1560
1561 if (subvol) {
1562 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1563 NULL, transid, readonly, inherit);
1564 } else {
1565 struct fd src = fdget(fd);
1566 struct inode *src_inode;
1567 if (!src.file) {
1568 ret = -EINVAL;
1569 goto out_drop_write;
1570 }
1571
1572 src_inode = file_inode(src.file);
1573 if (src_inode->i_sb != file_inode(file)->i_sb) {
1574 btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1575 "Snapshot src from another FS");
1576 ret = -EINVAL;
1577 } else if (!inode_owner_or_capable(src_inode)) {
1578 /*
1579 * Subvolume creation is not restricted, but snapshots
1580 * are limited to own subvolumes only
1581 */
1582 ret = -EPERM;
1583 } else {
1584 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1585 BTRFS_I(src_inode)->root,
1586 transid, readonly, inherit);
1587 }
1588 fdput(src);
1589 }
1590 out_drop_write:
1591 mnt_drop_write_file(file);
1592 out:
1593 return ret;
1594 }
1595
1596 static noinline int btrfs_ioctl_snap_create(struct file *file,
1597 void __user *arg, int subvol)
1598 {
1599 struct btrfs_ioctl_vol_args *vol_args;
1600 int ret;
1601
1602 vol_args = memdup_user(arg, sizeof(*vol_args));
1603 if (IS_ERR(vol_args))
1604 return PTR_ERR(vol_args);
1605 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1606
1607 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1608 vol_args->fd, subvol,
1609 NULL, false, NULL);
1610
1611 kfree(vol_args);
1612 return ret;
1613 }
1614
1615 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1616 void __user *arg, int subvol)
1617 {
1618 struct btrfs_ioctl_vol_args_v2 *vol_args;
1619 int ret;
1620 u64 transid = 0;
1621 u64 *ptr = NULL;
1622 bool readonly = false;
1623 struct btrfs_qgroup_inherit *inherit = NULL;
1624
1625 vol_args = memdup_user(arg, sizeof(*vol_args));
1626 if (IS_ERR(vol_args))
1627 return PTR_ERR(vol_args);
1628 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1629
1630 if (vol_args->flags &
1631 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1632 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1633 ret = -EOPNOTSUPP;
1634 goto out;
1635 }
1636
1637 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1638 ptr = &transid;
1639 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1640 readonly = true;
1641 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1642 if (vol_args->size > PAGE_CACHE_SIZE) {
1643 ret = -EINVAL;
1644 goto out;
1645 }
1646 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1647 if (IS_ERR(inherit)) {
1648 ret = PTR_ERR(inherit);
1649 goto out;
1650 }
1651 }
1652
1653 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1654 vol_args->fd, subvol, ptr,
1655 readonly, inherit);
1656
1657 if (ret == 0 && ptr &&
1658 copy_to_user(arg +
1659 offsetof(struct btrfs_ioctl_vol_args_v2,
1660 transid), ptr, sizeof(*ptr)))
1661 ret = -EFAULT;
1662 out:
1663 kfree(vol_args);
1664 kfree(inherit);
1665 return ret;
1666 }
1667
1668 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1669 void __user *arg)
1670 {
1671 struct inode *inode = file_inode(file);
1672 struct btrfs_root *root = BTRFS_I(inode)->root;
1673 int ret = 0;
1674 u64 flags = 0;
1675
1676 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1677 return -EINVAL;
1678
1679 down_read(&root->fs_info->subvol_sem);
1680 if (btrfs_root_readonly(root))
1681 flags |= BTRFS_SUBVOL_RDONLY;
1682 up_read(&root->fs_info->subvol_sem);
1683
1684 if (copy_to_user(arg, &flags, sizeof(flags)))
1685 ret = -EFAULT;
1686
1687 return ret;
1688 }
1689
1690 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1691 void __user *arg)
1692 {
1693 struct inode *inode = file_inode(file);
1694 struct btrfs_root *root = BTRFS_I(inode)->root;
1695 struct btrfs_trans_handle *trans;
1696 u64 root_flags;
1697 u64 flags;
1698 int ret = 0;
1699
1700 if (!inode_owner_or_capable(inode))
1701 return -EPERM;
1702
1703 ret = mnt_want_write_file(file);
1704 if (ret)
1705 goto out;
1706
1707 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1708 ret = -EINVAL;
1709 goto out_drop_write;
1710 }
1711
1712 if (copy_from_user(&flags, arg, sizeof(flags))) {
1713 ret = -EFAULT;
1714 goto out_drop_write;
1715 }
1716
1717 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1718 ret = -EINVAL;
1719 goto out_drop_write;
1720 }
1721
1722 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1723 ret = -EOPNOTSUPP;
1724 goto out_drop_write;
1725 }
1726
1727 down_write(&root->fs_info->subvol_sem);
1728
1729 /* nothing to do */
1730 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1731 goto out_drop_sem;
1732
1733 root_flags = btrfs_root_flags(&root->root_item);
1734 if (flags & BTRFS_SUBVOL_RDONLY) {
1735 btrfs_set_root_flags(&root->root_item,
1736 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1737 } else {
1738 /*
1739 * Block RO -> RW transition if this subvolume is involved in
1740 * send
1741 */
1742 spin_lock(&root->root_item_lock);
1743 if (root->send_in_progress == 0) {
1744 btrfs_set_root_flags(&root->root_item,
1745 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1746 spin_unlock(&root->root_item_lock);
1747 } else {
1748 spin_unlock(&root->root_item_lock);
1749 btrfs_warn(root->fs_info,
1750 "Attempt to set subvolume %llu read-write during send",
1751 root->root_key.objectid);
1752 ret = -EPERM;
1753 goto out_drop_sem;
1754 }
1755 }
1756
1757 trans = btrfs_start_transaction(root, 1);
1758 if (IS_ERR(trans)) {
1759 ret = PTR_ERR(trans);
1760 goto out_reset;
1761 }
1762
1763 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1764 &root->root_key, &root->root_item);
1765
1766 btrfs_commit_transaction(trans, root);
1767 out_reset:
1768 if (ret)
1769 btrfs_set_root_flags(&root->root_item, root_flags);
1770 out_drop_sem:
1771 up_write(&root->fs_info->subvol_sem);
1772 out_drop_write:
1773 mnt_drop_write_file(file);
1774 out:
1775 return ret;
1776 }
1777
1778 /*
1779 * helper to check if the subvolume references other subvolumes
1780 */
1781 static noinline int may_destroy_subvol(struct btrfs_root *root)
1782 {
1783 struct btrfs_path *path;
1784 struct btrfs_dir_item *di;
1785 struct btrfs_key key;
1786 u64 dir_id;
1787 int ret;
1788
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
1792
1793 /* Make sure this root isn't set as the default subvol */
1794 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1795 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1796 dir_id, "default", 7, 0);
1797 if (di && !IS_ERR(di)) {
1798 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1799 if (key.objectid == root->root_key.objectid) {
1800 ret = -ENOTEMPTY;
1801 goto out;
1802 }
1803 btrfs_release_path(path);
1804 }
1805
1806 key.objectid = root->root_key.objectid;
1807 key.type = BTRFS_ROOT_REF_KEY;
1808 key.offset = (u64)-1;
1809
1810 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1811 &key, path, 0, 0);
1812 if (ret < 0)
1813 goto out;
1814 BUG_ON(ret == 0);
1815
1816 ret = 0;
1817 if (path->slots[0] > 0) {
1818 path->slots[0]--;
1819 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1820 if (key.objectid == root->root_key.objectid &&
1821 key.type == BTRFS_ROOT_REF_KEY)
1822 ret = -ENOTEMPTY;
1823 }
1824 out:
1825 btrfs_free_path(path);
1826 return ret;
1827 }
1828
1829 static noinline int key_in_sk(struct btrfs_key *key,
1830 struct btrfs_ioctl_search_key *sk)
1831 {
1832 struct btrfs_key test;
1833 int ret;
1834
1835 test.objectid = sk->min_objectid;
1836 test.type = sk->min_type;
1837 test.offset = sk->min_offset;
1838
1839 ret = btrfs_comp_cpu_keys(key, &test);
1840 if (ret < 0)
1841 return 0;
1842
1843 test.objectid = sk->max_objectid;
1844 test.type = sk->max_type;
1845 test.offset = sk->max_offset;
1846
1847 ret = btrfs_comp_cpu_keys(key, &test);
1848 if (ret > 0)
1849 return 0;
1850 return 1;
1851 }
1852
1853 static noinline int copy_to_sk(struct btrfs_root *root,
1854 struct btrfs_path *path,
1855 struct btrfs_key *key,
1856 struct btrfs_ioctl_search_key *sk,
1857 char *buf,
1858 unsigned long *sk_offset,
1859 int *num_found)
1860 {
1861 u64 found_transid;
1862 struct extent_buffer *leaf;
1863 struct btrfs_ioctl_search_header sh;
1864 unsigned long item_off;
1865 unsigned long item_len;
1866 int nritems;
1867 int i;
1868 int slot;
1869 int ret = 0;
1870
1871 leaf = path->nodes[0];
1872 slot = path->slots[0];
1873 nritems = btrfs_header_nritems(leaf);
1874
1875 if (btrfs_header_generation(leaf) > sk->max_transid) {
1876 i = nritems;
1877 goto advance_key;
1878 }
1879 found_transid = btrfs_header_generation(leaf);
1880
1881 for (i = slot; i < nritems; i++) {
1882 item_off = btrfs_item_ptr_offset(leaf, i);
1883 item_len = btrfs_item_size_nr(leaf, i);
1884
1885 btrfs_item_key_to_cpu(leaf, key, i);
1886 if (!key_in_sk(key, sk))
1887 continue;
1888
1889 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1890 item_len = 0;
1891
1892 if (sizeof(sh) + item_len + *sk_offset >
1893 BTRFS_SEARCH_ARGS_BUFSIZE) {
1894 ret = 1;
1895 goto overflow;
1896 }
1897
1898 sh.objectid = key->objectid;
1899 sh.offset = key->offset;
1900 sh.type = key->type;
1901 sh.len = item_len;
1902 sh.transid = found_transid;
1903
1904 /* copy search result header */
1905 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1906 *sk_offset += sizeof(sh);
1907
1908 if (item_len) {
1909 char *p = buf + *sk_offset;
1910 /* copy the item */
1911 read_extent_buffer(leaf, p,
1912 item_off, item_len);
1913 *sk_offset += item_len;
1914 }
1915 (*num_found)++;
1916
1917 if (*num_found >= sk->nr_items)
1918 break;
1919 }
1920 advance_key:
1921 ret = 0;
1922 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1923 key->offset++;
1924 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1925 key->offset = 0;
1926 key->type++;
1927 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1928 key->offset = 0;
1929 key->type = 0;
1930 key->objectid++;
1931 } else
1932 ret = 1;
1933 overflow:
1934 return ret;
1935 }
1936
1937 static noinline int search_ioctl(struct inode *inode,
1938 struct btrfs_ioctl_search_args *args)
1939 {
1940 struct btrfs_root *root;
1941 struct btrfs_key key;
1942 struct btrfs_path *path;
1943 struct btrfs_ioctl_search_key *sk = &args->key;
1944 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1945 int ret;
1946 int num_found = 0;
1947 unsigned long sk_offset = 0;
1948
1949 path = btrfs_alloc_path();
1950 if (!path)
1951 return -ENOMEM;
1952
1953 if (sk->tree_id == 0) {
1954 /* search the root of the inode that was passed */
1955 root = BTRFS_I(inode)->root;
1956 } else {
1957 key.objectid = sk->tree_id;
1958 key.type = BTRFS_ROOT_ITEM_KEY;
1959 key.offset = (u64)-1;
1960 root = btrfs_read_fs_root_no_name(info, &key);
1961 if (IS_ERR(root)) {
1962 printk(KERN_ERR "BTRFS: could not find root %llu\n",
1963 sk->tree_id);
1964 btrfs_free_path(path);
1965 return -ENOENT;
1966 }
1967 }
1968
1969 key.objectid = sk->min_objectid;
1970 key.type = sk->min_type;
1971 key.offset = sk->min_offset;
1972
1973 path->keep_locks = 1;
1974
1975 while (1) {
1976 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1977 if (ret != 0) {
1978 if (ret > 0)
1979 ret = 0;
1980 goto err;
1981 }
1982 ret = copy_to_sk(root, path, &key, sk, args->buf,
1983 &sk_offset, &num_found);
1984 btrfs_release_path(path);
1985 if (ret || num_found >= sk->nr_items)
1986 break;
1987
1988 }
1989 ret = 0;
1990 err:
1991 sk->nr_items = num_found;
1992 btrfs_free_path(path);
1993 return ret;
1994 }
1995
1996 static noinline int btrfs_ioctl_tree_search(struct file *file,
1997 void __user *argp)
1998 {
1999 struct btrfs_ioctl_search_args *args;
2000 struct inode *inode;
2001 int ret;
2002
2003 if (!capable(CAP_SYS_ADMIN))
2004 return -EPERM;
2005
2006 args = memdup_user(argp, sizeof(*args));
2007 if (IS_ERR(args))
2008 return PTR_ERR(args);
2009
2010 inode = file_inode(file);
2011 ret = search_ioctl(inode, args);
2012 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2013 ret = -EFAULT;
2014 kfree(args);
2015 return ret;
2016 }
2017
2018 /*
2019 * Search INODE_REFs to identify path name of 'dirid' directory
2020 * in a 'tree_id' tree. and sets path name to 'name'.
2021 */
2022 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2023 u64 tree_id, u64 dirid, char *name)
2024 {
2025 struct btrfs_root *root;
2026 struct btrfs_key key;
2027 char *ptr;
2028 int ret = -1;
2029 int slot;
2030 int len;
2031 int total_len = 0;
2032 struct btrfs_inode_ref *iref;
2033 struct extent_buffer *l;
2034 struct btrfs_path *path;
2035
2036 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2037 name[0]='\0';
2038 return 0;
2039 }
2040
2041 path = btrfs_alloc_path();
2042 if (!path)
2043 return -ENOMEM;
2044
2045 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2046
2047 key.objectid = tree_id;
2048 key.type = BTRFS_ROOT_ITEM_KEY;
2049 key.offset = (u64)-1;
2050 root = btrfs_read_fs_root_no_name(info, &key);
2051 if (IS_ERR(root)) {
2052 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2053 ret = -ENOENT;
2054 goto out;
2055 }
2056
2057 key.objectid = dirid;
2058 key.type = BTRFS_INODE_REF_KEY;
2059 key.offset = (u64)-1;
2060
2061 while (1) {
2062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2063 if (ret < 0)
2064 goto out;
2065 else if (ret > 0) {
2066 ret = btrfs_previous_item(root, path, dirid,
2067 BTRFS_INODE_REF_KEY);
2068 if (ret < 0)
2069 goto out;
2070 else if (ret > 0) {
2071 ret = -ENOENT;
2072 goto out;
2073 }
2074 }
2075
2076 l = path->nodes[0];
2077 slot = path->slots[0];
2078 btrfs_item_key_to_cpu(l, &key, slot);
2079
2080 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2081 len = btrfs_inode_ref_name_len(l, iref);
2082 ptr -= len + 1;
2083 total_len += len + 1;
2084 if (ptr < name) {
2085 ret = -ENAMETOOLONG;
2086 goto out;
2087 }
2088
2089 *(ptr + len) = '/';
2090 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2091
2092 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2093 break;
2094
2095 btrfs_release_path(path);
2096 key.objectid = key.offset;
2097 key.offset = (u64)-1;
2098 dirid = key.objectid;
2099 }
2100 memmove(name, ptr, total_len);
2101 name[total_len] = '\0';
2102 ret = 0;
2103 out:
2104 btrfs_free_path(path);
2105 return ret;
2106 }
2107
2108 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2109 void __user *argp)
2110 {
2111 struct btrfs_ioctl_ino_lookup_args *args;
2112 struct inode *inode;
2113 int ret;
2114
2115 if (!capable(CAP_SYS_ADMIN))
2116 return -EPERM;
2117
2118 args = memdup_user(argp, sizeof(*args));
2119 if (IS_ERR(args))
2120 return PTR_ERR(args);
2121
2122 inode = file_inode(file);
2123
2124 if (args->treeid == 0)
2125 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2126
2127 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2128 args->treeid, args->objectid,
2129 args->name);
2130
2131 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2132 ret = -EFAULT;
2133
2134 kfree(args);
2135 return ret;
2136 }
2137
2138 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2139 void __user *arg)
2140 {
2141 struct dentry *parent = file->f_path.dentry;
2142 struct dentry *dentry;
2143 struct inode *dir = parent->d_inode;
2144 struct inode *inode;
2145 struct btrfs_root *root = BTRFS_I(dir)->root;
2146 struct btrfs_root *dest = NULL;
2147 struct btrfs_ioctl_vol_args *vol_args;
2148 struct btrfs_trans_handle *trans;
2149 struct btrfs_block_rsv block_rsv;
2150 u64 qgroup_reserved;
2151 int namelen;
2152 int ret;
2153 int err = 0;
2154
2155 vol_args = memdup_user(arg, sizeof(*vol_args));
2156 if (IS_ERR(vol_args))
2157 return PTR_ERR(vol_args);
2158
2159 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2160 namelen = strlen(vol_args->name);
2161 if (strchr(vol_args->name, '/') ||
2162 strncmp(vol_args->name, "..", namelen) == 0) {
2163 err = -EINVAL;
2164 goto out;
2165 }
2166
2167 err = mnt_want_write_file(file);
2168 if (err)
2169 goto out;
2170
2171 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2172 if (err == -EINTR)
2173 goto out_drop_write;
2174 dentry = lookup_one_len(vol_args->name, parent, namelen);
2175 if (IS_ERR(dentry)) {
2176 err = PTR_ERR(dentry);
2177 goto out_unlock_dir;
2178 }
2179
2180 if (!dentry->d_inode) {
2181 err = -ENOENT;
2182 goto out_dput;
2183 }
2184
2185 inode = dentry->d_inode;
2186 dest = BTRFS_I(inode)->root;
2187 if (!capable(CAP_SYS_ADMIN)) {
2188 /*
2189 * Regular user. Only allow this with a special mount
2190 * option, when the user has write+exec access to the
2191 * subvol root, and when rmdir(2) would have been
2192 * allowed.
2193 *
2194 * Note that this is _not_ check that the subvol is
2195 * empty or doesn't contain data that we wouldn't
2196 * otherwise be able to delete.
2197 *
2198 * Users who want to delete empty subvols should try
2199 * rmdir(2).
2200 */
2201 err = -EPERM;
2202 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2203 goto out_dput;
2204
2205 /*
2206 * Do not allow deletion if the parent dir is the same
2207 * as the dir to be deleted. That means the ioctl
2208 * must be called on the dentry referencing the root
2209 * of the subvol, not a random directory contained
2210 * within it.
2211 */
2212 err = -EINVAL;
2213 if (root == dest)
2214 goto out_dput;
2215
2216 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2217 if (err)
2218 goto out_dput;
2219 }
2220
2221 /* check if subvolume may be deleted by a user */
2222 err = btrfs_may_delete(dir, dentry, 1);
2223 if (err)
2224 goto out_dput;
2225
2226 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2227 err = -EINVAL;
2228 goto out_dput;
2229 }
2230
2231 mutex_lock(&inode->i_mutex);
2232 err = d_invalidate(dentry);
2233 if (err)
2234 goto out_unlock;
2235
2236 down_write(&root->fs_info->subvol_sem);
2237
2238 err = may_destroy_subvol(dest);
2239 if (err)
2240 goto out_up_write;
2241
2242 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2243 /*
2244 * One for dir inode, two for dir entries, two for root
2245 * ref/backref.
2246 */
2247 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2248 5, &qgroup_reserved, true);
2249 if (err)
2250 goto out_up_write;
2251
2252 trans = btrfs_start_transaction(root, 0);
2253 if (IS_ERR(trans)) {
2254 err = PTR_ERR(trans);
2255 goto out_release;
2256 }
2257 trans->block_rsv = &block_rsv;
2258 trans->bytes_reserved = block_rsv.size;
2259
2260 ret = btrfs_unlink_subvol(trans, root, dir,
2261 dest->root_key.objectid,
2262 dentry->d_name.name,
2263 dentry->d_name.len);
2264 if (ret) {
2265 err = ret;
2266 btrfs_abort_transaction(trans, root, ret);
2267 goto out_end_trans;
2268 }
2269
2270 btrfs_record_root_in_trans(trans, dest);
2271
2272 memset(&dest->root_item.drop_progress, 0,
2273 sizeof(dest->root_item.drop_progress));
2274 dest->root_item.drop_level = 0;
2275 btrfs_set_root_refs(&dest->root_item, 0);
2276
2277 if (!xchg(&dest->orphan_item_inserted, 1)) {
2278 ret = btrfs_insert_orphan_item(trans,
2279 root->fs_info->tree_root,
2280 dest->root_key.objectid);
2281 if (ret) {
2282 btrfs_abort_transaction(trans, root, ret);
2283 err = ret;
2284 goto out_end_trans;
2285 }
2286 }
2287
2288 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2289 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2290 dest->root_key.objectid);
2291 if (ret && ret != -ENOENT) {
2292 btrfs_abort_transaction(trans, root, ret);
2293 err = ret;
2294 goto out_end_trans;
2295 }
2296 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2297 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2298 dest->root_item.received_uuid,
2299 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2300 dest->root_key.objectid);
2301 if (ret && ret != -ENOENT) {
2302 btrfs_abort_transaction(trans, root, ret);
2303 err = ret;
2304 goto out_end_trans;
2305 }
2306 }
2307
2308 out_end_trans:
2309 trans->block_rsv = NULL;
2310 trans->bytes_reserved = 0;
2311 ret = btrfs_end_transaction(trans, root);
2312 if (ret && !err)
2313 err = ret;
2314 inode->i_flags |= S_DEAD;
2315 out_release:
2316 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2317 out_up_write:
2318 up_write(&root->fs_info->subvol_sem);
2319 out_unlock:
2320 mutex_unlock(&inode->i_mutex);
2321 if (!err) {
2322 shrink_dcache_sb(root->fs_info->sb);
2323 btrfs_invalidate_inodes(dest);
2324 d_delete(dentry);
2325
2326 /* the last ref */
2327 if (dest->cache_inode) {
2328 iput(dest->cache_inode);
2329 dest->cache_inode = NULL;
2330 }
2331 }
2332 out_dput:
2333 dput(dentry);
2334 out_unlock_dir:
2335 mutex_unlock(&dir->i_mutex);
2336 out_drop_write:
2337 mnt_drop_write_file(file);
2338 out:
2339 kfree(vol_args);
2340 return err;
2341 }
2342
2343 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2344 {
2345 struct inode *inode = file_inode(file);
2346 struct btrfs_root *root = BTRFS_I(inode)->root;
2347 struct btrfs_ioctl_defrag_range_args *range;
2348 int ret;
2349
2350 ret = mnt_want_write_file(file);
2351 if (ret)
2352 return ret;
2353
2354 if (btrfs_root_readonly(root)) {
2355 ret = -EROFS;
2356 goto out;
2357 }
2358
2359 switch (inode->i_mode & S_IFMT) {
2360 case S_IFDIR:
2361 if (!capable(CAP_SYS_ADMIN)) {
2362 ret = -EPERM;
2363 goto out;
2364 }
2365 ret = btrfs_defrag_root(root);
2366 if (ret)
2367 goto out;
2368 ret = btrfs_defrag_root(root->fs_info->extent_root);
2369 break;
2370 case S_IFREG:
2371 if (!(file->f_mode & FMODE_WRITE)) {
2372 ret = -EINVAL;
2373 goto out;
2374 }
2375
2376 range = kzalloc(sizeof(*range), GFP_KERNEL);
2377 if (!range) {
2378 ret = -ENOMEM;
2379 goto out;
2380 }
2381
2382 if (argp) {
2383 if (copy_from_user(range, argp,
2384 sizeof(*range))) {
2385 ret = -EFAULT;
2386 kfree(range);
2387 goto out;
2388 }
2389 /* compression requires us to start the IO */
2390 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2391 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2392 range->extent_thresh = (u32)-1;
2393 }
2394 } else {
2395 /* the rest are all set to zero by kzalloc */
2396 range->len = (u64)-1;
2397 }
2398 ret = btrfs_defrag_file(file_inode(file), file,
2399 range, 0, 0);
2400 if (ret > 0)
2401 ret = 0;
2402 kfree(range);
2403 break;
2404 default:
2405 ret = -EINVAL;
2406 }
2407 out:
2408 mnt_drop_write_file(file);
2409 return ret;
2410 }
2411
2412 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2413 {
2414 struct btrfs_ioctl_vol_args *vol_args;
2415 int ret;
2416
2417 if (!capable(CAP_SYS_ADMIN))
2418 return -EPERM;
2419
2420 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2421 1)) {
2422 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2423 }
2424
2425 mutex_lock(&root->fs_info->volume_mutex);
2426 vol_args = memdup_user(arg, sizeof(*vol_args));
2427 if (IS_ERR(vol_args)) {
2428 ret = PTR_ERR(vol_args);
2429 goto out;
2430 }
2431
2432 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2433 ret = btrfs_init_new_device(root, vol_args->name);
2434
2435 kfree(vol_args);
2436 out:
2437 mutex_unlock(&root->fs_info->volume_mutex);
2438 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2439 return ret;
2440 }
2441
2442 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2443 {
2444 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2445 struct btrfs_ioctl_vol_args *vol_args;
2446 int ret;
2447
2448 if (!capable(CAP_SYS_ADMIN))
2449 return -EPERM;
2450
2451 ret = mnt_want_write_file(file);
2452 if (ret)
2453 return ret;
2454
2455 vol_args = memdup_user(arg, sizeof(*vol_args));
2456 if (IS_ERR(vol_args)) {
2457 ret = PTR_ERR(vol_args);
2458 goto out;
2459 }
2460
2461 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2462
2463 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2464 1)) {
2465 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2466 goto out;
2467 }
2468
2469 mutex_lock(&root->fs_info->volume_mutex);
2470 ret = btrfs_rm_device(root, vol_args->name);
2471 mutex_unlock(&root->fs_info->volume_mutex);
2472 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2473
2474 out:
2475 kfree(vol_args);
2476 mnt_drop_write_file(file);
2477 return ret;
2478 }
2479
2480 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2481 {
2482 struct btrfs_ioctl_fs_info_args *fi_args;
2483 struct btrfs_device *device;
2484 struct btrfs_device *next;
2485 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2486 int ret = 0;
2487
2488 if (!capable(CAP_SYS_ADMIN))
2489 return -EPERM;
2490
2491 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2492 if (!fi_args)
2493 return -ENOMEM;
2494
2495 mutex_lock(&fs_devices->device_list_mutex);
2496 fi_args->num_devices = fs_devices->num_devices;
2497 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2498
2499 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2500 if (device->devid > fi_args->max_id)
2501 fi_args->max_id = device->devid;
2502 }
2503 mutex_unlock(&fs_devices->device_list_mutex);
2504
2505 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2506 ret = -EFAULT;
2507
2508 kfree(fi_args);
2509 return ret;
2510 }
2511
2512 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2513 {
2514 struct btrfs_ioctl_dev_info_args *di_args;
2515 struct btrfs_device *dev;
2516 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2517 int ret = 0;
2518 char *s_uuid = NULL;
2519
2520 if (!capable(CAP_SYS_ADMIN))
2521 return -EPERM;
2522
2523 di_args = memdup_user(arg, sizeof(*di_args));
2524 if (IS_ERR(di_args))
2525 return PTR_ERR(di_args);
2526
2527 if (!btrfs_is_empty_uuid(di_args->uuid))
2528 s_uuid = di_args->uuid;
2529
2530 mutex_lock(&fs_devices->device_list_mutex);
2531 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2532
2533 if (!dev) {
2534 ret = -ENODEV;
2535 goto out;
2536 }
2537
2538 di_args->devid = dev->devid;
2539 di_args->bytes_used = dev->bytes_used;
2540 di_args->total_bytes = dev->total_bytes;
2541 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2542 if (dev->name) {
2543 struct rcu_string *name;
2544
2545 rcu_read_lock();
2546 name = rcu_dereference(dev->name);
2547 strncpy(di_args->path, name->str, sizeof(di_args->path));
2548 rcu_read_unlock();
2549 di_args->path[sizeof(di_args->path) - 1] = 0;
2550 } else {
2551 di_args->path[0] = '\0';
2552 }
2553
2554 out:
2555 mutex_unlock(&fs_devices->device_list_mutex);
2556 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2557 ret = -EFAULT;
2558
2559 kfree(di_args);
2560 return ret;
2561 }
2562
2563 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2564 {
2565 struct page *page;
2566 pgoff_t index;
2567 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2568
2569 index = off >> PAGE_CACHE_SHIFT;
2570
2571 page = grab_cache_page(inode->i_mapping, index);
2572 if (!page)
2573 return NULL;
2574
2575 if (!PageUptodate(page)) {
2576 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2577 0))
2578 return NULL;
2579 lock_page(page);
2580 if (!PageUptodate(page)) {
2581 unlock_page(page);
2582 page_cache_release(page);
2583 return NULL;
2584 }
2585 }
2586 unlock_page(page);
2587
2588 return page;
2589 }
2590
2591 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2592 {
2593 /* do any pending delalloc/csum calc on src, one way or
2594 another, and lock file content */
2595 while (1) {
2596 struct btrfs_ordered_extent *ordered;
2597 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2598 ordered = btrfs_lookup_first_ordered_extent(inode,
2599 off + len - 1);
2600 if (!ordered &&
2601 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2602 off + len - 1, EXTENT_DELALLOC, 0, NULL))
2603 break;
2604 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2605 if (ordered)
2606 btrfs_put_ordered_extent(ordered);
2607 btrfs_wait_ordered_range(inode, off, len);
2608 }
2609 }
2610
2611 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2612 struct inode *inode2, u64 loff2, u64 len)
2613 {
2614 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2615 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2616
2617 mutex_unlock(&inode1->i_mutex);
2618 mutex_unlock(&inode2->i_mutex);
2619 }
2620
2621 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2622 struct inode *inode2, u64 loff2, u64 len)
2623 {
2624 if (inode1 < inode2) {
2625 swap(inode1, inode2);
2626 swap(loff1, loff2);
2627 }
2628
2629 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2630 lock_extent_range(inode1, loff1, len);
2631 if (inode1 != inode2) {
2632 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2633 lock_extent_range(inode2, loff2, len);
2634 }
2635 }
2636
2637 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2638 u64 dst_loff, u64 len)
2639 {
2640 int ret = 0;
2641 struct page *src_page, *dst_page;
2642 unsigned int cmp_len = PAGE_CACHE_SIZE;
2643 void *addr, *dst_addr;
2644
2645 while (len) {
2646 if (len < PAGE_CACHE_SIZE)
2647 cmp_len = len;
2648
2649 src_page = extent_same_get_page(src, loff);
2650 if (!src_page)
2651 return -EINVAL;
2652 dst_page = extent_same_get_page(dst, dst_loff);
2653 if (!dst_page) {
2654 page_cache_release(src_page);
2655 return -EINVAL;
2656 }
2657 addr = kmap_atomic(src_page);
2658 dst_addr = kmap_atomic(dst_page);
2659
2660 flush_dcache_page(src_page);
2661 flush_dcache_page(dst_page);
2662
2663 if (memcmp(addr, dst_addr, cmp_len))
2664 ret = BTRFS_SAME_DATA_DIFFERS;
2665
2666 kunmap_atomic(addr);
2667 kunmap_atomic(dst_addr);
2668 page_cache_release(src_page);
2669 page_cache_release(dst_page);
2670
2671 if (ret)
2672 break;
2673
2674 loff += cmp_len;
2675 dst_loff += cmp_len;
2676 len -= cmp_len;
2677 }
2678
2679 return ret;
2680 }
2681
2682 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2683 {
2684 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2685
2686 if (off + len > inode->i_size || off + len < off)
2687 return -EINVAL;
2688 /* Check that we are block aligned - btrfs_clone() requires this */
2689 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2690 return -EINVAL;
2691
2692 return 0;
2693 }
2694
2695 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2696 struct inode *dst, u64 dst_loff)
2697 {
2698 int ret;
2699
2700 /*
2701 * btrfs_clone() can't handle extents in the same file
2702 * yet. Once that works, we can drop this check and replace it
2703 * with a check for the same inode, but overlapping extents.
2704 */
2705 if (src == dst)
2706 return -EINVAL;
2707
2708 btrfs_double_lock(src, loff, dst, dst_loff, len);
2709
2710 ret = extent_same_check_offsets(src, loff, len);
2711 if (ret)
2712 goto out_unlock;
2713
2714 ret = extent_same_check_offsets(dst, dst_loff, len);
2715 if (ret)
2716 goto out_unlock;
2717
2718 /* don't make the dst file partly checksummed */
2719 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2720 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2721 ret = -EINVAL;
2722 goto out_unlock;
2723 }
2724
2725 ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2726 if (ret == 0)
2727 ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2728
2729 out_unlock:
2730 btrfs_double_unlock(src, loff, dst, dst_loff, len);
2731
2732 return ret;
2733 }
2734
2735 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
2736
2737 static long btrfs_ioctl_file_extent_same(struct file *file,
2738 struct btrfs_ioctl_same_args __user *argp)
2739 {
2740 struct btrfs_ioctl_same_args *same;
2741 struct btrfs_ioctl_same_extent_info *info;
2742 struct inode *src = file_inode(file);
2743 u64 off;
2744 u64 len;
2745 int i;
2746 int ret;
2747 unsigned long size;
2748 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2749 bool is_admin = capable(CAP_SYS_ADMIN);
2750 u16 count;
2751
2752 if (!(file->f_mode & FMODE_READ))
2753 return -EINVAL;
2754
2755 ret = mnt_want_write_file(file);
2756 if (ret)
2757 return ret;
2758
2759 if (get_user(count, &argp->dest_count)) {
2760 ret = -EFAULT;
2761 goto out;
2762 }
2763
2764 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2765
2766 same = memdup_user(argp, size);
2767
2768 if (IS_ERR(same)) {
2769 ret = PTR_ERR(same);
2770 goto out;
2771 }
2772
2773 off = same->logical_offset;
2774 len = same->length;
2775
2776 /*
2777 * Limit the total length we will dedupe for each operation.
2778 * This is intended to bound the total time spent in this
2779 * ioctl to something sane.
2780 */
2781 if (len > BTRFS_MAX_DEDUPE_LEN)
2782 len = BTRFS_MAX_DEDUPE_LEN;
2783
2784 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2785 /*
2786 * Btrfs does not support blocksize < page_size. As a
2787 * result, btrfs_cmp_data() won't correctly handle
2788 * this situation without an update.
2789 */
2790 ret = -EINVAL;
2791 goto out;
2792 }
2793
2794 ret = -EISDIR;
2795 if (S_ISDIR(src->i_mode))
2796 goto out;
2797
2798 ret = -EACCES;
2799 if (!S_ISREG(src->i_mode))
2800 goto out;
2801
2802 /* pre-format output fields to sane values */
2803 for (i = 0; i < count; i++) {
2804 same->info[i].bytes_deduped = 0ULL;
2805 same->info[i].status = 0;
2806 }
2807
2808 for (i = 0, info = same->info; i < count; i++, info++) {
2809 struct inode *dst;
2810 struct fd dst_file = fdget(info->fd);
2811 if (!dst_file.file) {
2812 info->status = -EBADF;
2813 continue;
2814 }
2815 dst = file_inode(dst_file.file);
2816
2817 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
2818 info->status = -EINVAL;
2819 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
2820 info->status = -EXDEV;
2821 } else if (S_ISDIR(dst->i_mode)) {
2822 info->status = -EISDIR;
2823 } else if (!S_ISREG(dst->i_mode)) {
2824 info->status = -EACCES;
2825 } else {
2826 info->status = btrfs_extent_same(src, off, len, dst,
2827 info->logical_offset);
2828 if (info->status == 0)
2829 info->bytes_deduped += len;
2830 }
2831 fdput(dst_file);
2832 }
2833
2834 ret = copy_to_user(argp, same, size);
2835 if (ret)
2836 ret = -EFAULT;
2837
2838 out:
2839 mnt_drop_write_file(file);
2840 return ret;
2841 }
2842
2843 /**
2844 * btrfs_clone() - clone a range from inode file to another
2845 *
2846 * @src: Inode to clone from
2847 * @inode: Inode to clone to
2848 * @off: Offset within source to start clone from
2849 * @olen: Original length, passed by user, of range to clone
2850 * @olen_aligned: Block-aligned value of olen, extent_same uses
2851 * identical values here
2852 * @destoff: Offset within @inode to start clone
2853 */
2854 static int btrfs_clone(struct inode *src, struct inode *inode,
2855 u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2856 {
2857 struct btrfs_root *root = BTRFS_I(inode)->root;
2858 struct btrfs_path *path = NULL;
2859 struct extent_buffer *leaf;
2860 struct btrfs_trans_handle *trans;
2861 char *buf = NULL;
2862 struct btrfs_key key;
2863 u32 nritems;
2864 int slot;
2865 int ret;
2866 u64 len = olen_aligned;
2867
2868 ret = -ENOMEM;
2869 buf = vmalloc(btrfs_level_size(root, 0));
2870 if (!buf)
2871 return ret;
2872
2873 path = btrfs_alloc_path();
2874 if (!path) {
2875 vfree(buf);
2876 return ret;
2877 }
2878
2879 path->reada = 2;
2880 /* clone data */
2881 key.objectid = btrfs_ino(src);
2882 key.type = BTRFS_EXTENT_DATA_KEY;
2883 key.offset = 0;
2884
2885 while (1) {
2886 /*
2887 * note the key will change type as we walk through the
2888 * tree.
2889 */
2890 path->leave_spinning = 1;
2891 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2892 0, 0);
2893 if (ret < 0)
2894 goto out;
2895
2896 nritems = btrfs_header_nritems(path->nodes[0]);
2897 process_slot:
2898 if (path->slots[0] >= nritems) {
2899 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2900 if (ret < 0)
2901 goto out;
2902 if (ret > 0)
2903 break;
2904 nritems = btrfs_header_nritems(path->nodes[0]);
2905 }
2906 leaf = path->nodes[0];
2907 slot = path->slots[0];
2908
2909 btrfs_item_key_to_cpu(leaf, &key, slot);
2910 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2911 key.objectid != btrfs_ino(src))
2912 break;
2913
2914 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2915 struct btrfs_file_extent_item *extent;
2916 int type;
2917 u32 size;
2918 struct btrfs_key new_key;
2919 u64 disko = 0, diskl = 0;
2920 u64 datao = 0, datal = 0;
2921 u8 comp;
2922 u64 endoff;
2923
2924 extent = btrfs_item_ptr(leaf, slot,
2925 struct btrfs_file_extent_item);
2926 comp = btrfs_file_extent_compression(leaf, extent);
2927 type = btrfs_file_extent_type(leaf, extent);
2928 if (type == BTRFS_FILE_EXTENT_REG ||
2929 type == BTRFS_FILE_EXTENT_PREALLOC) {
2930 disko = btrfs_file_extent_disk_bytenr(leaf,
2931 extent);
2932 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2933 extent);
2934 datao = btrfs_file_extent_offset(leaf, extent);
2935 datal = btrfs_file_extent_num_bytes(leaf,
2936 extent);
2937 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2938 /* take upper bound, may be compressed */
2939 datal = btrfs_file_extent_ram_bytes(leaf,
2940 extent);
2941 }
2942
2943 if (key.offset + datal <= off ||
2944 key.offset >= off + len - 1) {
2945 path->slots[0]++;
2946 goto process_slot;
2947 }
2948
2949 size = btrfs_item_size_nr(leaf, slot);
2950 read_extent_buffer(leaf, buf,
2951 btrfs_item_ptr_offset(leaf, slot),
2952 size);
2953
2954 btrfs_release_path(path);
2955 path->leave_spinning = 0;
2956
2957 memcpy(&new_key, &key, sizeof(new_key));
2958 new_key.objectid = btrfs_ino(inode);
2959 if (off <= key.offset)
2960 new_key.offset = key.offset + destoff - off;
2961 else
2962 new_key.offset = destoff;
2963
2964 /*
2965 * 1 - adjusting old extent (we may have to split it)
2966 * 1 - add new extent
2967 * 1 - inode update
2968 */
2969 trans = btrfs_start_transaction(root, 3);
2970 if (IS_ERR(trans)) {
2971 ret = PTR_ERR(trans);
2972 goto out;
2973 }
2974
2975 if (type == BTRFS_FILE_EXTENT_REG ||
2976 type == BTRFS_FILE_EXTENT_PREALLOC) {
2977 /*
2978 * a | --- range to clone ---| b
2979 * | ------------- extent ------------- |
2980 */
2981
2982 /* substract range b */
2983 if (key.offset + datal > off + len)
2984 datal = off + len - key.offset;
2985
2986 /* substract range a */
2987 if (off > key.offset) {
2988 datao += off - key.offset;
2989 datal -= off - key.offset;
2990 }
2991
2992 ret = btrfs_drop_extents(trans, root, inode,
2993 new_key.offset,
2994 new_key.offset + datal,
2995 1);
2996 if (ret) {
2997 btrfs_abort_transaction(trans, root,
2998 ret);
2999 btrfs_end_transaction(trans, root);
3000 goto out;
3001 }
3002
3003 ret = btrfs_insert_empty_item(trans, root, path,
3004 &new_key, size);
3005 if (ret) {
3006 btrfs_abort_transaction(trans, root,
3007 ret);
3008 btrfs_end_transaction(trans, root);
3009 goto out;
3010 }
3011
3012 leaf = path->nodes[0];
3013 slot = path->slots[0];
3014 write_extent_buffer(leaf, buf,
3015 btrfs_item_ptr_offset(leaf, slot),
3016 size);
3017
3018 extent = btrfs_item_ptr(leaf, slot,
3019 struct btrfs_file_extent_item);
3020
3021 /* disko == 0 means it's a hole */
3022 if (!disko)
3023 datao = 0;
3024
3025 btrfs_set_file_extent_offset(leaf, extent,
3026 datao);
3027 btrfs_set_file_extent_num_bytes(leaf, extent,
3028 datal);
3029 if (disko) {
3030 inode_add_bytes(inode, datal);
3031 ret = btrfs_inc_extent_ref(trans, root,
3032 disko, diskl, 0,
3033 root->root_key.objectid,
3034 btrfs_ino(inode),
3035 new_key.offset - datao,
3036 0);
3037 if (ret) {
3038 btrfs_abort_transaction(trans,
3039 root,
3040 ret);
3041 btrfs_end_transaction(trans,
3042 root);
3043 goto out;
3044
3045 }
3046 }
3047 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3048 u64 skip = 0;
3049 u64 trim = 0;
3050 if (off > key.offset) {
3051 skip = off - key.offset;
3052 new_key.offset += skip;
3053 }
3054
3055 if (key.offset + datal > off + len)
3056 trim = key.offset + datal - (off + len);
3057
3058 if (comp && (skip || trim)) {
3059 ret = -EINVAL;
3060 btrfs_end_transaction(trans, root);
3061 goto out;
3062 }
3063 size -= skip + trim;
3064 datal -= skip + trim;
3065
3066 ret = btrfs_drop_extents(trans, root, inode,
3067 new_key.offset,
3068 new_key.offset + datal,
3069 1);
3070 if (ret) {
3071 btrfs_abort_transaction(trans, root,
3072 ret);
3073 btrfs_end_transaction(trans, root);
3074 goto out;
3075 }
3076
3077 ret = btrfs_insert_empty_item(trans, root, path,
3078 &new_key, size);
3079 if (ret) {
3080 btrfs_abort_transaction(trans, root,
3081 ret);
3082 btrfs_end_transaction(trans, root);
3083 goto out;
3084 }
3085
3086 if (skip) {
3087 u32 start =
3088 btrfs_file_extent_calc_inline_size(0);
3089 memmove(buf+start, buf+start+skip,
3090 datal);
3091 }
3092
3093 leaf = path->nodes[0];
3094 slot = path->slots[0];
3095 write_extent_buffer(leaf, buf,
3096 btrfs_item_ptr_offset(leaf, slot),
3097 size);
3098 inode_add_bytes(inode, datal);
3099 }
3100
3101 btrfs_mark_buffer_dirty(leaf);
3102 btrfs_release_path(path);
3103
3104 inode_inc_iversion(inode);
3105 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3106
3107 /*
3108 * we round up to the block size at eof when
3109 * determining which extents to clone above,
3110 * but shouldn't round up the file size
3111 */
3112 endoff = new_key.offset + datal;
3113 if (endoff > destoff+olen)
3114 endoff = destoff+olen;
3115 if (endoff > inode->i_size)
3116 btrfs_i_size_write(inode, endoff);
3117
3118 ret = btrfs_update_inode(trans, root, inode);
3119 if (ret) {
3120 btrfs_abort_transaction(trans, root, ret);
3121 btrfs_end_transaction(trans, root);
3122 goto out;
3123 }
3124 ret = btrfs_end_transaction(trans, root);
3125 }
3126 btrfs_release_path(path);
3127 key.offset++;
3128 }
3129 ret = 0;
3130
3131 out:
3132 btrfs_release_path(path);
3133 btrfs_free_path(path);
3134 vfree(buf);
3135 return ret;
3136 }
3137
3138 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3139 u64 off, u64 olen, u64 destoff)
3140 {
3141 struct inode *inode = file_inode(file);
3142 struct btrfs_root *root = BTRFS_I(inode)->root;
3143 struct fd src_file;
3144 struct inode *src;
3145 int ret;
3146 u64 len = olen;
3147 u64 bs = root->fs_info->sb->s_blocksize;
3148 int same_inode = 0;
3149
3150 /*
3151 * TODO:
3152 * - split compressed inline extents. annoying: we need to
3153 * decompress into destination's address_space (the file offset
3154 * may change, so source mapping won't do), then recompress (or
3155 * otherwise reinsert) a subrange.
3156 * - allow ranges within the same file to be cloned (provided
3157 * they don't overlap)?
3158 */
3159
3160 /* the destination must be opened for writing */
3161 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3162 return -EINVAL;
3163
3164 if (btrfs_root_readonly(root))
3165 return -EROFS;
3166
3167 ret = mnt_want_write_file(file);
3168 if (ret)
3169 return ret;
3170
3171 src_file = fdget(srcfd);
3172 if (!src_file.file) {
3173 ret = -EBADF;
3174 goto out_drop_write;
3175 }
3176
3177 ret = -EXDEV;
3178 if (src_file.file->f_path.mnt != file->f_path.mnt)
3179 goto out_fput;
3180
3181 src = file_inode(src_file.file);
3182
3183 ret = -EINVAL;
3184 if (src == inode)
3185 same_inode = 1;
3186
3187 /* the src must be open for reading */
3188 if (!(src_file.file->f_mode & FMODE_READ))
3189 goto out_fput;
3190
3191 /* don't make the dst file partly checksummed */
3192 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3193 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3194 goto out_fput;
3195
3196 ret = -EISDIR;
3197 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3198 goto out_fput;
3199
3200 ret = -EXDEV;
3201 if (src->i_sb != inode->i_sb)
3202 goto out_fput;
3203
3204 if (!same_inode) {
3205 if (inode < src) {
3206 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3207 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3208 } else {
3209 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3210 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3211 }
3212 } else {
3213 mutex_lock(&src->i_mutex);
3214 }
3215
3216 /* determine range to clone */
3217 ret = -EINVAL;
3218 if (off + len > src->i_size || off + len < off)
3219 goto out_unlock;
3220 if (len == 0)
3221 olen = len = src->i_size - off;
3222 /* if we extend to eof, continue to block boundary */
3223 if (off + len == src->i_size)
3224 len = ALIGN(src->i_size, bs) - off;
3225
3226 /* verify the end result is block aligned */
3227 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3228 !IS_ALIGNED(destoff, bs))
3229 goto out_unlock;
3230
3231 /* verify if ranges are overlapped within the same file */
3232 if (same_inode) {
3233 if (destoff + len > off && destoff < off + len)
3234 goto out_unlock;
3235 }
3236
3237 if (destoff > inode->i_size) {
3238 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3239 if (ret)
3240 goto out_unlock;
3241 }
3242
3243 /* truncate page cache pages from target inode range */
3244 truncate_inode_pages_range(&inode->i_data, destoff,
3245 PAGE_CACHE_ALIGN(destoff + len) - 1);
3246
3247 lock_extent_range(src, off, len);
3248
3249 ret = btrfs_clone(src, inode, off, olen, len, destoff);
3250
3251 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3252 out_unlock:
3253 if (!same_inode) {
3254 if (inode < src) {
3255 mutex_unlock(&src->i_mutex);
3256 mutex_unlock(&inode->i_mutex);
3257 } else {
3258 mutex_unlock(&inode->i_mutex);
3259 mutex_unlock(&src->i_mutex);
3260 }
3261 } else {
3262 mutex_unlock(&src->i_mutex);
3263 }
3264 out_fput:
3265 fdput(src_file);
3266 out_drop_write:
3267 mnt_drop_write_file(file);
3268 return ret;
3269 }
3270
3271 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3272 {
3273 struct btrfs_ioctl_clone_range_args args;
3274
3275 if (copy_from_user(&args, argp, sizeof(args)))
3276 return -EFAULT;
3277 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3278 args.src_length, args.dest_offset);
3279 }
3280
3281 /*
3282 * there are many ways the trans_start and trans_end ioctls can lead
3283 * to deadlocks. They should only be used by applications that
3284 * basically own the machine, and have a very in depth understanding
3285 * of all the possible deadlocks and enospc problems.
3286 */
3287 static long btrfs_ioctl_trans_start(struct file *file)
3288 {
3289 struct inode *inode = file_inode(file);
3290 struct btrfs_root *root = BTRFS_I(inode)->root;
3291 struct btrfs_trans_handle *trans;
3292 int ret;
3293
3294 ret = -EPERM;
3295 if (!capable(CAP_SYS_ADMIN))
3296 goto out;
3297
3298 ret = -EINPROGRESS;
3299 if (file->private_data)
3300 goto out;
3301
3302 ret = -EROFS;
3303 if (btrfs_root_readonly(root))
3304 goto out;
3305
3306 ret = mnt_want_write_file(file);
3307 if (ret)
3308 goto out;
3309
3310 atomic_inc(&root->fs_info->open_ioctl_trans);
3311
3312 ret = -ENOMEM;
3313 trans = btrfs_start_ioctl_transaction(root);
3314 if (IS_ERR(trans))
3315 goto out_drop;
3316
3317 file->private_data = trans;
3318 return 0;
3319
3320 out_drop:
3321 atomic_dec(&root->fs_info->open_ioctl_trans);
3322 mnt_drop_write_file(file);
3323 out:
3324 return ret;
3325 }
3326
3327 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3328 {
3329 struct inode *inode = file_inode(file);
3330 struct btrfs_root *root = BTRFS_I(inode)->root;
3331 struct btrfs_root *new_root;
3332 struct btrfs_dir_item *di;
3333 struct btrfs_trans_handle *trans;
3334 struct btrfs_path *path;
3335 struct btrfs_key location;
3336 struct btrfs_disk_key disk_key;
3337 u64 objectid = 0;
3338 u64 dir_id;
3339 int ret;
3340
3341 if (!capable(CAP_SYS_ADMIN))
3342 return -EPERM;
3343
3344 ret = mnt_want_write_file(file);
3345 if (ret)
3346 return ret;
3347
3348 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3349 ret = -EFAULT;
3350 goto out;
3351 }
3352
3353 if (!objectid)
3354 objectid = BTRFS_FS_TREE_OBJECTID;
3355
3356 location.objectid = objectid;
3357 location.type = BTRFS_ROOT_ITEM_KEY;
3358 location.offset = (u64)-1;
3359
3360 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3361 if (IS_ERR(new_root)) {
3362 ret = PTR_ERR(new_root);
3363 goto out;
3364 }
3365
3366 path = btrfs_alloc_path();
3367 if (!path) {
3368 ret = -ENOMEM;
3369 goto out;
3370 }
3371 path->leave_spinning = 1;
3372
3373 trans = btrfs_start_transaction(root, 1);
3374 if (IS_ERR(trans)) {
3375 btrfs_free_path(path);
3376 ret = PTR_ERR(trans);
3377 goto out;
3378 }
3379
3380 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3381 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3382 dir_id, "default", 7, 1);
3383 if (IS_ERR_OR_NULL(di)) {
3384 btrfs_free_path(path);
3385 btrfs_end_transaction(trans, root);
3386 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3387 "item, this isn't going to work");
3388 ret = -ENOENT;
3389 goto out;
3390 }
3391
3392 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3393 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3394 btrfs_mark_buffer_dirty(path->nodes[0]);
3395 btrfs_free_path(path);
3396
3397 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3398 btrfs_end_transaction(trans, root);
3399 out:
3400 mnt_drop_write_file(file);
3401 return ret;
3402 }
3403
3404 void btrfs_get_block_group_info(struct list_head *groups_list,
3405 struct btrfs_ioctl_space_info *space)
3406 {
3407 struct btrfs_block_group_cache *block_group;
3408
3409 space->total_bytes = 0;
3410 space->used_bytes = 0;
3411 space->flags = 0;
3412 list_for_each_entry(block_group, groups_list, list) {
3413 space->flags = block_group->flags;
3414 space->total_bytes += block_group->key.offset;
3415 space->used_bytes +=
3416 btrfs_block_group_used(&block_group->item);
3417 }
3418 }
3419
3420 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3421 {
3422 struct btrfs_ioctl_space_args space_args;
3423 struct btrfs_ioctl_space_info space;
3424 struct btrfs_ioctl_space_info *dest;
3425 struct btrfs_ioctl_space_info *dest_orig;
3426 struct btrfs_ioctl_space_info __user *user_dest;
3427 struct btrfs_space_info *info;
3428 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3429 BTRFS_BLOCK_GROUP_SYSTEM,
3430 BTRFS_BLOCK_GROUP_METADATA,
3431 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3432 int num_types = 4;
3433 int alloc_size;
3434 int ret = 0;
3435 u64 slot_count = 0;
3436 int i, c;
3437
3438 if (copy_from_user(&space_args,
3439 (struct btrfs_ioctl_space_args __user *)arg,
3440 sizeof(space_args)))
3441 return -EFAULT;
3442
3443 for (i = 0; i < num_types; i++) {
3444 struct btrfs_space_info *tmp;
3445
3446 info = NULL;
3447 rcu_read_lock();
3448 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3449 list) {
3450 if (tmp->flags == types[i]) {
3451 info = tmp;
3452 break;
3453 }
3454 }
3455 rcu_read_unlock();
3456
3457 if (!info)
3458 continue;
3459
3460 down_read(&info->groups_sem);
3461 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3462 if (!list_empty(&info->block_groups[c]))
3463 slot_count++;
3464 }
3465 up_read(&info->groups_sem);
3466 }
3467
3468 /* space_slots == 0 means they are asking for a count */
3469 if (space_args.space_slots == 0) {
3470 space_args.total_spaces = slot_count;
3471 goto out;
3472 }
3473
3474 slot_count = min_t(u64, space_args.space_slots, slot_count);
3475
3476 alloc_size = sizeof(*dest) * slot_count;
3477
3478 /* we generally have at most 6 or so space infos, one for each raid
3479 * level. So, a whole page should be more than enough for everyone
3480 */
3481 if (alloc_size > PAGE_CACHE_SIZE)
3482 return -ENOMEM;
3483
3484 space_args.total_spaces = 0;
3485 dest = kmalloc(alloc_size, GFP_NOFS);
3486 if (!dest)
3487 return -ENOMEM;
3488 dest_orig = dest;
3489
3490 /* now we have a buffer to copy into */
3491 for (i = 0; i < num_types; i++) {
3492 struct btrfs_space_info *tmp;
3493
3494 if (!slot_count)
3495 break;
3496
3497 info = NULL;
3498 rcu_read_lock();
3499 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3500 list) {
3501 if (tmp->flags == types[i]) {
3502 info = tmp;
3503 break;
3504 }
3505 }
3506 rcu_read_unlock();
3507
3508 if (!info)
3509 continue;
3510 down_read(&info->groups_sem);
3511 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3512 if (!list_empty(&info->block_groups[c])) {
3513 btrfs_get_block_group_info(
3514 &info->block_groups[c], &space);
3515 memcpy(dest, &space, sizeof(space));
3516 dest++;
3517 space_args.total_spaces++;
3518 slot_count--;
3519 }
3520 if (!slot_count)
3521 break;
3522 }
3523 up_read(&info->groups_sem);
3524 }
3525
3526 user_dest = (struct btrfs_ioctl_space_info __user *)
3527 (arg + sizeof(struct btrfs_ioctl_space_args));
3528
3529 if (copy_to_user(user_dest, dest_orig, alloc_size))
3530 ret = -EFAULT;
3531
3532 kfree(dest_orig);
3533 out:
3534 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3535 ret = -EFAULT;
3536
3537 return ret;
3538 }
3539
3540 /*
3541 * there are many ways the trans_start and trans_end ioctls can lead
3542 * to deadlocks. They should only be used by applications that
3543 * basically own the machine, and have a very in depth understanding
3544 * of all the possible deadlocks and enospc problems.
3545 */
3546 long btrfs_ioctl_trans_end(struct file *file)
3547 {
3548 struct inode *inode = file_inode(file);
3549 struct btrfs_root *root = BTRFS_I(inode)->root;
3550 struct btrfs_trans_handle *trans;
3551
3552 trans = file->private_data;
3553 if (!trans)
3554 return -EINVAL;
3555 file->private_data = NULL;
3556
3557 btrfs_end_transaction(trans, root);
3558
3559 atomic_dec(&root->fs_info->open_ioctl_trans);
3560
3561 mnt_drop_write_file(file);
3562 return 0;
3563 }
3564
3565 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3566 void __user *argp)
3567 {
3568 struct btrfs_trans_handle *trans;
3569 u64 transid;
3570 int ret;
3571
3572 trans = btrfs_attach_transaction_barrier(root);
3573 if (IS_ERR(trans)) {
3574 if (PTR_ERR(trans) != -ENOENT)
3575 return PTR_ERR(trans);
3576
3577 /* No running transaction, don't bother */
3578 transid = root->fs_info->last_trans_committed;
3579 goto out;
3580 }
3581 transid = trans->transid;
3582 ret = btrfs_commit_transaction_async(trans, root, 0);
3583 if (ret) {
3584 btrfs_end_transaction(trans, root);
3585 return ret;
3586 }
3587 out:
3588 if (argp)
3589 if (copy_to_user(argp, &transid, sizeof(transid)))
3590 return -EFAULT;
3591 return 0;
3592 }
3593
3594 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3595 void __user *argp)
3596 {
3597 u64 transid;
3598
3599 if (argp) {
3600 if (copy_from_user(&transid, argp, sizeof(transid)))
3601 return -EFAULT;
3602 } else {
3603 transid = 0; /* current trans */
3604 }
3605 return btrfs_wait_for_commit(root, transid);
3606 }
3607
3608 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3609 {
3610 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3611 struct btrfs_ioctl_scrub_args *sa;
3612 int ret;
3613
3614 if (!capable(CAP_SYS_ADMIN))
3615 return -EPERM;
3616
3617 sa = memdup_user(arg, sizeof(*sa));
3618 if (IS_ERR(sa))
3619 return PTR_ERR(sa);
3620
3621 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3622 ret = mnt_want_write_file(file);
3623 if (ret)
3624 goto out;
3625 }
3626
3627 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3628 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3629 0);
3630
3631 if (copy_to_user(arg, sa, sizeof(*sa)))
3632 ret = -EFAULT;
3633
3634 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3635 mnt_drop_write_file(file);
3636 out:
3637 kfree(sa);
3638 return ret;
3639 }
3640
3641 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3642 {
3643 if (!capable(CAP_SYS_ADMIN))
3644 return -EPERM;
3645
3646 return btrfs_scrub_cancel(root->fs_info);
3647 }
3648
3649 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3650 void __user *arg)
3651 {
3652 struct btrfs_ioctl_scrub_args *sa;
3653 int ret;
3654
3655 if (!capable(CAP_SYS_ADMIN))
3656 return -EPERM;
3657
3658 sa = memdup_user(arg, sizeof(*sa));
3659 if (IS_ERR(sa))
3660 return PTR_ERR(sa);
3661
3662 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3663
3664 if (copy_to_user(arg, sa, sizeof(*sa)))
3665 ret = -EFAULT;
3666
3667 kfree(sa);
3668 return ret;
3669 }
3670
3671 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3672 void __user *arg)
3673 {
3674 struct btrfs_ioctl_get_dev_stats *sa;
3675 int ret;
3676
3677 sa = memdup_user(arg, sizeof(*sa));
3678 if (IS_ERR(sa))
3679 return PTR_ERR(sa);
3680
3681 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3682 kfree(sa);
3683 return -EPERM;
3684 }
3685
3686 ret = btrfs_get_dev_stats(root, sa);
3687
3688 if (copy_to_user(arg, sa, sizeof(*sa)))
3689 ret = -EFAULT;
3690
3691 kfree(sa);
3692 return ret;
3693 }
3694
3695 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3696 {
3697 struct btrfs_ioctl_dev_replace_args *p;
3698 int ret;
3699
3700 if (!capable(CAP_SYS_ADMIN))
3701 return -EPERM;
3702
3703 p = memdup_user(arg, sizeof(*p));
3704 if (IS_ERR(p))
3705 return PTR_ERR(p);
3706
3707 switch (p->cmd) {
3708 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3709 if (root->fs_info->sb->s_flags & MS_RDONLY) {
3710 ret = -EROFS;
3711 goto out;
3712 }
3713 if (atomic_xchg(
3714 &root->fs_info->mutually_exclusive_operation_running,
3715 1)) {
3716 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3717 } else {
3718 ret = btrfs_dev_replace_start(root, p);
3719 atomic_set(
3720 &root->fs_info->mutually_exclusive_operation_running,
3721 0);
3722 }
3723 break;
3724 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3725 btrfs_dev_replace_status(root->fs_info, p);
3726 ret = 0;
3727 break;
3728 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3729 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3730 break;
3731 default:
3732 ret = -EINVAL;
3733 break;
3734 }
3735
3736 if (copy_to_user(arg, p, sizeof(*p)))
3737 ret = -EFAULT;
3738 out:
3739 kfree(p);
3740 return ret;
3741 }
3742
3743 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3744 {
3745 int ret = 0;
3746 int i;
3747 u64 rel_ptr;
3748 int size;
3749 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3750 struct inode_fs_paths *ipath = NULL;
3751 struct btrfs_path *path;
3752
3753 if (!capable(CAP_DAC_READ_SEARCH))
3754 return -EPERM;
3755
3756 path = btrfs_alloc_path();
3757 if (!path) {
3758 ret = -ENOMEM;
3759 goto out;
3760 }
3761
3762 ipa = memdup_user(arg, sizeof(*ipa));
3763 if (IS_ERR(ipa)) {
3764 ret = PTR_ERR(ipa);
3765 ipa = NULL;
3766 goto out;
3767 }
3768
3769 size = min_t(u32, ipa->size, 4096);
3770 ipath = init_ipath(size, root, path);
3771 if (IS_ERR(ipath)) {
3772 ret = PTR_ERR(ipath);
3773 ipath = NULL;
3774 goto out;
3775 }
3776
3777 ret = paths_from_inode(ipa->inum, ipath);
3778 if (ret < 0)
3779 goto out;
3780
3781 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3782 rel_ptr = ipath->fspath->val[i] -
3783 (u64)(unsigned long)ipath->fspath->val;
3784 ipath->fspath->val[i] = rel_ptr;
3785 }
3786
3787 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3788 (void *)(unsigned long)ipath->fspath, size);
3789 if (ret) {
3790 ret = -EFAULT;
3791 goto out;
3792 }
3793
3794 out:
3795 btrfs_free_path(path);
3796 free_ipath(ipath);
3797 kfree(ipa);
3798
3799 return ret;
3800 }
3801
3802 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3803 {
3804 struct btrfs_data_container *inodes = ctx;
3805 const size_t c = 3 * sizeof(u64);
3806
3807 if (inodes->bytes_left >= c) {
3808 inodes->bytes_left -= c;
3809 inodes->val[inodes->elem_cnt] = inum;
3810 inodes->val[inodes->elem_cnt + 1] = offset;
3811 inodes->val[inodes->elem_cnt + 2] = root;
3812 inodes->elem_cnt += 3;
3813 } else {
3814 inodes->bytes_missing += c - inodes->bytes_left;
3815 inodes->bytes_left = 0;
3816 inodes->elem_missed += 3;
3817 }
3818
3819 return 0;
3820 }
3821
3822 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3823 void __user *arg)
3824 {
3825 int ret = 0;
3826 int size;
3827 struct btrfs_ioctl_logical_ino_args *loi;
3828 struct btrfs_data_container *inodes = NULL;
3829 struct btrfs_path *path = NULL;
3830
3831 if (!capable(CAP_SYS_ADMIN))
3832 return -EPERM;
3833
3834 loi = memdup_user(arg, sizeof(*loi));
3835 if (IS_ERR(loi)) {
3836 ret = PTR_ERR(loi);
3837 loi = NULL;
3838 goto out;
3839 }
3840
3841 path = btrfs_alloc_path();
3842 if (!path) {
3843 ret = -ENOMEM;
3844 goto out;
3845 }
3846
3847 size = min_t(u32, loi->size, 64 * 1024);
3848 inodes = init_data_container(size);
3849 if (IS_ERR(inodes)) {
3850 ret = PTR_ERR(inodes);
3851 inodes = NULL;
3852 goto out;
3853 }
3854
3855 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3856 build_ino_list, inodes);
3857 if (ret == -EINVAL)
3858 ret = -ENOENT;
3859 if (ret < 0)
3860 goto out;
3861
3862 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3863 (void *)(unsigned long)inodes, size);
3864 if (ret)
3865 ret = -EFAULT;
3866
3867 out:
3868 btrfs_free_path(path);
3869 vfree(inodes);
3870 kfree(loi);
3871
3872 return ret;
3873 }
3874
3875 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3876 struct btrfs_ioctl_balance_args *bargs)
3877 {
3878 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3879
3880 bargs->flags = bctl->flags;
3881
3882 if (atomic_read(&fs_info->balance_running))
3883 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3884 if (atomic_read(&fs_info->balance_pause_req))
3885 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3886 if (atomic_read(&fs_info->balance_cancel_req))
3887 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3888
3889 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3890 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3891 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3892
3893 if (lock) {
3894 spin_lock(&fs_info->balance_lock);
3895 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3896 spin_unlock(&fs_info->balance_lock);
3897 } else {
3898 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3899 }
3900 }
3901
3902 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3903 {
3904 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3905 struct btrfs_fs_info *fs_info = root->fs_info;
3906 struct btrfs_ioctl_balance_args *bargs;
3907 struct btrfs_balance_control *bctl;
3908 bool need_unlock; /* for mut. excl. ops lock */
3909 int ret;
3910
3911 if (!capable(CAP_SYS_ADMIN))
3912 return -EPERM;
3913
3914 ret = mnt_want_write_file(file);
3915 if (ret)
3916 return ret;
3917
3918 again:
3919 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3920 mutex_lock(&fs_info->volume_mutex);
3921 mutex_lock(&fs_info->balance_mutex);
3922 need_unlock = true;
3923 goto locked;
3924 }
3925
3926 /*
3927 * mut. excl. ops lock is locked. Three possibilites:
3928 * (1) some other op is running
3929 * (2) balance is running
3930 * (3) balance is paused -- special case (think resume)
3931 */
3932 mutex_lock(&fs_info->balance_mutex);
3933 if (fs_info->balance_ctl) {
3934 /* this is either (2) or (3) */
3935 if (!atomic_read(&fs_info->balance_running)) {
3936 mutex_unlock(&fs_info->balance_mutex);
3937 if (!mutex_trylock(&fs_info->volume_mutex))
3938 goto again;
3939 mutex_lock(&fs_info->balance_mutex);
3940
3941 if (fs_info->balance_ctl &&
3942 !atomic_read(&fs_info->balance_running)) {
3943 /* this is (3) */
3944 need_unlock = false;
3945 goto locked;
3946 }
3947
3948 mutex_unlock(&fs_info->balance_mutex);
3949 mutex_unlock(&fs_info->volume_mutex);
3950 goto again;
3951 } else {
3952 /* this is (2) */
3953 mutex_unlock(&fs_info->balance_mutex);
3954 ret = -EINPROGRESS;
3955 goto out;
3956 }
3957 } else {
3958 /* this is (1) */
3959 mutex_unlock(&fs_info->balance_mutex);
3960 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3961 goto out;
3962 }
3963
3964 locked:
3965 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
3966
3967 if (arg) {
3968 bargs = memdup_user(arg, sizeof(*bargs));
3969 if (IS_ERR(bargs)) {
3970 ret = PTR_ERR(bargs);
3971 goto out_unlock;
3972 }
3973
3974 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3975 if (!fs_info->balance_ctl) {
3976 ret = -ENOTCONN;
3977 goto out_bargs;
3978 }
3979
3980 bctl = fs_info->balance_ctl;
3981 spin_lock(&fs_info->balance_lock);
3982 bctl->flags |= BTRFS_BALANCE_RESUME;
3983 spin_unlock(&fs_info->balance_lock);
3984
3985 goto do_balance;
3986 }
3987 } else {
3988 bargs = NULL;
3989 }
3990
3991 if (fs_info->balance_ctl) {
3992 ret = -EINPROGRESS;
3993 goto out_bargs;
3994 }
3995
3996 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3997 if (!bctl) {
3998 ret = -ENOMEM;
3999 goto out_bargs;
4000 }
4001
4002 bctl->fs_info = fs_info;
4003 if (arg) {
4004 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4005 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4006 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4007
4008 bctl->flags = bargs->flags;
4009 } else {
4010 /* balance everything - no filters */
4011 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4012 }
4013
4014 do_balance:
4015 /*
4016 * Ownership of bctl and mutually_exclusive_operation_running
4017 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4018 * or, if restriper was paused all the way until unmount, in
4019 * free_fs_info. mutually_exclusive_operation_running is
4020 * cleared in __cancel_balance.
4021 */
4022 need_unlock = false;
4023
4024 ret = btrfs_balance(bctl, bargs);
4025
4026 if (arg) {
4027 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4028 ret = -EFAULT;
4029 }
4030
4031 out_bargs:
4032 kfree(bargs);
4033 out_unlock:
4034 mutex_unlock(&fs_info->balance_mutex);
4035 mutex_unlock(&fs_info->volume_mutex);
4036 if (need_unlock)
4037 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4038 out:
4039 mnt_drop_write_file(file);
4040 return ret;
4041 }
4042
4043 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4044 {
4045 if (!capable(CAP_SYS_ADMIN))
4046 return -EPERM;
4047
4048 switch (cmd) {
4049 case BTRFS_BALANCE_CTL_PAUSE:
4050 return btrfs_pause_balance(root->fs_info);
4051 case BTRFS_BALANCE_CTL_CANCEL:
4052 return btrfs_cancel_balance(root->fs_info);
4053 }
4054
4055 return -EINVAL;
4056 }
4057
4058 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4059 void __user *arg)
4060 {
4061 struct btrfs_fs_info *fs_info = root->fs_info;
4062 struct btrfs_ioctl_balance_args *bargs;
4063 int ret = 0;
4064
4065 if (!capable(CAP_SYS_ADMIN))
4066 return -EPERM;
4067
4068 mutex_lock(&fs_info->balance_mutex);
4069 if (!fs_info->balance_ctl) {
4070 ret = -ENOTCONN;
4071 goto out;
4072 }
4073
4074 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4075 if (!bargs) {
4076 ret = -ENOMEM;
4077 goto out;
4078 }
4079
4080 update_ioctl_balance_args(fs_info, 1, bargs);
4081
4082 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4083 ret = -EFAULT;
4084
4085 kfree(bargs);
4086 out:
4087 mutex_unlock(&fs_info->balance_mutex);
4088 return ret;
4089 }
4090
4091 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4092 {
4093 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4094 struct btrfs_ioctl_quota_ctl_args *sa;
4095 struct btrfs_trans_handle *trans = NULL;
4096 int ret;
4097 int err;
4098
4099 if (!capable(CAP_SYS_ADMIN))
4100 return -EPERM;
4101
4102 ret = mnt_want_write_file(file);
4103 if (ret)
4104 return ret;
4105
4106 sa = memdup_user(arg, sizeof(*sa));
4107 if (IS_ERR(sa)) {
4108 ret = PTR_ERR(sa);
4109 goto drop_write;
4110 }
4111
4112 down_write(&root->fs_info->subvol_sem);
4113 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4114 if (IS_ERR(trans)) {
4115 ret = PTR_ERR(trans);
4116 goto out;
4117 }
4118
4119 switch (sa->cmd) {
4120 case BTRFS_QUOTA_CTL_ENABLE:
4121 ret = btrfs_quota_enable(trans, root->fs_info);
4122 break;
4123 case BTRFS_QUOTA_CTL_DISABLE:
4124 ret = btrfs_quota_disable(trans, root->fs_info);
4125 break;
4126 default:
4127 ret = -EINVAL;
4128 break;
4129 }
4130
4131 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4132 if (err && !ret)
4133 ret = err;
4134 out:
4135 kfree(sa);
4136 up_write(&root->fs_info->subvol_sem);
4137 drop_write:
4138 mnt_drop_write_file(file);
4139 return ret;
4140 }
4141
4142 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4143 {
4144 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4145 struct btrfs_ioctl_qgroup_assign_args *sa;
4146 struct btrfs_trans_handle *trans;
4147 int ret;
4148 int err;
4149
4150 if (!capable(CAP_SYS_ADMIN))
4151 return -EPERM;
4152
4153 ret = mnt_want_write_file(file);
4154 if (ret)
4155 return ret;
4156
4157 sa = memdup_user(arg, sizeof(*sa));
4158 if (IS_ERR(sa)) {
4159 ret = PTR_ERR(sa);
4160 goto drop_write;
4161 }
4162
4163 trans = btrfs_join_transaction(root);
4164 if (IS_ERR(trans)) {
4165 ret = PTR_ERR(trans);
4166 goto out;
4167 }
4168
4169 /* FIXME: check if the IDs really exist */
4170 if (sa->assign) {
4171 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4172 sa->src, sa->dst);
4173 } else {
4174 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4175 sa->src, sa->dst);
4176 }
4177
4178 err = btrfs_end_transaction(trans, root);
4179 if (err && !ret)
4180 ret = err;
4181
4182 out:
4183 kfree(sa);
4184 drop_write:
4185 mnt_drop_write_file(file);
4186 return ret;
4187 }
4188
4189 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4190 {
4191 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4192 struct btrfs_ioctl_qgroup_create_args *sa;
4193 struct btrfs_trans_handle *trans;
4194 int ret;
4195 int err;
4196
4197 if (!capable(CAP_SYS_ADMIN))
4198 return -EPERM;
4199
4200 ret = mnt_want_write_file(file);
4201 if (ret)
4202 return ret;
4203
4204 sa = memdup_user(arg, sizeof(*sa));
4205 if (IS_ERR(sa)) {
4206 ret = PTR_ERR(sa);
4207 goto drop_write;
4208 }
4209
4210 if (!sa->qgroupid) {
4211 ret = -EINVAL;
4212 goto out;
4213 }
4214
4215 trans = btrfs_join_transaction(root);
4216 if (IS_ERR(trans)) {
4217 ret = PTR_ERR(trans);
4218 goto out;
4219 }
4220
4221 /* FIXME: check if the IDs really exist */
4222 if (sa->create) {
4223 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4224 NULL);
4225 } else {
4226 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4227 }
4228
4229 err = btrfs_end_transaction(trans, root);
4230 if (err && !ret)
4231 ret = err;
4232
4233 out:
4234 kfree(sa);
4235 drop_write:
4236 mnt_drop_write_file(file);
4237 return ret;
4238 }
4239
4240 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4241 {
4242 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4243 struct btrfs_ioctl_qgroup_limit_args *sa;
4244 struct btrfs_trans_handle *trans;
4245 int ret;
4246 int err;
4247 u64 qgroupid;
4248
4249 if (!capable(CAP_SYS_ADMIN))
4250 return -EPERM;
4251
4252 ret = mnt_want_write_file(file);
4253 if (ret)
4254 return ret;
4255
4256 sa = memdup_user(arg, sizeof(*sa));
4257 if (IS_ERR(sa)) {
4258 ret = PTR_ERR(sa);
4259 goto drop_write;
4260 }
4261
4262 trans = btrfs_join_transaction(root);
4263 if (IS_ERR(trans)) {
4264 ret = PTR_ERR(trans);
4265 goto out;
4266 }
4267
4268 qgroupid = sa->qgroupid;
4269 if (!qgroupid) {
4270 /* take the current subvol as qgroup */
4271 qgroupid = root->root_key.objectid;
4272 }
4273
4274 /* FIXME: check if the IDs really exist */
4275 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4276
4277 err = btrfs_end_transaction(trans, root);
4278 if (err && !ret)
4279 ret = err;
4280
4281 out:
4282 kfree(sa);
4283 drop_write:
4284 mnt_drop_write_file(file);
4285 return ret;
4286 }
4287
4288 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4289 {
4290 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4291 struct btrfs_ioctl_quota_rescan_args *qsa;
4292 int ret;
4293
4294 if (!capable(CAP_SYS_ADMIN))
4295 return -EPERM;
4296
4297 ret = mnt_want_write_file(file);
4298 if (ret)
4299 return ret;
4300
4301 qsa = memdup_user(arg, sizeof(*qsa));
4302 if (IS_ERR(qsa)) {
4303 ret = PTR_ERR(qsa);
4304 goto drop_write;
4305 }
4306
4307 if (qsa->flags) {
4308 ret = -EINVAL;
4309 goto out;
4310 }
4311
4312 ret = btrfs_qgroup_rescan(root->fs_info);
4313
4314 out:
4315 kfree(qsa);
4316 drop_write:
4317 mnt_drop_write_file(file);
4318 return ret;
4319 }
4320
4321 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4322 {
4323 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4324 struct btrfs_ioctl_quota_rescan_args *qsa;
4325 int ret = 0;
4326
4327 if (!capable(CAP_SYS_ADMIN))
4328 return -EPERM;
4329
4330 qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4331 if (!qsa)
4332 return -ENOMEM;
4333
4334 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4335 qsa->flags = 1;
4336 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4337 }
4338
4339 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4340 ret = -EFAULT;
4341
4342 kfree(qsa);
4343 return ret;
4344 }
4345
4346 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4347 {
4348 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4349
4350 if (!capable(CAP_SYS_ADMIN))
4351 return -EPERM;
4352
4353 return btrfs_qgroup_wait_for_completion(root->fs_info);
4354 }
4355
4356 static long btrfs_ioctl_set_received_subvol(struct file *file,
4357 void __user *arg)
4358 {
4359 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4360 struct inode *inode = file_inode(file);
4361 struct btrfs_root *root = BTRFS_I(inode)->root;
4362 struct btrfs_root_item *root_item = &root->root_item;
4363 struct btrfs_trans_handle *trans;
4364 struct timespec ct = CURRENT_TIME;
4365 int ret = 0;
4366 int received_uuid_changed;
4367
4368 if (!inode_owner_or_capable(inode))
4369 return -EPERM;
4370
4371 ret = mnt_want_write_file(file);
4372 if (ret < 0)
4373 return ret;
4374
4375 down_write(&root->fs_info->subvol_sem);
4376
4377 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4378 ret = -EINVAL;
4379 goto out;
4380 }
4381
4382 if (btrfs_root_readonly(root)) {
4383 ret = -EROFS;
4384 goto out;
4385 }
4386
4387 sa = memdup_user(arg, sizeof(*sa));
4388 if (IS_ERR(sa)) {
4389 ret = PTR_ERR(sa);
4390 sa = NULL;
4391 goto out;
4392 }
4393
4394 /*
4395 * 1 - root item
4396 * 2 - uuid items (received uuid + subvol uuid)
4397 */
4398 trans = btrfs_start_transaction(root, 3);
4399 if (IS_ERR(trans)) {
4400 ret = PTR_ERR(trans);
4401 trans = NULL;
4402 goto out;
4403 }
4404
4405 sa->rtransid = trans->transid;
4406 sa->rtime.sec = ct.tv_sec;
4407 sa->rtime.nsec = ct.tv_nsec;
4408
4409 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4410 BTRFS_UUID_SIZE);
4411 if (received_uuid_changed &&
4412 !btrfs_is_empty_uuid(root_item->received_uuid))
4413 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4414 root_item->received_uuid,
4415 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4416 root->root_key.objectid);
4417 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4418 btrfs_set_root_stransid(root_item, sa->stransid);
4419 btrfs_set_root_rtransid(root_item, sa->rtransid);
4420 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4421 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4422 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4423 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4424
4425 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4426 &root->root_key, &root->root_item);
4427 if (ret < 0) {
4428 btrfs_end_transaction(trans, root);
4429 goto out;
4430 }
4431 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4432 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4433 sa->uuid,
4434 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4435 root->root_key.objectid);
4436 if (ret < 0 && ret != -EEXIST) {
4437 btrfs_abort_transaction(trans, root, ret);
4438 goto out;
4439 }
4440 }
4441 ret = btrfs_commit_transaction(trans, root);
4442 if (ret < 0) {
4443 btrfs_abort_transaction(trans, root, ret);
4444 goto out;
4445 }
4446
4447 ret = copy_to_user(arg, sa, sizeof(*sa));
4448 if (ret)
4449 ret = -EFAULT;
4450
4451 out:
4452 kfree(sa);
4453 up_write(&root->fs_info->subvol_sem);
4454 mnt_drop_write_file(file);
4455 return ret;
4456 }
4457
4458 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4459 {
4460 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4461 size_t len;
4462 int ret;
4463 char label[BTRFS_LABEL_SIZE];
4464
4465 spin_lock(&root->fs_info->super_lock);
4466 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4467 spin_unlock(&root->fs_info->super_lock);
4468
4469 len = strnlen(label, BTRFS_LABEL_SIZE);
4470
4471 if (len == BTRFS_LABEL_SIZE) {
4472 btrfs_warn(root->fs_info,
4473 "label is too long, return the first %zu bytes", --len);
4474 }
4475
4476 ret = copy_to_user(arg, label, len);
4477
4478 return ret ? -EFAULT : 0;
4479 }
4480
4481 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4482 {
4483 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4484 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4485 struct btrfs_trans_handle *trans;
4486 char label[BTRFS_LABEL_SIZE];
4487 int ret;
4488
4489 if (!capable(CAP_SYS_ADMIN))
4490 return -EPERM;
4491
4492 if (copy_from_user(label, arg, sizeof(label)))
4493 return -EFAULT;
4494
4495 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4496 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
4497 BTRFS_LABEL_SIZE - 1);
4498 return -EINVAL;
4499 }
4500
4501 ret = mnt_want_write_file(file);
4502 if (ret)
4503 return ret;
4504
4505 trans = btrfs_start_transaction(root, 0);
4506 if (IS_ERR(trans)) {
4507 ret = PTR_ERR(trans);
4508 goto out_unlock;
4509 }
4510
4511 spin_lock(&root->fs_info->super_lock);
4512 strcpy(super_block->label, label);
4513 spin_unlock(&root->fs_info->super_lock);
4514 ret = btrfs_commit_transaction(trans, root);
4515
4516 out_unlock:
4517 mnt_drop_write_file(file);
4518 return ret;
4519 }
4520
4521 #define INIT_FEATURE_FLAGS(suffix) \
4522 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4523 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4524 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4525
4526 static int btrfs_ioctl_get_supported_features(struct file *file,
4527 void __user *arg)
4528 {
4529 static struct btrfs_ioctl_feature_flags features[3] = {
4530 INIT_FEATURE_FLAGS(SUPP),
4531 INIT_FEATURE_FLAGS(SAFE_SET),
4532 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4533 };
4534
4535 if (copy_to_user(arg, &features, sizeof(features)))
4536 return -EFAULT;
4537
4538 return 0;
4539 }
4540
4541 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
4542 {
4543 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4544 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4545 struct btrfs_ioctl_feature_flags features;
4546
4547 features.compat_flags = btrfs_super_compat_flags(super_block);
4548 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4549 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4550
4551 if (copy_to_user(arg, &features, sizeof(features)))
4552 return -EFAULT;
4553
4554 return 0;
4555 }
4556
4557 static int check_feature_bits(struct btrfs_root *root,
4558 enum btrfs_feature_set set,
4559 u64 change_mask, u64 flags, u64 supported_flags,
4560 u64 safe_set, u64 safe_clear)
4561 {
4562 const char *type = btrfs_feature_set_names[set];
4563 char *names;
4564 u64 disallowed, unsupported;
4565 u64 set_mask = flags & change_mask;
4566 u64 clear_mask = ~flags & change_mask;
4567
4568 unsupported = set_mask & ~supported_flags;
4569 if (unsupported) {
4570 names = btrfs_printable_features(set, unsupported);
4571 if (names) {
4572 btrfs_warn(root->fs_info,
4573 "this kernel does not support the %s feature bit%s",
4574 names, strchr(names, ',') ? "s" : "");
4575 kfree(names);
4576 } else
4577 btrfs_warn(root->fs_info,
4578 "this kernel does not support %s bits 0x%llx",
4579 type, unsupported);
4580 return -EOPNOTSUPP;
4581 }
4582
4583 disallowed = set_mask & ~safe_set;
4584 if (disallowed) {
4585 names = btrfs_printable_features(set, disallowed);
4586 if (names) {
4587 btrfs_warn(root->fs_info,
4588 "can't set the %s feature bit%s while mounted",
4589 names, strchr(names, ',') ? "s" : "");
4590 kfree(names);
4591 } else
4592 btrfs_warn(root->fs_info,
4593 "can't set %s bits 0x%llx while mounted",
4594 type, disallowed);
4595 return -EPERM;
4596 }
4597
4598 disallowed = clear_mask & ~safe_clear;
4599 if (disallowed) {
4600 names = btrfs_printable_features(set, disallowed);
4601 if (names) {
4602 btrfs_warn(root->fs_info,
4603 "can't clear the %s feature bit%s while mounted",
4604 names, strchr(names, ',') ? "s" : "");
4605 kfree(names);
4606 } else
4607 btrfs_warn(root->fs_info,
4608 "can't clear %s bits 0x%llx while mounted",
4609 type, disallowed);
4610 return -EPERM;
4611 }
4612
4613 return 0;
4614 }
4615
4616 #define check_feature(root, change_mask, flags, mask_base) \
4617 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
4618 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4619 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4620 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4621
4622 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4623 {
4624 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4625 struct btrfs_super_block *super_block = root->fs_info->super_copy;
4626 struct btrfs_ioctl_feature_flags flags[2];
4627 struct btrfs_trans_handle *trans;
4628 u64 newflags;
4629 int ret;
4630
4631 if (!capable(CAP_SYS_ADMIN))
4632 return -EPERM;
4633
4634 if (copy_from_user(flags, arg, sizeof(flags)))
4635 return -EFAULT;
4636
4637 /* Nothing to do */
4638 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4639 !flags[0].incompat_flags)
4640 return 0;
4641
4642 ret = check_feature(root, flags[0].compat_flags,
4643 flags[1].compat_flags, COMPAT);
4644 if (ret)
4645 return ret;
4646
4647 ret = check_feature(root, flags[0].compat_ro_flags,
4648 flags[1].compat_ro_flags, COMPAT_RO);
4649 if (ret)
4650 return ret;
4651
4652 ret = check_feature(root, flags[0].incompat_flags,
4653 flags[1].incompat_flags, INCOMPAT);
4654 if (ret)
4655 return ret;
4656
4657 trans = btrfs_start_transaction(root, 0);
4658 if (IS_ERR(trans))
4659 return PTR_ERR(trans);
4660
4661 spin_lock(&root->fs_info->super_lock);
4662 newflags = btrfs_super_compat_flags(super_block);
4663 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4664 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4665 btrfs_set_super_compat_flags(super_block, newflags);
4666
4667 newflags = btrfs_super_compat_ro_flags(super_block);
4668 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4669 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4670 btrfs_set_super_compat_ro_flags(super_block, newflags);
4671
4672 newflags = btrfs_super_incompat_flags(super_block);
4673 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4674 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4675 btrfs_set_super_incompat_flags(super_block, newflags);
4676 spin_unlock(&root->fs_info->super_lock);
4677
4678 return btrfs_commit_transaction(trans, root);
4679 }
4680
4681 long btrfs_ioctl(struct file *file, unsigned int
4682 cmd, unsigned long arg)
4683 {
4684 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4685 void __user *argp = (void __user *)arg;
4686
4687 switch (cmd) {
4688 case FS_IOC_GETFLAGS:
4689 return btrfs_ioctl_getflags(file, argp);
4690 case FS_IOC_SETFLAGS:
4691 return btrfs_ioctl_setflags(file, argp);
4692 case FS_IOC_GETVERSION:
4693 return btrfs_ioctl_getversion(file, argp);
4694 case FITRIM:
4695 return btrfs_ioctl_fitrim(file, argp);
4696 case BTRFS_IOC_SNAP_CREATE:
4697 return btrfs_ioctl_snap_create(file, argp, 0);
4698 case BTRFS_IOC_SNAP_CREATE_V2:
4699 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4700 case BTRFS_IOC_SUBVOL_CREATE:
4701 return btrfs_ioctl_snap_create(file, argp, 1);
4702 case BTRFS_IOC_SUBVOL_CREATE_V2:
4703 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4704 case BTRFS_IOC_SNAP_DESTROY:
4705 return btrfs_ioctl_snap_destroy(file, argp);
4706 case BTRFS_IOC_SUBVOL_GETFLAGS:
4707 return btrfs_ioctl_subvol_getflags(file, argp);
4708 case BTRFS_IOC_SUBVOL_SETFLAGS:
4709 return btrfs_ioctl_subvol_setflags(file, argp);
4710 case BTRFS_IOC_DEFAULT_SUBVOL:
4711 return btrfs_ioctl_default_subvol(file, argp);
4712 case BTRFS_IOC_DEFRAG:
4713 return btrfs_ioctl_defrag(file, NULL);
4714 case BTRFS_IOC_DEFRAG_RANGE:
4715 return btrfs_ioctl_defrag(file, argp);
4716 case BTRFS_IOC_RESIZE:
4717 return btrfs_ioctl_resize(file, argp);
4718 case BTRFS_IOC_ADD_DEV:
4719 return btrfs_ioctl_add_dev(root, argp);
4720 case BTRFS_IOC_RM_DEV:
4721 return btrfs_ioctl_rm_dev(file, argp);
4722 case BTRFS_IOC_FS_INFO:
4723 return btrfs_ioctl_fs_info(root, argp);
4724 case BTRFS_IOC_DEV_INFO:
4725 return btrfs_ioctl_dev_info(root, argp);
4726 case BTRFS_IOC_BALANCE:
4727 return btrfs_ioctl_balance(file, NULL);
4728 case BTRFS_IOC_CLONE:
4729 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4730 case BTRFS_IOC_CLONE_RANGE:
4731 return btrfs_ioctl_clone_range(file, argp);
4732 case BTRFS_IOC_TRANS_START:
4733 return btrfs_ioctl_trans_start(file);
4734 case BTRFS_IOC_TRANS_END:
4735 return btrfs_ioctl_trans_end(file);
4736 case BTRFS_IOC_TREE_SEARCH:
4737 return btrfs_ioctl_tree_search(file, argp);
4738 case BTRFS_IOC_INO_LOOKUP:
4739 return btrfs_ioctl_ino_lookup(file, argp);
4740 case BTRFS_IOC_INO_PATHS:
4741 return btrfs_ioctl_ino_to_path(root, argp);
4742 case BTRFS_IOC_LOGICAL_INO:
4743 return btrfs_ioctl_logical_to_ino(root, argp);
4744 case BTRFS_IOC_SPACE_INFO:
4745 return btrfs_ioctl_space_info(root, argp);
4746 case BTRFS_IOC_SYNC: {
4747 int ret;
4748
4749 ret = btrfs_start_delalloc_roots(root->fs_info, 0);
4750 if (ret)
4751 return ret;
4752 ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
4753 return ret;
4754 }
4755 case BTRFS_IOC_START_SYNC:
4756 return btrfs_ioctl_start_sync(root, argp);
4757 case BTRFS_IOC_WAIT_SYNC:
4758 return btrfs_ioctl_wait_sync(root, argp);
4759 case BTRFS_IOC_SCRUB:
4760 return btrfs_ioctl_scrub(file, argp);
4761 case BTRFS_IOC_SCRUB_CANCEL:
4762 return btrfs_ioctl_scrub_cancel(root, argp);
4763 case BTRFS_IOC_SCRUB_PROGRESS:
4764 return btrfs_ioctl_scrub_progress(root, argp);
4765 case BTRFS_IOC_BALANCE_V2:
4766 return btrfs_ioctl_balance(file, argp);
4767 case BTRFS_IOC_BALANCE_CTL:
4768 return btrfs_ioctl_balance_ctl(root, arg);
4769 case BTRFS_IOC_BALANCE_PROGRESS:
4770 return btrfs_ioctl_balance_progress(root, argp);
4771 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4772 return btrfs_ioctl_set_received_subvol(file, argp);
4773 case BTRFS_IOC_SEND:
4774 return btrfs_ioctl_send(file, argp);
4775 case BTRFS_IOC_GET_DEV_STATS:
4776 return btrfs_ioctl_get_dev_stats(root, argp);
4777 case BTRFS_IOC_QUOTA_CTL:
4778 return btrfs_ioctl_quota_ctl(file, argp);
4779 case BTRFS_IOC_QGROUP_ASSIGN:
4780 return btrfs_ioctl_qgroup_assign(file, argp);
4781 case BTRFS_IOC_QGROUP_CREATE:
4782 return btrfs_ioctl_qgroup_create(file, argp);
4783 case BTRFS_IOC_QGROUP_LIMIT:
4784 return btrfs_ioctl_qgroup_limit(file, argp);
4785 case BTRFS_IOC_QUOTA_RESCAN:
4786 return btrfs_ioctl_quota_rescan(file, argp);
4787 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4788 return btrfs_ioctl_quota_rescan_status(file, argp);
4789 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4790 return btrfs_ioctl_quota_rescan_wait(file, argp);
4791 case BTRFS_IOC_DEV_REPLACE:
4792 return btrfs_ioctl_dev_replace(root, argp);
4793 case BTRFS_IOC_GET_FSLABEL:
4794 return btrfs_ioctl_get_fslabel(file, argp);
4795 case BTRFS_IOC_SET_FSLABEL:
4796 return btrfs_ioctl_set_fslabel(file, argp);
4797 case BTRFS_IOC_FILE_EXTENT_SAME:
4798 return btrfs_ioctl_file_extent_same(file, argp);
4799 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4800 return btrfs_ioctl_get_supported_features(file, argp);
4801 case BTRFS_IOC_GET_FEATURES:
4802 return btrfs_ioctl_get_features(file, argp);
4803 case BTRFS_IOC_SET_FEATURES:
4804 return btrfs_ioctl_set_features(file, argp);
4805 }
4806
4807 return -ENOTTY;
4808 }
This page took 0.133478 seconds and 5 git commands to generate.