Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
64
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71 struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74 } __attribute__ ((__packed__));
75
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
85
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89
90
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 int no_time_update);
94
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
97 {
98 if (S_ISDIR(mode))
99 return flags;
100 else if (S_ISREG(mode))
101 return flags & ~FS_DIRSYNC_FL;
102 else
103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104 }
105
106 /*
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 */
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 {
111 unsigned int iflags = 0;
112
113 if (flags & BTRFS_INODE_SYNC)
114 iflags |= FS_SYNC_FL;
115 if (flags & BTRFS_INODE_IMMUTABLE)
116 iflags |= FS_IMMUTABLE_FL;
117 if (flags & BTRFS_INODE_APPEND)
118 iflags |= FS_APPEND_FL;
119 if (flags & BTRFS_INODE_NODUMP)
120 iflags |= FS_NODUMP_FL;
121 if (flags & BTRFS_INODE_NOATIME)
122 iflags |= FS_NOATIME_FL;
123 if (flags & BTRFS_INODE_DIRSYNC)
124 iflags |= FS_DIRSYNC_FL;
125 if (flags & BTRFS_INODE_NODATACOW)
126 iflags |= FS_NOCOW_FL;
127
128 if (flags & BTRFS_INODE_NOCOMPRESS)
129 iflags |= FS_NOCOMP_FL;
130 else if (flags & BTRFS_INODE_COMPRESS)
131 iflags |= FS_COMPR_FL;
132
133 return iflags;
134 }
135
136 /*
137 * Update inode->i_flags based on the btrfs internal flags.
138 */
139 void btrfs_update_iflags(struct inode *inode)
140 {
141 struct btrfs_inode *ip = BTRFS_I(inode);
142 unsigned int new_fl = 0;
143
144 if (ip->flags & BTRFS_INODE_SYNC)
145 new_fl |= S_SYNC;
146 if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 new_fl |= S_IMMUTABLE;
148 if (ip->flags & BTRFS_INODE_APPEND)
149 new_fl |= S_APPEND;
150 if (ip->flags & BTRFS_INODE_NOATIME)
151 new_fl |= S_NOATIME;
152 if (ip->flags & BTRFS_INODE_DIRSYNC)
153 new_fl |= S_DIRSYNC;
154
155 set_mask_bits(&inode->i_flags,
156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 new_fl);
158 }
159
160 /*
161 * Inherit flags from the parent inode.
162 *
163 * Currently only the compression flags and the cow flags are inherited.
164 */
165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
166 {
167 unsigned int flags;
168
169 if (!dir)
170 return;
171
172 flags = BTRFS_I(dir)->flags;
173
174 if (flags & BTRFS_INODE_NOCOMPRESS) {
175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 } else if (flags & BTRFS_INODE_COMPRESS) {
178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 }
181
182 if (flags & BTRFS_INODE_NODATACOW) {
183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 if (S_ISREG(inode->i_mode))
185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 }
187
188 btrfs_update_iflags(inode);
189 }
190
191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 {
193 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195
196 if (copy_to_user(arg, &flags, sizeof(flags)))
197 return -EFAULT;
198 return 0;
199 }
200
201 static int check_flags(unsigned int flags)
202 {
203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 FS_NOATIME_FL | FS_NODUMP_FL | \
205 FS_SYNC_FL | FS_DIRSYNC_FL | \
206 FS_NOCOMP_FL | FS_COMPR_FL |
207 FS_NOCOW_FL))
208 return -EOPNOTSUPP;
209
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 return 0;
214 }
215
216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 {
218 struct inode *inode = file_inode(file);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
223 int ret;
224 u64 ip_oldflags;
225 unsigned int i_oldflags;
226 umode_t mode;
227
228 if (!inode_owner_or_capable(inode))
229 return -EPERM;
230
231 if (btrfs_root_readonly(root))
232 return -EROFS;
233
234 if (copy_from_user(&flags, arg, sizeof(flags)))
235 return -EFAULT;
236
237 ret = check_flags(flags);
238 if (ret)
239 return ret;
240
241 ret = mnt_want_write_file(file);
242 if (ret)
243 return ret;
244
245 inode_lock(inode);
246
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
250
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
255 ret = -EPERM;
256 goto out_unlock;
257 }
258 }
259
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
262 else
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
266 else
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
270 else
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
274 else
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
278 else
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
282 else
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
285 if (S_ISREG(mode)) {
286 /*
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
290 */
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
294 } else {
295 ip->flags |= BTRFS_INODE_NODATACOW;
296 }
297 } else {
298 /*
299 * Revert back under same assumptions as above
300 */
301 if (S_ISREG(mode)) {
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
305 } else {
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
307 }
308 }
309
310 /*
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
313 * things smaller.
314 */
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
318
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
321 goto out_drop;
322 } else if (flags & FS_COMPR_FL) {
323 const char *comp;
324
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327
328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 comp = "lzo";
330 else
331 comp = "zlib";
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
334 if (ret)
335 goto out_drop;
336
337 } else {
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
340 goto out_drop;
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 }
343
344 trans = btrfs_start_transaction(root, 1);
345 if (IS_ERR(trans)) {
346 ret = PTR_ERR(trans);
347 goto out_drop;
348 }
349
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_fs_time(inode->i_sb);
353 ret = btrfs_update_inode(trans, root, inode);
354
355 btrfs_end_transaction(trans, root);
356 out_drop:
357 if (ret) {
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
360 }
361
362 out_unlock:
363 inode_unlock(inode);
364 mnt_drop_write_file(file);
365 return ret;
366 }
367
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 struct inode *inode = file_inode(file);
371
372 return put_user(inode->i_generation, arg);
373 }
374
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 struct btrfs_device *device;
379 struct request_queue *q;
380 struct fstrim_range range;
381 u64 minlen = ULLONG_MAX;
382 u64 num_devices = 0;
383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 int ret;
385
386 if (!capable(CAP_SYS_ADMIN))
387 return -EPERM;
388
389 rcu_read_lock();
390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
391 dev_list) {
392 if (!device->bdev)
393 continue;
394 q = bdev_get_queue(device->bdev);
395 if (blk_queue_discard(q)) {
396 num_devices++;
397 minlen = min((u64)q->limits.discard_granularity,
398 minlen);
399 }
400 }
401 rcu_read_unlock();
402
403 if (!num_devices)
404 return -EOPNOTSUPP;
405 if (copy_from_user(&range, arg, sizeof(range)))
406 return -EFAULT;
407 if (range.start > total_bytes ||
408 range.len < fs_info->sb->s_blocksize)
409 return -EINVAL;
410
411 range.len = min(range.len, total_bytes - range.start);
412 range.minlen = max(range.minlen, minlen);
413 ret = btrfs_trim_fs(fs_info->tree_root, &range);
414 if (ret < 0)
415 return ret;
416
417 if (copy_to_user(arg, &range, sizeof(range)))
418 return -EFAULT;
419
420 return 0;
421 }
422
423 int btrfs_is_empty_uuid(u8 *uuid)
424 {
425 int i;
426
427 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
428 if (uuid[i])
429 return 0;
430 }
431 return 1;
432 }
433
434 static noinline int create_subvol(struct inode *dir,
435 struct dentry *dentry,
436 char *name, int namelen,
437 u64 *async_transid,
438 struct btrfs_qgroup_inherit *inherit)
439 {
440 struct btrfs_trans_handle *trans;
441 struct btrfs_key key;
442 struct btrfs_root_item *root_item;
443 struct btrfs_inode_item *inode_item;
444 struct extent_buffer *leaf;
445 struct btrfs_root *root = BTRFS_I(dir)->root;
446 struct btrfs_root *new_root;
447 struct btrfs_block_rsv block_rsv;
448 struct timespec cur_time = current_fs_time(dir->i_sb);
449 struct inode *inode;
450 int ret;
451 int err;
452 u64 objectid;
453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
454 u64 index = 0;
455 u64 qgroup_reserved;
456 uuid_le new_uuid;
457
458 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
459 if (!root_item)
460 return -ENOMEM;
461
462 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
463 if (ret)
464 goto fail_free;
465
466 /*
467 * Don't create subvolume whose level is not zero. Or qgroup will be
468 * screwed up since it assumes subvolume qgroup's level to be 0.
469 */
470 if (btrfs_qgroup_level(objectid)) {
471 ret = -ENOSPC;
472 goto fail_free;
473 }
474
475 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
476 /*
477 * The same as the snapshot creation, please see the comment
478 * of create_snapshot().
479 */
480 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
481 8, &qgroup_reserved, false);
482 if (ret)
483 goto fail_free;
484
485 trans = btrfs_start_transaction(root, 0);
486 if (IS_ERR(trans)) {
487 ret = PTR_ERR(trans);
488 btrfs_subvolume_release_metadata(root, &block_rsv,
489 qgroup_reserved);
490 goto fail_free;
491 }
492 trans->block_rsv = &block_rsv;
493 trans->bytes_reserved = block_rsv.size;
494
495 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
496 if (ret)
497 goto fail;
498
499 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
500 if (IS_ERR(leaf)) {
501 ret = PTR_ERR(leaf);
502 goto fail;
503 }
504
505 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
506 btrfs_set_header_bytenr(leaf, leaf->start);
507 btrfs_set_header_generation(leaf, trans->transid);
508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
509 btrfs_set_header_owner(leaf, objectid);
510
511 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
512 BTRFS_FSID_SIZE);
513 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
514 btrfs_header_chunk_tree_uuid(leaf),
515 BTRFS_UUID_SIZE);
516 btrfs_mark_buffer_dirty(leaf);
517
518 inode_item = &root_item->inode;
519 btrfs_set_stack_inode_generation(inode_item, 1);
520 btrfs_set_stack_inode_size(inode_item, 3);
521 btrfs_set_stack_inode_nlink(inode_item, 1);
522 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
524
525 btrfs_set_root_flags(root_item, 0);
526 btrfs_set_root_limit(root_item, 0);
527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
528
529 btrfs_set_root_bytenr(root_item, leaf->start);
530 btrfs_set_root_generation(root_item, trans->transid);
531 btrfs_set_root_level(root_item, 0);
532 btrfs_set_root_refs(root_item, 1);
533 btrfs_set_root_used(root_item, leaf->len);
534 btrfs_set_root_last_snapshot(root_item, 0);
535
536 btrfs_set_root_generation_v2(root_item,
537 btrfs_root_generation(root_item));
538 uuid_le_gen(&new_uuid);
539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
542 root_item->ctime = root_item->otime;
543 btrfs_set_root_ctransid(root_item, trans->transid);
544 btrfs_set_root_otransid(root_item, trans->transid);
545
546 btrfs_tree_unlock(leaf);
547 free_extent_buffer(leaf);
548 leaf = NULL;
549
550 btrfs_set_root_dirid(root_item, new_dirid);
551
552 key.objectid = objectid;
553 key.offset = 0;
554 key.type = BTRFS_ROOT_ITEM_KEY;
555 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
556 root_item);
557 if (ret)
558 goto fail;
559
560 key.offset = (u64)-1;
561 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
562 if (IS_ERR(new_root)) {
563 ret = PTR_ERR(new_root);
564 btrfs_abort_transaction(trans, root, ret);
565 goto fail;
566 }
567
568 btrfs_record_root_in_trans(trans, new_root);
569
570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
571 if (ret) {
572 /* We potentially lose an unused inode item here */
573 btrfs_abort_transaction(trans, root, ret);
574 goto fail;
575 }
576
577 mutex_lock(&new_root->objectid_mutex);
578 new_root->highest_objectid = new_dirid;
579 mutex_unlock(&new_root->objectid_mutex);
580
581 /*
582 * insert the directory item
583 */
584 ret = btrfs_set_inode_index(dir, &index);
585 if (ret) {
586 btrfs_abort_transaction(trans, root, ret);
587 goto fail;
588 }
589
590 ret = btrfs_insert_dir_item(trans, root,
591 name, namelen, dir, &key,
592 BTRFS_FT_DIR, index);
593 if (ret) {
594 btrfs_abort_transaction(trans, root, ret);
595 goto fail;
596 }
597
598 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
599 ret = btrfs_update_inode(trans, root, dir);
600 BUG_ON(ret);
601
602 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
603 objectid, root->root_key.objectid,
604 btrfs_ino(dir), index, name, namelen);
605 BUG_ON(ret);
606
607 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
608 root_item->uuid, BTRFS_UUID_KEY_SUBVOL,
609 objectid);
610 if (ret)
611 btrfs_abort_transaction(trans, root, ret);
612
613 fail:
614 kfree(root_item);
615 trans->block_rsv = NULL;
616 trans->bytes_reserved = 0;
617 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
618
619 if (async_transid) {
620 *async_transid = trans->transid;
621 err = btrfs_commit_transaction_async(trans, root, 1);
622 if (err)
623 err = btrfs_commit_transaction(trans, root);
624 } else {
625 err = btrfs_commit_transaction(trans, root);
626 }
627 if (err && !ret)
628 ret = err;
629
630 if (!ret) {
631 inode = btrfs_lookup_dentry(dir, dentry);
632 if (IS_ERR(inode))
633 return PTR_ERR(inode);
634 d_instantiate(dentry, inode);
635 }
636 return ret;
637
638 fail_free:
639 kfree(root_item);
640 return ret;
641 }
642
643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
644 {
645 s64 writers;
646 DEFINE_WAIT(wait);
647
648 do {
649 prepare_to_wait(&root->subv_writers->wait, &wait,
650 TASK_UNINTERRUPTIBLE);
651
652 writers = percpu_counter_sum(&root->subv_writers->counter);
653 if (writers)
654 schedule();
655
656 finish_wait(&root->subv_writers->wait, &wait);
657 } while (writers);
658 }
659
660 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
661 struct dentry *dentry, char *name, int namelen,
662 u64 *async_transid, bool readonly,
663 struct btrfs_qgroup_inherit *inherit)
664 {
665 struct inode *inode;
666 struct btrfs_pending_snapshot *pending_snapshot;
667 struct btrfs_trans_handle *trans;
668 int ret;
669
670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
671 return -EINVAL;
672
673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
674 if (!pending_snapshot)
675 return -ENOMEM;
676
677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
678 GFP_NOFS);
679 pending_snapshot->path = btrfs_alloc_path();
680 if (!pending_snapshot->root_item || !pending_snapshot->path) {
681 ret = -ENOMEM;
682 goto free_pending;
683 }
684
685 atomic_inc(&root->will_be_snapshoted);
686 smp_mb__after_atomic();
687 btrfs_wait_for_no_snapshoting_writes(root);
688
689 ret = btrfs_start_delalloc_inodes(root, 0);
690 if (ret)
691 goto dec_and_free;
692
693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
694
695 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
696 BTRFS_BLOCK_RSV_TEMP);
697 /*
698 * 1 - parent dir inode
699 * 2 - dir entries
700 * 1 - root item
701 * 2 - root ref/backref
702 * 1 - root of snapshot
703 * 1 - UUID item
704 */
705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
706 &pending_snapshot->block_rsv, 8,
707 &pending_snapshot->qgroup_reserved,
708 false);
709 if (ret)
710 goto dec_and_free;
711
712 pending_snapshot->dentry = dentry;
713 pending_snapshot->root = root;
714 pending_snapshot->readonly = readonly;
715 pending_snapshot->dir = dir;
716 pending_snapshot->inherit = inherit;
717
718 trans = btrfs_start_transaction(root, 0);
719 if (IS_ERR(trans)) {
720 ret = PTR_ERR(trans);
721 goto fail;
722 }
723
724 spin_lock(&root->fs_info->trans_lock);
725 list_add(&pending_snapshot->list,
726 &trans->transaction->pending_snapshots);
727 spin_unlock(&root->fs_info->trans_lock);
728 if (async_transid) {
729 *async_transid = trans->transid;
730 ret = btrfs_commit_transaction_async(trans,
731 root->fs_info->extent_root, 1);
732 if (ret)
733 ret = btrfs_commit_transaction(trans, root);
734 } else {
735 ret = btrfs_commit_transaction(trans,
736 root->fs_info->extent_root);
737 }
738 if (ret)
739 goto fail;
740
741 ret = pending_snapshot->error;
742 if (ret)
743 goto fail;
744
745 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
746 if (ret)
747 goto fail;
748
749 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
750 if (IS_ERR(inode)) {
751 ret = PTR_ERR(inode);
752 goto fail;
753 }
754
755 d_instantiate(dentry, inode);
756 ret = 0;
757 fail:
758 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
759 &pending_snapshot->block_rsv,
760 pending_snapshot->qgroup_reserved);
761 dec_and_free:
762 if (atomic_dec_and_test(&root->will_be_snapshoted))
763 wake_up_atomic_t(&root->will_be_snapshoted);
764 free_pending:
765 kfree(pending_snapshot->root_item);
766 btrfs_free_path(pending_snapshot->path);
767 kfree(pending_snapshot);
768
769 return ret;
770 }
771
772 /* copy of may_delete in fs/namei.c()
773 * Check whether we can remove a link victim from directory dir, check
774 * whether the type of victim is right.
775 * 1. We can't do it if dir is read-only (done in permission())
776 * 2. We should have write and exec permissions on dir
777 * 3. We can't remove anything from append-only dir
778 * 4. We can't do anything with immutable dir (done in permission())
779 * 5. If the sticky bit on dir is set we should either
780 * a. be owner of dir, or
781 * b. be owner of victim, or
782 * c. have CAP_FOWNER capability
783 * 6. If the victim is append-only or immutable we can't do anything with
784 * links pointing to it.
785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
787 * 9. We can't remove a root or mountpoint.
788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
789 * nfs_async_unlink().
790 */
791
792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
793 {
794 int error;
795
796 if (d_really_is_negative(victim))
797 return -ENOENT;
798
799 BUG_ON(d_inode(victim->d_parent) != dir);
800 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
801
802 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
803 if (error)
804 return error;
805 if (IS_APPEND(dir))
806 return -EPERM;
807 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
808 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
809 return -EPERM;
810 if (isdir) {
811 if (!d_is_dir(victim))
812 return -ENOTDIR;
813 if (IS_ROOT(victim))
814 return -EBUSY;
815 } else if (d_is_dir(victim))
816 return -EISDIR;
817 if (IS_DEADDIR(dir))
818 return -ENOENT;
819 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
820 return -EBUSY;
821 return 0;
822 }
823
824 /* copy of may_create in fs/namei.c() */
825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
826 {
827 if (d_really_is_positive(child))
828 return -EEXIST;
829 if (IS_DEADDIR(dir))
830 return -ENOENT;
831 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
832 }
833
834 /*
835 * Create a new subvolume below @parent. This is largely modeled after
836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
837 * inside this filesystem so it's quite a bit simpler.
838 */
839 static noinline int btrfs_mksubvol(struct path *parent,
840 char *name, int namelen,
841 struct btrfs_root *snap_src,
842 u64 *async_transid, bool readonly,
843 struct btrfs_qgroup_inherit *inherit)
844 {
845 struct inode *dir = d_inode(parent->dentry);
846 struct dentry *dentry;
847 int error;
848
849 inode_lock_nested(dir, I_MUTEX_PARENT);
850 // XXX: should've been
851 // mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
852 // if (error == -EINTR)
853 // return error;
854
855 dentry = lookup_one_len(name, parent->dentry, namelen);
856 error = PTR_ERR(dentry);
857 if (IS_ERR(dentry))
858 goto out_unlock;
859
860 error = btrfs_may_create(dir, dentry);
861 if (error)
862 goto out_dput;
863
864 /*
865 * even if this name doesn't exist, we may get hash collisions.
866 * check for them now when we can safely fail
867 */
868 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
869 dir->i_ino, name,
870 namelen);
871 if (error)
872 goto out_dput;
873
874 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
875
876 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
877 goto out_up_read;
878
879 if (snap_src) {
880 error = create_snapshot(snap_src, dir, dentry, name, namelen,
881 async_transid, readonly, inherit);
882 } else {
883 error = create_subvol(dir, dentry, name, namelen,
884 async_transid, inherit);
885 }
886 if (!error)
887 fsnotify_mkdir(dir, dentry);
888 out_up_read:
889 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
890 out_dput:
891 dput(dentry);
892 out_unlock:
893 inode_unlock(dir);
894 return error;
895 }
896
897 /*
898 * When we're defragging a range, we don't want to kick it off again
899 * if it is really just waiting for delalloc to send it down.
900 * If we find a nice big extent or delalloc range for the bytes in the
901 * file you want to defrag, we return 0 to let you know to skip this
902 * part of the file
903 */
904 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
905 {
906 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
907 struct extent_map *em = NULL;
908 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
909 u64 end;
910
911 read_lock(&em_tree->lock);
912 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
913 read_unlock(&em_tree->lock);
914
915 if (em) {
916 end = extent_map_end(em);
917 free_extent_map(em);
918 if (end - offset > thresh)
919 return 0;
920 }
921 /* if we already have a nice delalloc here, just stop */
922 thresh /= 2;
923 end = count_range_bits(io_tree, &offset, offset + thresh,
924 thresh, EXTENT_DELALLOC, 1);
925 if (end >= thresh)
926 return 0;
927 return 1;
928 }
929
930 /*
931 * helper function to walk through a file and find extents
932 * newer than a specific transid, and smaller than thresh.
933 *
934 * This is used by the defragging code to find new and small
935 * extents
936 */
937 static int find_new_extents(struct btrfs_root *root,
938 struct inode *inode, u64 newer_than,
939 u64 *off, u32 thresh)
940 {
941 struct btrfs_path *path;
942 struct btrfs_key min_key;
943 struct extent_buffer *leaf;
944 struct btrfs_file_extent_item *extent;
945 int type;
946 int ret;
947 u64 ino = btrfs_ino(inode);
948
949 path = btrfs_alloc_path();
950 if (!path)
951 return -ENOMEM;
952
953 min_key.objectid = ino;
954 min_key.type = BTRFS_EXTENT_DATA_KEY;
955 min_key.offset = *off;
956
957 while (1) {
958 ret = btrfs_search_forward(root, &min_key, path, newer_than);
959 if (ret != 0)
960 goto none;
961 process_slot:
962 if (min_key.objectid != ino)
963 goto none;
964 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
965 goto none;
966
967 leaf = path->nodes[0];
968 extent = btrfs_item_ptr(leaf, path->slots[0],
969 struct btrfs_file_extent_item);
970
971 type = btrfs_file_extent_type(leaf, extent);
972 if (type == BTRFS_FILE_EXTENT_REG &&
973 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
974 check_defrag_in_cache(inode, min_key.offset, thresh)) {
975 *off = min_key.offset;
976 btrfs_free_path(path);
977 return 0;
978 }
979
980 path->slots[0]++;
981 if (path->slots[0] < btrfs_header_nritems(leaf)) {
982 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
983 goto process_slot;
984 }
985
986 if (min_key.offset == (u64)-1)
987 goto none;
988
989 min_key.offset++;
990 btrfs_release_path(path);
991 }
992 none:
993 btrfs_free_path(path);
994 return -ENOENT;
995 }
996
997 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
998 {
999 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1000 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1001 struct extent_map *em;
1002 u64 len = PAGE_SIZE;
1003
1004 /*
1005 * hopefully we have this extent in the tree already, try without
1006 * the full extent lock
1007 */
1008 read_lock(&em_tree->lock);
1009 em = lookup_extent_mapping(em_tree, start, len);
1010 read_unlock(&em_tree->lock);
1011
1012 if (!em) {
1013 struct extent_state *cached = NULL;
1014 u64 end = start + len - 1;
1015
1016 /* get the big lock and read metadata off disk */
1017 lock_extent_bits(io_tree, start, end, &cached);
1018 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1019 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1020
1021 if (IS_ERR(em))
1022 return NULL;
1023 }
1024
1025 return em;
1026 }
1027
1028 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1029 {
1030 struct extent_map *next;
1031 bool ret = true;
1032
1033 /* this is the last extent */
1034 if (em->start + em->len >= i_size_read(inode))
1035 return false;
1036
1037 next = defrag_lookup_extent(inode, em->start + em->len);
1038 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1039 ret = false;
1040 else if ((em->block_start + em->block_len == next->block_start) &&
1041 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1042 ret = false;
1043
1044 free_extent_map(next);
1045 return ret;
1046 }
1047
1048 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1049 u64 *last_len, u64 *skip, u64 *defrag_end,
1050 int compress)
1051 {
1052 struct extent_map *em;
1053 int ret = 1;
1054 bool next_mergeable = true;
1055 bool prev_mergeable = true;
1056
1057 /*
1058 * make sure that once we start defragging an extent, we keep on
1059 * defragging it
1060 */
1061 if (start < *defrag_end)
1062 return 1;
1063
1064 *skip = 0;
1065
1066 em = defrag_lookup_extent(inode, start);
1067 if (!em)
1068 return 0;
1069
1070 /* this will cover holes, and inline extents */
1071 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1072 ret = 0;
1073 goto out;
1074 }
1075
1076 if (!*defrag_end)
1077 prev_mergeable = false;
1078
1079 next_mergeable = defrag_check_next_extent(inode, em);
1080 /*
1081 * we hit a real extent, if it is big or the next extent is not a
1082 * real extent, don't bother defragging it
1083 */
1084 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1085 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1086 ret = 0;
1087 out:
1088 /*
1089 * last_len ends up being a counter of how many bytes we've defragged.
1090 * every time we choose not to defrag an extent, we reset *last_len
1091 * so that the next tiny extent will force a defrag.
1092 *
1093 * The end result of this is that tiny extents before a single big
1094 * extent will force at least part of that big extent to be defragged.
1095 */
1096 if (ret) {
1097 *defrag_end = extent_map_end(em);
1098 } else {
1099 *last_len = 0;
1100 *skip = extent_map_end(em);
1101 *defrag_end = 0;
1102 }
1103
1104 free_extent_map(em);
1105 return ret;
1106 }
1107
1108 /*
1109 * it doesn't do much good to defrag one or two pages
1110 * at a time. This pulls in a nice chunk of pages
1111 * to COW and defrag.
1112 *
1113 * It also makes sure the delalloc code has enough
1114 * dirty data to avoid making new small extents as part
1115 * of the defrag
1116 *
1117 * It's a good idea to start RA on this range
1118 * before calling this.
1119 */
1120 static int cluster_pages_for_defrag(struct inode *inode,
1121 struct page **pages,
1122 unsigned long start_index,
1123 unsigned long num_pages)
1124 {
1125 unsigned long file_end;
1126 u64 isize = i_size_read(inode);
1127 u64 page_start;
1128 u64 page_end;
1129 u64 page_cnt;
1130 int ret;
1131 int i;
1132 int i_done;
1133 struct btrfs_ordered_extent *ordered;
1134 struct extent_state *cached_state = NULL;
1135 struct extent_io_tree *tree;
1136 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1137
1138 file_end = (isize - 1) >> PAGE_SHIFT;
1139 if (!isize || start_index > file_end)
1140 return 0;
1141
1142 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1143
1144 ret = btrfs_delalloc_reserve_space(inode,
1145 start_index << PAGE_SHIFT,
1146 page_cnt << PAGE_SHIFT);
1147 if (ret)
1148 return ret;
1149 i_done = 0;
1150 tree = &BTRFS_I(inode)->io_tree;
1151
1152 /* step one, lock all the pages */
1153 for (i = 0; i < page_cnt; i++) {
1154 struct page *page;
1155 again:
1156 page = find_or_create_page(inode->i_mapping,
1157 start_index + i, mask);
1158 if (!page)
1159 break;
1160
1161 page_start = page_offset(page);
1162 page_end = page_start + PAGE_SIZE - 1;
1163 while (1) {
1164 lock_extent_bits(tree, page_start, page_end,
1165 &cached_state);
1166 ordered = btrfs_lookup_ordered_extent(inode,
1167 page_start);
1168 unlock_extent_cached(tree, page_start, page_end,
1169 &cached_state, GFP_NOFS);
1170 if (!ordered)
1171 break;
1172
1173 unlock_page(page);
1174 btrfs_start_ordered_extent(inode, ordered, 1);
1175 btrfs_put_ordered_extent(ordered);
1176 lock_page(page);
1177 /*
1178 * we unlocked the page above, so we need check if
1179 * it was released or not.
1180 */
1181 if (page->mapping != inode->i_mapping) {
1182 unlock_page(page);
1183 put_page(page);
1184 goto again;
1185 }
1186 }
1187
1188 if (!PageUptodate(page)) {
1189 btrfs_readpage(NULL, page);
1190 lock_page(page);
1191 if (!PageUptodate(page)) {
1192 unlock_page(page);
1193 put_page(page);
1194 ret = -EIO;
1195 break;
1196 }
1197 }
1198
1199 if (page->mapping != inode->i_mapping) {
1200 unlock_page(page);
1201 put_page(page);
1202 goto again;
1203 }
1204
1205 pages[i] = page;
1206 i_done++;
1207 }
1208 if (!i_done || ret)
1209 goto out;
1210
1211 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1212 goto out;
1213
1214 /*
1215 * so now we have a nice long stream of locked
1216 * and up to date pages, lets wait on them
1217 */
1218 for (i = 0; i < i_done; i++)
1219 wait_on_page_writeback(pages[i]);
1220
1221 page_start = page_offset(pages[0]);
1222 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1223
1224 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1225 page_start, page_end - 1, &cached_state);
1226 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1227 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1228 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1229 &cached_state, GFP_NOFS);
1230
1231 if (i_done != page_cnt) {
1232 spin_lock(&BTRFS_I(inode)->lock);
1233 BTRFS_I(inode)->outstanding_extents++;
1234 spin_unlock(&BTRFS_I(inode)->lock);
1235 btrfs_delalloc_release_space(inode,
1236 start_index << PAGE_SHIFT,
1237 (page_cnt - i_done) << PAGE_SHIFT);
1238 }
1239
1240
1241 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1242 &cached_state);
1243
1244 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1245 page_start, page_end - 1, &cached_state,
1246 GFP_NOFS);
1247
1248 for (i = 0; i < i_done; i++) {
1249 clear_page_dirty_for_io(pages[i]);
1250 ClearPageChecked(pages[i]);
1251 set_page_extent_mapped(pages[i]);
1252 set_page_dirty(pages[i]);
1253 unlock_page(pages[i]);
1254 put_page(pages[i]);
1255 }
1256 return i_done;
1257 out:
1258 for (i = 0; i < i_done; i++) {
1259 unlock_page(pages[i]);
1260 put_page(pages[i]);
1261 }
1262 btrfs_delalloc_release_space(inode,
1263 start_index << PAGE_SHIFT,
1264 page_cnt << PAGE_SHIFT);
1265 return ret;
1266
1267 }
1268
1269 int btrfs_defrag_file(struct inode *inode, struct file *file,
1270 struct btrfs_ioctl_defrag_range_args *range,
1271 u64 newer_than, unsigned long max_to_defrag)
1272 {
1273 struct btrfs_root *root = BTRFS_I(inode)->root;
1274 struct file_ra_state *ra = NULL;
1275 unsigned long last_index;
1276 u64 isize = i_size_read(inode);
1277 u64 last_len = 0;
1278 u64 skip = 0;
1279 u64 defrag_end = 0;
1280 u64 newer_off = range->start;
1281 unsigned long i;
1282 unsigned long ra_index = 0;
1283 int ret;
1284 int defrag_count = 0;
1285 int compress_type = BTRFS_COMPRESS_ZLIB;
1286 u32 extent_thresh = range->extent_thresh;
1287 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1288 unsigned long cluster = max_cluster;
1289 u64 new_align = ~((u64)SZ_128K - 1);
1290 struct page **pages = NULL;
1291
1292 if (isize == 0)
1293 return 0;
1294
1295 if (range->start >= isize)
1296 return -EINVAL;
1297
1298 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1299 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1300 return -EINVAL;
1301 if (range->compress_type)
1302 compress_type = range->compress_type;
1303 }
1304
1305 if (extent_thresh == 0)
1306 extent_thresh = SZ_256K;
1307
1308 /*
1309 * if we were not given a file, allocate a readahead
1310 * context
1311 */
1312 if (!file) {
1313 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1314 if (!ra)
1315 return -ENOMEM;
1316 file_ra_state_init(ra, inode->i_mapping);
1317 } else {
1318 ra = &file->f_ra;
1319 }
1320
1321 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1322 GFP_NOFS);
1323 if (!pages) {
1324 ret = -ENOMEM;
1325 goto out_ra;
1326 }
1327
1328 /* find the last page to defrag */
1329 if (range->start + range->len > range->start) {
1330 last_index = min_t(u64, isize - 1,
1331 range->start + range->len - 1) >> PAGE_SHIFT;
1332 } else {
1333 last_index = (isize - 1) >> PAGE_SHIFT;
1334 }
1335
1336 if (newer_than) {
1337 ret = find_new_extents(root, inode, newer_than,
1338 &newer_off, SZ_64K);
1339 if (!ret) {
1340 range->start = newer_off;
1341 /*
1342 * we always align our defrag to help keep
1343 * the extents in the file evenly spaced
1344 */
1345 i = (newer_off & new_align) >> PAGE_SHIFT;
1346 } else
1347 goto out_ra;
1348 } else {
1349 i = range->start >> PAGE_SHIFT;
1350 }
1351 if (!max_to_defrag)
1352 max_to_defrag = last_index - i + 1;
1353
1354 /*
1355 * make writeback starts from i, so the defrag range can be
1356 * written sequentially.
1357 */
1358 if (i < inode->i_mapping->writeback_index)
1359 inode->i_mapping->writeback_index = i;
1360
1361 while (i <= last_index && defrag_count < max_to_defrag &&
1362 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1363 /*
1364 * make sure we stop running if someone unmounts
1365 * the FS
1366 */
1367 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1368 break;
1369
1370 if (btrfs_defrag_cancelled(root->fs_info)) {
1371 btrfs_debug(root->fs_info, "defrag_file cancelled");
1372 ret = -EAGAIN;
1373 break;
1374 }
1375
1376 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1377 extent_thresh, &last_len, &skip,
1378 &defrag_end, range->flags &
1379 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1380 unsigned long next;
1381 /*
1382 * the should_defrag function tells us how much to skip
1383 * bump our counter by the suggested amount
1384 */
1385 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1386 i = max(i + 1, next);
1387 continue;
1388 }
1389
1390 if (!newer_than) {
1391 cluster = (PAGE_ALIGN(defrag_end) >>
1392 PAGE_SHIFT) - i;
1393 cluster = min(cluster, max_cluster);
1394 } else {
1395 cluster = max_cluster;
1396 }
1397
1398 if (i + cluster > ra_index) {
1399 ra_index = max(i, ra_index);
1400 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1401 cluster);
1402 ra_index += cluster;
1403 }
1404
1405 inode_lock(inode);
1406 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1407 BTRFS_I(inode)->force_compress = compress_type;
1408 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1409 if (ret < 0) {
1410 inode_unlock(inode);
1411 goto out_ra;
1412 }
1413
1414 defrag_count += ret;
1415 balance_dirty_pages_ratelimited(inode->i_mapping);
1416 inode_unlock(inode);
1417
1418 if (newer_than) {
1419 if (newer_off == (u64)-1)
1420 break;
1421
1422 if (ret > 0)
1423 i += ret;
1424
1425 newer_off = max(newer_off + 1,
1426 (u64)i << PAGE_SHIFT);
1427
1428 ret = find_new_extents(root, inode, newer_than,
1429 &newer_off, SZ_64K);
1430 if (!ret) {
1431 range->start = newer_off;
1432 i = (newer_off & new_align) >> PAGE_SHIFT;
1433 } else {
1434 break;
1435 }
1436 } else {
1437 if (ret > 0) {
1438 i += ret;
1439 last_len += ret << PAGE_SHIFT;
1440 } else {
1441 i++;
1442 last_len = 0;
1443 }
1444 }
1445 }
1446
1447 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1448 filemap_flush(inode->i_mapping);
1449 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1450 &BTRFS_I(inode)->runtime_flags))
1451 filemap_flush(inode->i_mapping);
1452 }
1453
1454 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1455 /* the filemap_flush will queue IO into the worker threads, but
1456 * we have to make sure the IO is actually started and that
1457 * ordered extents get created before we return
1458 */
1459 atomic_inc(&root->fs_info->async_submit_draining);
1460 while (atomic_read(&root->fs_info->nr_async_submits) ||
1461 atomic_read(&root->fs_info->async_delalloc_pages)) {
1462 wait_event(root->fs_info->async_submit_wait,
1463 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1464 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1465 }
1466 atomic_dec(&root->fs_info->async_submit_draining);
1467 }
1468
1469 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1470 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1471 }
1472
1473 ret = defrag_count;
1474
1475 out_ra:
1476 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1477 inode_lock(inode);
1478 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1479 inode_unlock(inode);
1480 }
1481 if (!file)
1482 kfree(ra);
1483 kfree(pages);
1484 return ret;
1485 }
1486
1487 static noinline int btrfs_ioctl_resize(struct file *file,
1488 void __user *arg)
1489 {
1490 u64 new_size;
1491 u64 old_size;
1492 u64 devid = 1;
1493 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1494 struct btrfs_ioctl_vol_args *vol_args;
1495 struct btrfs_trans_handle *trans;
1496 struct btrfs_device *device = NULL;
1497 char *sizestr;
1498 char *retptr;
1499 char *devstr = NULL;
1500 int ret = 0;
1501 int mod = 0;
1502
1503 if (!capable(CAP_SYS_ADMIN))
1504 return -EPERM;
1505
1506 ret = mnt_want_write_file(file);
1507 if (ret)
1508 return ret;
1509
1510 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1511 1)) {
1512 mnt_drop_write_file(file);
1513 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1514 }
1515
1516 mutex_lock(&root->fs_info->volume_mutex);
1517 vol_args = memdup_user(arg, sizeof(*vol_args));
1518 if (IS_ERR(vol_args)) {
1519 ret = PTR_ERR(vol_args);
1520 goto out;
1521 }
1522
1523 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1524
1525 sizestr = vol_args->name;
1526 devstr = strchr(sizestr, ':');
1527 if (devstr) {
1528 sizestr = devstr + 1;
1529 *devstr = '\0';
1530 devstr = vol_args->name;
1531 ret = kstrtoull(devstr, 10, &devid);
1532 if (ret)
1533 goto out_free;
1534 if (!devid) {
1535 ret = -EINVAL;
1536 goto out_free;
1537 }
1538 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1539 }
1540
1541 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1542 if (!device) {
1543 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1544 devid);
1545 ret = -ENODEV;
1546 goto out_free;
1547 }
1548
1549 if (!device->writeable) {
1550 btrfs_info(root->fs_info,
1551 "resizer unable to apply on readonly device %llu",
1552 devid);
1553 ret = -EPERM;
1554 goto out_free;
1555 }
1556
1557 if (!strcmp(sizestr, "max"))
1558 new_size = device->bdev->bd_inode->i_size;
1559 else {
1560 if (sizestr[0] == '-') {
1561 mod = -1;
1562 sizestr++;
1563 } else if (sizestr[0] == '+') {
1564 mod = 1;
1565 sizestr++;
1566 }
1567 new_size = memparse(sizestr, &retptr);
1568 if (*retptr != '\0' || new_size == 0) {
1569 ret = -EINVAL;
1570 goto out_free;
1571 }
1572 }
1573
1574 if (device->is_tgtdev_for_dev_replace) {
1575 ret = -EPERM;
1576 goto out_free;
1577 }
1578
1579 old_size = btrfs_device_get_total_bytes(device);
1580
1581 if (mod < 0) {
1582 if (new_size > old_size) {
1583 ret = -EINVAL;
1584 goto out_free;
1585 }
1586 new_size = old_size - new_size;
1587 } else if (mod > 0) {
1588 if (new_size > ULLONG_MAX - old_size) {
1589 ret = -ERANGE;
1590 goto out_free;
1591 }
1592 new_size = old_size + new_size;
1593 }
1594
1595 if (new_size < SZ_256M) {
1596 ret = -EINVAL;
1597 goto out_free;
1598 }
1599 if (new_size > device->bdev->bd_inode->i_size) {
1600 ret = -EFBIG;
1601 goto out_free;
1602 }
1603
1604 new_size = div_u64(new_size, root->sectorsize);
1605 new_size *= root->sectorsize;
1606
1607 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1608 rcu_str_deref(device->name), new_size);
1609
1610 if (new_size > old_size) {
1611 trans = btrfs_start_transaction(root, 0);
1612 if (IS_ERR(trans)) {
1613 ret = PTR_ERR(trans);
1614 goto out_free;
1615 }
1616 ret = btrfs_grow_device(trans, device, new_size);
1617 btrfs_commit_transaction(trans, root);
1618 } else if (new_size < old_size) {
1619 ret = btrfs_shrink_device(device, new_size);
1620 } /* equal, nothing need to do */
1621
1622 out_free:
1623 kfree(vol_args);
1624 out:
1625 mutex_unlock(&root->fs_info->volume_mutex);
1626 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1627 mnt_drop_write_file(file);
1628 return ret;
1629 }
1630
1631 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1632 char *name, unsigned long fd, int subvol,
1633 u64 *transid, bool readonly,
1634 struct btrfs_qgroup_inherit *inherit)
1635 {
1636 int namelen;
1637 int ret = 0;
1638
1639 ret = mnt_want_write_file(file);
1640 if (ret)
1641 goto out;
1642
1643 namelen = strlen(name);
1644 if (strchr(name, '/')) {
1645 ret = -EINVAL;
1646 goto out_drop_write;
1647 }
1648
1649 if (name[0] == '.' &&
1650 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1651 ret = -EEXIST;
1652 goto out_drop_write;
1653 }
1654
1655 if (subvol) {
1656 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1657 NULL, transid, readonly, inherit);
1658 } else {
1659 struct fd src = fdget(fd);
1660 struct inode *src_inode;
1661 if (!src.file) {
1662 ret = -EINVAL;
1663 goto out_drop_write;
1664 }
1665
1666 src_inode = file_inode(src.file);
1667 if (src_inode->i_sb != file_inode(file)->i_sb) {
1668 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1669 "Snapshot src from another FS");
1670 ret = -EXDEV;
1671 } else if (!inode_owner_or_capable(src_inode)) {
1672 /*
1673 * Subvolume creation is not restricted, but snapshots
1674 * are limited to own subvolumes only
1675 */
1676 ret = -EPERM;
1677 } else {
1678 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1679 BTRFS_I(src_inode)->root,
1680 transid, readonly, inherit);
1681 }
1682 fdput(src);
1683 }
1684 out_drop_write:
1685 mnt_drop_write_file(file);
1686 out:
1687 return ret;
1688 }
1689
1690 static noinline int btrfs_ioctl_snap_create(struct file *file,
1691 void __user *arg, int subvol)
1692 {
1693 struct btrfs_ioctl_vol_args *vol_args;
1694 int ret;
1695
1696 vol_args = memdup_user(arg, sizeof(*vol_args));
1697 if (IS_ERR(vol_args))
1698 return PTR_ERR(vol_args);
1699 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1700
1701 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1702 vol_args->fd, subvol,
1703 NULL, false, NULL);
1704
1705 kfree(vol_args);
1706 return ret;
1707 }
1708
1709 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1710 void __user *arg, int subvol)
1711 {
1712 struct btrfs_ioctl_vol_args_v2 *vol_args;
1713 int ret;
1714 u64 transid = 0;
1715 u64 *ptr = NULL;
1716 bool readonly = false;
1717 struct btrfs_qgroup_inherit *inherit = NULL;
1718
1719 vol_args = memdup_user(arg, sizeof(*vol_args));
1720 if (IS_ERR(vol_args))
1721 return PTR_ERR(vol_args);
1722 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1723
1724 if (vol_args->flags &
1725 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1726 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1727 ret = -EOPNOTSUPP;
1728 goto free_args;
1729 }
1730
1731 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1732 ptr = &transid;
1733 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1734 readonly = true;
1735 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1736 if (vol_args->size > PAGE_SIZE) {
1737 ret = -EINVAL;
1738 goto free_args;
1739 }
1740 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1741 if (IS_ERR(inherit)) {
1742 ret = PTR_ERR(inherit);
1743 goto free_args;
1744 }
1745 }
1746
1747 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1748 vol_args->fd, subvol, ptr,
1749 readonly, inherit);
1750 if (ret)
1751 goto free_inherit;
1752
1753 if (ptr && copy_to_user(arg +
1754 offsetof(struct btrfs_ioctl_vol_args_v2,
1755 transid),
1756 ptr, sizeof(*ptr)))
1757 ret = -EFAULT;
1758
1759 free_inherit:
1760 kfree(inherit);
1761 free_args:
1762 kfree(vol_args);
1763 return ret;
1764 }
1765
1766 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1767 void __user *arg)
1768 {
1769 struct inode *inode = file_inode(file);
1770 struct btrfs_root *root = BTRFS_I(inode)->root;
1771 int ret = 0;
1772 u64 flags = 0;
1773
1774 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1775 return -EINVAL;
1776
1777 down_read(&root->fs_info->subvol_sem);
1778 if (btrfs_root_readonly(root))
1779 flags |= BTRFS_SUBVOL_RDONLY;
1780 up_read(&root->fs_info->subvol_sem);
1781
1782 if (copy_to_user(arg, &flags, sizeof(flags)))
1783 ret = -EFAULT;
1784
1785 return ret;
1786 }
1787
1788 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1789 void __user *arg)
1790 {
1791 struct inode *inode = file_inode(file);
1792 struct btrfs_root *root = BTRFS_I(inode)->root;
1793 struct btrfs_trans_handle *trans;
1794 u64 root_flags;
1795 u64 flags;
1796 int ret = 0;
1797
1798 if (!inode_owner_or_capable(inode))
1799 return -EPERM;
1800
1801 ret = mnt_want_write_file(file);
1802 if (ret)
1803 goto out;
1804
1805 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1806 ret = -EINVAL;
1807 goto out_drop_write;
1808 }
1809
1810 if (copy_from_user(&flags, arg, sizeof(flags))) {
1811 ret = -EFAULT;
1812 goto out_drop_write;
1813 }
1814
1815 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1816 ret = -EINVAL;
1817 goto out_drop_write;
1818 }
1819
1820 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1821 ret = -EOPNOTSUPP;
1822 goto out_drop_write;
1823 }
1824
1825 down_write(&root->fs_info->subvol_sem);
1826
1827 /* nothing to do */
1828 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1829 goto out_drop_sem;
1830
1831 root_flags = btrfs_root_flags(&root->root_item);
1832 if (flags & BTRFS_SUBVOL_RDONLY) {
1833 btrfs_set_root_flags(&root->root_item,
1834 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1835 } else {
1836 /*
1837 * Block RO -> RW transition if this subvolume is involved in
1838 * send
1839 */
1840 spin_lock(&root->root_item_lock);
1841 if (root->send_in_progress == 0) {
1842 btrfs_set_root_flags(&root->root_item,
1843 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1844 spin_unlock(&root->root_item_lock);
1845 } else {
1846 spin_unlock(&root->root_item_lock);
1847 btrfs_warn(root->fs_info,
1848 "Attempt to set subvolume %llu read-write during send",
1849 root->root_key.objectid);
1850 ret = -EPERM;
1851 goto out_drop_sem;
1852 }
1853 }
1854
1855 trans = btrfs_start_transaction(root, 1);
1856 if (IS_ERR(trans)) {
1857 ret = PTR_ERR(trans);
1858 goto out_reset;
1859 }
1860
1861 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1862 &root->root_key, &root->root_item);
1863
1864 btrfs_commit_transaction(trans, root);
1865 out_reset:
1866 if (ret)
1867 btrfs_set_root_flags(&root->root_item, root_flags);
1868 out_drop_sem:
1869 up_write(&root->fs_info->subvol_sem);
1870 out_drop_write:
1871 mnt_drop_write_file(file);
1872 out:
1873 return ret;
1874 }
1875
1876 /*
1877 * helper to check if the subvolume references other subvolumes
1878 */
1879 static noinline int may_destroy_subvol(struct btrfs_root *root)
1880 {
1881 struct btrfs_path *path;
1882 struct btrfs_dir_item *di;
1883 struct btrfs_key key;
1884 u64 dir_id;
1885 int ret;
1886
1887 path = btrfs_alloc_path();
1888 if (!path)
1889 return -ENOMEM;
1890
1891 /* Make sure this root isn't set as the default subvol */
1892 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1893 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1894 dir_id, "default", 7, 0);
1895 if (di && !IS_ERR(di)) {
1896 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1897 if (key.objectid == root->root_key.objectid) {
1898 ret = -EPERM;
1899 btrfs_err(root->fs_info, "deleting default subvolume "
1900 "%llu is not allowed", key.objectid);
1901 goto out;
1902 }
1903 btrfs_release_path(path);
1904 }
1905
1906 key.objectid = root->root_key.objectid;
1907 key.type = BTRFS_ROOT_REF_KEY;
1908 key.offset = (u64)-1;
1909
1910 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1911 &key, path, 0, 0);
1912 if (ret < 0)
1913 goto out;
1914 BUG_ON(ret == 0);
1915
1916 ret = 0;
1917 if (path->slots[0] > 0) {
1918 path->slots[0]--;
1919 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1920 if (key.objectid == root->root_key.objectid &&
1921 key.type == BTRFS_ROOT_REF_KEY)
1922 ret = -ENOTEMPTY;
1923 }
1924 out:
1925 btrfs_free_path(path);
1926 return ret;
1927 }
1928
1929 static noinline int key_in_sk(struct btrfs_key *key,
1930 struct btrfs_ioctl_search_key *sk)
1931 {
1932 struct btrfs_key test;
1933 int ret;
1934
1935 test.objectid = sk->min_objectid;
1936 test.type = sk->min_type;
1937 test.offset = sk->min_offset;
1938
1939 ret = btrfs_comp_cpu_keys(key, &test);
1940 if (ret < 0)
1941 return 0;
1942
1943 test.objectid = sk->max_objectid;
1944 test.type = sk->max_type;
1945 test.offset = sk->max_offset;
1946
1947 ret = btrfs_comp_cpu_keys(key, &test);
1948 if (ret > 0)
1949 return 0;
1950 return 1;
1951 }
1952
1953 static noinline int copy_to_sk(struct btrfs_root *root,
1954 struct btrfs_path *path,
1955 struct btrfs_key *key,
1956 struct btrfs_ioctl_search_key *sk,
1957 size_t *buf_size,
1958 char __user *ubuf,
1959 unsigned long *sk_offset,
1960 int *num_found)
1961 {
1962 u64 found_transid;
1963 struct extent_buffer *leaf;
1964 struct btrfs_ioctl_search_header sh;
1965 struct btrfs_key test;
1966 unsigned long item_off;
1967 unsigned long item_len;
1968 int nritems;
1969 int i;
1970 int slot;
1971 int ret = 0;
1972
1973 leaf = path->nodes[0];
1974 slot = path->slots[0];
1975 nritems = btrfs_header_nritems(leaf);
1976
1977 if (btrfs_header_generation(leaf) > sk->max_transid) {
1978 i = nritems;
1979 goto advance_key;
1980 }
1981 found_transid = btrfs_header_generation(leaf);
1982
1983 for (i = slot; i < nritems; i++) {
1984 item_off = btrfs_item_ptr_offset(leaf, i);
1985 item_len = btrfs_item_size_nr(leaf, i);
1986
1987 btrfs_item_key_to_cpu(leaf, key, i);
1988 if (!key_in_sk(key, sk))
1989 continue;
1990
1991 if (sizeof(sh) + item_len > *buf_size) {
1992 if (*num_found) {
1993 ret = 1;
1994 goto out;
1995 }
1996
1997 /*
1998 * return one empty item back for v1, which does not
1999 * handle -EOVERFLOW
2000 */
2001
2002 *buf_size = sizeof(sh) + item_len;
2003 item_len = 0;
2004 ret = -EOVERFLOW;
2005 }
2006
2007 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2008 ret = 1;
2009 goto out;
2010 }
2011
2012 sh.objectid = key->objectid;
2013 sh.offset = key->offset;
2014 sh.type = key->type;
2015 sh.len = item_len;
2016 sh.transid = found_transid;
2017
2018 /* copy search result header */
2019 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2020 ret = -EFAULT;
2021 goto out;
2022 }
2023
2024 *sk_offset += sizeof(sh);
2025
2026 if (item_len) {
2027 char __user *up = ubuf + *sk_offset;
2028 /* copy the item */
2029 if (read_extent_buffer_to_user(leaf, up,
2030 item_off, item_len)) {
2031 ret = -EFAULT;
2032 goto out;
2033 }
2034
2035 *sk_offset += item_len;
2036 }
2037 (*num_found)++;
2038
2039 if (ret) /* -EOVERFLOW from above */
2040 goto out;
2041
2042 if (*num_found >= sk->nr_items) {
2043 ret = 1;
2044 goto out;
2045 }
2046 }
2047 advance_key:
2048 ret = 0;
2049 test.objectid = sk->max_objectid;
2050 test.type = sk->max_type;
2051 test.offset = sk->max_offset;
2052 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2053 ret = 1;
2054 else if (key->offset < (u64)-1)
2055 key->offset++;
2056 else if (key->type < (u8)-1) {
2057 key->offset = 0;
2058 key->type++;
2059 } else if (key->objectid < (u64)-1) {
2060 key->offset = 0;
2061 key->type = 0;
2062 key->objectid++;
2063 } else
2064 ret = 1;
2065 out:
2066 /*
2067 * 0: all items from this leaf copied, continue with next
2068 * 1: * more items can be copied, but unused buffer is too small
2069 * * all items were found
2070 * Either way, it will stops the loop which iterates to the next
2071 * leaf
2072 * -EOVERFLOW: item was to large for buffer
2073 * -EFAULT: could not copy extent buffer back to userspace
2074 */
2075 return ret;
2076 }
2077
2078 static noinline int search_ioctl(struct inode *inode,
2079 struct btrfs_ioctl_search_key *sk,
2080 size_t *buf_size,
2081 char __user *ubuf)
2082 {
2083 struct btrfs_root *root;
2084 struct btrfs_key key;
2085 struct btrfs_path *path;
2086 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2087 int ret;
2088 int num_found = 0;
2089 unsigned long sk_offset = 0;
2090
2091 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2092 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2093 return -EOVERFLOW;
2094 }
2095
2096 path = btrfs_alloc_path();
2097 if (!path)
2098 return -ENOMEM;
2099
2100 if (sk->tree_id == 0) {
2101 /* search the root of the inode that was passed */
2102 root = BTRFS_I(inode)->root;
2103 } else {
2104 key.objectid = sk->tree_id;
2105 key.type = BTRFS_ROOT_ITEM_KEY;
2106 key.offset = (u64)-1;
2107 root = btrfs_read_fs_root_no_name(info, &key);
2108 if (IS_ERR(root)) {
2109 btrfs_free_path(path);
2110 return -ENOENT;
2111 }
2112 }
2113
2114 key.objectid = sk->min_objectid;
2115 key.type = sk->min_type;
2116 key.offset = sk->min_offset;
2117
2118 while (1) {
2119 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2120 if (ret != 0) {
2121 if (ret > 0)
2122 ret = 0;
2123 goto err;
2124 }
2125 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2126 &sk_offset, &num_found);
2127 btrfs_release_path(path);
2128 if (ret)
2129 break;
2130
2131 }
2132 if (ret > 0)
2133 ret = 0;
2134 err:
2135 sk->nr_items = num_found;
2136 btrfs_free_path(path);
2137 return ret;
2138 }
2139
2140 static noinline int btrfs_ioctl_tree_search(struct file *file,
2141 void __user *argp)
2142 {
2143 struct btrfs_ioctl_search_args __user *uargs;
2144 struct btrfs_ioctl_search_key sk;
2145 struct inode *inode;
2146 int ret;
2147 size_t buf_size;
2148
2149 if (!capable(CAP_SYS_ADMIN))
2150 return -EPERM;
2151
2152 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2153
2154 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2155 return -EFAULT;
2156
2157 buf_size = sizeof(uargs->buf);
2158
2159 inode = file_inode(file);
2160 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2161
2162 /*
2163 * In the origin implementation an overflow is handled by returning a
2164 * search header with a len of zero, so reset ret.
2165 */
2166 if (ret == -EOVERFLOW)
2167 ret = 0;
2168
2169 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2170 ret = -EFAULT;
2171 return ret;
2172 }
2173
2174 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2175 void __user *argp)
2176 {
2177 struct btrfs_ioctl_search_args_v2 __user *uarg;
2178 struct btrfs_ioctl_search_args_v2 args;
2179 struct inode *inode;
2180 int ret;
2181 size_t buf_size;
2182 const size_t buf_limit = SZ_16M;
2183
2184 if (!capable(CAP_SYS_ADMIN))
2185 return -EPERM;
2186
2187 /* copy search header and buffer size */
2188 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2189 if (copy_from_user(&args, uarg, sizeof(args)))
2190 return -EFAULT;
2191
2192 buf_size = args.buf_size;
2193
2194 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2195 return -EOVERFLOW;
2196
2197 /* limit result size to 16MB */
2198 if (buf_size > buf_limit)
2199 buf_size = buf_limit;
2200
2201 inode = file_inode(file);
2202 ret = search_ioctl(inode, &args.key, &buf_size,
2203 (char *)(&uarg->buf[0]));
2204 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2205 ret = -EFAULT;
2206 else if (ret == -EOVERFLOW &&
2207 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2208 ret = -EFAULT;
2209
2210 return ret;
2211 }
2212
2213 /*
2214 * Search INODE_REFs to identify path name of 'dirid' directory
2215 * in a 'tree_id' tree. and sets path name to 'name'.
2216 */
2217 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2218 u64 tree_id, u64 dirid, char *name)
2219 {
2220 struct btrfs_root *root;
2221 struct btrfs_key key;
2222 char *ptr;
2223 int ret = -1;
2224 int slot;
2225 int len;
2226 int total_len = 0;
2227 struct btrfs_inode_ref *iref;
2228 struct extent_buffer *l;
2229 struct btrfs_path *path;
2230
2231 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2232 name[0]='\0';
2233 return 0;
2234 }
2235
2236 path = btrfs_alloc_path();
2237 if (!path)
2238 return -ENOMEM;
2239
2240 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2241
2242 key.objectid = tree_id;
2243 key.type = BTRFS_ROOT_ITEM_KEY;
2244 key.offset = (u64)-1;
2245 root = btrfs_read_fs_root_no_name(info, &key);
2246 if (IS_ERR(root)) {
2247 btrfs_err(info, "could not find root %llu", tree_id);
2248 ret = -ENOENT;
2249 goto out;
2250 }
2251
2252 key.objectid = dirid;
2253 key.type = BTRFS_INODE_REF_KEY;
2254 key.offset = (u64)-1;
2255
2256 while (1) {
2257 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2258 if (ret < 0)
2259 goto out;
2260 else if (ret > 0) {
2261 ret = btrfs_previous_item(root, path, dirid,
2262 BTRFS_INODE_REF_KEY);
2263 if (ret < 0)
2264 goto out;
2265 else if (ret > 0) {
2266 ret = -ENOENT;
2267 goto out;
2268 }
2269 }
2270
2271 l = path->nodes[0];
2272 slot = path->slots[0];
2273 btrfs_item_key_to_cpu(l, &key, slot);
2274
2275 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2276 len = btrfs_inode_ref_name_len(l, iref);
2277 ptr -= len + 1;
2278 total_len += len + 1;
2279 if (ptr < name) {
2280 ret = -ENAMETOOLONG;
2281 goto out;
2282 }
2283
2284 *(ptr + len) = '/';
2285 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2286
2287 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2288 break;
2289
2290 btrfs_release_path(path);
2291 key.objectid = key.offset;
2292 key.offset = (u64)-1;
2293 dirid = key.objectid;
2294 }
2295 memmove(name, ptr, total_len);
2296 name[total_len] = '\0';
2297 ret = 0;
2298 out:
2299 btrfs_free_path(path);
2300 return ret;
2301 }
2302
2303 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2304 void __user *argp)
2305 {
2306 struct btrfs_ioctl_ino_lookup_args *args;
2307 struct inode *inode;
2308 int ret = 0;
2309
2310 args = memdup_user(argp, sizeof(*args));
2311 if (IS_ERR(args))
2312 return PTR_ERR(args);
2313
2314 inode = file_inode(file);
2315
2316 /*
2317 * Unprivileged query to obtain the containing subvolume root id. The
2318 * path is reset so it's consistent with btrfs_search_path_in_tree.
2319 */
2320 if (args->treeid == 0)
2321 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2322
2323 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2324 args->name[0] = 0;
2325 goto out;
2326 }
2327
2328 if (!capable(CAP_SYS_ADMIN)) {
2329 ret = -EPERM;
2330 goto out;
2331 }
2332
2333 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2334 args->treeid, args->objectid,
2335 args->name);
2336
2337 out:
2338 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2339 ret = -EFAULT;
2340
2341 kfree(args);
2342 return ret;
2343 }
2344
2345 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2346 void __user *arg)
2347 {
2348 struct dentry *parent = file->f_path.dentry;
2349 struct dentry *dentry;
2350 struct inode *dir = d_inode(parent);
2351 struct inode *inode;
2352 struct btrfs_root *root = BTRFS_I(dir)->root;
2353 struct btrfs_root *dest = NULL;
2354 struct btrfs_ioctl_vol_args *vol_args;
2355 struct btrfs_trans_handle *trans;
2356 struct btrfs_block_rsv block_rsv;
2357 u64 root_flags;
2358 u64 qgroup_reserved;
2359 int namelen;
2360 int ret;
2361 int err = 0;
2362
2363 vol_args = memdup_user(arg, sizeof(*vol_args));
2364 if (IS_ERR(vol_args))
2365 return PTR_ERR(vol_args);
2366
2367 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2368 namelen = strlen(vol_args->name);
2369 if (strchr(vol_args->name, '/') ||
2370 strncmp(vol_args->name, "..", namelen) == 0) {
2371 err = -EINVAL;
2372 goto out;
2373 }
2374
2375 err = mnt_want_write_file(file);
2376 if (err)
2377 goto out;
2378
2379
2380 inode_lock_nested(dir, I_MUTEX_PARENT);
2381 // XXX: should've been
2382 // err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2383 // if (err == -EINTR)
2384 // goto out_drop_write;
2385 dentry = lookup_one_len(vol_args->name, parent, namelen);
2386 if (IS_ERR(dentry)) {
2387 err = PTR_ERR(dentry);
2388 goto out_unlock_dir;
2389 }
2390
2391 if (d_really_is_negative(dentry)) {
2392 err = -ENOENT;
2393 goto out_dput;
2394 }
2395
2396 inode = d_inode(dentry);
2397 dest = BTRFS_I(inode)->root;
2398 if (!capable(CAP_SYS_ADMIN)) {
2399 /*
2400 * Regular user. Only allow this with a special mount
2401 * option, when the user has write+exec access to the
2402 * subvol root, and when rmdir(2) would have been
2403 * allowed.
2404 *
2405 * Note that this is _not_ check that the subvol is
2406 * empty or doesn't contain data that we wouldn't
2407 * otherwise be able to delete.
2408 *
2409 * Users who want to delete empty subvols should try
2410 * rmdir(2).
2411 */
2412 err = -EPERM;
2413 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2414 goto out_dput;
2415
2416 /*
2417 * Do not allow deletion if the parent dir is the same
2418 * as the dir to be deleted. That means the ioctl
2419 * must be called on the dentry referencing the root
2420 * of the subvol, not a random directory contained
2421 * within it.
2422 */
2423 err = -EINVAL;
2424 if (root == dest)
2425 goto out_dput;
2426
2427 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2428 if (err)
2429 goto out_dput;
2430 }
2431
2432 /* check if subvolume may be deleted by a user */
2433 err = btrfs_may_delete(dir, dentry, 1);
2434 if (err)
2435 goto out_dput;
2436
2437 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2438 err = -EINVAL;
2439 goto out_dput;
2440 }
2441
2442 inode_lock(inode);
2443
2444 /*
2445 * Don't allow to delete a subvolume with send in progress. This is
2446 * inside the i_mutex so the error handling that has to drop the bit
2447 * again is not run concurrently.
2448 */
2449 spin_lock(&dest->root_item_lock);
2450 root_flags = btrfs_root_flags(&dest->root_item);
2451 if (dest->send_in_progress == 0) {
2452 btrfs_set_root_flags(&dest->root_item,
2453 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2454 spin_unlock(&dest->root_item_lock);
2455 } else {
2456 spin_unlock(&dest->root_item_lock);
2457 btrfs_warn(root->fs_info,
2458 "Attempt to delete subvolume %llu during send",
2459 dest->root_key.objectid);
2460 err = -EPERM;
2461 goto out_unlock_inode;
2462 }
2463
2464 down_write(&root->fs_info->subvol_sem);
2465
2466 err = may_destroy_subvol(dest);
2467 if (err)
2468 goto out_up_write;
2469
2470 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2471 /*
2472 * One for dir inode, two for dir entries, two for root
2473 * ref/backref.
2474 */
2475 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2476 5, &qgroup_reserved, true);
2477 if (err)
2478 goto out_up_write;
2479
2480 trans = btrfs_start_transaction(root, 0);
2481 if (IS_ERR(trans)) {
2482 err = PTR_ERR(trans);
2483 goto out_release;
2484 }
2485 trans->block_rsv = &block_rsv;
2486 trans->bytes_reserved = block_rsv.size;
2487
2488 btrfs_record_snapshot_destroy(trans, dir);
2489
2490 ret = btrfs_unlink_subvol(trans, root, dir,
2491 dest->root_key.objectid,
2492 dentry->d_name.name,
2493 dentry->d_name.len);
2494 if (ret) {
2495 err = ret;
2496 btrfs_abort_transaction(trans, root, ret);
2497 goto out_end_trans;
2498 }
2499
2500 btrfs_record_root_in_trans(trans, dest);
2501
2502 memset(&dest->root_item.drop_progress, 0,
2503 sizeof(dest->root_item.drop_progress));
2504 dest->root_item.drop_level = 0;
2505 btrfs_set_root_refs(&dest->root_item, 0);
2506
2507 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2508 ret = btrfs_insert_orphan_item(trans,
2509 root->fs_info->tree_root,
2510 dest->root_key.objectid);
2511 if (ret) {
2512 btrfs_abort_transaction(trans, root, ret);
2513 err = ret;
2514 goto out_end_trans;
2515 }
2516 }
2517
2518 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2519 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2520 dest->root_key.objectid);
2521 if (ret && ret != -ENOENT) {
2522 btrfs_abort_transaction(trans, root, ret);
2523 err = ret;
2524 goto out_end_trans;
2525 }
2526 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2527 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2528 dest->root_item.received_uuid,
2529 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2530 dest->root_key.objectid);
2531 if (ret && ret != -ENOENT) {
2532 btrfs_abort_transaction(trans, root, ret);
2533 err = ret;
2534 goto out_end_trans;
2535 }
2536 }
2537
2538 out_end_trans:
2539 trans->block_rsv = NULL;
2540 trans->bytes_reserved = 0;
2541 ret = btrfs_end_transaction(trans, root);
2542 if (ret && !err)
2543 err = ret;
2544 inode->i_flags |= S_DEAD;
2545 out_release:
2546 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2547 out_up_write:
2548 up_write(&root->fs_info->subvol_sem);
2549 if (err) {
2550 spin_lock(&dest->root_item_lock);
2551 root_flags = btrfs_root_flags(&dest->root_item);
2552 btrfs_set_root_flags(&dest->root_item,
2553 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2554 spin_unlock(&dest->root_item_lock);
2555 }
2556 out_unlock_inode:
2557 inode_unlock(inode);
2558 if (!err) {
2559 d_invalidate(dentry);
2560 btrfs_invalidate_inodes(dest);
2561 d_delete(dentry);
2562 ASSERT(dest->send_in_progress == 0);
2563
2564 /* the last ref */
2565 if (dest->ino_cache_inode) {
2566 iput(dest->ino_cache_inode);
2567 dest->ino_cache_inode = NULL;
2568 }
2569 }
2570 out_dput:
2571 dput(dentry);
2572 out_unlock_dir:
2573 inode_unlock(dir);
2574 //out_drop_write:
2575 mnt_drop_write_file(file);
2576 out:
2577 kfree(vol_args);
2578 return err;
2579 }
2580
2581 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2582 {
2583 struct inode *inode = file_inode(file);
2584 struct btrfs_root *root = BTRFS_I(inode)->root;
2585 struct btrfs_ioctl_defrag_range_args *range;
2586 int ret;
2587
2588 ret = mnt_want_write_file(file);
2589 if (ret)
2590 return ret;
2591
2592 if (btrfs_root_readonly(root)) {
2593 ret = -EROFS;
2594 goto out;
2595 }
2596
2597 switch (inode->i_mode & S_IFMT) {
2598 case S_IFDIR:
2599 if (!capable(CAP_SYS_ADMIN)) {
2600 ret = -EPERM;
2601 goto out;
2602 }
2603 ret = btrfs_defrag_root(root);
2604 if (ret)
2605 goto out;
2606 ret = btrfs_defrag_root(root->fs_info->extent_root);
2607 break;
2608 case S_IFREG:
2609 if (!(file->f_mode & FMODE_WRITE)) {
2610 ret = -EINVAL;
2611 goto out;
2612 }
2613
2614 range = kzalloc(sizeof(*range), GFP_KERNEL);
2615 if (!range) {
2616 ret = -ENOMEM;
2617 goto out;
2618 }
2619
2620 if (argp) {
2621 if (copy_from_user(range, argp,
2622 sizeof(*range))) {
2623 ret = -EFAULT;
2624 kfree(range);
2625 goto out;
2626 }
2627 /* compression requires us to start the IO */
2628 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2629 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2630 range->extent_thresh = (u32)-1;
2631 }
2632 } else {
2633 /* the rest are all set to zero by kzalloc */
2634 range->len = (u64)-1;
2635 }
2636 ret = btrfs_defrag_file(file_inode(file), file,
2637 range, 0, 0);
2638 if (ret > 0)
2639 ret = 0;
2640 kfree(range);
2641 break;
2642 default:
2643 ret = -EINVAL;
2644 }
2645 out:
2646 mnt_drop_write_file(file);
2647 return ret;
2648 }
2649
2650 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2651 {
2652 struct btrfs_ioctl_vol_args *vol_args;
2653 int ret;
2654
2655 if (!capable(CAP_SYS_ADMIN))
2656 return -EPERM;
2657
2658 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2659 1)) {
2660 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2661 }
2662
2663 mutex_lock(&root->fs_info->volume_mutex);
2664 vol_args = memdup_user(arg, sizeof(*vol_args));
2665 if (IS_ERR(vol_args)) {
2666 ret = PTR_ERR(vol_args);
2667 goto out;
2668 }
2669
2670 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2671 ret = btrfs_init_new_device(root, vol_args->name);
2672
2673 if (!ret)
2674 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2675
2676 kfree(vol_args);
2677 out:
2678 mutex_unlock(&root->fs_info->volume_mutex);
2679 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2680 return ret;
2681 }
2682
2683 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2684 {
2685 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2686 struct btrfs_ioctl_vol_args_v2 *vol_args;
2687 int ret;
2688
2689 if (!capable(CAP_SYS_ADMIN))
2690 return -EPERM;
2691
2692 ret = mnt_want_write_file(file);
2693 if (ret)
2694 return ret;
2695
2696 vol_args = memdup_user(arg, sizeof(*vol_args));
2697 if (IS_ERR(vol_args)) {
2698 ret = PTR_ERR(vol_args);
2699 goto err_drop;
2700 }
2701
2702 /* Check for compatibility reject unknown flags */
2703 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2704 return -EOPNOTSUPP;
2705
2706 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2707 1)) {
2708 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2709 goto out;
2710 }
2711
2712 mutex_lock(&root->fs_info->volume_mutex);
2713 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2714 ret = btrfs_rm_device(root, NULL, vol_args->devid);
2715 } else {
2716 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2717 ret = btrfs_rm_device(root, vol_args->name, 0);
2718 }
2719 mutex_unlock(&root->fs_info->volume_mutex);
2720 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2721
2722 if (!ret) {
2723 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2724 btrfs_info(root->fs_info, "device deleted: id %llu",
2725 vol_args->devid);
2726 else
2727 btrfs_info(root->fs_info, "device deleted: %s",
2728 vol_args->name);
2729 }
2730 out:
2731 kfree(vol_args);
2732 err_drop:
2733 mnt_drop_write_file(file);
2734 return ret;
2735 }
2736
2737 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2738 {
2739 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2740 struct btrfs_ioctl_vol_args *vol_args;
2741 int ret;
2742
2743 if (!capable(CAP_SYS_ADMIN))
2744 return -EPERM;
2745
2746 ret = mnt_want_write_file(file);
2747 if (ret)
2748 return ret;
2749
2750 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2751 1)) {
2752 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2753 goto out_drop_write;
2754 }
2755
2756 vol_args = memdup_user(arg, sizeof(*vol_args));
2757 if (IS_ERR(vol_args)) {
2758 ret = PTR_ERR(vol_args);
2759 goto out;
2760 }
2761
2762 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2763 mutex_lock(&root->fs_info->volume_mutex);
2764 ret = btrfs_rm_device(root, vol_args->name, 0);
2765 mutex_unlock(&root->fs_info->volume_mutex);
2766
2767 if (!ret)
2768 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2769 kfree(vol_args);
2770 out:
2771 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2772 out_drop_write:
2773 mnt_drop_write_file(file);
2774
2775 return ret;
2776 }
2777
2778 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2779 {
2780 struct btrfs_ioctl_fs_info_args *fi_args;
2781 struct btrfs_device *device;
2782 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2783 int ret = 0;
2784
2785 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2786 if (!fi_args)
2787 return -ENOMEM;
2788
2789 mutex_lock(&fs_devices->device_list_mutex);
2790 fi_args->num_devices = fs_devices->num_devices;
2791 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2792
2793 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2794 if (device->devid > fi_args->max_id)
2795 fi_args->max_id = device->devid;
2796 }
2797 mutex_unlock(&fs_devices->device_list_mutex);
2798
2799 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2800 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2801 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2802
2803 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2804 ret = -EFAULT;
2805
2806 kfree(fi_args);
2807 return ret;
2808 }
2809
2810 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2811 {
2812 struct btrfs_ioctl_dev_info_args *di_args;
2813 struct btrfs_device *dev;
2814 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2815 int ret = 0;
2816 char *s_uuid = NULL;
2817
2818 di_args = memdup_user(arg, sizeof(*di_args));
2819 if (IS_ERR(di_args))
2820 return PTR_ERR(di_args);
2821
2822 if (!btrfs_is_empty_uuid(di_args->uuid))
2823 s_uuid = di_args->uuid;
2824
2825 mutex_lock(&fs_devices->device_list_mutex);
2826 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2827
2828 if (!dev) {
2829 ret = -ENODEV;
2830 goto out;
2831 }
2832
2833 di_args->devid = dev->devid;
2834 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2835 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2836 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2837 if (dev->name) {
2838 struct rcu_string *name;
2839
2840 rcu_read_lock();
2841 name = rcu_dereference(dev->name);
2842 strncpy(di_args->path, name->str, sizeof(di_args->path));
2843 rcu_read_unlock();
2844 di_args->path[sizeof(di_args->path) - 1] = 0;
2845 } else {
2846 di_args->path[0] = '\0';
2847 }
2848
2849 out:
2850 mutex_unlock(&fs_devices->device_list_mutex);
2851 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2852 ret = -EFAULT;
2853
2854 kfree(di_args);
2855 return ret;
2856 }
2857
2858 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2859 {
2860 struct page *page;
2861
2862 page = grab_cache_page(inode->i_mapping, index);
2863 if (!page)
2864 return ERR_PTR(-ENOMEM);
2865
2866 if (!PageUptodate(page)) {
2867 int ret;
2868
2869 ret = btrfs_readpage(NULL, page);
2870 if (ret)
2871 return ERR_PTR(ret);
2872 lock_page(page);
2873 if (!PageUptodate(page)) {
2874 unlock_page(page);
2875 put_page(page);
2876 return ERR_PTR(-EIO);
2877 }
2878 if (page->mapping != inode->i_mapping) {
2879 unlock_page(page);
2880 put_page(page);
2881 return ERR_PTR(-EAGAIN);
2882 }
2883 }
2884
2885 return page;
2886 }
2887
2888 static int gather_extent_pages(struct inode *inode, struct page **pages,
2889 int num_pages, u64 off)
2890 {
2891 int i;
2892 pgoff_t index = off >> PAGE_SHIFT;
2893
2894 for (i = 0; i < num_pages; i++) {
2895 again:
2896 pages[i] = extent_same_get_page(inode, index + i);
2897 if (IS_ERR(pages[i])) {
2898 int err = PTR_ERR(pages[i]);
2899
2900 if (err == -EAGAIN)
2901 goto again;
2902 pages[i] = NULL;
2903 return err;
2904 }
2905 }
2906 return 0;
2907 }
2908
2909 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2910 bool retry_range_locking)
2911 {
2912 /*
2913 * Do any pending delalloc/csum calculations on inode, one way or
2914 * another, and lock file content.
2915 * The locking order is:
2916 *
2917 * 1) pages
2918 * 2) range in the inode's io tree
2919 */
2920 while (1) {
2921 struct btrfs_ordered_extent *ordered;
2922 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2923 ordered = btrfs_lookup_first_ordered_extent(inode,
2924 off + len - 1);
2925 if ((!ordered ||
2926 ordered->file_offset + ordered->len <= off ||
2927 ordered->file_offset >= off + len) &&
2928 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2929 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2930 if (ordered)
2931 btrfs_put_ordered_extent(ordered);
2932 break;
2933 }
2934 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2935 if (ordered)
2936 btrfs_put_ordered_extent(ordered);
2937 if (!retry_range_locking)
2938 return -EAGAIN;
2939 btrfs_wait_ordered_range(inode, off, len);
2940 }
2941 return 0;
2942 }
2943
2944 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2945 {
2946 inode_unlock(inode1);
2947 inode_unlock(inode2);
2948 }
2949
2950 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2951 {
2952 if (inode1 < inode2)
2953 swap(inode1, inode2);
2954
2955 inode_lock_nested(inode1, I_MUTEX_PARENT);
2956 inode_lock_nested(inode2, I_MUTEX_CHILD);
2957 }
2958
2959 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2960 struct inode *inode2, u64 loff2, u64 len)
2961 {
2962 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2963 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2964 }
2965
2966 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2967 struct inode *inode2, u64 loff2, u64 len,
2968 bool retry_range_locking)
2969 {
2970 int ret;
2971
2972 if (inode1 < inode2) {
2973 swap(inode1, inode2);
2974 swap(loff1, loff2);
2975 }
2976 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2977 if (ret)
2978 return ret;
2979 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2980 if (ret)
2981 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2982 loff1 + len - 1);
2983 return ret;
2984 }
2985
2986 struct cmp_pages {
2987 int num_pages;
2988 struct page **src_pages;
2989 struct page **dst_pages;
2990 };
2991
2992 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2993 {
2994 int i;
2995 struct page *pg;
2996
2997 for (i = 0; i < cmp->num_pages; i++) {
2998 pg = cmp->src_pages[i];
2999 if (pg) {
3000 unlock_page(pg);
3001 put_page(pg);
3002 }
3003 pg = cmp->dst_pages[i];
3004 if (pg) {
3005 unlock_page(pg);
3006 put_page(pg);
3007 }
3008 }
3009 kfree(cmp->src_pages);
3010 kfree(cmp->dst_pages);
3011 }
3012
3013 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3014 struct inode *dst, u64 dst_loff,
3015 u64 len, struct cmp_pages *cmp)
3016 {
3017 int ret;
3018 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3019 struct page **src_pgarr, **dst_pgarr;
3020
3021 /*
3022 * We must gather up all the pages before we initiate our
3023 * extent locking. We use an array for the page pointers. Size
3024 * of the array is bounded by len, which is in turn bounded by
3025 * BTRFS_MAX_DEDUPE_LEN.
3026 */
3027 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3028 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3029 if (!src_pgarr || !dst_pgarr) {
3030 kfree(src_pgarr);
3031 kfree(dst_pgarr);
3032 return -ENOMEM;
3033 }
3034 cmp->num_pages = num_pages;
3035 cmp->src_pages = src_pgarr;
3036 cmp->dst_pages = dst_pgarr;
3037
3038 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3039 if (ret)
3040 goto out;
3041
3042 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3043
3044 out:
3045 if (ret)
3046 btrfs_cmp_data_free(cmp);
3047 return 0;
3048 }
3049
3050 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3051 u64 dst_loff, u64 len, struct cmp_pages *cmp)
3052 {
3053 int ret = 0;
3054 int i;
3055 struct page *src_page, *dst_page;
3056 unsigned int cmp_len = PAGE_SIZE;
3057 void *addr, *dst_addr;
3058
3059 i = 0;
3060 while (len) {
3061 if (len < PAGE_SIZE)
3062 cmp_len = len;
3063
3064 BUG_ON(i >= cmp->num_pages);
3065
3066 src_page = cmp->src_pages[i];
3067 dst_page = cmp->dst_pages[i];
3068 ASSERT(PageLocked(src_page));
3069 ASSERT(PageLocked(dst_page));
3070
3071 addr = kmap_atomic(src_page);
3072 dst_addr = kmap_atomic(dst_page);
3073
3074 flush_dcache_page(src_page);
3075 flush_dcache_page(dst_page);
3076
3077 if (memcmp(addr, dst_addr, cmp_len))
3078 ret = -EBADE;
3079
3080 kunmap_atomic(addr);
3081 kunmap_atomic(dst_addr);
3082
3083 if (ret)
3084 break;
3085
3086 len -= cmp_len;
3087 i++;
3088 }
3089
3090 return ret;
3091 }
3092
3093 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3094 u64 olen)
3095 {
3096 u64 len = *plen;
3097 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3098
3099 if (off + olen > inode->i_size || off + olen < off)
3100 return -EINVAL;
3101
3102 /* if we extend to eof, continue to block boundary */
3103 if (off + len == inode->i_size)
3104 *plen = len = ALIGN(inode->i_size, bs) - off;
3105
3106 /* Check that we are block aligned - btrfs_clone() requires this */
3107 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3108 return -EINVAL;
3109
3110 return 0;
3111 }
3112
3113 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3114 struct inode *dst, u64 dst_loff)
3115 {
3116 int ret;
3117 u64 len = olen;
3118 struct cmp_pages cmp;
3119 int same_inode = 0;
3120 u64 same_lock_start = 0;
3121 u64 same_lock_len = 0;
3122
3123 if (src == dst)
3124 same_inode = 1;
3125
3126 if (len == 0)
3127 return 0;
3128
3129 if (same_inode) {
3130 inode_lock(src);
3131
3132 ret = extent_same_check_offsets(src, loff, &len, olen);
3133 if (ret)
3134 goto out_unlock;
3135 ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3136 if (ret)
3137 goto out_unlock;
3138
3139 /*
3140 * Single inode case wants the same checks, except we
3141 * don't want our length pushed out past i_size as
3142 * comparing that data range makes no sense.
3143 *
3144 * extent_same_check_offsets() will do this for an
3145 * unaligned length at i_size, so catch it here and
3146 * reject the request.
3147 *
3148 * This effectively means we require aligned extents
3149 * for the single-inode case, whereas the other cases
3150 * allow an unaligned length so long as it ends at
3151 * i_size.
3152 */
3153 if (len != olen) {
3154 ret = -EINVAL;
3155 goto out_unlock;
3156 }
3157
3158 /* Check for overlapping ranges */
3159 if (dst_loff + len > loff && dst_loff < loff + len) {
3160 ret = -EINVAL;
3161 goto out_unlock;
3162 }
3163
3164 same_lock_start = min_t(u64, loff, dst_loff);
3165 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3166 } else {
3167 btrfs_double_inode_lock(src, dst);
3168
3169 ret = extent_same_check_offsets(src, loff, &len, olen);
3170 if (ret)
3171 goto out_unlock;
3172
3173 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3174 if (ret)
3175 goto out_unlock;
3176 }
3177
3178 /* don't make the dst file partly checksummed */
3179 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3180 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3181 ret = -EINVAL;
3182 goto out_unlock;
3183 }
3184
3185 again:
3186 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3187 if (ret)
3188 goto out_unlock;
3189
3190 if (same_inode)
3191 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3192 false);
3193 else
3194 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3195 false);
3196 /*
3197 * If one of the inodes has dirty pages in the respective range or
3198 * ordered extents, we need to flush dellaloc and wait for all ordered
3199 * extents in the range. We must unlock the pages and the ranges in the
3200 * io trees to avoid deadlocks when flushing delalloc (requires locking
3201 * pages) and when waiting for ordered extents to complete (they require
3202 * range locking).
3203 */
3204 if (ret == -EAGAIN) {
3205 /*
3206 * Ranges in the io trees already unlocked. Now unlock all
3207 * pages before waiting for all IO to complete.
3208 */
3209 btrfs_cmp_data_free(&cmp);
3210 if (same_inode) {
3211 btrfs_wait_ordered_range(src, same_lock_start,
3212 same_lock_len);
3213 } else {
3214 btrfs_wait_ordered_range(src, loff, len);
3215 btrfs_wait_ordered_range(dst, dst_loff, len);
3216 }
3217 goto again;
3218 }
3219 ASSERT(ret == 0);
3220 if (WARN_ON(ret)) {
3221 /* ranges in the io trees already unlocked */
3222 btrfs_cmp_data_free(&cmp);
3223 return ret;
3224 }
3225
3226 /* pass original length for comparison so we stay within i_size */
3227 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3228 if (ret == 0)
3229 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3230
3231 if (same_inode)
3232 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3233 same_lock_start + same_lock_len - 1);
3234 else
3235 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3236
3237 btrfs_cmp_data_free(&cmp);
3238 out_unlock:
3239 if (same_inode)
3240 inode_unlock(src);
3241 else
3242 btrfs_double_inode_unlock(src, dst);
3243
3244 return ret;
3245 }
3246
3247 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3248
3249 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3250 struct file *dst_file, u64 dst_loff)
3251 {
3252 struct inode *src = file_inode(src_file);
3253 struct inode *dst = file_inode(dst_file);
3254 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3255 ssize_t res;
3256
3257 if (olen > BTRFS_MAX_DEDUPE_LEN)
3258 olen = BTRFS_MAX_DEDUPE_LEN;
3259
3260 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3261 /*
3262 * Btrfs does not support blocksize < page_size. As a
3263 * result, btrfs_cmp_data() won't correctly handle
3264 * this situation without an update.
3265 */
3266 return -EINVAL;
3267 }
3268
3269 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3270 if (res)
3271 return res;
3272 return olen;
3273 }
3274
3275 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3276 struct inode *inode,
3277 u64 endoff,
3278 const u64 destoff,
3279 const u64 olen,
3280 int no_time_update)
3281 {
3282 struct btrfs_root *root = BTRFS_I(inode)->root;
3283 int ret;
3284
3285 inode_inc_iversion(inode);
3286 if (!no_time_update)
3287 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3288 /*
3289 * We round up to the block size at eof when determining which
3290 * extents to clone above, but shouldn't round up the file size.
3291 */
3292 if (endoff > destoff + olen)
3293 endoff = destoff + olen;
3294 if (endoff > inode->i_size)
3295 btrfs_i_size_write(inode, endoff);
3296
3297 ret = btrfs_update_inode(trans, root, inode);
3298 if (ret) {
3299 btrfs_abort_transaction(trans, root, ret);
3300 btrfs_end_transaction(trans, root);
3301 goto out;
3302 }
3303 ret = btrfs_end_transaction(trans, root);
3304 out:
3305 return ret;
3306 }
3307
3308 static void clone_update_extent_map(struct inode *inode,
3309 const struct btrfs_trans_handle *trans,
3310 const struct btrfs_path *path,
3311 const u64 hole_offset,
3312 const u64 hole_len)
3313 {
3314 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3315 struct extent_map *em;
3316 int ret;
3317
3318 em = alloc_extent_map();
3319 if (!em) {
3320 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3321 &BTRFS_I(inode)->runtime_flags);
3322 return;
3323 }
3324
3325 if (path) {
3326 struct btrfs_file_extent_item *fi;
3327
3328 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3329 struct btrfs_file_extent_item);
3330 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3331 em->generation = -1;
3332 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3333 BTRFS_FILE_EXTENT_INLINE)
3334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3335 &BTRFS_I(inode)->runtime_flags);
3336 } else {
3337 em->start = hole_offset;
3338 em->len = hole_len;
3339 em->ram_bytes = em->len;
3340 em->orig_start = hole_offset;
3341 em->block_start = EXTENT_MAP_HOLE;
3342 em->block_len = 0;
3343 em->orig_block_len = 0;
3344 em->compress_type = BTRFS_COMPRESS_NONE;
3345 em->generation = trans->transid;
3346 }
3347
3348 while (1) {
3349 write_lock(&em_tree->lock);
3350 ret = add_extent_mapping(em_tree, em, 1);
3351 write_unlock(&em_tree->lock);
3352 if (ret != -EEXIST) {
3353 free_extent_map(em);
3354 break;
3355 }
3356 btrfs_drop_extent_cache(inode, em->start,
3357 em->start + em->len - 1, 0);
3358 }
3359
3360 if (ret)
3361 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3362 &BTRFS_I(inode)->runtime_flags);
3363 }
3364
3365 /*
3366 * Make sure we do not end up inserting an inline extent into a file that has
3367 * already other (non-inline) extents. If a file has an inline extent it can
3368 * not have any other extents and the (single) inline extent must start at the
3369 * file offset 0. Failing to respect these rules will lead to file corruption,
3370 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3371 *
3372 * We can have extents that have been already written to disk or we can have
3373 * dirty ranges still in delalloc, in which case the extent maps and items are
3374 * created only when we run delalloc, and the delalloc ranges might fall outside
3375 * the range we are currently locking in the inode's io tree. So we check the
3376 * inode's i_size because of that (i_size updates are done while holding the
3377 * i_mutex, which we are holding here).
3378 * We also check to see if the inode has a size not greater than "datal" but has
3379 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3380 * protected against such concurrent fallocate calls by the i_mutex).
3381 *
3382 * If the file has no extents but a size greater than datal, do not allow the
3383 * copy because we would need turn the inline extent into a non-inline one (even
3384 * with NO_HOLES enabled). If we find our destination inode only has one inline
3385 * extent, just overwrite it with the source inline extent if its size is less
3386 * than the source extent's size, or we could copy the source inline extent's
3387 * data into the destination inode's inline extent if the later is greater then
3388 * the former.
3389 */
3390 static int clone_copy_inline_extent(struct inode *src,
3391 struct inode *dst,
3392 struct btrfs_trans_handle *trans,
3393 struct btrfs_path *path,
3394 struct btrfs_key *new_key,
3395 const u64 drop_start,
3396 const u64 datal,
3397 const u64 skip,
3398 const u64 size,
3399 char *inline_data)
3400 {
3401 struct btrfs_root *root = BTRFS_I(dst)->root;
3402 const u64 aligned_end = ALIGN(new_key->offset + datal,
3403 root->sectorsize);
3404 int ret;
3405 struct btrfs_key key;
3406
3407 if (new_key->offset > 0)
3408 return -EOPNOTSUPP;
3409
3410 key.objectid = btrfs_ino(dst);
3411 key.type = BTRFS_EXTENT_DATA_KEY;
3412 key.offset = 0;
3413 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3414 if (ret < 0) {
3415 return ret;
3416 } else if (ret > 0) {
3417 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3418 ret = btrfs_next_leaf(root, path);
3419 if (ret < 0)
3420 return ret;
3421 else if (ret > 0)
3422 goto copy_inline_extent;
3423 }
3424 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3425 if (key.objectid == btrfs_ino(dst) &&
3426 key.type == BTRFS_EXTENT_DATA_KEY) {
3427 ASSERT(key.offset > 0);
3428 return -EOPNOTSUPP;
3429 }
3430 } else if (i_size_read(dst) <= datal) {
3431 struct btrfs_file_extent_item *ei;
3432 u64 ext_len;
3433
3434 /*
3435 * If the file size is <= datal, make sure there are no other
3436 * extents following (can happen do to an fallocate call with
3437 * the flag FALLOC_FL_KEEP_SIZE).
3438 */
3439 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3440 struct btrfs_file_extent_item);
3441 /*
3442 * If it's an inline extent, it can not have other extents
3443 * following it.
3444 */
3445 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3446 BTRFS_FILE_EXTENT_INLINE)
3447 goto copy_inline_extent;
3448
3449 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3450 if (ext_len > aligned_end)
3451 return -EOPNOTSUPP;
3452
3453 ret = btrfs_next_item(root, path);
3454 if (ret < 0) {
3455 return ret;
3456 } else if (ret == 0) {
3457 btrfs_item_key_to_cpu(path->nodes[0], &key,
3458 path->slots[0]);
3459 if (key.objectid == btrfs_ino(dst) &&
3460 key.type == BTRFS_EXTENT_DATA_KEY)
3461 return -EOPNOTSUPP;
3462 }
3463 }
3464
3465 copy_inline_extent:
3466 /*
3467 * We have no extent items, or we have an extent at offset 0 which may
3468 * or may not be inlined. All these cases are dealt the same way.
3469 */
3470 if (i_size_read(dst) > datal) {
3471 /*
3472 * If the destination inode has an inline extent...
3473 * This would require copying the data from the source inline
3474 * extent into the beginning of the destination's inline extent.
3475 * But this is really complex, both extents can be compressed
3476 * or just one of them, which would require decompressing and
3477 * re-compressing data (which could increase the new compressed
3478 * size, not allowing the compressed data to fit anymore in an
3479 * inline extent).
3480 * So just don't support this case for now (it should be rare,
3481 * we are not really saving space when cloning inline extents).
3482 */
3483 return -EOPNOTSUPP;
3484 }
3485
3486 btrfs_release_path(path);
3487 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3488 if (ret)
3489 return ret;
3490 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3491 if (ret)
3492 return ret;
3493
3494 if (skip) {
3495 const u32 start = btrfs_file_extent_calc_inline_size(0);
3496
3497 memmove(inline_data + start, inline_data + start + skip, datal);
3498 }
3499
3500 write_extent_buffer(path->nodes[0], inline_data,
3501 btrfs_item_ptr_offset(path->nodes[0],
3502 path->slots[0]),
3503 size);
3504 inode_add_bytes(dst, datal);
3505
3506 return 0;
3507 }
3508
3509 /**
3510 * btrfs_clone() - clone a range from inode file to another
3511 *
3512 * @src: Inode to clone from
3513 * @inode: Inode to clone to
3514 * @off: Offset within source to start clone from
3515 * @olen: Original length, passed by user, of range to clone
3516 * @olen_aligned: Block-aligned value of olen
3517 * @destoff: Offset within @inode to start clone
3518 * @no_time_update: Whether to update mtime/ctime on the target inode
3519 */
3520 static int btrfs_clone(struct inode *src, struct inode *inode,
3521 const u64 off, const u64 olen, const u64 olen_aligned,
3522 const u64 destoff, int no_time_update)
3523 {
3524 struct btrfs_root *root = BTRFS_I(inode)->root;
3525 struct btrfs_path *path = NULL;
3526 struct extent_buffer *leaf;
3527 struct btrfs_trans_handle *trans;
3528 char *buf = NULL;
3529 struct btrfs_key key;
3530 u32 nritems;
3531 int slot;
3532 int ret;
3533 const u64 len = olen_aligned;
3534 u64 last_dest_end = destoff;
3535
3536 ret = -ENOMEM;
3537 buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN);
3538 if (!buf) {
3539 buf = vmalloc(root->nodesize);
3540 if (!buf)
3541 return ret;
3542 }
3543
3544 path = btrfs_alloc_path();
3545 if (!path) {
3546 kvfree(buf);
3547 return ret;
3548 }
3549
3550 path->reada = READA_FORWARD;
3551 /* clone data */
3552 key.objectid = btrfs_ino(src);
3553 key.type = BTRFS_EXTENT_DATA_KEY;
3554 key.offset = off;
3555
3556 while (1) {
3557 u64 next_key_min_offset = key.offset + 1;
3558
3559 /*
3560 * note the key will change type as we walk through the
3561 * tree.
3562 */
3563 path->leave_spinning = 1;
3564 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3565 0, 0);
3566 if (ret < 0)
3567 goto out;
3568 /*
3569 * First search, if no extent item that starts at offset off was
3570 * found but the previous item is an extent item, it's possible
3571 * it might overlap our target range, therefore process it.
3572 */
3573 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3574 btrfs_item_key_to_cpu(path->nodes[0], &key,
3575 path->slots[0] - 1);
3576 if (key.type == BTRFS_EXTENT_DATA_KEY)
3577 path->slots[0]--;
3578 }
3579
3580 nritems = btrfs_header_nritems(path->nodes[0]);
3581 process_slot:
3582 if (path->slots[0] >= nritems) {
3583 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3584 if (ret < 0)
3585 goto out;
3586 if (ret > 0)
3587 break;
3588 nritems = btrfs_header_nritems(path->nodes[0]);
3589 }
3590 leaf = path->nodes[0];
3591 slot = path->slots[0];
3592
3593 btrfs_item_key_to_cpu(leaf, &key, slot);
3594 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3595 key.objectid != btrfs_ino(src))
3596 break;
3597
3598 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3599 struct btrfs_file_extent_item *extent;
3600 int type;
3601 u32 size;
3602 struct btrfs_key new_key;
3603 u64 disko = 0, diskl = 0;
3604 u64 datao = 0, datal = 0;
3605 u8 comp;
3606 u64 drop_start;
3607
3608 extent = btrfs_item_ptr(leaf, slot,
3609 struct btrfs_file_extent_item);
3610 comp = btrfs_file_extent_compression(leaf, extent);
3611 type = btrfs_file_extent_type(leaf, extent);
3612 if (type == BTRFS_FILE_EXTENT_REG ||
3613 type == BTRFS_FILE_EXTENT_PREALLOC) {
3614 disko = btrfs_file_extent_disk_bytenr(leaf,
3615 extent);
3616 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3617 extent);
3618 datao = btrfs_file_extent_offset(leaf, extent);
3619 datal = btrfs_file_extent_num_bytes(leaf,
3620 extent);
3621 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3622 /* take upper bound, may be compressed */
3623 datal = btrfs_file_extent_ram_bytes(leaf,
3624 extent);
3625 }
3626
3627 /*
3628 * The first search might have left us at an extent
3629 * item that ends before our target range's start, can
3630 * happen if we have holes and NO_HOLES feature enabled.
3631 */
3632 if (key.offset + datal <= off) {
3633 path->slots[0]++;
3634 goto process_slot;
3635 } else if (key.offset >= off + len) {
3636 break;
3637 }
3638 next_key_min_offset = key.offset + datal;
3639 size = btrfs_item_size_nr(leaf, slot);
3640 read_extent_buffer(leaf, buf,
3641 btrfs_item_ptr_offset(leaf, slot),
3642 size);
3643
3644 btrfs_release_path(path);
3645 path->leave_spinning = 0;
3646
3647 memcpy(&new_key, &key, sizeof(new_key));
3648 new_key.objectid = btrfs_ino(inode);
3649 if (off <= key.offset)
3650 new_key.offset = key.offset + destoff - off;
3651 else
3652 new_key.offset = destoff;
3653
3654 /*
3655 * Deal with a hole that doesn't have an extent item
3656 * that represents it (NO_HOLES feature enabled).
3657 * This hole is either in the middle of the cloning
3658 * range or at the beginning (fully overlaps it or
3659 * partially overlaps it).
3660 */
3661 if (new_key.offset != last_dest_end)
3662 drop_start = last_dest_end;
3663 else
3664 drop_start = new_key.offset;
3665
3666 /*
3667 * 1 - adjusting old extent (we may have to split it)
3668 * 1 - add new extent
3669 * 1 - inode update
3670 */
3671 trans = btrfs_start_transaction(root, 3);
3672 if (IS_ERR(trans)) {
3673 ret = PTR_ERR(trans);
3674 goto out;
3675 }
3676
3677 if (type == BTRFS_FILE_EXTENT_REG ||
3678 type == BTRFS_FILE_EXTENT_PREALLOC) {
3679 /*
3680 * a | --- range to clone ---| b
3681 * | ------------- extent ------------- |
3682 */
3683
3684 /* subtract range b */
3685 if (key.offset + datal > off + len)
3686 datal = off + len - key.offset;
3687
3688 /* subtract range a */
3689 if (off > key.offset) {
3690 datao += off - key.offset;
3691 datal -= off - key.offset;
3692 }
3693
3694 ret = btrfs_drop_extents(trans, root, inode,
3695 drop_start,
3696 new_key.offset + datal,
3697 1);
3698 if (ret) {
3699 if (ret != -EOPNOTSUPP)
3700 btrfs_abort_transaction(trans,
3701 root, ret);
3702 btrfs_end_transaction(trans, root);
3703 goto out;
3704 }
3705
3706 ret = btrfs_insert_empty_item(trans, root, path,
3707 &new_key, size);
3708 if (ret) {
3709 btrfs_abort_transaction(trans, root,
3710 ret);
3711 btrfs_end_transaction(trans, root);
3712 goto out;
3713 }
3714
3715 leaf = path->nodes[0];
3716 slot = path->slots[0];
3717 write_extent_buffer(leaf, buf,
3718 btrfs_item_ptr_offset(leaf, slot),
3719 size);
3720
3721 extent = btrfs_item_ptr(leaf, slot,
3722 struct btrfs_file_extent_item);
3723
3724 /* disko == 0 means it's a hole */
3725 if (!disko)
3726 datao = 0;
3727
3728 btrfs_set_file_extent_offset(leaf, extent,
3729 datao);
3730 btrfs_set_file_extent_num_bytes(leaf, extent,
3731 datal);
3732
3733 if (disko) {
3734 inode_add_bytes(inode, datal);
3735 ret = btrfs_inc_extent_ref(trans, root,
3736 disko, diskl, 0,
3737 root->root_key.objectid,
3738 btrfs_ino(inode),
3739 new_key.offset - datao);
3740 if (ret) {
3741 btrfs_abort_transaction(trans,
3742 root,
3743 ret);
3744 btrfs_end_transaction(trans,
3745 root);
3746 goto out;
3747
3748 }
3749 }
3750 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3751 u64 skip = 0;
3752 u64 trim = 0;
3753
3754 if (off > key.offset) {
3755 skip = off - key.offset;
3756 new_key.offset += skip;
3757 }
3758
3759 if (key.offset + datal > off + len)
3760 trim = key.offset + datal - (off + len);
3761
3762 if (comp && (skip || trim)) {
3763 ret = -EINVAL;
3764 btrfs_end_transaction(trans, root);
3765 goto out;
3766 }
3767 size -= skip + trim;
3768 datal -= skip + trim;
3769
3770 ret = clone_copy_inline_extent(src, inode,
3771 trans, path,
3772 &new_key,
3773 drop_start,
3774 datal,
3775 skip, size, buf);
3776 if (ret) {
3777 if (ret != -EOPNOTSUPP)
3778 btrfs_abort_transaction(trans,
3779 root,
3780 ret);
3781 btrfs_end_transaction(trans, root);
3782 goto out;
3783 }
3784 leaf = path->nodes[0];
3785 slot = path->slots[0];
3786 }
3787
3788 /* If we have an implicit hole (NO_HOLES feature). */
3789 if (drop_start < new_key.offset)
3790 clone_update_extent_map(inode, trans,
3791 NULL, drop_start,
3792 new_key.offset - drop_start);
3793
3794 clone_update_extent_map(inode, trans, path, 0, 0);
3795
3796 btrfs_mark_buffer_dirty(leaf);
3797 btrfs_release_path(path);
3798
3799 last_dest_end = ALIGN(new_key.offset + datal,
3800 root->sectorsize);
3801 ret = clone_finish_inode_update(trans, inode,
3802 last_dest_end,
3803 destoff, olen,
3804 no_time_update);
3805 if (ret)
3806 goto out;
3807 if (new_key.offset + datal >= destoff + len)
3808 break;
3809 }
3810 btrfs_release_path(path);
3811 key.offset = next_key_min_offset;
3812 }
3813 ret = 0;
3814
3815 if (last_dest_end < destoff + len) {
3816 /*
3817 * We have an implicit hole (NO_HOLES feature is enabled) that
3818 * fully or partially overlaps our cloning range at its end.
3819 */
3820 btrfs_release_path(path);
3821
3822 /*
3823 * 1 - remove extent(s)
3824 * 1 - inode update
3825 */
3826 trans = btrfs_start_transaction(root, 2);
3827 if (IS_ERR(trans)) {
3828 ret = PTR_ERR(trans);
3829 goto out;
3830 }
3831 ret = btrfs_drop_extents(trans, root, inode,
3832 last_dest_end, destoff + len, 1);
3833 if (ret) {
3834 if (ret != -EOPNOTSUPP)
3835 btrfs_abort_transaction(trans, root, ret);
3836 btrfs_end_transaction(trans, root);
3837 goto out;
3838 }
3839 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3840 destoff + len - last_dest_end);
3841 ret = clone_finish_inode_update(trans, inode, destoff + len,
3842 destoff, olen, no_time_update);
3843 }
3844
3845 out:
3846 btrfs_free_path(path);
3847 kvfree(buf);
3848 return ret;
3849 }
3850
3851 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3852 u64 off, u64 olen, u64 destoff)
3853 {
3854 struct inode *inode = file_inode(file);
3855 struct inode *src = file_inode(file_src);
3856 struct btrfs_root *root = BTRFS_I(inode)->root;
3857 int ret;
3858 u64 len = olen;
3859 u64 bs = root->fs_info->sb->s_blocksize;
3860 int same_inode = src == inode;
3861
3862 /*
3863 * TODO:
3864 * - split compressed inline extents. annoying: we need to
3865 * decompress into destination's address_space (the file offset
3866 * may change, so source mapping won't do), then recompress (or
3867 * otherwise reinsert) a subrange.
3868 *
3869 * - split destination inode's inline extents. The inline extents can
3870 * be either compressed or non-compressed.
3871 */
3872
3873 if (btrfs_root_readonly(root))
3874 return -EROFS;
3875
3876 if (file_src->f_path.mnt != file->f_path.mnt ||
3877 src->i_sb != inode->i_sb)
3878 return -EXDEV;
3879
3880 /* don't make the dst file partly checksummed */
3881 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3882 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3883 return -EINVAL;
3884
3885 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3886 return -EISDIR;
3887
3888 if (!same_inode) {
3889 btrfs_double_inode_lock(src, inode);
3890 } else {
3891 inode_lock(src);
3892 }
3893
3894 /* determine range to clone */
3895 ret = -EINVAL;
3896 if (off + len > src->i_size || off + len < off)
3897 goto out_unlock;
3898 if (len == 0)
3899 olen = len = src->i_size - off;
3900 /* if we extend to eof, continue to block boundary */
3901 if (off + len == src->i_size)
3902 len = ALIGN(src->i_size, bs) - off;
3903
3904 if (len == 0) {
3905 ret = 0;
3906 goto out_unlock;
3907 }
3908
3909 /* verify the end result is block aligned */
3910 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3911 !IS_ALIGNED(destoff, bs))
3912 goto out_unlock;
3913
3914 /* verify if ranges are overlapped within the same file */
3915 if (same_inode) {
3916 if (destoff + len > off && destoff < off + len)
3917 goto out_unlock;
3918 }
3919
3920 if (destoff > inode->i_size) {
3921 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3922 if (ret)
3923 goto out_unlock;
3924 }
3925
3926 /*
3927 * Lock the target range too. Right after we replace the file extent
3928 * items in the fs tree (which now point to the cloned data), we might
3929 * have a worker replace them with extent items relative to a write
3930 * operation that was issued before this clone operation (i.e. confront
3931 * with inode.c:btrfs_finish_ordered_io).
3932 */
3933 if (same_inode) {
3934 u64 lock_start = min_t(u64, off, destoff);
3935 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3936
3937 ret = lock_extent_range(src, lock_start, lock_len, true);
3938 } else {
3939 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3940 true);
3941 }
3942 ASSERT(ret == 0);
3943 if (WARN_ON(ret)) {
3944 /* ranges in the io trees already unlocked */
3945 goto out_unlock;
3946 }
3947
3948 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3949
3950 if (same_inode) {
3951 u64 lock_start = min_t(u64, off, destoff);
3952 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3953
3954 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3955 } else {
3956 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3957 }
3958 /*
3959 * Truncate page cache pages so that future reads will see the cloned
3960 * data immediately and not the previous data.
3961 */
3962 truncate_inode_pages_range(&inode->i_data,
3963 round_down(destoff, PAGE_SIZE),
3964 round_up(destoff + len, PAGE_SIZE) - 1);
3965 out_unlock:
3966 if (!same_inode)
3967 btrfs_double_inode_unlock(src, inode);
3968 else
3969 inode_unlock(src);
3970 return ret;
3971 }
3972
3973 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3974 struct file *file_out, loff_t pos_out,
3975 size_t len, unsigned int flags)
3976 {
3977 ssize_t ret;
3978
3979 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3980 if (ret == 0)
3981 ret = len;
3982 return ret;
3983 }
3984
3985 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3986 struct file *dst_file, loff_t destoff, u64 len)
3987 {
3988 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3989 }
3990
3991 /*
3992 * there are many ways the trans_start and trans_end ioctls can lead
3993 * to deadlocks. They should only be used by applications that
3994 * basically own the machine, and have a very in depth understanding
3995 * of all the possible deadlocks and enospc problems.
3996 */
3997 static long btrfs_ioctl_trans_start(struct file *file)
3998 {
3999 struct inode *inode = file_inode(file);
4000 struct btrfs_root *root = BTRFS_I(inode)->root;
4001 struct btrfs_trans_handle *trans;
4002 int ret;
4003
4004 ret = -EPERM;
4005 if (!capable(CAP_SYS_ADMIN))
4006 goto out;
4007
4008 ret = -EINPROGRESS;
4009 if (file->private_data)
4010 goto out;
4011
4012 ret = -EROFS;
4013 if (btrfs_root_readonly(root))
4014 goto out;
4015
4016 ret = mnt_want_write_file(file);
4017 if (ret)
4018 goto out;
4019
4020 atomic_inc(&root->fs_info->open_ioctl_trans);
4021
4022 ret = -ENOMEM;
4023 trans = btrfs_start_ioctl_transaction(root);
4024 if (IS_ERR(trans))
4025 goto out_drop;
4026
4027 file->private_data = trans;
4028 return 0;
4029
4030 out_drop:
4031 atomic_dec(&root->fs_info->open_ioctl_trans);
4032 mnt_drop_write_file(file);
4033 out:
4034 return ret;
4035 }
4036
4037 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4038 {
4039 struct inode *inode = file_inode(file);
4040 struct btrfs_root *root = BTRFS_I(inode)->root;
4041 struct btrfs_root *new_root;
4042 struct btrfs_dir_item *di;
4043 struct btrfs_trans_handle *trans;
4044 struct btrfs_path *path;
4045 struct btrfs_key location;
4046 struct btrfs_disk_key disk_key;
4047 u64 objectid = 0;
4048 u64 dir_id;
4049 int ret;
4050
4051 if (!capable(CAP_SYS_ADMIN))
4052 return -EPERM;
4053
4054 ret = mnt_want_write_file(file);
4055 if (ret)
4056 return ret;
4057
4058 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4059 ret = -EFAULT;
4060 goto out;
4061 }
4062
4063 if (!objectid)
4064 objectid = BTRFS_FS_TREE_OBJECTID;
4065
4066 location.objectid = objectid;
4067 location.type = BTRFS_ROOT_ITEM_KEY;
4068 location.offset = (u64)-1;
4069
4070 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4071 if (IS_ERR(new_root)) {
4072 ret = PTR_ERR(new_root);
4073 goto out;
4074 }
4075
4076 path = btrfs_alloc_path();
4077 if (!path) {
4078 ret = -ENOMEM;
4079 goto out;
4080 }
4081 path->leave_spinning = 1;
4082
4083 trans = btrfs_start_transaction(root, 1);
4084 if (IS_ERR(trans)) {
4085 btrfs_free_path(path);
4086 ret = PTR_ERR(trans);
4087 goto out;
4088 }
4089
4090 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4091 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4092 dir_id, "default", 7, 1);
4093 if (IS_ERR_OR_NULL(di)) {
4094 btrfs_free_path(path);
4095 btrfs_end_transaction(trans, root);
4096 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4097 "item, this isn't going to work");
4098 ret = -ENOENT;
4099 goto out;
4100 }
4101
4102 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4103 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4104 btrfs_mark_buffer_dirty(path->nodes[0]);
4105 btrfs_free_path(path);
4106
4107 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4108 btrfs_end_transaction(trans, root);
4109 out:
4110 mnt_drop_write_file(file);
4111 return ret;
4112 }
4113
4114 void btrfs_get_block_group_info(struct list_head *groups_list,
4115 struct btrfs_ioctl_space_info *space)
4116 {
4117 struct btrfs_block_group_cache *block_group;
4118
4119 space->total_bytes = 0;
4120 space->used_bytes = 0;
4121 space->flags = 0;
4122 list_for_each_entry(block_group, groups_list, list) {
4123 space->flags = block_group->flags;
4124 space->total_bytes += block_group->key.offset;
4125 space->used_bytes +=
4126 btrfs_block_group_used(&block_group->item);
4127 }
4128 }
4129
4130 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4131 {
4132 struct btrfs_ioctl_space_args space_args;
4133 struct btrfs_ioctl_space_info space;
4134 struct btrfs_ioctl_space_info *dest;
4135 struct btrfs_ioctl_space_info *dest_orig;
4136 struct btrfs_ioctl_space_info __user *user_dest;
4137 struct btrfs_space_info *info;
4138 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4139 BTRFS_BLOCK_GROUP_SYSTEM,
4140 BTRFS_BLOCK_GROUP_METADATA,
4141 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4142 int num_types = 4;
4143 int alloc_size;
4144 int ret = 0;
4145 u64 slot_count = 0;
4146 int i, c;
4147
4148 if (copy_from_user(&space_args,
4149 (struct btrfs_ioctl_space_args __user *)arg,
4150 sizeof(space_args)))
4151 return -EFAULT;
4152
4153 for (i = 0; i < num_types; i++) {
4154 struct btrfs_space_info *tmp;
4155
4156 info = NULL;
4157 rcu_read_lock();
4158 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4159 list) {
4160 if (tmp->flags == types[i]) {
4161 info = tmp;
4162 break;
4163 }
4164 }
4165 rcu_read_unlock();
4166
4167 if (!info)
4168 continue;
4169
4170 down_read(&info->groups_sem);
4171 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4172 if (!list_empty(&info->block_groups[c]))
4173 slot_count++;
4174 }
4175 up_read(&info->groups_sem);
4176 }
4177
4178 /*
4179 * Global block reserve, exported as a space_info
4180 */
4181 slot_count++;
4182
4183 /* space_slots == 0 means they are asking for a count */
4184 if (space_args.space_slots == 0) {
4185 space_args.total_spaces = slot_count;
4186 goto out;
4187 }
4188
4189 slot_count = min_t(u64, space_args.space_slots, slot_count);
4190
4191 alloc_size = sizeof(*dest) * slot_count;
4192
4193 /* we generally have at most 6 or so space infos, one for each raid
4194 * level. So, a whole page should be more than enough for everyone
4195 */
4196 if (alloc_size > PAGE_SIZE)
4197 return -ENOMEM;
4198
4199 space_args.total_spaces = 0;
4200 dest = kmalloc(alloc_size, GFP_KERNEL);
4201 if (!dest)
4202 return -ENOMEM;
4203 dest_orig = dest;
4204
4205 /* now we have a buffer to copy into */
4206 for (i = 0; i < num_types; i++) {
4207 struct btrfs_space_info *tmp;
4208
4209 if (!slot_count)
4210 break;
4211
4212 info = NULL;
4213 rcu_read_lock();
4214 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4215 list) {
4216 if (tmp->flags == types[i]) {
4217 info = tmp;
4218 break;
4219 }
4220 }
4221 rcu_read_unlock();
4222
4223 if (!info)
4224 continue;
4225 down_read(&info->groups_sem);
4226 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4227 if (!list_empty(&info->block_groups[c])) {
4228 btrfs_get_block_group_info(
4229 &info->block_groups[c], &space);
4230 memcpy(dest, &space, sizeof(space));
4231 dest++;
4232 space_args.total_spaces++;
4233 slot_count--;
4234 }
4235 if (!slot_count)
4236 break;
4237 }
4238 up_read(&info->groups_sem);
4239 }
4240
4241 /*
4242 * Add global block reserve
4243 */
4244 if (slot_count) {
4245 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4246
4247 spin_lock(&block_rsv->lock);
4248 space.total_bytes = block_rsv->size;
4249 space.used_bytes = block_rsv->size - block_rsv->reserved;
4250 spin_unlock(&block_rsv->lock);
4251 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4252 memcpy(dest, &space, sizeof(space));
4253 space_args.total_spaces++;
4254 }
4255
4256 user_dest = (struct btrfs_ioctl_space_info __user *)
4257 (arg + sizeof(struct btrfs_ioctl_space_args));
4258
4259 if (copy_to_user(user_dest, dest_orig, alloc_size))
4260 ret = -EFAULT;
4261
4262 kfree(dest_orig);
4263 out:
4264 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4265 ret = -EFAULT;
4266
4267 return ret;
4268 }
4269
4270 /*
4271 * there are many ways the trans_start and trans_end ioctls can lead
4272 * to deadlocks. They should only be used by applications that
4273 * basically own the machine, and have a very in depth understanding
4274 * of all the possible deadlocks and enospc problems.
4275 */
4276 long btrfs_ioctl_trans_end(struct file *file)
4277 {
4278 struct inode *inode = file_inode(file);
4279 struct btrfs_root *root = BTRFS_I(inode)->root;
4280 struct btrfs_trans_handle *trans;
4281
4282 trans = file->private_data;
4283 if (!trans)
4284 return -EINVAL;
4285 file->private_data = NULL;
4286
4287 btrfs_end_transaction(trans, root);
4288
4289 atomic_dec(&root->fs_info->open_ioctl_trans);
4290
4291 mnt_drop_write_file(file);
4292 return 0;
4293 }
4294
4295 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4296 void __user *argp)
4297 {
4298 struct btrfs_trans_handle *trans;
4299 u64 transid;
4300 int ret;
4301
4302 trans = btrfs_attach_transaction_barrier(root);
4303 if (IS_ERR(trans)) {
4304 if (PTR_ERR(trans) != -ENOENT)
4305 return PTR_ERR(trans);
4306
4307 /* No running transaction, don't bother */
4308 transid = root->fs_info->last_trans_committed;
4309 goto out;
4310 }
4311 transid = trans->transid;
4312 ret = btrfs_commit_transaction_async(trans, root, 0);
4313 if (ret) {
4314 btrfs_end_transaction(trans, root);
4315 return ret;
4316 }
4317 out:
4318 if (argp)
4319 if (copy_to_user(argp, &transid, sizeof(transid)))
4320 return -EFAULT;
4321 return 0;
4322 }
4323
4324 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4325 void __user *argp)
4326 {
4327 u64 transid;
4328
4329 if (argp) {
4330 if (copy_from_user(&transid, argp, sizeof(transid)))
4331 return -EFAULT;
4332 } else {
4333 transid = 0; /* current trans */
4334 }
4335 return btrfs_wait_for_commit(root, transid);
4336 }
4337
4338 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4339 {
4340 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4341 struct btrfs_ioctl_scrub_args *sa;
4342 int ret;
4343
4344 if (!capable(CAP_SYS_ADMIN))
4345 return -EPERM;
4346
4347 sa = memdup_user(arg, sizeof(*sa));
4348 if (IS_ERR(sa))
4349 return PTR_ERR(sa);
4350
4351 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4352 ret = mnt_want_write_file(file);
4353 if (ret)
4354 goto out;
4355 }
4356
4357 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4358 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4359 0);
4360
4361 if (copy_to_user(arg, sa, sizeof(*sa)))
4362 ret = -EFAULT;
4363
4364 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4365 mnt_drop_write_file(file);
4366 out:
4367 kfree(sa);
4368 return ret;
4369 }
4370
4371 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4372 {
4373 if (!capable(CAP_SYS_ADMIN))
4374 return -EPERM;
4375
4376 return btrfs_scrub_cancel(root->fs_info);
4377 }
4378
4379 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4380 void __user *arg)
4381 {
4382 struct btrfs_ioctl_scrub_args *sa;
4383 int ret;
4384
4385 if (!capable(CAP_SYS_ADMIN))
4386 return -EPERM;
4387
4388 sa = memdup_user(arg, sizeof(*sa));
4389 if (IS_ERR(sa))
4390 return PTR_ERR(sa);
4391
4392 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4393
4394 if (copy_to_user(arg, sa, sizeof(*sa)))
4395 ret = -EFAULT;
4396
4397 kfree(sa);
4398 return ret;
4399 }
4400
4401 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4402 void __user *arg)
4403 {
4404 struct btrfs_ioctl_get_dev_stats *sa;
4405 int ret;
4406
4407 sa = memdup_user(arg, sizeof(*sa));
4408 if (IS_ERR(sa))
4409 return PTR_ERR(sa);
4410
4411 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4412 kfree(sa);
4413 return -EPERM;
4414 }
4415
4416 ret = btrfs_get_dev_stats(root, sa);
4417
4418 if (copy_to_user(arg, sa, sizeof(*sa)))
4419 ret = -EFAULT;
4420
4421 kfree(sa);
4422 return ret;
4423 }
4424
4425 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4426 {
4427 struct btrfs_ioctl_dev_replace_args *p;
4428 int ret;
4429
4430 if (!capable(CAP_SYS_ADMIN))
4431 return -EPERM;
4432
4433 p = memdup_user(arg, sizeof(*p));
4434 if (IS_ERR(p))
4435 return PTR_ERR(p);
4436
4437 switch (p->cmd) {
4438 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4439 if (root->fs_info->sb->s_flags & MS_RDONLY) {
4440 ret = -EROFS;
4441 goto out;
4442 }
4443 if (atomic_xchg(
4444 &root->fs_info->mutually_exclusive_operation_running,
4445 1)) {
4446 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4447 } else {
4448 ret = btrfs_dev_replace_by_ioctl(root, p);
4449 atomic_set(
4450 &root->fs_info->mutually_exclusive_operation_running,
4451 0);
4452 }
4453 break;
4454 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4455 btrfs_dev_replace_status(root->fs_info, p);
4456 ret = 0;
4457 break;
4458 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4459 ret = btrfs_dev_replace_cancel(root->fs_info, p);
4460 break;
4461 default:
4462 ret = -EINVAL;
4463 break;
4464 }
4465
4466 if (copy_to_user(arg, p, sizeof(*p)))
4467 ret = -EFAULT;
4468 out:
4469 kfree(p);
4470 return ret;
4471 }
4472
4473 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4474 {
4475 int ret = 0;
4476 int i;
4477 u64 rel_ptr;
4478 int size;
4479 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4480 struct inode_fs_paths *ipath = NULL;
4481 struct btrfs_path *path;
4482
4483 if (!capable(CAP_DAC_READ_SEARCH))
4484 return -EPERM;
4485
4486 path = btrfs_alloc_path();
4487 if (!path) {
4488 ret = -ENOMEM;
4489 goto out;
4490 }
4491
4492 ipa = memdup_user(arg, sizeof(*ipa));
4493 if (IS_ERR(ipa)) {
4494 ret = PTR_ERR(ipa);
4495 ipa = NULL;
4496 goto out;
4497 }
4498
4499 size = min_t(u32, ipa->size, 4096);
4500 ipath = init_ipath(size, root, path);
4501 if (IS_ERR(ipath)) {
4502 ret = PTR_ERR(ipath);
4503 ipath = NULL;
4504 goto out;
4505 }
4506
4507 ret = paths_from_inode(ipa->inum, ipath);
4508 if (ret < 0)
4509 goto out;
4510
4511 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4512 rel_ptr = ipath->fspath->val[i] -
4513 (u64)(unsigned long)ipath->fspath->val;
4514 ipath->fspath->val[i] = rel_ptr;
4515 }
4516
4517 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4518 (void *)(unsigned long)ipath->fspath, size);
4519 if (ret) {
4520 ret = -EFAULT;
4521 goto out;
4522 }
4523
4524 out:
4525 btrfs_free_path(path);
4526 free_ipath(ipath);
4527 kfree(ipa);
4528
4529 return ret;
4530 }
4531
4532 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4533 {
4534 struct btrfs_data_container *inodes = ctx;
4535 const size_t c = 3 * sizeof(u64);
4536
4537 if (inodes->bytes_left >= c) {
4538 inodes->bytes_left -= c;
4539 inodes->val[inodes->elem_cnt] = inum;
4540 inodes->val[inodes->elem_cnt + 1] = offset;
4541 inodes->val[inodes->elem_cnt + 2] = root;
4542 inodes->elem_cnt += 3;
4543 } else {
4544 inodes->bytes_missing += c - inodes->bytes_left;
4545 inodes->bytes_left = 0;
4546 inodes->elem_missed += 3;
4547 }
4548
4549 return 0;
4550 }
4551
4552 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4553 void __user *arg)
4554 {
4555 int ret = 0;
4556 int size;
4557 struct btrfs_ioctl_logical_ino_args *loi;
4558 struct btrfs_data_container *inodes = NULL;
4559 struct btrfs_path *path = NULL;
4560
4561 if (!capable(CAP_SYS_ADMIN))
4562 return -EPERM;
4563
4564 loi = memdup_user(arg, sizeof(*loi));
4565 if (IS_ERR(loi)) {
4566 ret = PTR_ERR(loi);
4567 loi = NULL;
4568 goto out;
4569 }
4570
4571 path = btrfs_alloc_path();
4572 if (!path) {
4573 ret = -ENOMEM;
4574 goto out;
4575 }
4576
4577 size = min_t(u32, loi->size, SZ_64K);
4578 inodes = init_data_container(size);
4579 if (IS_ERR(inodes)) {
4580 ret = PTR_ERR(inodes);
4581 inodes = NULL;
4582 goto out;
4583 }
4584
4585 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4586 build_ino_list, inodes);
4587 if (ret == -EINVAL)
4588 ret = -ENOENT;
4589 if (ret < 0)
4590 goto out;
4591
4592 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4593 (void *)(unsigned long)inodes, size);
4594 if (ret)
4595 ret = -EFAULT;
4596
4597 out:
4598 btrfs_free_path(path);
4599 vfree(inodes);
4600 kfree(loi);
4601
4602 return ret;
4603 }
4604
4605 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4606 struct btrfs_ioctl_balance_args *bargs)
4607 {
4608 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4609
4610 bargs->flags = bctl->flags;
4611
4612 if (atomic_read(&fs_info->balance_running))
4613 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4614 if (atomic_read(&fs_info->balance_pause_req))
4615 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4616 if (atomic_read(&fs_info->balance_cancel_req))
4617 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4618
4619 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4620 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4621 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4622
4623 if (lock) {
4624 spin_lock(&fs_info->balance_lock);
4625 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4626 spin_unlock(&fs_info->balance_lock);
4627 } else {
4628 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4629 }
4630 }
4631
4632 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4633 {
4634 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4635 struct btrfs_fs_info *fs_info = root->fs_info;
4636 struct btrfs_ioctl_balance_args *bargs;
4637 struct btrfs_balance_control *bctl;
4638 bool need_unlock; /* for mut. excl. ops lock */
4639 int ret;
4640
4641 if (!capable(CAP_SYS_ADMIN))
4642 return -EPERM;
4643
4644 ret = mnt_want_write_file(file);
4645 if (ret)
4646 return ret;
4647
4648 again:
4649 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4650 mutex_lock(&fs_info->volume_mutex);
4651 mutex_lock(&fs_info->balance_mutex);
4652 need_unlock = true;
4653 goto locked;
4654 }
4655
4656 /*
4657 * mut. excl. ops lock is locked. Three possibilities:
4658 * (1) some other op is running
4659 * (2) balance is running
4660 * (3) balance is paused -- special case (think resume)
4661 */
4662 mutex_lock(&fs_info->balance_mutex);
4663 if (fs_info->balance_ctl) {
4664 /* this is either (2) or (3) */
4665 if (!atomic_read(&fs_info->balance_running)) {
4666 mutex_unlock(&fs_info->balance_mutex);
4667 if (!mutex_trylock(&fs_info->volume_mutex))
4668 goto again;
4669 mutex_lock(&fs_info->balance_mutex);
4670
4671 if (fs_info->balance_ctl &&
4672 !atomic_read(&fs_info->balance_running)) {
4673 /* this is (3) */
4674 need_unlock = false;
4675 goto locked;
4676 }
4677
4678 mutex_unlock(&fs_info->balance_mutex);
4679 mutex_unlock(&fs_info->volume_mutex);
4680 goto again;
4681 } else {
4682 /* this is (2) */
4683 mutex_unlock(&fs_info->balance_mutex);
4684 ret = -EINPROGRESS;
4685 goto out;
4686 }
4687 } else {
4688 /* this is (1) */
4689 mutex_unlock(&fs_info->balance_mutex);
4690 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4691 goto out;
4692 }
4693
4694 locked:
4695 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4696
4697 if (arg) {
4698 bargs = memdup_user(arg, sizeof(*bargs));
4699 if (IS_ERR(bargs)) {
4700 ret = PTR_ERR(bargs);
4701 goto out_unlock;
4702 }
4703
4704 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4705 if (!fs_info->balance_ctl) {
4706 ret = -ENOTCONN;
4707 goto out_bargs;
4708 }
4709
4710 bctl = fs_info->balance_ctl;
4711 spin_lock(&fs_info->balance_lock);
4712 bctl->flags |= BTRFS_BALANCE_RESUME;
4713 spin_unlock(&fs_info->balance_lock);
4714
4715 goto do_balance;
4716 }
4717 } else {
4718 bargs = NULL;
4719 }
4720
4721 if (fs_info->balance_ctl) {
4722 ret = -EINPROGRESS;
4723 goto out_bargs;
4724 }
4725
4726 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4727 if (!bctl) {
4728 ret = -ENOMEM;
4729 goto out_bargs;
4730 }
4731
4732 bctl->fs_info = fs_info;
4733 if (arg) {
4734 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4735 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4736 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4737
4738 bctl->flags = bargs->flags;
4739 } else {
4740 /* balance everything - no filters */
4741 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4742 }
4743
4744 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4745 ret = -EINVAL;
4746 goto out_bctl;
4747 }
4748
4749 do_balance:
4750 /*
4751 * Ownership of bctl and mutually_exclusive_operation_running
4752 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4753 * or, if restriper was paused all the way until unmount, in
4754 * free_fs_info. mutually_exclusive_operation_running is
4755 * cleared in __cancel_balance.
4756 */
4757 need_unlock = false;
4758
4759 ret = btrfs_balance(bctl, bargs);
4760 bctl = NULL;
4761
4762 if (arg) {
4763 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4764 ret = -EFAULT;
4765 }
4766
4767 out_bctl:
4768 kfree(bctl);
4769 out_bargs:
4770 kfree(bargs);
4771 out_unlock:
4772 mutex_unlock(&fs_info->balance_mutex);
4773 mutex_unlock(&fs_info->volume_mutex);
4774 if (need_unlock)
4775 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4776 out:
4777 mnt_drop_write_file(file);
4778 return ret;
4779 }
4780
4781 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4782 {
4783 if (!capable(CAP_SYS_ADMIN))
4784 return -EPERM;
4785
4786 switch (cmd) {
4787 case BTRFS_BALANCE_CTL_PAUSE:
4788 return btrfs_pause_balance(root->fs_info);
4789 case BTRFS_BALANCE_CTL_CANCEL:
4790 return btrfs_cancel_balance(root->fs_info);
4791 }
4792
4793 return -EINVAL;
4794 }
4795
4796 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4797 void __user *arg)
4798 {
4799 struct btrfs_fs_info *fs_info = root->fs_info;
4800 struct btrfs_ioctl_balance_args *bargs;
4801 int ret = 0;
4802
4803 if (!capable(CAP_SYS_ADMIN))
4804 return -EPERM;
4805
4806 mutex_lock(&fs_info->balance_mutex);
4807 if (!fs_info->balance_ctl) {
4808 ret = -ENOTCONN;
4809 goto out;
4810 }
4811
4812 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4813 if (!bargs) {
4814 ret = -ENOMEM;
4815 goto out;
4816 }
4817
4818 update_ioctl_balance_args(fs_info, 1, bargs);
4819
4820 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4821 ret = -EFAULT;
4822
4823 kfree(bargs);
4824 out:
4825 mutex_unlock(&fs_info->balance_mutex);
4826 return ret;
4827 }
4828
4829 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4830 {
4831 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4832 struct btrfs_ioctl_quota_ctl_args *sa;
4833 struct btrfs_trans_handle *trans = NULL;
4834 int ret;
4835 int err;
4836
4837 if (!capable(CAP_SYS_ADMIN))
4838 return -EPERM;
4839
4840 ret = mnt_want_write_file(file);
4841 if (ret)
4842 return ret;
4843
4844 sa = memdup_user(arg, sizeof(*sa));
4845 if (IS_ERR(sa)) {
4846 ret = PTR_ERR(sa);
4847 goto drop_write;
4848 }
4849
4850 down_write(&root->fs_info->subvol_sem);
4851 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4852 if (IS_ERR(trans)) {
4853 ret = PTR_ERR(trans);
4854 goto out;
4855 }
4856
4857 switch (sa->cmd) {
4858 case BTRFS_QUOTA_CTL_ENABLE:
4859 ret = btrfs_quota_enable(trans, root->fs_info);
4860 break;
4861 case BTRFS_QUOTA_CTL_DISABLE:
4862 ret = btrfs_quota_disable(trans, root->fs_info);
4863 break;
4864 default:
4865 ret = -EINVAL;
4866 break;
4867 }
4868
4869 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4870 if (err && !ret)
4871 ret = err;
4872 out:
4873 kfree(sa);
4874 up_write(&root->fs_info->subvol_sem);
4875 drop_write:
4876 mnt_drop_write_file(file);
4877 return ret;
4878 }
4879
4880 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4881 {
4882 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4883 struct btrfs_ioctl_qgroup_assign_args *sa;
4884 struct btrfs_trans_handle *trans;
4885 int ret;
4886 int err;
4887
4888 if (!capable(CAP_SYS_ADMIN))
4889 return -EPERM;
4890
4891 ret = mnt_want_write_file(file);
4892 if (ret)
4893 return ret;
4894
4895 sa = memdup_user(arg, sizeof(*sa));
4896 if (IS_ERR(sa)) {
4897 ret = PTR_ERR(sa);
4898 goto drop_write;
4899 }
4900
4901 trans = btrfs_join_transaction(root);
4902 if (IS_ERR(trans)) {
4903 ret = PTR_ERR(trans);
4904 goto out;
4905 }
4906
4907 /* FIXME: check if the IDs really exist */
4908 if (sa->assign) {
4909 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4910 sa->src, sa->dst);
4911 } else {
4912 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4913 sa->src, sa->dst);
4914 }
4915
4916 /* update qgroup status and info */
4917 err = btrfs_run_qgroups(trans, root->fs_info);
4918 if (err < 0)
4919 btrfs_handle_fs_error(root->fs_info, err,
4920 "failed to update qgroup status and info");
4921 err = btrfs_end_transaction(trans, root);
4922 if (err && !ret)
4923 ret = err;
4924
4925 out:
4926 kfree(sa);
4927 drop_write:
4928 mnt_drop_write_file(file);
4929 return ret;
4930 }
4931
4932 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4933 {
4934 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4935 struct btrfs_ioctl_qgroup_create_args *sa;
4936 struct btrfs_trans_handle *trans;
4937 int ret;
4938 int err;
4939
4940 if (!capable(CAP_SYS_ADMIN))
4941 return -EPERM;
4942
4943 ret = mnt_want_write_file(file);
4944 if (ret)
4945 return ret;
4946
4947 sa = memdup_user(arg, sizeof(*sa));
4948 if (IS_ERR(sa)) {
4949 ret = PTR_ERR(sa);
4950 goto drop_write;
4951 }
4952
4953 if (!sa->qgroupid) {
4954 ret = -EINVAL;
4955 goto out;
4956 }
4957
4958 trans = btrfs_join_transaction(root);
4959 if (IS_ERR(trans)) {
4960 ret = PTR_ERR(trans);
4961 goto out;
4962 }
4963
4964 /* FIXME: check if the IDs really exist */
4965 if (sa->create) {
4966 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4967 } else {
4968 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4969 }
4970
4971 err = btrfs_end_transaction(trans, root);
4972 if (err && !ret)
4973 ret = err;
4974
4975 out:
4976 kfree(sa);
4977 drop_write:
4978 mnt_drop_write_file(file);
4979 return ret;
4980 }
4981
4982 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4983 {
4984 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4985 struct btrfs_ioctl_qgroup_limit_args *sa;
4986 struct btrfs_trans_handle *trans;
4987 int ret;
4988 int err;
4989 u64 qgroupid;
4990
4991 if (!capable(CAP_SYS_ADMIN))
4992 return -EPERM;
4993
4994 ret = mnt_want_write_file(file);
4995 if (ret)
4996 return ret;
4997
4998 sa = memdup_user(arg, sizeof(*sa));
4999 if (IS_ERR(sa)) {
5000 ret = PTR_ERR(sa);
5001 goto drop_write;
5002 }
5003
5004 trans = btrfs_join_transaction(root);
5005 if (IS_ERR(trans)) {
5006 ret = PTR_ERR(trans);
5007 goto out;
5008 }
5009
5010 qgroupid = sa->qgroupid;
5011 if (!qgroupid) {
5012 /* take the current subvol as qgroup */
5013 qgroupid = root->root_key.objectid;
5014 }
5015
5016 /* FIXME: check if the IDs really exist */
5017 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
5018
5019 err = btrfs_end_transaction(trans, root);
5020 if (err && !ret)
5021 ret = err;
5022
5023 out:
5024 kfree(sa);
5025 drop_write:
5026 mnt_drop_write_file(file);
5027 return ret;
5028 }
5029
5030 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5031 {
5032 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5033 struct btrfs_ioctl_quota_rescan_args *qsa;
5034 int ret;
5035
5036 if (!capable(CAP_SYS_ADMIN))
5037 return -EPERM;
5038
5039 ret = mnt_want_write_file(file);
5040 if (ret)
5041 return ret;
5042
5043 qsa = memdup_user(arg, sizeof(*qsa));
5044 if (IS_ERR(qsa)) {
5045 ret = PTR_ERR(qsa);
5046 goto drop_write;
5047 }
5048
5049 if (qsa->flags) {
5050 ret = -EINVAL;
5051 goto out;
5052 }
5053
5054 ret = btrfs_qgroup_rescan(root->fs_info);
5055
5056 out:
5057 kfree(qsa);
5058 drop_write:
5059 mnt_drop_write_file(file);
5060 return ret;
5061 }
5062
5063 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5064 {
5065 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5066 struct btrfs_ioctl_quota_rescan_args *qsa;
5067 int ret = 0;
5068
5069 if (!capable(CAP_SYS_ADMIN))
5070 return -EPERM;
5071
5072 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5073 if (!qsa)
5074 return -ENOMEM;
5075
5076 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5077 qsa->flags = 1;
5078 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5079 }
5080
5081 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5082 ret = -EFAULT;
5083
5084 kfree(qsa);
5085 return ret;
5086 }
5087
5088 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5089 {
5090 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5091
5092 if (!capable(CAP_SYS_ADMIN))
5093 return -EPERM;
5094
5095 return btrfs_qgroup_wait_for_completion(root->fs_info);
5096 }
5097
5098 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5099 struct btrfs_ioctl_received_subvol_args *sa)
5100 {
5101 struct inode *inode = file_inode(file);
5102 struct btrfs_root *root = BTRFS_I(inode)->root;
5103 struct btrfs_root_item *root_item = &root->root_item;
5104 struct btrfs_trans_handle *trans;
5105 struct timespec ct = current_fs_time(inode->i_sb);
5106 int ret = 0;
5107 int received_uuid_changed;
5108
5109 if (!inode_owner_or_capable(inode))
5110 return -EPERM;
5111
5112 ret = mnt_want_write_file(file);
5113 if (ret < 0)
5114 return ret;
5115
5116 down_write(&root->fs_info->subvol_sem);
5117
5118 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5119 ret = -EINVAL;
5120 goto out;
5121 }
5122
5123 if (btrfs_root_readonly(root)) {
5124 ret = -EROFS;
5125 goto out;
5126 }
5127
5128 /*
5129 * 1 - root item
5130 * 2 - uuid items (received uuid + subvol uuid)
5131 */
5132 trans = btrfs_start_transaction(root, 3);
5133 if (IS_ERR(trans)) {
5134 ret = PTR_ERR(trans);
5135 trans = NULL;
5136 goto out;
5137 }
5138
5139 sa->rtransid = trans->transid;
5140 sa->rtime.sec = ct.tv_sec;
5141 sa->rtime.nsec = ct.tv_nsec;
5142
5143 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5144 BTRFS_UUID_SIZE);
5145 if (received_uuid_changed &&
5146 !btrfs_is_empty_uuid(root_item->received_uuid))
5147 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5148 root_item->received_uuid,
5149 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5150 root->root_key.objectid);
5151 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5152 btrfs_set_root_stransid(root_item, sa->stransid);
5153 btrfs_set_root_rtransid(root_item, sa->rtransid);
5154 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5155 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5156 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5157 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5158
5159 ret = btrfs_update_root(trans, root->fs_info->tree_root,
5160 &root->root_key, &root->root_item);
5161 if (ret < 0) {
5162 btrfs_end_transaction(trans, root);
5163 goto out;
5164 }
5165 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5166 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5167 sa->uuid,
5168 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5169 root->root_key.objectid);
5170 if (ret < 0 && ret != -EEXIST) {
5171 btrfs_abort_transaction(trans, root, ret);
5172 goto out;
5173 }
5174 }
5175 ret = btrfs_commit_transaction(trans, root);
5176 if (ret < 0) {
5177 btrfs_abort_transaction(trans, root, ret);
5178 goto out;
5179 }
5180
5181 out:
5182 up_write(&root->fs_info->subvol_sem);
5183 mnt_drop_write_file(file);
5184 return ret;
5185 }
5186
5187 #ifdef CONFIG_64BIT
5188 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5189 void __user *arg)
5190 {
5191 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5192 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5193 int ret = 0;
5194
5195 args32 = memdup_user(arg, sizeof(*args32));
5196 if (IS_ERR(args32)) {
5197 ret = PTR_ERR(args32);
5198 args32 = NULL;
5199 goto out;
5200 }
5201
5202 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5203 if (!args64) {
5204 ret = -ENOMEM;
5205 goto out;
5206 }
5207
5208 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5209 args64->stransid = args32->stransid;
5210 args64->rtransid = args32->rtransid;
5211 args64->stime.sec = args32->stime.sec;
5212 args64->stime.nsec = args32->stime.nsec;
5213 args64->rtime.sec = args32->rtime.sec;
5214 args64->rtime.nsec = args32->rtime.nsec;
5215 args64->flags = args32->flags;
5216
5217 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5218 if (ret)
5219 goto out;
5220
5221 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5222 args32->stransid = args64->stransid;
5223 args32->rtransid = args64->rtransid;
5224 args32->stime.sec = args64->stime.sec;
5225 args32->stime.nsec = args64->stime.nsec;
5226 args32->rtime.sec = args64->rtime.sec;
5227 args32->rtime.nsec = args64->rtime.nsec;
5228 args32->flags = args64->flags;
5229
5230 ret = copy_to_user(arg, args32, sizeof(*args32));
5231 if (ret)
5232 ret = -EFAULT;
5233
5234 out:
5235 kfree(args32);
5236 kfree(args64);
5237 return ret;
5238 }
5239 #endif
5240
5241 static long btrfs_ioctl_set_received_subvol(struct file *file,
5242 void __user *arg)
5243 {
5244 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5245 int ret = 0;
5246
5247 sa = memdup_user(arg, sizeof(*sa));
5248 if (IS_ERR(sa)) {
5249 ret = PTR_ERR(sa);
5250 sa = NULL;
5251 goto out;
5252 }
5253
5254 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5255
5256 if (ret)
5257 goto out;
5258
5259 ret = copy_to_user(arg, sa, sizeof(*sa));
5260 if (ret)
5261 ret = -EFAULT;
5262
5263 out:
5264 kfree(sa);
5265 return ret;
5266 }
5267
5268 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5269 {
5270 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5271 size_t len;
5272 int ret;
5273 char label[BTRFS_LABEL_SIZE];
5274
5275 spin_lock(&root->fs_info->super_lock);
5276 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5277 spin_unlock(&root->fs_info->super_lock);
5278
5279 len = strnlen(label, BTRFS_LABEL_SIZE);
5280
5281 if (len == BTRFS_LABEL_SIZE) {
5282 btrfs_warn(root->fs_info,
5283 "label is too long, return the first %zu bytes", --len);
5284 }
5285
5286 ret = copy_to_user(arg, label, len);
5287
5288 return ret ? -EFAULT : 0;
5289 }
5290
5291 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5292 {
5293 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5294 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5295 struct btrfs_trans_handle *trans;
5296 char label[BTRFS_LABEL_SIZE];
5297 int ret;
5298
5299 if (!capable(CAP_SYS_ADMIN))
5300 return -EPERM;
5301
5302 if (copy_from_user(label, arg, sizeof(label)))
5303 return -EFAULT;
5304
5305 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5306 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5307 BTRFS_LABEL_SIZE - 1);
5308 return -EINVAL;
5309 }
5310
5311 ret = mnt_want_write_file(file);
5312 if (ret)
5313 return ret;
5314
5315 trans = btrfs_start_transaction(root, 0);
5316 if (IS_ERR(trans)) {
5317 ret = PTR_ERR(trans);
5318 goto out_unlock;
5319 }
5320
5321 spin_lock(&root->fs_info->super_lock);
5322 strcpy(super_block->label, label);
5323 spin_unlock(&root->fs_info->super_lock);
5324 ret = btrfs_commit_transaction(trans, root);
5325
5326 out_unlock:
5327 mnt_drop_write_file(file);
5328 return ret;
5329 }
5330
5331 #define INIT_FEATURE_FLAGS(suffix) \
5332 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5333 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5334 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5335
5336 int btrfs_ioctl_get_supported_features(void __user *arg)
5337 {
5338 static const struct btrfs_ioctl_feature_flags features[3] = {
5339 INIT_FEATURE_FLAGS(SUPP),
5340 INIT_FEATURE_FLAGS(SAFE_SET),
5341 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5342 };
5343
5344 if (copy_to_user(arg, &features, sizeof(features)))
5345 return -EFAULT;
5346
5347 return 0;
5348 }
5349
5350 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5351 {
5352 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5353 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5354 struct btrfs_ioctl_feature_flags features;
5355
5356 features.compat_flags = btrfs_super_compat_flags(super_block);
5357 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5358 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5359
5360 if (copy_to_user(arg, &features, sizeof(features)))
5361 return -EFAULT;
5362
5363 return 0;
5364 }
5365
5366 static int check_feature_bits(struct btrfs_root *root,
5367 enum btrfs_feature_set set,
5368 u64 change_mask, u64 flags, u64 supported_flags,
5369 u64 safe_set, u64 safe_clear)
5370 {
5371 const char *type = btrfs_feature_set_names[set];
5372 char *names;
5373 u64 disallowed, unsupported;
5374 u64 set_mask = flags & change_mask;
5375 u64 clear_mask = ~flags & change_mask;
5376
5377 unsupported = set_mask & ~supported_flags;
5378 if (unsupported) {
5379 names = btrfs_printable_features(set, unsupported);
5380 if (names) {
5381 btrfs_warn(root->fs_info,
5382 "this kernel does not support the %s feature bit%s",
5383 names, strchr(names, ',') ? "s" : "");
5384 kfree(names);
5385 } else
5386 btrfs_warn(root->fs_info,
5387 "this kernel does not support %s bits 0x%llx",
5388 type, unsupported);
5389 return -EOPNOTSUPP;
5390 }
5391
5392 disallowed = set_mask & ~safe_set;
5393 if (disallowed) {
5394 names = btrfs_printable_features(set, disallowed);
5395 if (names) {
5396 btrfs_warn(root->fs_info,
5397 "can't set the %s feature bit%s while mounted",
5398 names, strchr(names, ',') ? "s" : "");
5399 kfree(names);
5400 } else
5401 btrfs_warn(root->fs_info,
5402 "can't set %s bits 0x%llx while mounted",
5403 type, disallowed);
5404 return -EPERM;
5405 }
5406
5407 disallowed = clear_mask & ~safe_clear;
5408 if (disallowed) {
5409 names = btrfs_printable_features(set, disallowed);
5410 if (names) {
5411 btrfs_warn(root->fs_info,
5412 "can't clear the %s feature bit%s while mounted",
5413 names, strchr(names, ',') ? "s" : "");
5414 kfree(names);
5415 } else
5416 btrfs_warn(root->fs_info,
5417 "can't clear %s bits 0x%llx while mounted",
5418 type, disallowed);
5419 return -EPERM;
5420 }
5421
5422 return 0;
5423 }
5424
5425 #define check_feature(root, change_mask, flags, mask_base) \
5426 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5427 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5428 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5429 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5430
5431 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5432 {
5433 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5434 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5435 struct btrfs_ioctl_feature_flags flags[2];
5436 struct btrfs_trans_handle *trans;
5437 u64 newflags;
5438 int ret;
5439
5440 if (!capable(CAP_SYS_ADMIN))
5441 return -EPERM;
5442
5443 if (copy_from_user(flags, arg, sizeof(flags)))
5444 return -EFAULT;
5445
5446 /* Nothing to do */
5447 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5448 !flags[0].incompat_flags)
5449 return 0;
5450
5451 ret = check_feature(root, flags[0].compat_flags,
5452 flags[1].compat_flags, COMPAT);
5453 if (ret)
5454 return ret;
5455
5456 ret = check_feature(root, flags[0].compat_ro_flags,
5457 flags[1].compat_ro_flags, COMPAT_RO);
5458 if (ret)
5459 return ret;
5460
5461 ret = check_feature(root, flags[0].incompat_flags,
5462 flags[1].incompat_flags, INCOMPAT);
5463 if (ret)
5464 return ret;
5465
5466 ret = mnt_want_write_file(file);
5467 if (ret)
5468 return ret;
5469
5470 trans = btrfs_start_transaction(root, 0);
5471 if (IS_ERR(trans)) {
5472 ret = PTR_ERR(trans);
5473 goto out_drop_write;
5474 }
5475
5476 spin_lock(&root->fs_info->super_lock);
5477 newflags = btrfs_super_compat_flags(super_block);
5478 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5479 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5480 btrfs_set_super_compat_flags(super_block, newflags);
5481
5482 newflags = btrfs_super_compat_ro_flags(super_block);
5483 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5484 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5485 btrfs_set_super_compat_ro_flags(super_block, newflags);
5486
5487 newflags = btrfs_super_incompat_flags(super_block);
5488 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5489 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5490 btrfs_set_super_incompat_flags(super_block, newflags);
5491 spin_unlock(&root->fs_info->super_lock);
5492
5493 ret = btrfs_commit_transaction(trans, root);
5494 out_drop_write:
5495 mnt_drop_write_file(file);
5496
5497 return ret;
5498 }
5499
5500 long btrfs_ioctl(struct file *file, unsigned int
5501 cmd, unsigned long arg)
5502 {
5503 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5504 void __user *argp = (void __user *)arg;
5505
5506 switch (cmd) {
5507 case FS_IOC_GETFLAGS:
5508 return btrfs_ioctl_getflags(file, argp);
5509 case FS_IOC_SETFLAGS:
5510 return btrfs_ioctl_setflags(file, argp);
5511 case FS_IOC_GETVERSION:
5512 return btrfs_ioctl_getversion(file, argp);
5513 case FITRIM:
5514 return btrfs_ioctl_fitrim(file, argp);
5515 case BTRFS_IOC_SNAP_CREATE:
5516 return btrfs_ioctl_snap_create(file, argp, 0);
5517 case BTRFS_IOC_SNAP_CREATE_V2:
5518 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5519 case BTRFS_IOC_SUBVOL_CREATE:
5520 return btrfs_ioctl_snap_create(file, argp, 1);
5521 case BTRFS_IOC_SUBVOL_CREATE_V2:
5522 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5523 case BTRFS_IOC_SNAP_DESTROY:
5524 return btrfs_ioctl_snap_destroy(file, argp);
5525 case BTRFS_IOC_SUBVOL_GETFLAGS:
5526 return btrfs_ioctl_subvol_getflags(file, argp);
5527 case BTRFS_IOC_SUBVOL_SETFLAGS:
5528 return btrfs_ioctl_subvol_setflags(file, argp);
5529 case BTRFS_IOC_DEFAULT_SUBVOL:
5530 return btrfs_ioctl_default_subvol(file, argp);
5531 case BTRFS_IOC_DEFRAG:
5532 return btrfs_ioctl_defrag(file, NULL);
5533 case BTRFS_IOC_DEFRAG_RANGE:
5534 return btrfs_ioctl_defrag(file, argp);
5535 case BTRFS_IOC_RESIZE:
5536 return btrfs_ioctl_resize(file, argp);
5537 case BTRFS_IOC_ADD_DEV:
5538 return btrfs_ioctl_add_dev(root, argp);
5539 case BTRFS_IOC_RM_DEV:
5540 return btrfs_ioctl_rm_dev(file, argp);
5541 case BTRFS_IOC_RM_DEV_V2:
5542 return btrfs_ioctl_rm_dev_v2(file, argp);
5543 case BTRFS_IOC_FS_INFO:
5544 return btrfs_ioctl_fs_info(root, argp);
5545 case BTRFS_IOC_DEV_INFO:
5546 return btrfs_ioctl_dev_info(root, argp);
5547 case BTRFS_IOC_BALANCE:
5548 return btrfs_ioctl_balance(file, NULL);
5549 case BTRFS_IOC_TRANS_START:
5550 return btrfs_ioctl_trans_start(file);
5551 case BTRFS_IOC_TRANS_END:
5552 return btrfs_ioctl_trans_end(file);
5553 case BTRFS_IOC_TREE_SEARCH:
5554 return btrfs_ioctl_tree_search(file, argp);
5555 case BTRFS_IOC_TREE_SEARCH_V2:
5556 return btrfs_ioctl_tree_search_v2(file, argp);
5557 case BTRFS_IOC_INO_LOOKUP:
5558 return btrfs_ioctl_ino_lookup(file, argp);
5559 case BTRFS_IOC_INO_PATHS:
5560 return btrfs_ioctl_ino_to_path(root, argp);
5561 case BTRFS_IOC_LOGICAL_INO:
5562 return btrfs_ioctl_logical_to_ino(root, argp);
5563 case BTRFS_IOC_SPACE_INFO:
5564 return btrfs_ioctl_space_info(root, argp);
5565 case BTRFS_IOC_SYNC: {
5566 int ret;
5567
5568 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5569 if (ret)
5570 return ret;
5571 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5572 /*
5573 * The transaction thread may want to do more work,
5574 * namely it pokes the cleaner kthread that will start
5575 * processing uncleaned subvols.
5576 */
5577 wake_up_process(root->fs_info->transaction_kthread);
5578 return ret;
5579 }
5580 case BTRFS_IOC_START_SYNC:
5581 return btrfs_ioctl_start_sync(root, argp);
5582 case BTRFS_IOC_WAIT_SYNC:
5583 return btrfs_ioctl_wait_sync(root, argp);
5584 case BTRFS_IOC_SCRUB:
5585 return btrfs_ioctl_scrub(file, argp);
5586 case BTRFS_IOC_SCRUB_CANCEL:
5587 return btrfs_ioctl_scrub_cancel(root, argp);
5588 case BTRFS_IOC_SCRUB_PROGRESS:
5589 return btrfs_ioctl_scrub_progress(root, argp);
5590 case BTRFS_IOC_BALANCE_V2:
5591 return btrfs_ioctl_balance(file, argp);
5592 case BTRFS_IOC_BALANCE_CTL:
5593 return btrfs_ioctl_balance_ctl(root, arg);
5594 case BTRFS_IOC_BALANCE_PROGRESS:
5595 return btrfs_ioctl_balance_progress(root, argp);
5596 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5597 return btrfs_ioctl_set_received_subvol(file, argp);
5598 #ifdef CONFIG_64BIT
5599 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5600 return btrfs_ioctl_set_received_subvol_32(file, argp);
5601 #endif
5602 case BTRFS_IOC_SEND:
5603 return btrfs_ioctl_send(file, argp);
5604 case BTRFS_IOC_GET_DEV_STATS:
5605 return btrfs_ioctl_get_dev_stats(root, argp);
5606 case BTRFS_IOC_QUOTA_CTL:
5607 return btrfs_ioctl_quota_ctl(file, argp);
5608 case BTRFS_IOC_QGROUP_ASSIGN:
5609 return btrfs_ioctl_qgroup_assign(file, argp);
5610 case BTRFS_IOC_QGROUP_CREATE:
5611 return btrfs_ioctl_qgroup_create(file, argp);
5612 case BTRFS_IOC_QGROUP_LIMIT:
5613 return btrfs_ioctl_qgroup_limit(file, argp);
5614 case BTRFS_IOC_QUOTA_RESCAN:
5615 return btrfs_ioctl_quota_rescan(file, argp);
5616 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5617 return btrfs_ioctl_quota_rescan_status(file, argp);
5618 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5619 return btrfs_ioctl_quota_rescan_wait(file, argp);
5620 case BTRFS_IOC_DEV_REPLACE:
5621 return btrfs_ioctl_dev_replace(root, argp);
5622 case BTRFS_IOC_GET_FSLABEL:
5623 return btrfs_ioctl_get_fslabel(file, argp);
5624 case BTRFS_IOC_SET_FSLABEL:
5625 return btrfs_ioctl_set_fslabel(file, argp);
5626 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5627 return btrfs_ioctl_get_supported_features(argp);
5628 case BTRFS_IOC_GET_FEATURES:
5629 return btrfs_ioctl_get_features(file, argp);
5630 case BTRFS_IOC_SET_FEATURES:
5631 return btrfs_ioctl_set_features(file, argp);
5632 }
5633
5634 return -ENOTTY;
5635 }
5636
5637 #ifdef CONFIG_COMPAT
5638 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5639 {
5640 switch (cmd) {
5641 case FS_IOC32_GETFLAGS:
5642 cmd = FS_IOC_GETFLAGS;
5643 break;
5644 case FS_IOC32_SETFLAGS:
5645 cmd = FS_IOC_SETFLAGS;
5646 break;
5647 case FS_IOC32_GETVERSION:
5648 cmd = FS_IOC_GETVERSION;
5649 break;
5650 default:
5651 return -ENOIOCTLCMD;
5652 }
5653
5654 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5655 }
5656 #endif
This page took 0.139626 seconds and 6 git commands to generate.