Btrfs: fix missing write access release in btrfs_ioctl_resize()
[deliverable/linux.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include "compat.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59
60 /* Mask out flags that are inappropriate for the given type of inode. */
61 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
62 {
63 if (S_ISDIR(mode))
64 return flags;
65 else if (S_ISREG(mode))
66 return flags & ~FS_DIRSYNC_FL;
67 else
68 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
69 }
70
71 /*
72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
73 */
74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
75 {
76 unsigned int iflags = 0;
77
78 if (flags & BTRFS_INODE_SYNC)
79 iflags |= FS_SYNC_FL;
80 if (flags & BTRFS_INODE_IMMUTABLE)
81 iflags |= FS_IMMUTABLE_FL;
82 if (flags & BTRFS_INODE_APPEND)
83 iflags |= FS_APPEND_FL;
84 if (flags & BTRFS_INODE_NODUMP)
85 iflags |= FS_NODUMP_FL;
86 if (flags & BTRFS_INODE_NOATIME)
87 iflags |= FS_NOATIME_FL;
88 if (flags & BTRFS_INODE_DIRSYNC)
89 iflags |= FS_DIRSYNC_FL;
90 if (flags & BTRFS_INODE_NODATACOW)
91 iflags |= FS_NOCOW_FL;
92
93 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
94 iflags |= FS_COMPR_FL;
95 else if (flags & BTRFS_INODE_NOCOMPRESS)
96 iflags |= FS_NOCOMP_FL;
97
98 return iflags;
99 }
100
101 /*
102 * Update inode->i_flags based on the btrfs internal flags.
103 */
104 void btrfs_update_iflags(struct inode *inode)
105 {
106 struct btrfs_inode *ip = BTRFS_I(inode);
107
108 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
109
110 if (ip->flags & BTRFS_INODE_SYNC)
111 inode->i_flags |= S_SYNC;
112 if (ip->flags & BTRFS_INODE_IMMUTABLE)
113 inode->i_flags |= S_IMMUTABLE;
114 if (ip->flags & BTRFS_INODE_APPEND)
115 inode->i_flags |= S_APPEND;
116 if (ip->flags & BTRFS_INODE_NOATIME)
117 inode->i_flags |= S_NOATIME;
118 if (ip->flags & BTRFS_INODE_DIRSYNC)
119 inode->i_flags |= S_DIRSYNC;
120 }
121
122 /*
123 * Inherit flags from the parent inode.
124 *
125 * Currently only the compression flags and the cow flags are inherited.
126 */
127 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
128 {
129 unsigned int flags;
130
131 if (!dir)
132 return;
133
134 flags = BTRFS_I(dir)->flags;
135
136 if (flags & BTRFS_INODE_NOCOMPRESS) {
137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
138 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
139 } else if (flags & BTRFS_INODE_COMPRESS) {
140 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
141 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
142 }
143
144 if (flags & BTRFS_INODE_NODATACOW) {
145 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
146 if (S_ISREG(inode->i_mode))
147 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
148 }
149
150 btrfs_update_iflags(inode);
151 }
152
153 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
154 {
155 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
156 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
157
158 if (copy_to_user(arg, &flags, sizeof(flags)))
159 return -EFAULT;
160 return 0;
161 }
162
163 static int check_flags(unsigned int flags)
164 {
165 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
166 FS_NOATIME_FL | FS_NODUMP_FL | \
167 FS_SYNC_FL | FS_DIRSYNC_FL | \
168 FS_NOCOMP_FL | FS_COMPR_FL |
169 FS_NOCOW_FL))
170 return -EOPNOTSUPP;
171
172 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
173 return -EINVAL;
174
175 return 0;
176 }
177
178 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
179 {
180 struct inode *inode = file->f_path.dentry->d_inode;
181 struct btrfs_inode *ip = BTRFS_I(inode);
182 struct btrfs_root *root = ip->root;
183 struct btrfs_trans_handle *trans;
184 unsigned int flags, oldflags;
185 int ret;
186 u64 ip_oldflags;
187 unsigned int i_oldflags;
188 umode_t mode;
189
190 if (btrfs_root_readonly(root))
191 return -EROFS;
192
193 if (copy_from_user(&flags, arg, sizeof(flags)))
194 return -EFAULT;
195
196 ret = check_flags(flags);
197 if (ret)
198 return ret;
199
200 if (!inode_owner_or_capable(inode))
201 return -EACCES;
202
203 ret = mnt_want_write_file(file);
204 if (ret)
205 return ret;
206
207 mutex_lock(&inode->i_mutex);
208
209 ip_oldflags = ip->flags;
210 i_oldflags = inode->i_flags;
211 mode = inode->i_mode;
212
213 flags = btrfs_mask_flags(inode->i_mode, flags);
214 oldflags = btrfs_flags_to_ioctl(ip->flags);
215 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
216 if (!capable(CAP_LINUX_IMMUTABLE)) {
217 ret = -EPERM;
218 goto out_unlock;
219 }
220 }
221
222 if (flags & FS_SYNC_FL)
223 ip->flags |= BTRFS_INODE_SYNC;
224 else
225 ip->flags &= ~BTRFS_INODE_SYNC;
226 if (flags & FS_IMMUTABLE_FL)
227 ip->flags |= BTRFS_INODE_IMMUTABLE;
228 else
229 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
230 if (flags & FS_APPEND_FL)
231 ip->flags |= BTRFS_INODE_APPEND;
232 else
233 ip->flags &= ~BTRFS_INODE_APPEND;
234 if (flags & FS_NODUMP_FL)
235 ip->flags |= BTRFS_INODE_NODUMP;
236 else
237 ip->flags &= ~BTRFS_INODE_NODUMP;
238 if (flags & FS_NOATIME_FL)
239 ip->flags |= BTRFS_INODE_NOATIME;
240 else
241 ip->flags &= ~BTRFS_INODE_NOATIME;
242 if (flags & FS_DIRSYNC_FL)
243 ip->flags |= BTRFS_INODE_DIRSYNC;
244 else
245 ip->flags &= ~BTRFS_INODE_DIRSYNC;
246 if (flags & FS_NOCOW_FL) {
247 if (S_ISREG(mode)) {
248 /*
249 * It's safe to turn csums off here, no extents exist.
250 * Otherwise we want the flag to reflect the real COW
251 * status of the file and will not set it.
252 */
253 if (inode->i_size == 0)
254 ip->flags |= BTRFS_INODE_NODATACOW
255 | BTRFS_INODE_NODATASUM;
256 } else {
257 ip->flags |= BTRFS_INODE_NODATACOW;
258 }
259 } else {
260 /*
261 * Revert back under same assuptions as above
262 */
263 if (S_ISREG(mode)) {
264 if (inode->i_size == 0)
265 ip->flags &= ~(BTRFS_INODE_NODATACOW
266 | BTRFS_INODE_NODATASUM);
267 } else {
268 ip->flags &= ~BTRFS_INODE_NODATACOW;
269 }
270 }
271
272 /*
273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 * flag may be changed automatically if compression code won't make
275 * things smaller.
276 */
277 if (flags & FS_NOCOMP_FL) {
278 ip->flags &= ~BTRFS_INODE_COMPRESS;
279 ip->flags |= BTRFS_INODE_NOCOMPRESS;
280 } else if (flags & FS_COMPR_FL) {
281 ip->flags |= BTRFS_INODE_COMPRESS;
282 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
283 } else {
284 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
285 }
286
287 trans = btrfs_start_transaction(root, 1);
288 if (IS_ERR(trans)) {
289 ret = PTR_ERR(trans);
290 goto out_drop;
291 }
292
293 btrfs_update_iflags(inode);
294 inode_inc_iversion(inode);
295 inode->i_ctime = CURRENT_TIME;
296 ret = btrfs_update_inode(trans, root, inode);
297
298 btrfs_end_transaction(trans, root);
299 out_drop:
300 if (ret) {
301 ip->flags = ip_oldflags;
302 inode->i_flags = i_oldflags;
303 }
304
305 out_unlock:
306 mutex_unlock(&inode->i_mutex);
307 mnt_drop_write_file(file);
308 return ret;
309 }
310
311 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
312 {
313 struct inode *inode = file->f_path.dentry->d_inode;
314
315 return put_user(inode->i_generation, arg);
316 }
317
318 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
319 {
320 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
321 struct btrfs_device *device;
322 struct request_queue *q;
323 struct fstrim_range range;
324 u64 minlen = ULLONG_MAX;
325 u64 num_devices = 0;
326 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
327 int ret;
328
329 if (!capable(CAP_SYS_ADMIN))
330 return -EPERM;
331
332 rcu_read_lock();
333 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
334 dev_list) {
335 if (!device->bdev)
336 continue;
337 q = bdev_get_queue(device->bdev);
338 if (blk_queue_discard(q)) {
339 num_devices++;
340 minlen = min((u64)q->limits.discard_granularity,
341 minlen);
342 }
343 }
344 rcu_read_unlock();
345
346 if (!num_devices)
347 return -EOPNOTSUPP;
348 if (copy_from_user(&range, arg, sizeof(range)))
349 return -EFAULT;
350 if (range.start > total_bytes ||
351 range.len < fs_info->sb->s_blocksize)
352 return -EINVAL;
353
354 range.len = min(range.len, total_bytes - range.start);
355 range.minlen = max(range.minlen, minlen);
356 ret = btrfs_trim_fs(fs_info->tree_root, &range);
357 if (ret < 0)
358 return ret;
359
360 if (copy_to_user(arg, &range, sizeof(range)))
361 return -EFAULT;
362
363 return 0;
364 }
365
366 static noinline int create_subvol(struct btrfs_root *root,
367 struct dentry *dentry,
368 char *name, int namelen,
369 u64 *async_transid,
370 struct btrfs_qgroup_inherit **inherit)
371 {
372 struct btrfs_trans_handle *trans;
373 struct btrfs_key key;
374 struct btrfs_root_item root_item;
375 struct btrfs_inode_item *inode_item;
376 struct extent_buffer *leaf;
377 struct btrfs_root *new_root;
378 struct dentry *parent = dentry->d_parent;
379 struct inode *dir;
380 struct timespec cur_time = CURRENT_TIME;
381 int ret;
382 int err;
383 u64 objectid;
384 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
385 u64 index = 0;
386 uuid_le new_uuid;
387
388 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
389 if (ret)
390 return ret;
391
392 dir = parent->d_inode;
393
394 /*
395 * 1 - inode item
396 * 2 - refs
397 * 1 - root item
398 * 2 - dir items
399 */
400 trans = btrfs_start_transaction(root, 6);
401 if (IS_ERR(trans))
402 return PTR_ERR(trans);
403
404 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid,
405 inherit ? *inherit : NULL);
406 if (ret)
407 goto fail;
408
409 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
410 0, objectid, NULL, 0, 0, 0);
411 if (IS_ERR(leaf)) {
412 ret = PTR_ERR(leaf);
413 goto fail;
414 }
415
416 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
417 btrfs_set_header_bytenr(leaf, leaf->start);
418 btrfs_set_header_generation(leaf, trans->transid);
419 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
420 btrfs_set_header_owner(leaf, objectid);
421
422 write_extent_buffer(leaf, root->fs_info->fsid,
423 (unsigned long)btrfs_header_fsid(leaf),
424 BTRFS_FSID_SIZE);
425 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
426 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
427 BTRFS_UUID_SIZE);
428 btrfs_mark_buffer_dirty(leaf);
429
430 memset(&root_item, 0, sizeof(root_item));
431
432 inode_item = &root_item.inode;
433 inode_item->generation = cpu_to_le64(1);
434 inode_item->size = cpu_to_le64(3);
435 inode_item->nlink = cpu_to_le32(1);
436 inode_item->nbytes = cpu_to_le64(root->leafsize);
437 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
438
439 root_item.flags = 0;
440 root_item.byte_limit = 0;
441 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
442
443 btrfs_set_root_bytenr(&root_item, leaf->start);
444 btrfs_set_root_generation(&root_item, trans->transid);
445 btrfs_set_root_level(&root_item, 0);
446 btrfs_set_root_refs(&root_item, 1);
447 btrfs_set_root_used(&root_item, leaf->len);
448 btrfs_set_root_last_snapshot(&root_item, 0);
449
450 btrfs_set_root_generation_v2(&root_item,
451 btrfs_root_generation(&root_item));
452 uuid_le_gen(&new_uuid);
453 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
454 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
455 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec);
456 root_item.ctime = root_item.otime;
457 btrfs_set_root_ctransid(&root_item, trans->transid);
458 btrfs_set_root_otransid(&root_item, trans->transid);
459
460 btrfs_tree_unlock(leaf);
461 free_extent_buffer(leaf);
462 leaf = NULL;
463
464 btrfs_set_root_dirid(&root_item, new_dirid);
465
466 key.objectid = objectid;
467 key.offset = 0;
468 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
469 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
470 &root_item);
471 if (ret)
472 goto fail;
473
474 key.offset = (u64)-1;
475 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
476 if (IS_ERR(new_root)) {
477 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
478 ret = PTR_ERR(new_root);
479 goto fail;
480 }
481
482 btrfs_record_root_in_trans(trans, new_root);
483
484 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
485 if (ret) {
486 /* We potentially lose an unused inode item here */
487 btrfs_abort_transaction(trans, root, ret);
488 goto fail;
489 }
490
491 /*
492 * insert the directory item
493 */
494 ret = btrfs_set_inode_index(dir, &index);
495 if (ret) {
496 btrfs_abort_transaction(trans, root, ret);
497 goto fail;
498 }
499
500 ret = btrfs_insert_dir_item(trans, root,
501 name, namelen, dir, &key,
502 BTRFS_FT_DIR, index);
503 if (ret) {
504 btrfs_abort_transaction(trans, root, ret);
505 goto fail;
506 }
507
508 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
509 ret = btrfs_update_inode(trans, root, dir);
510 BUG_ON(ret);
511
512 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
513 objectid, root->root_key.objectid,
514 btrfs_ino(dir), index, name, namelen);
515
516 BUG_ON(ret);
517
518 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
519 fail:
520 if (async_transid) {
521 *async_transid = trans->transid;
522 err = btrfs_commit_transaction_async(trans, root, 1);
523 } else {
524 err = btrfs_commit_transaction(trans, root);
525 }
526 if (err && !ret)
527 ret = err;
528 return ret;
529 }
530
531 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
532 char *name, int namelen, u64 *async_transid,
533 bool readonly, struct btrfs_qgroup_inherit **inherit)
534 {
535 struct inode *inode;
536 struct btrfs_pending_snapshot *pending_snapshot;
537 struct btrfs_trans_handle *trans;
538 int ret;
539
540 if (!root->ref_cows)
541 return -EINVAL;
542
543 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
544 if (!pending_snapshot)
545 return -ENOMEM;
546
547 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
548 BTRFS_BLOCK_RSV_TEMP);
549 pending_snapshot->dentry = dentry;
550 pending_snapshot->root = root;
551 pending_snapshot->readonly = readonly;
552 if (inherit) {
553 pending_snapshot->inherit = *inherit;
554 *inherit = NULL; /* take responsibility to free it */
555 }
556
557 trans = btrfs_start_transaction(root->fs_info->extent_root, 6);
558 if (IS_ERR(trans)) {
559 ret = PTR_ERR(trans);
560 goto fail;
561 }
562
563 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
564 BUG_ON(ret);
565
566 spin_lock(&root->fs_info->trans_lock);
567 list_add(&pending_snapshot->list,
568 &trans->transaction->pending_snapshots);
569 spin_unlock(&root->fs_info->trans_lock);
570 if (async_transid) {
571 *async_transid = trans->transid;
572 ret = btrfs_commit_transaction_async(trans,
573 root->fs_info->extent_root, 1);
574 } else {
575 ret = btrfs_commit_transaction(trans,
576 root->fs_info->extent_root);
577 }
578 if (ret) {
579 /* cleanup_transaction has freed this for us */
580 if (trans->aborted)
581 pending_snapshot = NULL;
582 goto fail;
583 }
584
585 ret = pending_snapshot->error;
586 if (ret)
587 goto fail;
588
589 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
590 if (ret)
591 goto fail;
592
593 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
594 if (IS_ERR(inode)) {
595 ret = PTR_ERR(inode);
596 goto fail;
597 }
598 BUG_ON(!inode);
599 d_instantiate(dentry, inode);
600 ret = 0;
601 fail:
602 kfree(pending_snapshot);
603 return ret;
604 }
605
606 /* copy of check_sticky in fs/namei.c()
607 * It's inline, so penalty for filesystems that don't use sticky bit is
608 * minimal.
609 */
610 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
611 {
612 kuid_t fsuid = current_fsuid();
613
614 if (!(dir->i_mode & S_ISVTX))
615 return 0;
616 if (uid_eq(inode->i_uid, fsuid))
617 return 0;
618 if (uid_eq(dir->i_uid, fsuid))
619 return 0;
620 return !capable(CAP_FOWNER);
621 }
622
623 /* copy of may_delete in fs/namei.c()
624 * Check whether we can remove a link victim from directory dir, check
625 * whether the type of victim is right.
626 * 1. We can't do it if dir is read-only (done in permission())
627 * 2. We should have write and exec permissions on dir
628 * 3. We can't remove anything from append-only dir
629 * 4. We can't do anything with immutable dir (done in permission())
630 * 5. If the sticky bit on dir is set we should either
631 * a. be owner of dir, or
632 * b. be owner of victim, or
633 * c. have CAP_FOWNER capability
634 * 6. If the victim is append-only or immutable we can't do antyhing with
635 * links pointing to it.
636 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
637 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
638 * 9. We can't remove a root or mountpoint.
639 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
640 * nfs_async_unlink().
641 */
642
643 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
644 {
645 int error;
646
647 if (!victim->d_inode)
648 return -ENOENT;
649
650 BUG_ON(victim->d_parent->d_inode != dir);
651 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
652
653 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
654 if (error)
655 return error;
656 if (IS_APPEND(dir))
657 return -EPERM;
658 if (btrfs_check_sticky(dir, victim->d_inode)||
659 IS_APPEND(victim->d_inode)||
660 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
661 return -EPERM;
662 if (isdir) {
663 if (!S_ISDIR(victim->d_inode->i_mode))
664 return -ENOTDIR;
665 if (IS_ROOT(victim))
666 return -EBUSY;
667 } else if (S_ISDIR(victim->d_inode->i_mode))
668 return -EISDIR;
669 if (IS_DEADDIR(dir))
670 return -ENOENT;
671 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
672 return -EBUSY;
673 return 0;
674 }
675
676 /* copy of may_create in fs/namei.c() */
677 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
678 {
679 if (child->d_inode)
680 return -EEXIST;
681 if (IS_DEADDIR(dir))
682 return -ENOENT;
683 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
684 }
685
686 /*
687 * Create a new subvolume below @parent. This is largely modeled after
688 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
689 * inside this filesystem so it's quite a bit simpler.
690 */
691 static noinline int btrfs_mksubvol(struct path *parent,
692 char *name, int namelen,
693 struct btrfs_root *snap_src,
694 u64 *async_transid, bool readonly,
695 struct btrfs_qgroup_inherit **inherit)
696 {
697 struct inode *dir = parent->dentry->d_inode;
698 struct dentry *dentry;
699 int error;
700
701 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
702
703 dentry = lookup_one_len(name, parent->dentry, namelen);
704 error = PTR_ERR(dentry);
705 if (IS_ERR(dentry))
706 goto out_unlock;
707
708 error = -EEXIST;
709 if (dentry->d_inode)
710 goto out_dput;
711
712 error = btrfs_may_create(dir, dentry);
713 if (error)
714 goto out_dput;
715
716 /*
717 * even if this name doesn't exist, we may get hash collisions.
718 * check for them now when we can safely fail
719 */
720 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
721 dir->i_ino, name,
722 namelen);
723 if (error)
724 goto out_dput;
725
726 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
727
728 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
729 goto out_up_read;
730
731 if (snap_src) {
732 error = create_snapshot(snap_src, dentry, name, namelen,
733 async_transid, readonly, inherit);
734 } else {
735 error = create_subvol(BTRFS_I(dir)->root, dentry,
736 name, namelen, async_transid, inherit);
737 }
738 if (!error)
739 fsnotify_mkdir(dir, dentry);
740 out_up_read:
741 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
742 out_dput:
743 dput(dentry);
744 out_unlock:
745 mutex_unlock(&dir->i_mutex);
746 return error;
747 }
748
749 /*
750 * When we're defragging a range, we don't want to kick it off again
751 * if it is really just waiting for delalloc to send it down.
752 * If we find a nice big extent or delalloc range for the bytes in the
753 * file you want to defrag, we return 0 to let you know to skip this
754 * part of the file
755 */
756 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
757 {
758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
759 struct extent_map *em = NULL;
760 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
761 u64 end;
762
763 read_lock(&em_tree->lock);
764 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
765 read_unlock(&em_tree->lock);
766
767 if (em) {
768 end = extent_map_end(em);
769 free_extent_map(em);
770 if (end - offset > thresh)
771 return 0;
772 }
773 /* if we already have a nice delalloc here, just stop */
774 thresh /= 2;
775 end = count_range_bits(io_tree, &offset, offset + thresh,
776 thresh, EXTENT_DELALLOC, 1);
777 if (end >= thresh)
778 return 0;
779 return 1;
780 }
781
782 /*
783 * helper function to walk through a file and find extents
784 * newer than a specific transid, and smaller than thresh.
785 *
786 * This is used by the defragging code to find new and small
787 * extents
788 */
789 static int find_new_extents(struct btrfs_root *root,
790 struct inode *inode, u64 newer_than,
791 u64 *off, int thresh)
792 {
793 struct btrfs_path *path;
794 struct btrfs_key min_key;
795 struct btrfs_key max_key;
796 struct extent_buffer *leaf;
797 struct btrfs_file_extent_item *extent;
798 int type;
799 int ret;
800 u64 ino = btrfs_ino(inode);
801
802 path = btrfs_alloc_path();
803 if (!path)
804 return -ENOMEM;
805
806 min_key.objectid = ino;
807 min_key.type = BTRFS_EXTENT_DATA_KEY;
808 min_key.offset = *off;
809
810 max_key.objectid = ino;
811 max_key.type = (u8)-1;
812 max_key.offset = (u64)-1;
813
814 path->keep_locks = 1;
815
816 while(1) {
817 ret = btrfs_search_forward(root, &min_key, &max_key,
818 path, 0, newer_than);
819 if (ret != 0)
820 goto none;
821 if (min_key.objectid != ino)
822 goto none;
823 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
824 goto none;
825
826 leaf = path->nodes[0];
827 extent = btrfs_item_ptr(leaf, path->slots[0],
828 struct btrfs_file_extent_item);
829
830 type = btrfs_file_extent_type(leaf, extent);
831 if (type == BTRFS_FILE_EXTENT_REG &&
832 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
833 check_defrag_in_cache(inode, min_key.offset, thresh)) {
834 *off = min_key.offset;
835 btrfs_free_path(path);
836 return 0;
837 }
838
839 if (min_key.offset == (u64)-1)
840 goto none;
841
842 min_key.offset++;
843 btrfs_release_path(path);
844 }
845 none:
846 btrfs_free_path(path);
847 return -ENOENT;
848 }
849
850 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
851 {
852 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
853 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
854 struct extent_map *em;
855 u64 len = PAGE_CACHE_SIZE;
856
857 /*
858 * hopefully we have this extent in the tree already, try without
859 * the full extent lock
860 */
861 read_lock(&em_tree->lock);
862 em = lookup_extent_mapping(em_tree, start, len);
863 read_unlock(&em_tree->lock);
864
865 if (!em) {
866 /* get the big lock and read metadata off disk */
867 lock_extent(io_tree, start, start + len - 1);
868 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
869 unlock_extent(io_tree, start, start + len - 1);
870
871 if (IS_ERR(em))
872 return NULL;
873 }
874
875 return em;
876 }
877
878 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
879 {
880 struct extent_map *next;
881 bool ret = true;
882
883 /* this is the last extent */
884 if (em->start + em->len >= i_size_read(inode))
885 return false;
886
887 next = defrag_lookup_extent(inode, em->start + em->len);
888 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
889 ret = false;
890
891 free_extent_map(next);
892 return ret;
893 }
894
895 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
896 u64 *last_len, u64 *skip, u64 *defrag_end,
897 int compress)
898 {
899 struct extent_map *em;
900 int ret = 1;
901 bool next_mergeable = true;
902
903 /*
904 * make sure that once we start defragging an extent, we keep on
905 * defragging it
906 */
907 if (start < *defrag_end)
908 return 1;
909
910 *skip = 0;
911
912 em = defrag_lookup_extent(inode, start);
913 if (!em)
914 return 0;
915
916 /* this will cover holes, and inline extents */
917 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
918 ret = 0;
919 goto out;
920 }
921
922 next_mergeable = defrag_check_next_extent(inode, em);
923
924 /*
925 * we hit a real extent, if it is big or the next extent is not a
926 * real extent, don't bother defragging it
927 */
928 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
929 (em->len >= thresh || !next_mergeable))
930 ret = 0;
931 out:
932 /*
933 * last_len ends up being a counter of how many bytes we've defragged.
934 * every time we choose not to defrag an extent, we reset *last_len
935 * so that the next tiny extent will force a defrag.
936 *
937 * The end result of this is that tiny extents before a single big
938 * extent will force at least part of that big extent to be defragged.
939 */
940 if (ret) {
941 *defrag_end = extent_map_end(em);
942 } else {
943 *last_len = 0;
944 *skip = extent_map_end(em);
945 *defrag_end = 0;
946 }
947
948 free_extent_map(em);
949 return ret;
950 }
951
952 /*
953 * it doesn't do much good to defrag one or two pages
954 * at a time. This pulls in a nice chunk of pages
955 * to COW and defrag.
956 *
957 * It also makes sure the delalloc code has enough
958 * dirty data to avoid making new small extents as part
959 * of the defrag
960 *
961 * It's a good idea to start RA on this range
962 * before calling this.
963 */
964 static int cluster_pages_for_defrag(struct inode *inode,
965 struct page **pages,
966 unsigned long start_index,
967 int num_pages)
968 {
969 unsigned long file_end;
970 u64 isize = i_size_read(inode);
971 u64 page_start;
972 u64 page_end;
973 u64 page_cnt;
974 int ret;
975 int i;
976 int i_done;
977 struct btrfs_ordered_extent *ordered;
978 struct extent_state *cached_state = NULL;
979 struct extent_io_tree *tree;
980 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
981
982 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
983 if (!isize || start_index > file_end)
984 return 0;
985
986 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
987
988 ret = btrfs_delalloc_reserve_space(inode,
989 page_cnt << PAGE_CACHE_SHIFT);
990 if (ret)
991 return ret;
992 i_done = 0;
993 tree = &BTRFS_I(inode)->io_tree;
994
995 /* step one, lock all the pages */
996 for (i = 0; i < page_cnt; i++) {
997 struct page *page;
998 again:
999 page = find_or_create_page(inode->i_mapping,
1000 start_index + i, mask);
1001 if (!page)
1002 break;
1003
1004 page_start = page_offset(page);
1005 page_end = page_start + PAGE_CACHE_SIZE - 1;
1006 while (1) {
1007 lock_extent(tree, page_start, page_end);
1008 ordered = btrfs_lookup_ordered_extent(inode,
1009 page_start);
1010 unlock_extent(tree, page_start, page_end);
1011 if (!ordered)
1012 break;
1013
1014 unlock_page(page);
1015 btrfs_start_ordered_extent(inode, ordered, 1);
1016 btrfs_put_ordered_extent(ordered);
1017 lock_page(page);
1018 /*
1019 * we unlocked the page above, so we need check if
1020 * it was released or not.
1021 */
1022 if (page->mapping != inode->i_mapping) {
1023 unlock_page(page);
1024 page_cache_release(page);
1025 goto again;
1026 }
1027 }
1028
1029 if (!PageUptodate(page)) {
1030 btrfs_readpage(NULL, page);
1031 lock_page(page);
1032 if (!PageUptodate(page)) {
1033 unlock_page(page);
1034 page_cache_release(page);
1035 ret = -EIO;
1036 break;
1037 }
1038 }
1039
1040 if (page->mapping != inode->i_mapping) {
1041 unlock_page(page);
1042 page_cache_release(page);
1043 goto again;
1044 }
1045
1046 pages[i] = page;
1047 i_done++;
1048 }
1049 if (!i_done || ret)
1050 goto out;
1051
1052 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1053 goto out;
1054
1055 /*
1056 * so now we have a nice long stream of locked
1057 * and up to date pages, lets wait on them
1058 */
1059 for (i = 0; i < i_done; i++)
1060 wait_on_page_writeback(pages[i]);
1061
1062 page_start = page_offset(pages[0]);
1063 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1064
1065 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1066 page_start, page_end - 1, 0, &cached_state);
1067 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1068 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1069 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1070 &cached_state, GFP_NOFS);
1071
1072 if (i_done != page_cnt) {
1073 spin_lock(&BTRFS_I(inode)->lock);
1074 BTRFS_I(inode)->outstanding_extents++;
1075 spin_unlock(&BTRFS_I(inode)->lock);
1076 btrfs_delalloc_release_space(inode,
1077 (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1078 }
1079
1080
1081 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1082 &cached_state, GFP_NOFS);
1083
1084 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1085 page_start, page_end - 1, &cached_state,
1086 GFP_NOFS);
1087
1088 for (i = 0; i < i_done; i++) {
1089 clear_page_dirty_for_io(pages[i]);
1090 ClearPageChecked(pages[i]);
1091 set_page_extent_mapped(pages[i]);
1092 set_page_dirty(pages[i]);
1093 unlock_page(pages[i]);
1094 page_cache_release(pages[i]);
1095 }
1096 return i_done;
1097 out:
1098 for (i = 0; i < i_done; i++) {
1099 unlock_page(pages[i]);
1100 page_cache_release(pages[i]);
1101 }
1102 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1103 return ret;
1104
1105 }
1106
1107 int btrfs_defrag_file(struct inode *inode, struct file *file,
1108 struct btrfs_ioctl_defrag_range_args *range,
1109 u64 newer_than, unsigned long max_to_defrag)
1110 {
1111 struct btrfs_root *root = BTRFS_I(inode)->root;
1112 struct file_ra_state *ra = NULL;
1113 unsigned long last_index;
1114 u64 isize = i_size_read(inode);
1115 u64 last_len = 0;
1116 u64 skip = 0;
1117 u64 defrag_end = 0;
1118 u64 newer_off = range->start;
1119 unsigned long i;
1120 unsigned long ra_index = 0;
1121 int ret;
1122 int defrag_count = 0;
1123 int compress_type = BTRFS_COMPRESS_ZLIB;
1124 int extent_thresh = range->extent_thresh;
1125 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1126 int cluster = max_cluster;
1127 u64 new_align = ~((u64)128 * 1024 - 1);
1128 struct page **pages = NULL;
1129
1130 if (extent_thresh == 0)
1131 extent_thresh = 256 * 1024;
1132
1133 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1134 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1135 return -EINVAL;
1136 if (range->compress_type)
1137 compress_type = range->compress_type;
1138 }
1139
1140 if (isize == 0)
1141 return 0;
1142
1143 /*
1144 * if we were not given a file, allocate a readahead
1145 * context
1146 */
1147 if (!file) {
1148 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1149 if (!ra)
1150 return -ENOMEM;
1151 file_ra_state_init(ra, inode->i_mapping);
1152 } else {
1153 ra = &file->f_ra;
1154 }
1155
1156 pages = kmalloc(sizeof(struct page *) * max_cluster,
1157 GFP_NOFS);
1158 if (!pages) {
1159 ret = -ENOMEM;
1160 goto out_ra;
1161 }
1162
1163 /* find the last page to defrag */
1164 if (range->start + range->len > range->start) {
1165 last_index = min_t(u64, isize - 1,
1166 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1167 } else {
1168 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1169 }
1170
1171 if (newer_than) {
1172 ret = find_new_extents(root, inode, newer_than,
1173 &newer_off, 64 * 1024);
1174 if (!ret) {
1175 range->start = newer_off;
1176 /*
1177 * we always align our defrag to help keep
1178 * the extents in the file evenly spaced
1179 */
1180 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1181 } else
1182 goto out_ra;
1183 } else {
1184 i = range->start >> PAGE_CACHE_SHIFT;
1185 }
1186 if (!max_to_defrag)
1187 max_to_defrag = last_index + 1;
1188
1189 /*
1190 * make writeback starts from i, so the defrag range can be
1191 * written sequentially.
1192 */
1193 if (i < inode->i_mapping->writeback_index)
1194 inode->i_mapping->writeback_index = i;
1195
1196 while (i <= last_index && defrag_count < max_to_defrag &&
1197 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1198 PAGE_CACHE_SHIFT)) {
1199 /*
1200 * make sure we stop running if someone unmounts
1201 * the FS
1202 */
1203 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1204 break;
1205
1206 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1207 extent_thresh, &last_len, &skip,
1208 &defrag_end, range->flags &
1209 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1210 unsigned long next;
1211 /*
1212 * the should_defrag function tells us how much to skip
1213 * bump our counter by the suggested amount
1214 */
1215 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1216 i = max(i + 1, next);
1217 continue;
1218 }
1219
1220 if (!newer_than) {
1221 cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1222 PAGE_CACHE_SHIFT) - i;
1223 cluster = min(cluster, max_cluster);
1224 } else {
1225 cluster = max_cluster;
1226 }
1227
1228 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1229 BTRFS_I(inode)->force_compress = compress_type;
1230
1231 if (i + cluster > ra_index) {
1232 ra_index = max(i, ra_index);
1233 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1234 cluster);
1235 ra_index += max_cluster;
1236 }
1237
1238 mutex_lock(&inode->i_mutex);
1239 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1240 if (ret < 0) {
1241 mutex_unlock(&inode->i_mutex);
1242 goto out_ra;
1243 }
1244
1245 defrag_count += ret;
1246 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1247 mutex_unlock(&inode->i_mutex);
1248
1249 if (newer_than) {
1250 if (newer_off == (u64)-1)
1251 break;
1252
1253 if (ret > 0)
1254 i += ret;
1255
1256 newer_off = max(newer_off + 1,
1257 (u64)i << PAGE_CACHE_SHIFT);
1258
1259 ret = find_new_extents(root, inode,
1260 newer_than, &newer_off,
1261 64 * 1024);
1262 if (!ret) {
1263 range->start = newer_off;
1264 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1265 } else {
1266 break;
1267 }
1268 } else {
1269 if (ret > 0) {
1270 i += ret;
1271 last_len += ret << PAGE_CACHE_SHIFT;
1272 } else {
1273 i++;
1274 last_len = 0;
1275 }
1276 }
1277 }
1278
1279 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1280 filemap_flush(inode->i_mapping);
1281
1282 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1283 /* the filemap_flush will queue IO into the worker threads, but
1284 * we have to make sure the IO is actually started and that
1285 * ordered extents get created before we return
1286 */
1287 atomic_inc(&root->fs_info->async_submit_draining);
1288 while (atomic_read(&root->fs_info->nr_async_submits) ||
1289 atomic_read(&root->fs_info->async_delalloc_pages)) {
1290 wait_event(root->fs_info->async_submit_wait,
1291 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1292 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1293 }
1294 atomic_dec(&root->fs_info->async_submit_draining);
1295
1296 mutex_lock(&inode->i_mutex);
1297 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1298 mutex_unlock(&inode->i_mutex);
1299 }
1300
1301 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1302 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1303 }
1304
1305 ret = defrag_count;
1306
1307 out_ra:
1308 if (!file)
1309 kfree(ra);
1310 kfree(pages);
1311 return ret;
1312 }
1313
1314 static noinline int btrfs_ioctl_resize(struct file *file,
1315 void __user *arg)
1316 {
1317 u64 new_size;
1318 u64 old_size;
1319 u64 devid = 1;
1320 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1321 struct btrfs_ioctl_vol_args *vol_args;
1322 struct btrfs_trans_handle *trans;
1323 struct btrfs_device *device = NULL;
1324 char *sizestr;
1325 char *devstr = NULL;
1326 int ret = 0;
1327 int mod = 0;
1328
1329 if (root->fs_info->sb->s_flags & MS_RDONLY)
1330 return -EROFS;
1331
1332 if (!capable(CAP_SYS_ADMIN))
1333 return -EPERM;
1334
1335 ret = mnt_want_write_file(file);
1336 if (ret)
1337 return ret;
1338
1339 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1340 1)) {
1341 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1342 mnt_drop_write_file(file);
1343 return -EINPROGRESS;
1344 }
1345
1346 mutex_lock(&root->fs_info->volume_mutex);
1347 vol_args = memdup_user(arg, sizeof(*vol_args));
1348 if (IS_ERR(vol_args)) {
1349 ret = PTR_ERR(vol_args);
1350 goto out;
1351 }
1352
1353 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1354
1355 sizestr = vol_args->name;
1356 devstr = strchr(sizestr, ':');
1357 if (devstr) {
1358 char *end;
1359 sizestr = devstr + 1;
1360 *devstr = '\0';
1361 devstr = vol_args->name;
1362 devid = simple_strtoull(devstr, &end, 10);
1363 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1364 (unsigned long long)devid);
1365 }
1366
1367 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1368 if (!device) {
1369 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1370 (unsigned long long)devid);
1371 ret = -EINVAL;
1372 goto out_free;
1373 }
1374
1375 if (!device->writeable) {
1376 printk(KERN_INFO "btrfs: resizer unable to apply on "
1377 "readonly device %llu\n",
1378 (unsigned long long)devid);
1379 ret = -EINVAL;
1380 goto out_free;
1381 }
1382
1383 if (!strcmp(sizestr, "max"))
1384 new_size = device->bdev->bd_inode->i_size;
1385 else {
1386 if (sizestr[0] == '-') {
1387 mod = -1;
1388 sizestr++;
1389 } else if (sizestr[0] == '+') {
1390 mod = 1;
1391 sizestr++;
1392 }
1393 new_size = memparse(sizestr, NULL);
1394 if (new_size == 0) {
1395 ret = -EINVAL;
1396 goto out_free;
1397 }
1398 }
1399
1400 if (device->is_tgtdev_for_dev_replace) {
1401 ret = -EINVAL;
1402 goto out_free;
1403 }
1404
1405 old_size = device->total_bytes;
1406
1407 if (mod < 0) {
1408 if (new_size > old_size) {
1409 ret = -EINVAL;
1410 goto out_free;
1411 }
1412 new_size = old_size - new_size;
1413 } else if (mod > 0) {
1414 new_size = old_size + new_size;
1415 }
1416
1417 if (new_size < 256 * 1024 * 1024) {
1418 ret = -EINVAL;
1419 goto out_free;
1420 }
1421 if (new_size > device->bdev->bd_inode->i_size) {
1422 ret = -EFBIG;
1423 goto out_free;
1424 }
1425
1426 do_div(new_size, root->sectorsize);
1427 new_size *= root->sectorsize;
1428
1429 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1430 rcu_str_deref(device->name),
1431 (unsigned long long)new_size);
1432
1433 if (new_size > old_size) {
1434 trans = btrfs_start_transaction(root, 0);
1435 if (IS_ERR(trans)) {
1436 ret = PTR_ERR(trans);
1437 goto out_free;
1438 }
1439 ret = btrfs_grow_device(trans, device, new_size);
1440 btrfs_commit_transaction(trans, root);
1441 } else if (new_size < old_size) {
1442 ret = btrfs_shrink_device(device, new_size);
1443 } /* equal, nothing need to do */
1444
1445 out_free:
1446 kfree(vol_args);
1447 out:
1448 mutex_unlock(&root->fs_info->volume_mutex);
1449 mnt_drop_write_file(file);
1450 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1451 return ret;
1452 }
1453
1454 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1455 char *name, unsigned long fd, int subvol,
1456 u64 *transid, bool readonly,
1457 struct btrfs_qgroup_inherit **inherit)
1458 {
1459 int namelen;
1460 int ret = 0;
1461
1462 ret = mnt_want_write_file(file);
1463 if (ret)
1464 goto out;
1465
1466 namelen = strlen(name);
1467 if (strchr(name, '/')) {
1468 ret = -EINVAL;
1469 goto out_drop_write;
1470 }
1471
1472 if (name[0] == '.' &&
1473 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1474 ret = -EEXIST;
1475 goto out_drop_write;
1476 }
1477
1478 if (subvol) {
1479 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1480 NULL, transid, readonly, inherit);
1481 } else {
1482 struct fd src = fdget(fd);
1483 struct inode *src_inode;
1484 if (!src.file) {
1485 ret = -EINVAL;
1486 goto out_drop_write;
1487 }
1488
1489 src_inode = src.file->f_path.dentry->d_inode;
1490 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1491 printk(KERN_INFO "btrfs: Snapshot src from "
1492 "another FS\n");
1493 ret = -EINVAL;
1494 } else {
1495 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1496 BTRFS_I(src_inode)->root,
1497 transid, readonly, inherit);
1498 }
1499 fdput(src);
1500 }
1501 out_drop_write:
1502 mnt_drop_write_file(file);
1503 out:
1504 return ret;
1505 }
1506
1507 static noinline int btrfs_ioctl_snap_create(struct file *file,
1508 void __user *arg, int subvol)
1509 {
1510 struct btrfs_ioctl_vol_args *vol_args;
1511 int ret;
1512
1513 vol_args = memdup_user(arg, sizeof(*vol_args));
1514 if (IS_ERR(vol_args))
1515 return PTR_ERR(vol_args);
1516 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1517
1518 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1519 vol_args->fd, subvol,
1520 NULL, false, NULL);
1521
1522 kfree(vol_args);
1523 return ret;
1524 }
1525
1526 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1527 void __user *arg, int subvol)
1528 {
1529 struct btrfs_ioctl_vol_args_v2 *vol_args;
1530 int ret;
1531 u64 transid = 0;
1532 u64 *ptr = NULL;
1533 bool readonly = false;
1534 struct btrfs_qgroup_inherit *inherit = NULL;
1535
1536 vol_args = memdup_user(arg, sizeof(*vol_args));
1537 if (IS_ERR(vol_args))
1538 return PTR_ERR(vol_args);
1539 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1540
1541 if (vol_args->flags &
1542 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1543 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1544 ret = -EOPNOTSUPP;
1545 goto out;
1546 }
1547
1548 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1549 ptr = &transid;
1550 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1551 readonly = true;
1552 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1553 if (vol_args->size > PAGE_CACHE_SIZE) {
1554 ret = -EINVAL;
1555 goto out;
1556 }
1557 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1558 if (IS_ERR(inherit)) {
1559 ret = PTR_ERR(inherit);
1560 goto out;
1561 }
1562 }
1563
1564 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1565 vol_args->fd, subvol, ptr,
1566 readonly, &inherit);
1567
1568 if (ret == 0 && ptr &&
1569 copy_to_user(arg +
1570 offsetof(struct btrfs_ioctl_vol_args_v2,
1571 transid), ptr, sizeof(*ptr)))
1572 ret = -EFAULT;
1573 out:
1574 kfree(vol_args);
1575 kfree(inherit);
1576 return ret;
1577 }
1578
1579 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1580 void __user *arg)
1581 {
1582 struct inode *inode = fdentry(file)->d_inode;
1583 struct btrfs_root *root = BTRFS_I(inode)->root;
1584 int ret = 0;
1585 u64 flags = 0;
1586
1587 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1588 return -EINVAL;
1589
1590 down_read(&root->fs_info->subvol_sem);
1591 if (btrfs_root_readonly(root))
1592 flags |= BTRFS_SUBVOL_RDONLY;
1593 up_read(&root->fs_info->subvol_sem);
1594
1595 if (copy_to_user(arg, &flags, sizeof(flags)))
1596 ret = -EFAULT;
1597
1598 return ret;
1599 }
1600
1601 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1602 void __user *arg)
1603 {
1604 struct inode *inode = fdentry(file)->d_inode;
1605 struct btrfs_root *root = BTRFS_I(inode)->root;
1606 struct btrfs_trans_handle *trans;
1607 u64 root_flags;
1608 u64 flags;
1609 int ret = 0;
1610
1611 ret = mnt_want_write_file(file);
1612 if (ret)
1613 goto out;
1614
1615 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1616 ret = -EINVAL;
1617 goto out_drop_write;
1618 }
1619
1620 if (copy_from_user(&flags, arg, sizeof(flags))) {
1621 ret = -EFAULT;
1622 goto out_drop_write;
1623 }
1624
1625 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1626 ret = -EINVAL;
1627 goto out_drop_write;
1628 }
1629
1630 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1631 ret = -EOPNOTSUPP;
1632 goto out_drop_write;
1633 }
1634
1635 if (!inode_owner_or_capable(inode)) {
1636 ret = -EACCES;
1637 goto out_drop_write;
1638 }
1639
1640 down_write(&root->fs_info->subvol_sem);
1641
1642 /* nothing to do */
1643 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1644 goto out_drop_sem;
1645
1646 root_flags = btrfs_root_flags(&root->root_item);
1647 if (flags & BTRFS_SUBVOL_RDONLY)
1648 btrfs_set_root_flags(&root->root_item,
1649 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1650 else
1651 btrfs_set_root_flags(&root->root_item,
1652 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1653
1654 trans = btrfs_start_transaction(root, 1);
1655 if (IS_ERR(trans)) {
1656 ret = PTR_ERR(trans);
1657 goto out_reset;
1658 }
1659
1660 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1661 &root->root_key, &root->root_item);
1662
1663 btrfs_commit_transaction(trans, root);
1664 out_reset:
1665 if (ret)
1666 btrfs_set_root_flags(&root->root_item, root_flags);
1667 out_drop_sem:
1668 up_write(&root->fs_info->subvol_sem);
1669 out_drop_write:
1670 mnt_drop_write_file(file);
1671 out:
1672 return ret;
1673 }
1674
1675 /*
1676 * helper to check if the subvolume references other subvolumes
1677 */
1678 static noinline int may_destroy_subvol(struct btrfs_root *root)
1679 {
1680 struct btrfs_path *path;
1681 struct btrfs_key key;
1682 int ret;
1683
1684 path = btrfs_alloc_path();
1685 if (!path)
1686 return -ENOMEM;
1687
1688 key.objectid = root->root_key.objectid;
1689 key.type = BTRFS_ROOT_REF_KEY;
1690 key.offset = (u64)-1;
1691
1692 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1693 &key, path, 0, 0);
1694 if (ret < 0)
1695 goto out;
1696 BUG_ON(ret == 0);
1697
1698 ret = 0;
1699 if (path->slots[0] > 0) {
1700 path->slots[0]--;
1701 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1702 if (key.objectid == root->root_key.objectid &&
1703 key.type == BTRFS_ROOT_REF_KEY)
1704 ret = -ENOTEMPTY;
1705 }
1706 out:
1707 btrfs_free_path(path);
1708 return ret;
1709 }
1710
1711 static noinline int key_in_sk(struct btrfs_key *key,
1712 struct btrfs_ioctl_search_key *sk)
1713 {
1714 struct btrfs_key test;
1715 int ret;
1716
1717 test.objectid = sk->min_objectid;
1718 test.type = sk->min_type;
1719 test.offset = sk->min_offset;
1720
1721 ret = btrfs_comp_cpu_keys(key, &test);
1722 if (ret < 0)
1723 return 0;
1724
1725 test.objectid = sk->max_objectid;
1726 test.type = sk->max_type;
1727 test.offset = sk->max_offset;
1728
1729 ret = btrfs_comp_cpu_keys(key, &test);
1730 if (ret > 0)
1731 return 0;
1732 return 1;
1733 }
1734
1735 static noinline int copy_to_sk(struct btrfs_root *root,
1736 struct btrfs_path *path,
1737 struct btrfs_key *key,
1738 struct btrfs_ioctl_search_key *sk,
1739 char *buf,
1740 unsigned long *sk_offset,
1741 int *num_found)
1742 {
1743 u64 found_transid;
1744 struct extent_buffer *leaf;
1745 struct btrfs_ioctl_search_header sh;
1746 unsigned long item_off;
1747 unsigned long item_len;
1748 int nritems;
1749 int i;
1750 int slot;
1751 int ret = 0;
1752
1753 leaf = path->nodes[0];
1754 slot = path->slots[0];
1755 nritems = btrfs_header_nritems(leaf);
1756
1757 if (btrfs_header_generation(leaf) > sk->max_transid) {
1758 i = nritems;
1759 goto advance_key;
1760 }
1761 found_transid = btrfs_header_generation(leaf);
1762
1763 for (i = slot; i < nritems; i++) {
1764 item_off = btrfs_item_ptr_offset(leaf, i);
1765 item_len = btrfs_item_size_nr(leaf, i);
1766
1767 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1768 item_len = 0;
1769
1770 if (sizeof(sh) + item_len + *sk_offset >
1771 BTRFS_SEARCH_ARGS_BUFSIZE) {
1772 ret = 1;
1773 goto overflow;
1774 }
1775
1776 btrfs_item_key_to_cpu(leaf, key, i);
1777 if (!key_in_sk(key, sk))
1778 continue;
1779
1780 sh.objectid = key->objectid;
1781 sh.offset = key->offset;
1782 sh.type = key->type;
1783 sh.len = item_len;
1784 sh.transid = found_transid;
1785
1786 /* copy search result header */
1787 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1788 *sk_offset += sizeof(sh);
1789
1790 if (item_len) {
1791 char *p = buf + *sk_offset;
1792 /* copy the item */
1793 read_extent_buffer(leaf, p,
1794 item_off, item_len);
1795 *sk_offset += item_len;
1796 }
1797 (*num_found)++;
1798
1799 if (*num_found >= sk->nr_items)
1800 break;
1801 }
1802 advance_key:
1803 ret = 0;
1804 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1805 key->offset++;
1806 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1807 key->offset = 0;
1808 key->type++;
1809 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1810 key->offset = 0;
1811 key->type = 0;
1812 key->objectid++;
1813 } else
1814 ret = 1;
1815 overflow:
1816 return ret;
1817 }
1818
1819 static noinline int search_ioctl(struct inode *inode,
1820 struct btrfs_ioctl_search_args *args)
1821 {
1822 struct btrfs_root *root;
1823 struct btrfs_key key;
1824 struct btrfs_key max_key;
1825 struct btrfs_path *path;
1826 struct btrfs_ioctl_search_key *sk = &args->key;
1827 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1828 int ret;
1829 int num_found = 0;
1830 unsigned long sk_offset = 0;
1831
1832 path = btrfs_alloc_path();
1833 if (!path)
1834 return -ENOMEM;
1835
1836 if (sk->tree_id == 0) {
1837 /* search the root of the inode that was passed */
1838 root = BTRFS_I(inode)->root;
1839 } else {
1840 key.objectid = sk->tree_id;
1841 key.type = BTRFS_ROOT_ITEM_KEY;
1842 key.offset = (u64)-1;
1843 root = btrfs_read_fs_root_no_name(info, &key);
1844 if (IS_ERR(root)) {
1845 printk(KERN_ERR "could not find root %llu\n",
1846 sk->tree_id);
1847 btrfs_free_path(path);
1848 return -ENOENT;
1849 }
1850 }
1851
1852 key.objectid = sk->min_objectid;
1853 key.type = sk->min_type;
1854 key.offset = sk->min_offset;
1855
1856 max_key.objectid = sk->max_objectid;
1857 max_key.type = sk->max_type;
1858 max_key.offset = sk->max_offset;
1859
1860 path->keep_locks = 1;
1861
1862 while(1) {
1863 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1864 sk->min_transid);
1865 if (ret != 0) {
1866 if (ret > 0)
1867 ret = 0;
1868 goto err;
1869 }
1870 ret = copy_to_sk(root, path, &key, sk, args->buf,
1871 &sk_offset, &num_found);
1872 btrfs_release_path(path);
1873 if (ret || num_found >= sk->nr_items)
1874 break;
1875
1876 }
1877 ret = 0;
1878 err:
1879 sk->nr_items = num_found;
1880 btrfs_free_path(path);
1881 return ret;
1882 }
1883
1884 static noinline int btrfs_ioctl_tree_search(struct file *file,
1885 void __user *argp)
1886 {
1887 struct btrfs_ioctl_search_args *args;
1888 struct inode *inode;
1889 int ret;
1890
1891 if (!capable(CAP_SYS_ADMIN))
1892 return -EPERM;
1893
1894 args = memdup_user(argp, sizeof(*args));
1895 if (IS_ERR(args))
1896 return PTR_ERR(args);
1897
1898 inode = fdentry(file)->d_inode;
1899 ret = search_ioctl(inode, args);
1900 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1901 ret = -EFAULT;
1902 kfree(args);
1903 return ret;
1904 }
1905
1906 /*
1907 * Search INODE_REFs to identify path name of 'dirid' directory
1908 * in a 'tree_id' tree. and sets path name to 'name'.
1909 */
1910 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1911 u64 tree_id, u64 dirid, char *name)
1912 {
1913 struct btrfs_root *root;
1914 struct btrfs_key key;
1915 char *ptr;
1916 int ret = -1;
1917 int slot;
1918 int len;
1919 int total_len = 0;
1920 struct btrfs_inode_ref *iref;
1921 struct extent_buffer *l;
1922 struct btrfs_path *path;
1923
1924 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1925 name[0]='\0';
1926 return 0;
1927 }
1928
1929 path = btrfs_alloc_path();
1930 if (!path)
1931 return -ENOMEM;
1932
1933 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1934
1935 key.objectid = tree_id;
1936 key.type = BTRFS_ROOT_ITEM_KEY;
1937 key.offset = (u64)-1;
1938 root = btrfs_read_fs_root_no_name(info, &key);
1939 if (IS_ERR(root)) {
1940 printk(KERN_ERR "could not find root %llu\n", tree_id);
1941 ret = -ENOENT;
1942 goto out;
1943 }
1944
1945 key.objectid = dirid;
1946 key.type = BTRFS_INODE_REF_KEY;
1947 key.offset = (u64)-1;
1948
1949 while(1) {
1950 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1951 if (ret < 0)
1952 goto out;
1953
1954 l = path->nodes[0];
1955 slot = path->slots[0];
1956 if (ret > 0 && slot > 0)
1957 slot--;
1958 btrfs_item_key_to_cpu(l, &key, slot);
1959
1960 if (ret > 0 && (key.objectid != dirid ||
1961 key.type != BTRFS_INODE_REF_KEY)) {
1962 ret = -ENOENT;
1963 goto out;
1964 }
1965
1966 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1967 len = btrfs_inode_ref_name_len(l, iref);
1968 ptr -= len + 1;
1969 total_len += len + 1;
1970 if (ptr < name)
1971 goto out;
1972
1973 *(ptr + len) = '/';
1974 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1975
1976 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1977 break;
1978
1979 btrfs_release_path(path);
1980 key.objectid = key.offset;
1981 key.offset = (u64)-1;
1982 dirid = key.objectid;
1983 }
1984 if (ptr < name)
1985 goto out;
1986 memmove(name, ptr, total_len);
1987 name[total_len]='\0';
1988 ret = 0;
1989 out:
1990 btrfs_free_path(path);
1991 return ret;
1992 }
1993
1994 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1995 void __user *argp)
1996 {
1997 struct btrfs_ioctl_ino_lookup_args *args;
1998 struct inode *inode;
1999 int ret;
2000
2001 if (!capable(CAP_SYS_ADMIN))
2002 return -EPERM;
2003
2004 args = memdup_user(argp, sizeof(*args));
2005 if (IS_ERR(args))
2006 return PTR_ERR(args);
2007
2008 inode = fdentry(file)->d_inode;
2009
2010 if (args->treeid == 0)
2011 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2012
2013 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2014 args->treeid, args->objectid,
2015 args->name);
2016
2017 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2018 ret = -EFAULT;
2019
2020 kfree(args);
2021 return ret;
2022 }
2023
2024 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2025 void __user *arg)
2026 {
2027 struct dentry *parent = fdentry(file);
2028 struct dentry *dentry;
2029 struct inode *dir = parent->d_inode;
2030 struct inode *inode;
2031 struct btrfs_root *root = BTRFS_I(dir)->root;
2032 struct btrfs_root *dest = NULL;
2033 struct btrfs_ioctl_vol_args *vol_args;
2034 struct btrfs_trans_handle *trans;
2035 int namelen;
2036 int ret;
2037 int err = 0;
2038
2039 vol_args = memdup_user(arg, sizeof(*vol_args));
2040 if (IS_ERR(vol_args))
2041 return PTR_ERR(vol_args);
2042
2043 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2044 namelen = strlen(vol_args->name);
2045 if (strchr(vol_args->name, '/') ||
2046 strncmp(vol_args->name, "..", namelen) == 0) {
2047 err = -EINVAL;
2048 goto out;
2049 }
2050
2051 err = mnt_want_write_file(file);
2052 if (err)
2053 goto out;
2054
2055 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
2056 dentry = lookup_one_len(vol_args->name, parent, namelen);
2057 if (IS_ERR(dentry)) {
2058 err = PTR_ERR(dentry);
2059 goto out_unlock_dir;
2060 }
2061
2062 if (!dentry->d_inode) {
2063 err = -ENOENT;
2064 goto out_dput;
2065 }
2066
2067 inode = dentry->d_inode;
2068 dest = BTRFS_I(inode)->root;
2069 if (!capable(CAP_SYS_ADMIN)){
2070 /*
2071 * Regular user. Only allow this with a special mount
2072 * option, when the user has write+exec access to the
2073 * subvol root, and when rmdir(2) would have been
2074 * allowed.
2075 *
2076 * Note that this is _not_ check that the subvol is
2077 * empty or doesn't contain data that we wouldn't
2078 * otherwise be able to delete.
2079 *
2080 * Users who want to delete empty subvols should try
2081 * rmdir(2).
2082 */
2083 err = -EPERM;
2084 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2085 goto out_dput;
2086
2087 /*
2088 * Do not allow deletion if the parent dir is the same
2089 * as the dir to be deleted. That means the ioctl
2090 * must be called on the dentry referencing the root
2091 * of the subvol, not a random directory contained
2092 * within it.
2093 */
2094 err = -EINVAL;
2095 if (root == dest)
2096 goto out_dput;
2097
2098 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2099 if (err)
2100 goto out_dput;
2101 }
2102
2103 /* check if subvolume may be deleted by a user */
2104 err = btrfs_may_delete(dir, dentry, 1);
2105 if (err)
2106 goto out_dput;
2107
2108 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2109 err = -EINVAL;
2110 goto out_dput;
2111 }
2112
2113 mutex_lock(&inode->i_mutex);
2114 err = d_invalidate(dentry);
2115 if (err)
2116 goto out_unlock;
2117
2118 down_write(&root->fs_info->subvol_sem);
2119
2120 err = may_destroy_subvol(dest);
2121 if (err)
2122 goto out_up_write;
2123
2124 trans = btrfs_start_transaction(root, 0);
2125 if (IS_ERR(trans)) {
2126 err = PTR_ERR(trans);
2127 goto out_up_write;
2128 }
2129 trans->block_rsv = &root->fs_info->global_block_rsv;
2130
2131 ret = btrfs_unlink_subvol(trans, root, dir,
2132 dest->root_key.objectid,
2133 dentry->d_name.name,
2134 dentry->d_name.len);
2135 if (ret) {
2136 err = ret;
2137 btrfs_abort_transaction(trans, root, ret);
2138 goto out_end_trans;
2139 }
2140
2141 btrfs_record_root_in_trans(trans, dest);
2142
2143 memset(&dest->root_item.drop_progress, 0,
2144 sizeof(dest->root_item.drop_progress));
2145 dest->root_item.drop_level = 0;
2146 btrfs_set_root_refs(&dest->root_item, 0);
2147
2148 if (!xchg(&dest->orphan_item_inserted, 1)) {
2149 ret = btrfs_insert_orphan_item(trans,
2150 root->fs_info->tree_root,
2151 dest->root_key.objectid);
2152 if (ret) {
2153 btrfs_abort_transaction(trans, root, ret);
2154 err = ret;
2155 goto out_end_trans;
2156 }
2157 }
2158 out_end_trans:
2159 ret = btrfs_end_transaction(trans, root);
2160 if (ret && !err)
2161 err = ret;
2162 inode->i_flags |= S_DEAD;
2163 out_up_write:
2164 up_write(&root->fs_info->subvol_sem);
2165 out_unlock:
2166 mutex_unlock(&inode->i_mutex);
2167 if (!err) {
2168 shrink_dcache_sb(root->fs_info->sb);
2169 btrfs_invalidate_inodes(dest);
2170 d_delete(dentry);
2171 }
2172 out_dput:
2173 dput(dentry);
2174 out_unlock_dir:
2175 mutex_unlock(&dir->i_mutex);
2176 mnt_drop_write_file(file);
2177 out:
2178 kfree(vol_args);
2179 return err;
2180 }
2181
2182 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2183 {
2184 struct inode *inode = fdentry(file)->d_inode;
2185 struct btrfs_root *root = BTRFS_I(inode)->root;
2186 struct btrfs_ioctl_defrag_range_args *range;
2187 int ret;
2188
2189 if (btrfs_root_readonly(root))
2190 return -EROFS;
2191
2192 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2193 1)) {
2194 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2195 return -EINPROGRESS;
2196 }
2197 ret = mnt_want_write_file(file);
2198 if (ret) {
2199 atomic_set(&root->fs_info->mutually_exclusive_operation_running,
2200 0);
2201 return ret;
2202 }
2203
2204 switch (inode->i_mode & S_IFMT) {
2205 case S_IFDIR:
2206 if (!capable(CAP_SYS_ADMIN)) {
2207 ret = -EPERM;
2208 goto out;
2209 }
2210 ret = btrfs_defrag_root(root, 0);
2211 if (ret)
2212 goto out;
2213 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2214 break;
2215 case S_IFREG:
2216 if (!(file->f_mode & FMODE_WRITE)) {
2217 ret = -EINVAL;
2218 goto out;
2219 }
2220
2221 range = kzalloc(sizeof(*range), GFP_KERNEL);
2222 if (!range) {
2223 ret = -ENOMEM;
2224 goto out;
2225 }
2226
2227 if (argp) {
2228 if (copy_from_user(range, argp,
2229 sizeof(*range))) {
2230 ret = -EFAULT;
2231 kfree(range);
2232 goto out;
2233 }
2234 /* compression requires us to start the IO */
2235 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2236 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2237 range->extent_thresh = (u32)-1;
2238 }
2239 } else {
2240 /* the rest are all set to zero by kzalloc */
2241 range->len = (u64)-1;
2242 }
2243 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2244 range, 0, 0);
2245 if (ret > 0)
2246 ret = 0;
2247 kfree(range);
2248 break;
2249 default:
2250 ret = -EINVAL;
2251 }
2252 out:
2253 mnt_drop_write_file(file);
2254 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2255 return ret;
2256 }
2257
2258 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2259 {
2260 struct btrfs_ioctl_vol_args *vol_args;
2261 int ret;
2262
2263 if (!capable(CAP_SYS_ADMIN))
2264 return -EPERM;
2265
2266 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2267 1)) {
2268 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2269 return -EINPROGRESS;
2270 }
2271
2272 mutex_lock(&root->fs_info->volume_mutex);
2273 vol_args = memdup_user(arg, sizeof(*vol_args));
2274 if (IS_ERR(vol_args)) {
2275 ret = PTR_ERR(vol_args);
2276 goto out;
2277 }
2278
2279 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2280 ret = btrfs_init_new_device(root, vol_args->name);
2281
2282 kfree(vol_args);
2283 out:
2284 mutex_unlock(&root->fs_info->volume_mutex);
2285 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2286 return ret;
2287 }
2288
2289 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2290 {
2291 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
2292 struct btrfs_ioctl_vol_args *vol_args;
2293 int ret;
2294
2295 if (!capable(CAP_SYS_ADMIN))
2296 return -EPERM;
2297
2298 ret = mnt_want_write_file(file);
2299 if (ret)
2300 return ret;
2301
2302 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2303 1)) {
2304 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2305 mnt_drop_write_file(file);
2306 return -EINPROGRESS;
2307 }
2308
2309 mutex_lock(&root->fs_info->volume_mutex);
2310 vol_args = memdup_user(arg, sizeof(*vol_args));
2311 if (IS_ERR(vol_args)) {
2312 ret = PTR_ERR(vol_args);
2313 goto out;
2314 }
2315
2316 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2317 ret = btrfs_rm_device(root, vol_args->name);
2318
2319 kfree(vol_args);
2320 out:
2321 mutex_unlock(&root->fs_info->volume_mutex);
2322 mnt_drop_write_file(file);
2323 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2324 return ret;
2325 }
2326
2327 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2328 {
2329 struct btrfs_ioctl_fs_info_args *fi_args;
2330 struct btrfs_device *device;
2331 struct btrfs_device *next;
2332 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2333 int ret = 0;
2334
2335 if (!capable(CAP_SYS_ADMIN))
2336 return -EPERM;
2337
2338 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2339 if (!fi_args)
2340 return -ENOMEM;
2341
2342 fi_args->num_devices = fs_devices->num_devices;
2343 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2344
2345 mutex_lock(&fs_devices->device_list_mutex);
2346 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2347 if (device->devid > fi_args->max_id)
2348 fi_args->max_id = device->devid;
2349 }
2350 mutex_unlock(&fs_devices->device_list_mutex);
2351
2352 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2353 ret = -EFAULT;
2354
2355 kfree(fi_args);
2356 return ret;
2357 }
2358
2359 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2360 {
2361 struct btrfs_ioctl_dev_info_args *di_args;
2362 struct btrfs_device *dev;
2363 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2364 int ret = 0;
2365 char *s_uuid = NULL;
2366 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2367
2368 if (!capable(CAP_SYS_ADMIN))
2369 return -EPERM;
2370
2371 di_args = memdup_user(arg, sizeof(*di_args));
2372 if (IS_ERR(di_args))
2373 return PTR_ERR(di_args);
2374
2375 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2376 s_uuid = di_args->uuid;
2377
2378 mutex_lock(&fs_devices->device_list_mutex);
2379 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2380 mutex_unlock(&fs_devices->device_list_mutex);
2381
2382 if (!dev) {
2383 ret = -ENODEV;
2384 goto out;
2385 }
2386
2387 di_args->devid = dev->devid;
2388 di_args->bytes_used = dev->bytes_used;
2389 di_args->total_bytes = dev->total_bytes;
2390 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2391 if (dev->name) {
2392 struct rcu_string *name;
2393
2394 rcu_read_lock();
2395 name = rcu_dereference(dev->name);
2396 strncpy(di_args->path, name->str, sizeof(di_args->path));
2397 rcu_read_unlock();
2398 di_args->path[sizeof(di_args->path) - 1] = 0;
2399 } else {
2400 di_args->path[0] = '\0';
2401 }
2402
2403 out:
2404 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2405 ret = -EFAULT;
2406
2407 kfree(di_args);
2408 return ret;
2409 }
2410
2411 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2412 u64 off, u64 olen, u64 destoff)
2413 {
2414 struct inode *inode = fdentry(file)->d_inode;
2415 struct btrfs_root *root = BTRFS_I(inode)->root;
2416 struct fd src_file;
2417 struct inode *src;
2418 struct btrfs_trans_handle *trans;
2419 struct btrfs_path *path;
2420 struct extent_buffer *leaf;
2421 char *buf;
2422 struct btrfs_key key;
2423 u32 nritems;
2424 int slot;
2425 int ret;
2426 u64 len = olen;
2427 u64 bs = root->fs_info->sb->s_blocksize;
2428
2429 /*
2430 * TODO:
2431 * - split compressed inline extents. annoying: we need to
2432 * decompress into destination's address_space (the file offset
2433 * may change, so source mapping won't do), then recompress (or
2434 * otherwise reinsert) a subrange.
2435 * - allow ranges within the same file to be cloned (provided
2436 * they don't overlap)?
2437 */
2438
2439 /* the destination must be opened for writing */
2440 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2441 return -EINVAL;
2442
2443 if (btrfs_root_readonly(root))
2444 return -EROFS;
2445
2446 ret = mnt_want_write_file(file);
2447 if (ret)
2448 return ret;
2449
2450 src_file = fdget(srcfd);
2451 if (!src_file.file) {
2452 ret = -EBADF;
2453 goto out_drop_write;
2454 }
2455
2456 ret = -EXDEV;
2457 if (src_file.file->f_path.mnt != file->f_path.mnt)
2458 goto out_fput;
2459
2460 src = src_file.file->f_dentry->d_inode;
2461
2462 ret = -EINVAL;
2463 if (src == inode)
2464 goto out_fput;
2465
2466 /* the src must be open for reading */
2467 if (!(src_file.file->f_mode & FMODE_READ))
2468 goto out_fput;
2469
2470 /* don't make the dst file partly checksummed */
2471 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2472 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2473 goto out_fput;
2474
2475 ret = -EISDIR;
2476 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2477 goto out_fput;
2478
2479 ret = -EXDEV;
2480 if (src->i_sb != inode->i_sb)
2481 goto out_fput;
2482
2483 ret = -ENOMEM;
2484 buf = vmalloc(btrfs_level_size(root, 0));
2485 if (!buf)
2486 goto out_fput;
2487
2488 path = btrfs_alloc_path();
2489 if (!path) {
2490 vfree(buf);
2491 goto out_fput;
2492 }
2493 path->reada = 2;
2494
2495 if (inode < src) {
2496 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2497 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2498 } else {
2499 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2500 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2501 }
2502
2503 /* determine range to clone */
2504 ret = -EINVAL;
2505 if (off + len > src->i_size || off + len < off)
2506 goto out_unlock;
2507 if (len == 0)
2508 olen = len = src->i_size - off;
2509 /* if we extend to eof, continue to block boundary */
2510 if (off + len == src->i_size)
2511 len = ALIGN(src->i_size, bs) - off;
2512
2513 /* verify the end result is block aligned */
2514 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2515 !IS_ALIGNED(destoff, bs))
2516 goto out_unlock;
2517
2518 if (destoff > inode->i_size) {
2519 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2520 if (ret)
2521 goto out_unlock;
2522 }
2523
2524 /* truncate page cache pages from target inode range */
2525 truncate_inode_pages_range(&inode->i_data, destoff,
2526 PAGE_CACHE_ALIGN(destoff + len) - 1);
2527
2528 /* do any pending delalloc/csum calc on src, one way or
2529 another, and lock file content */
2530 while (1) {
2531 struct btrfs_ordered_extent *ordered;
2532 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2533 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1);
2534 if (!ordered &&
2535 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1,
2536 EXTENT_DELALLOC, 0, NULL))
2537 break;
2538 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2539 if (ordered)
2540 btrfs_put_ordered_extent(ordered);
2541 btrfs_wait_ordered_range(src, off, len);
2542 }
2543
2544 /* clone data */
2545 key.objectid = btrfs_ino(src);
2546 key.type = BTRFS_EXTENT_DATA_KEY;
2547 key.offset = 0;
2548
2549 while (1) {
2550 /*
2551 * note the key will change type as we walk through the
2552 * tree.
2553 */
2554 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2555 0, 0);
2556 if (ret < 0)
2557 goto out;
2558
2559 nritems = btrfs_header_nritems(path->nodes[0]);
2560 if (path->slots[0] >= nritems) {
2561 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2562 if (ret < 0)
2563 goto out;
2564 if (ret > 0)
2565 break;
2566 nritems = btrfs_header_nritems(path->nodes[0]);
2567 }
2568 leaf = path->nodes[0];
2569 slot = path->slots[0];
2570
2571 btrfs_item_key_to_cpu(leaf, &key, slot);
2572 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2573 key.objectid != btrfs_ino(src))
2574 break;
2575
2576 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2577 struct btrfs_file_extent_item *extent;
2578 int type;
2579 u32 size;
2580 struct btrfs_key new_key;
2581 u64 disko = 0, diskl = 0;
2582 u64 datao = 0, datal = 0;
2583 u8 comp;
2584 u64 endoff;
2585
2586 size = btrfs_item_size_nr(leaf, slot);
2587 read_extent_buffer(leaf, buf,
2588 btrfs_item_ptr_offset(leaf, slot),
2589 size);
2590
2591 extent = btrfs_item_ptr(leaf, slot,
2592 struct btrfs_file_extent_item);
2593 comp = btrfs_file_extent_compression(leaf, extent);
2594 type = btrfs_file_extent_type(leaf, extent);
2595 if (type == BTRFS_FILE_EXTENT_REG ||
2596 type == BTRFS_FILE_EXTENT_PREALLOC) {
2597 disko = btrfs_file_extent_disk_bytenr(leaf,
2598 extent);
2599 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2600 extent);
2601 datao = btrfs_file_extent_offset(leaf, extent);
2602 datal = btrfs_file_extent_num_bytes(leaf,
2603 extent);
2604 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2605 /* take upper bound, may be compressed */
2606 datal = btrfs_file_extent_ram_bytes(leaf,
2607 extent);
2608 }
2609 btrfs_release_path(path);
2610
2611 if (key.offset + datal <= off ||
2612 key.offset >= off + len - 1)
2613 goto next;
2614
2615 memcpy(&new_key, &key, sizeof(new_key));
2616 new_key.objectid = btrfs_ino(inode);
2617 if (off <= key.offset)
2618 new_key.offset = key.offset + destoff - off;
2619 else
2620 new_key.offset = destoff;
2621
2622 /*
2623 * 1 - adjusting old extent (we may have to split it)
2624 * 1 - add new extent
2625 * 1 - inode update
2626 */
2627 trans = btrfs_start_transaction(root, 3);
2628 if (IS_ERR(trans)) {
2629 ret = PTR_ERR(trans);
2630 goto out;
2631 }
2632
2633 if (type == BTRFS_FILE_EXTENT_REG ||
2634 type == BTRFS_FILE_EXTENT_PREALLOC) {
2635 /*
2636 * a | --- range to clone ---| b
2637 * | ------------- extent ------------- |
2638 */
2639
2640 /* substract range b */
2641 if (key.offset + datal > off + len)
2642 datal = off + len - key.offset;
2643
2644 /* substract range a */
2645 if (off > key.offset) {
2646 datao += off - key.offset;
2647 datal -= off - key.offset;
2648 }
2649
2650 ret = btrfs_drop_extents(trans, root, inode,
2651 new_key.offset,
2652 new_key.offset + datal,
2653 1);
2654 if (ret) {
2655 btrfs_abort_transaction(trans, root,
2656 ret);
2657 btrfs_end_transaction(trans, root);
2658 goto out;
2659 }
2660
2661 ret = btrfs_insert_empty_item(trans, root, path,
2662 &new_key, size);
2663 if (ret) {
2664 btrfs_abort_transaction(trans, root,
2665 ret);
2666 btrfs_end_transaction(trans, root);
2667 goto out;
2668 }
2669
2670 leaf = path->nodes[0];
2671 slot = path->slots[0];
2672 write_extent_buffer(leaf, buf,
2673 btrfs_item_ptr_offset(leaf, slot),
2674 size);
2675
2676 extent = btrfs_item_ptr(leaf, slot,
2677 struct btrfs_file_extent_item);
2678
2679 /* disko == 0 means it's a hole */
2680 if (!disko)
2681 datao = 0;
2682
2683 btrfs_set_file_extent_offset(leaf, extent,
2684 datao);
2685 btrfs_set_file_extent_num_bytes(leaf, extent,
2686 datal);
2687 if (disko) {
2688 inode_add_bytes(inode, datal);
2689 ret = btrfs_inc_extent_ref(trans, root,
2690 disko, diskl, 0,
2691 root->root_key.objectid,
2692 btrfs_ino(inode),
2693 new_key.offset - datao,
2694 0);
2695 if (ret) {
2696 btrfs_abort_transaction(trans,
2697 root,
2698 ret);
2699 btrfs_end_transaction(trans,
2700 root);
2701 goto out;
2702
2703 }
2704 }
2705 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2706 u64 skip = 0;
2707 u64 trim = 0;
2708 if (off > key.offset) {
2709 skip = off - key.offset;
2710 new_key.offset += skip;
2711 }
2712
2713 if (key.offset + datal > off + len)
2714 trim = key.offset + datal - (off + len);
2715
2716 if (comp && (skip || trim)) {
2717 ret = -EINVAL;
2718 btrfs_end_transaction(trans, root);
2719 goto out;
2720 }
2721 size -= skip + trim;
2722 datal -= skip + trim;
2723
2724 ret = btrfs_drop_extents(trans, root, inode,
2725 new_key.offset,
2726 new_key.offset + datal,
2727 1);
2728 if (ret) {
2729 btrfs_abort_transaction(trans, root,
2730 ret);
2731 btrfs_end_transaction(trans, root);
2732 goto out;
2733 }
2734
2735 ret = btrfs_insert_empty_item(trans, root, path,
2736 &new_key, size);
2737 if (ret) {
2738 btrfs_abort_transaction(trans, root,
2739 ret);
2740 btrfs_end_transaction(trans, root);
2741 goto out;
2742 }
2743
2744 if (skip) {
2745 u32 start =
2746 btrfs_file_extent_calc_inline_size(0);
2747 memmove(buf+start, buf+start+skip,
2748 datal);
2749 }
2750
2751 leaf = path->nodes[0];
2752 slot = path->slots[0];
2753 write_extent_buffer(leaf, buf,
2754 btrfs_item_ptr_offset(leaf, slot),
2755 size);
2756 inode_add_bytes(inode, datal);
2757 }
2758
2759 btrfs_mark_buffer_dirty(leaf);
2760 btrfs_release_path(path);
2761
2762 inode_inc_iversion(inode);
2763 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2764
2765 /*
2766 * we round up to the block size at eof when
2767 * determining which extents to clone above,
2768 * but shouldn't round up the file size
2769 */
2770 endoff = new_key.offset + datal;
2771 if (endoff > destoff+olen)
2772 endoff = destoff+olen;
2773 if (endoff > inode->i_size)
2774 btrfs_i_size_write(inode, endoff);
2775
2776 ret = btrfs_update_inode(trans, root, inode);
2777 if (ret) {
2778 btrfs_abort_transaction(trans, root, ret);
2779 btrfs_end_transaction(trans, root);
2780 goto out;
2781 }
2782 ret = btrfs_end_transaction(trans, root);
2783 }
2784 next:
2785 btrfs_release_path(path);
2786 key.offset++;
2787 }
2788 ret = 0;
2789 out:
2790 btrfs_release_path(path);
2791 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
2792 out_unlock:
2793 mutex_unlock(&src->i_mutex);
2794 mutex_unlock(&inode->i_mutex);
2795 vfree(buf);
2796 btrfs_free_path(path);
2797 out_fput:
2798 fdput(src_file);
2799 out_drop_write:
2800 mnt_drop_write_file(file);
2801 return ret;
2802 }
2803
2804 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2805 {
2806 struct btrfs_ioctl_clone_range_args args;
2807
2808 if (copy_from_user(&args, argp, sizeof(args)))
2809 return -EFAULT;
2810 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2811 args.src_length, args.dest_offset);
2812 }
2813
2814 /*
2815 * there are many ways the trans_start and trans_end ioctls can lead
2816 * to deadlocks. They should only be used by applications that
2817 * basically own the machine, and have a very in depth understanding
2818 * of all the possible deadlocks and enospc problems.
2819 */
2820 static long btrfs_ioctl_trans_start(struct file *file)
2821 {
2822 struct inode *inode = fdentry(file)->d_inode;
2823 struct btrfs_root *root = BTRFS_I(inode)->root;
2824 struct btrfs_trans_handle *trans;
2825 int ret;
2826
2827 ret = -EPERM;
2828 if (!capable(CAP_SYS_ADMIN))
2829 goto out;
2830
2831 ret = -EINPROGRESS;
2832 if (file->private_data)
2833 goto out;
2834
2835 ret = -EROFS;
2836 if (btrfs_root_readonly(root))
2837 goto out;
2838
2839 ret = mnt_want_write_file(file);
2840 if (ret)
2841 goto out;
2842
2843 atomic_inc(&root->fs_info->open_ioctl_trans);
2844
2845 ret = -ENOMEM;
2846 trans = btrfs_start_ioctl_transaction(root);
2847 if (IS_ERR(trans))
2848 goto out_drop;
2849
2850 file->private_data = trans;
2851 return 0;
2852
2853 out_drop:
2854 atomic_dec(&root->fs_info->open_ioctl_trans);
2855 mnt_drop_write_file(file);
2856 out:
2857 return ret;
2858 }
2859
2860 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2861 {
2862 struct inode *inode = fdentry(file)->d_inode;
2863 struct btrfs_root *root = BTRFS_I(inode)->root;
2864 struct btrfs_root *new_root;
2865 struct btrfs_dir_item *di;
2866 struct btrfs_trans_handle *trans;
2867 struct btrfs_path *path;
2868 struct btrfs_key location;
2869 struct btrfs_disk_key disk_key;
2870 u64 objectid = 0;
2871 u64 dir_id;
2872 int ret;
2873
2874 if (!capable(CAP_SYS_ADMIN))
2875 return -EPERM;
2876
2877 ret = mnt_want_write_file(file);
2878 if (ret)
2879 return ret;
2880
2881 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2882 ret = -EFAULT;
2883 goto out;
2884 }
2885
2886 if (!objectid)
2887 objectid = root->root_key.objectid;
2888
2889 location.objectid = objectid;
2890 location.type = BTRFS_ROOT_ITEM_KEY;
2891 location.offset = (u64)-1;
2892
2893 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2894 if (IS_ERR(new_root)) {
2895 ret = PTR_ERR(new_root);
2896 goto out;
2897 }
2898
2899 if (btrfs_root_refs(&new_root->root_item) == 0) {
2900 ret = -ENOENT;
2901 goto out;
2902 }
2903
2904 path = btrfs_alloc_path();
2905 if (!path) {
2906 ret = -ENOMEM;
2907 goto out;
2908 }
2909 path->leave_spinning = 1;
2910
2911 trans = btrfs_start_transaction(root, 1);
2912 if (IS_ERR(trans)) {
2913 btrfs_free_path(path);
2914 ret = PTR_ERR(trans);
2915 goto out;
2916 }
2917
2918 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2919 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2920 dir_id, "default", 7, 1);
2921 if (IS_ERR_OR_NULL(di)) {
2922 btrfs_free_path(path);
2923 btrfs_end_transaction(trans, root);
2924 printk(KERN_ERR "Umm, you don't have the default dir item, "
2925 "this isn't going to work\n");
2926 ret = -ENOENT;
2927 goto out;
2928 }
2929
2930 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2931 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2932 btrfs_mark_buffer_dirty(path->nodes[0]);
2933 btrfs_free_path(path);
2934
2935 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2936 btrfs_end_transaction(trans, root);
2937 out:
2938 mnt_drop_write_file(file);
2939 return ret;
2940 }
2941
2942 void btrfs_get_block_group_info(struct list_head *groups_list,
2943 struct btrfs_ioctl_space_info *space)
2944 {
2945 struct btrfs_block_group_cache *block_group;
2946
2947 space->total_bytes = 0;
2948 space->used_bytes = 0;
2949 space->flags = 0;
2950 list_for_each_entry(block_group, groups_list, list) {
2951 space->flags = block_group->flags;
2952 space->total_bytes += block_group->key.offset;
2953 space->used_bytes +=
2954 btrfs_block_group_used(&block_group->item);
2955 }
2956 }
2957
2958 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2959 {
2960 struct btrfs_ioctl_space_args space_args;
2961 struct btrfs_ioctl_space_info space;
2962 struct btrfs_ioctl_space_info *dest;
2963 struct btrfs_ioctl_space_info *dest_orig;
2964 struct btrfs_ioctl_space_info __user *user_dest;
2965 struct btrfs_space_info *info;
2966 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2967 BTRFS_BLOCK_GROUP_SYSTEM,
2968 BTRFS_BLOCK_GROUP_METADATA,
2969 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2970 int num_types = 4;
2971 int alloc_size;
2972 int ret = 0;
2973 u64 slot_count = 0;
2974 int i, c;
2975
2976 if (copy_from_user(&space_args,
2977 (struct btrfs_ioctl_space_args __user *)arg,
2978 sizeof(space_args)))
2979 return -EFAULT;
2980
2981 for (i = 0; i < num_types; i++) {
2982 struct btrfs_space_info *tmp;
2983
2984 info = NULL;
2985 rcu_read_lock();
2986 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2987 list) {
2988 if (tmp->flags == types[i]) {
2989 info = tmp;
2990 break;
2991 }
2992 }
2993 rcu_read_unlock();
2994
2995 if (!info)
2996 continue;
2997
2998 down_read(&info->groups_sem);
2999 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3000 if (!list_empty(&info->block_groups[c]))
3001 slot_count++;
3002 }
3003 up_read(&info->groups_sem);
3004 }
3005
3006 /* space_slots == 0 means they are asking for a count */
3007 if (space_args.space_slots == 0) {
3008 space_args.total_spaces = slot_count;
3009 goto out;
3010 }
3011
3012 slot_count = min_t(u64, space_args.space_slots, slot_count);
3013
3014 alloc_size = sizeof(*dest) * slot_count;
3015
3016 /* we generally have at most 6 or so space infos, one for each raid
3017 * level. So, a whole page should be more than enough for everyone
3018 */
3019 if (alloc_size > PAGE_CACHE_SIZE)
3020 return -ENOMEM;
3021
3022 space_args.total_spaces = 0;
3023 dest = kmalloc(alloc_size, GFP_NOFS);
3024 if (!dest)
3025 return -ENOMEM;
3026 dest_orig = dest;
3027
3028 /* now we have a buffer to copy into */
3029 for (i = 0; i < num_types; i++) {
3030 struct btrfs_space_info *tmp;
3031
3032 if (!slot_count)
3033 break;
3034
3035 info = NULL;
3036 rcu_read_lock();
3037 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3038 list) {
3039 if (tmp->flags == types[i]) {
3040 info = tmp;
3041 break;
3042 }
3043 }
3044 rcu_read_unlock();
3045
3046 if (!info)
3047 continue;
3048 down_read(&info->groups_sem);
3049 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3050 if (!list_empty(&info->block_groups[c])) {
3051 btrfs_get_block_group_info(
3052 &info->block_groups[c], &space);
3053 memcpy(dest, &space, sizeof(space));
3054 dest++;
3055 space_args.total_spaces++;
3056 slot_count--;
3057 }
3058 if (!slot_count)
3059 break;
3060 }
3061 up_read(&info->groups_sem);
3062 }
3063
3064 user_dest = (struct btrfs_ioctl_space_info __user *)
3065 (arg + sizeof(struct btrfs_ioctl_space_args));
3066
3067 if (copy_to_user(user_dest, dest_orig, alloc_size))
3068 ret = -EFAULT;
3069
3070 kfree(dest_orig);
3071 out:
3072 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3073 ret = -EFAULT;
3074
3075 return ret;
3076 }
3077
3078 /*
3079 * there are many ways the trans_start and trans_end ioctls can lead
3080 * to deadlocks. They should only be used by applications that
3081 * basically own the machine, and have a very in depth understanding
3082 * of all the possible deadlocks and enospc problems.
3083 */
3084 long btrfs_ioctl_trans_end(struct file *file)
3085 {
3086 struct inode *inode = fdentry(file)->d_inode;
3087 struct btrfs_root *root = BTRFS_I(inode)->root;
3088 struct btrfs_trans_handle *trans;
3089
3090 trans = file->private_data;
3091 if (!trans)
3092 return -EINVAL;
3093 file->private_data = NULL;
3094
3095 btrfs_end_transaction(trans, root);
3096
3097 atomic_dec(&root->fs_info->open_ioctl_trans);
3098
3099 mnt_drop_write_file(file);
3100 return 0;
3101 }
3102
3103 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3104 void __user *argp)
3105 {
3106 struct btrfs_trans_handle *trans;
3107 u64 transid;
3108 int ret;
3109
3110 trans = btrfs_attach_transaction(root);
3111 if (IS_ERR(trans)) {
3112 if (PTR_ERR(trans) != -ENOENT)
3113 return PTR_ERR(trans);
3114
3115 /* No running transaction, don't bother */
3116 transid = root->fs_info->last_trans_committed;
3117 goto out;
3118 }
3119 transid = trans->transid;
3120 ret = btrfs_commit_transaction_async(trans, root, 0);
3121 if (ret) {
3122 btrfs_end_transaction(trans, root);
3123 return ret;
3124 }
3125 out:
3126 if (argp)
3127 if (copy_to_user(argp, &transid, sizeof(transid)))
3128 return -EFAULT;
3129 return 0;
3130 }
3131
3132 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3133 void __user *argp)
3134 {
3135 u64 transid;
3136
3137 if (argp) {
3138 if (copy_from_user(&transid, argp, sizeof(transid)))
3139 return -EFAULT;
3140 } else {
3141 transid = 0; /* current trans */
3142 }
3143 return btrfs_wait_for_commit(root, transid);
3144 }
3145
3146 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3147 {
3148 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3149 struct btrfs_ioctl_scrub_args *sa;
3150 int ret;
3151
3152 if (!capable(CAP_SYS_ADMIN))
3153 return -EPERM;
3154
3155 sa = memdup_user(arg, sizeof(*sa));
3156 if (IS_ERR(sa))
3157 return PTR_ERR(sa);
3158
3159 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3160 ret = mnt_want_write_file(file);
3161 if (ret)
3162 goto out;
3163 }
3164
3165 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3166 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3167 0);
3168
3169 if (copy_to_user(arg, sa, sizeof(*sa)))
3170 ret = -EFAULT;
3171
3172 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3173 mnt_drop_write_file(file);
3174 out:
3175 kfree(sa);
3176 return ret;
3177 }
3178
3179 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3180 {
3181 if (!capable(CAP_SYS_ADMIN))
3182 return -EPERM;
3183
3184 return btrfs_scrub_cancel(root->fs_info);
3185 }
3186
3187 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3188 void __user *arg)
3189 {
3190 struct btrfs_ioctl_scrub_args *sa;
3191 int ret;
3192
3193 if (!capable(CAP_SYS_ADMIN))
3194 return -EPERM;
3195
3196 sa = memdup_user(arg, sizeof(*sa));
3197 if (IS_ERR(sa))
3198 return PTR_ERR(sa);
3199
3200 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3201
3202 if (copy_to_user(arg, sa, sizeof(*sa)))
3203 ret = -EFAULT;
3204
3205 kfree(sa);
3206 return ret;
3207 }
3208
3209 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3210 void __user *arg)
3211 {
3212 struct btrfs_ioctl_get_dev_stats *sa;
3213 int ret;
3214
3215 sa = memdup_user(arg, sizeof(*sa));
3216 if (IS_ERR(sa))
3217 return PTR_ERR(sa);
3218
3219 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3220 kfree(sa);
3221 return -EPERM;
3222 }
3223
3224 ret = btrfs_get_dev_stats(root, sa);
3225
3226 if (copy_to_user(arg, sa, sizeof(*sa)))
3227 ret = -EFAULT;
3228
3229 kfree(sa);
3230 return ret;
3231 }
3232
3233 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3234 {
3235 struct btrfs_ioctl_dev_replace_args *p;
3236 int ret;
3237
3238 if (!capable(CAP_SYS_ADMIN))
3239 return -EPERM;
3240
3241 p = memdup_user(arg, sizeof(*p));
3242 if (IS_ERR(p))
3243 return PTR_ERR(p);
3244
3245 switch (p->cmd) {
3246 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3247 if (atomic_xchg(
3248 &root->fs_info->mutually_exclusive_operation_running,
3249 1)) {
3250 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3251 ret = -EINPROGRESS;
3252 } else {
3253 ret = btrfs_dev_replace_start(root, p);
3254 atomic_set(
3255 &root->fs_info->mutually_exclusive_operation_running,
3256 0);
3257 }
3258 break;
3259 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3260 btrfs_dev_replace_status(root->fs_info, p);
3261 ret = 0;
3262 break;
3263 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3264 ret = btrfs_dev_replace_cancel(root->fs_info, p);
3265 break;
3266 default:
3267 ret = -EINVAL;
3268 break;
3269 }
3270
3271 if (copy_to_user(arg, p, sizeof(*p)))
3272 ret = -EFAULT;
3273
3274 kfree(p);
3275 return ret;
3276 }
3277
3278 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3279 {
3280 int ret = 0;
3281 int i;
3282 u64 rel_ptr;
3283 int size;
3284 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3285 struct inode_fs_paths *ipath = NULL;
3286 struct btrfs_path *path;
3287
3288 if (!capable(CAP_SYS_ADMIN))
3289 return -EPERM;
3290
3291 path = btrfs_alloc_path();
3292 if (!path) {
3293 ret = -ENOMEM;
3294 goto out;
3295 }
3296
3297 ipa = memdup_user(arg, sizeof(*ipa));
3298 if (IS_ERR(ipa)) {
3299 ret = PTR_ERR(ipa);
3300 ipa = NULL;
3301 goto out;
3302 }
3303
3304 size = min_t(u32, ipa->size, 4096);
3305 ipath = init_ipath(size, root, path);
3306 if (IS_ERR(ipath)) {
3307 ret = PTR_ERR(ipath);
3308 ipath = NULL;
3309 goto out;
3310 }
3311
3312 ret = paths_from_inode(ipa->inum, ipath);
3313 if (ret < 0)
3314 goto out;
3315
3316 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3317 rel_ptr = ipath->fspath->val[i] -
3318 (u64)(unsigned long)ipath->fspath->val;
3319 ipath->fspath->val[i] = rel_ptr;
3320 }
3321
3322 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3323 (void *)(unsigned long)ipath->fspath, size);
3324 if (ret) {
3325 ret = -EFAULT;
3326 goto out;
3327 }
3328
3329 out:
3330 btrfs_free_path(path);
3331 free_ipath(ipath);
3332 kfree(ipa);
3333
3334 return ret;
3335 }
3336
3337 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3338 {
3339 struct btrfs_data_container *inodes = ctx;
3340 const size_t c = 3 * sizeof(u64);
3341
3342 if (inodes->bytes_left >= c) {
3343 inodes->bytes_left -= c;
3344 inodes->val[inodes->elem_cnt] = inum;
3345 inodes->val[inodes->elem_cnt + 1] = offset;
3346 inodes->val[inodes->elem_cnt + 2] = root;
3347 inodes->elem_cnt += 3;
3348 } else {
3349 inodes->bytes_missing += c - inodes->bytes_left;
3350 inodes->bytes_left = 0;
3351 inodes->elem_missed += 3;
3352 }
3353
3354 return 0;
3355 }
3356
3357 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3358 void __user *arg)
3359 {
3360 int ret = 0;
3361 int size;
3362 struct btrfs_ioctl_logical_ino_args *loi;
3363 struct btrfs_data_container *inodes = NULL;
3364 struct btrfs_path *path = NULL;
3365
3366 if (!capable(CAP_SYS_ADMIN))
3367 return -EPERM;
3368
3369 loi = memdup_user(arg, sizeof(*loi));
3370 if (IS_ERR(loi)) {
3371 ret = PTR_ERR(loi);
3372 loi = NULL;
3373 goto out;
3374 }
3375
3376 path = btrfs_alloc_path();
3377 if (!path) {
3378 ret = -ENOMEM;
3379 goto out;
3380 }
3381
3382 size = min_t(u32, loi->size, 64 * 1024);
3383 inodes = init_data_container(size);
3384 if (IS_ERR(inodes)) {
3385 ret = PTR_ERR(inodes);
3386 inodes = NULL;
3387 goto out;
3388 }
3389
3390 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3391 build_ino_list, inodes);
3392 if (ret == -EINVAL)
3393 ret = -ENOENT;
3394 if (ret < 0)
3395 goto out;
3396
3397 ret = copy_to_user((void *)(unsigned long)loi->inodes,
3398 (void *)(unsigned long)inodes, size);
3399 if (ret)
3400 ret = -EFAULT;
3401
3402 out:
3403 btrfs_free_path(path);
3404 vfree(inodes);
3405 kfree(loi);
3406
3407 return ret;
3408 }
3409
3410 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3411 struct btrfs_ioctl_balance_args *bargs)
3412 {
3413 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3414
3415 bargs->flags = bctl->flags;
3416
3417 if (atomic_read(&fs_info->balance_running))
3418 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3419 if (atomic_read(&fs_info->balance_pause_req))
3420 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3421 if (atomic_read(&fs_info->balance_cancel_req))
3422 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3423
3424 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3425 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3426 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3427
3428 if (lock) {
3429 spin_lock(&fs_info->balance_lock);
3430 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3431 spin_unlock(&fs_info->balance_lock);
3432 } else {
3433 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3434 }
3435 }
3436
3437 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3438 {
3439 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3440 struct btrfs_fs_info *fs_info = root->fs_info;
3441 struct btrfs_ioctl_balance_args *bargs;
3442 struct btrfs_balance_control *bctl;
3443 int ret;
3444 int need_to_clear_lock = 0;
3445
3446 if (!capable(CAP_SYS_ADMIN))
3447 return -EPERM;
3448
3449 ret = mnt_want_write_file(file);
3450 if (ret)
3451 return ret;
3452
3453 mutex_lock(&fs_info->volume_mutex);
3454 mutex_lock(&fs_info->balance_mutex);
3455
3456 if (arg) {
3457 bargs = memdup_user(arg, sizeof(*bargs));
3458 if (IS_ERR(bargs)) {
3459 ret = PTR_ERR(bargs);
3460 goto out;
3461 }
3462
3463 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3464 if (!fs_info->balance_ctl) {
3465 ret = -ENOTCONN;
3466 goto out_bargs;
3467 }
3468
3469 bctl = fs_info->balance_ctl;
3470 spin_lock(&fs_info->balance_lock);
3471 bctl->flags |= BTRFS_BALANCE_RESUME;
3472 spin_unlock(&fs_info->balance_lock);
3473
3474 goto do_balance;
3475 }
3476 } else {
3477 bargs = NULL;
3478 }
3479
3480 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
3481 1)) {
3482 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3483 ret = -EINPROGRESS;
3484 goto out_bargs;
3485 }
3486 need_to_clear_lock = 1;
3487
3488 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3489 if (!bctl) {
3490 ret = -ENOMEM;
3491 goto out_bargs;
3492 }
3493
3494 bctl->fs_info = fs_info;
3495 if (arg) {
3496 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3497 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3498 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3499
3500 bctl->flags = bargs->flags;
3501 } else {
3502 /* balance everything - no filters */
3503 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3504 }
3505
3506 do_balance:
3507 ret = btrfs_balance(bctl, bargs);
3508 /*
3509 * bctl is freed in __cancel_balance or in free_fs_info if
3510 * restriper was paused all the way until unmount
3511 */
3512 if (arg) {
3513 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3514 ret = -EFAULT;
3515 }
3516
3517 out_bargs:
3518 kfree(bargs);
3519 out:
3520 if (need_to_clear_lock)
3521 atomic_set(&root->fs_info->mutually_exclusive_operation_running,
3522 0);
3523 mutex_unlock(&fs_info->balance_mutex);
3524 mutex_unlock(&fs_info->volume_mutex);
3525 mnt_drop_write_file(file);
3526 return ret;
3527 }
3528
3529 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3530 {
3531 if (!capable(CAP_SYS_ADMIN))
3532 return -EPERM;
3533
3534 switch (cmd) {
3535 case BTRFS_BALANCE_CTL_PAUSE:
3536 return btrfs_pause_balance(root->fs_info);
3537 case BTRFS_BALANCE_CTL_CANCEL:
3538 return btrfs_cancel_balance(root->fs_info);
3539 }
3540
3541 return -EINVAL;
3542 }
3543
3544 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3545 void __user *arg)
3546 {
3547 struct btrfs_fs_info *fs_info = root->fs_info;
3548 struct btrfs_ioctl_balance_args *bargs;
3549 int ret = 0;
3550
3551 if (!capable(CAP_SYS_ADMIN))
3552 return -EPERM;
3553
3554 mutex_lock(&fs_info->balance_mutex);
3555 if (!fs_info->balance_ctl) {
3556 ret = -ENOTCONN;
3557 goto out;
3558 }
3559
3560 bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3561 if (!bargs) {
3562 ret = -ENOMEM;
3563 goto out;
3564 }
3565
3566 update_ioctl_balance_args(fs_info, 1, bargs);
3567
3568 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3569 ret = -EFAULT;
3570
3571 kfree(bargs);
3572 out:
3573 mutex_unlock(&fs_info->balance_mutex);
3574 return ret;
3575 }
3576
3577 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3578 {
3579 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3580 struct btrfs_ioctl_quota_ctl_args *sa;
3581 struct btrfs_trans_handle *trans = NULL;
3582 int ret;
3583 int err;
3584
3585 if (!capable(CAP_SYS_ADMIN))
3586 return -EPERM;
3587
3588 ret = mnt_want_write_file(file);
3589 if (ret)
3590 return ret;
3591
3592 sa = memdup_user(arg, sizeof(*sa));
3593 if (IS_ERR(sa)) {
3594 ret = PTR_ERR(sa);
3595 goto drop_write;
3596 }
3597
3598 if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) {
3599 trans = btrfs_start_transaction(root, 2);
3600 if (IS_ERR(trans)) {
3601 ret = PTR_ERR(trans);
3602 goto out;
3603 }
3604 }
3605
3606 switch (sa->cmd) {
3607 case BTRFS_QUOTA_CTL_ENABLE:
3608 ret = btrfs_quota_enable(trans, root->fs_info);
3609 break;
3610 case BTRFS_QUOTA_CTL_DISABLE:
3611 ret = btrfs_quota_disable(trans, root->fs_info);
3612 break;
3613 case BTRFS_QUOTA_CTL_RESCAN:
3614 ret = btrfs_quota_rescan(root->fs_info);
3615 break;
3616 default:
3617 ret = -EINVAL;
3618 break;
3619 }
3620
3621 if (copy_to_user(arg, sa, sizeof(*sa)))
3622 ret = -EFAULT;
3623
3624 if (trans) {
3625 err = btrfs_commit_transaction(trans, root);
3626 if (err && !ret)
3627 ret = err;
3628 }
3629 out:
3630 kfree(sa);
3631 drop_write:
3632 mnt_drop_write_file(file);
3633 return ret;
3634 }
3635
3636 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3637 {
3638 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3639 struct btrfs_ioctl_qgroup_assign_args *sa;
3640 struct btrfs_trans_handle *trans;
3641 int ret;
3642 int err;
3643
3644 if (!capable(CAP_SYS_ADMIN))
3645 return -EPERM;
3646
3647 ret = mnt_want_write_file(file);
3648 if (ret)
3649 return ret;
3650
3651 sa = memdup_user(arg, sizeof(*sa));
3652 if (IS_ERR(sa)) {
3653 ret = PTR_ERR(sa);
3654 goto drop_write;
3655 }
3656
3657 trans = btrfs_join_transaction(root);
3658 if (IS_ERR(trans)) {
3659 ret = PTR_ERR(trans);
3660 goto out;
3661 }
3662
3663 /* FIXME: check if the IDs really exist */
3664 if (sa->assign) {
3665 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3666 sa->src, sa->dst);
3667 } else {
3668 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3669 sa->src, sa->dst);
3670 }
3671
3672 err = btrfs_end_transaction(trans, root);
3673 if (err && !ret)
3674 ret = err;
3675
3676 out:
3677 kfree(sa);
3678 drop_write:
3679 mnt_drop_write_file(file);
3680 return ret;
3681 }
3682
3683 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3684 {
3685 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3686 struct btrfs_ioctl_qgroup_create_args *sa;
3687 struct btrfs_trans_handle *trans;
3688 int ret;
3689 int err;
3690
3691 if (!capable(CAP_SYS_ADMIN))
3692 return -EPERM;
3693
3694 ret = mnt_want_write_file(file);
3695 if (ret)
3696 return ret;
3697
3698 sa = memdup_user(arg, sizeof(*sa));
3699 if (IS_ERR(sa)) {
3700 ret = PTR_ERR(sa);
3701 goto drop_write;
3702 }
3703
3704 if (!sa->qgroupid) {
3705 ret = -EINVAL;
3706 goto out;
3707 }
3708
3709 trans = btrfs_join_transaction(root);
3710 if (IS_ERR(trans)) {
3711 ret = PTR_ERR(trans);
3712 goto out;
3713 }
3714
3715 /* FIXME: check if the IDs really exist */
3716 if (sa->create) {
3717 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3718 NULL);
3719 } else {
3720 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3721 }
3722
3723 err = btrfs_end_transaction(trans, root);
3724 if (err && !ret)
3725 ret = err;
3726
3727 out:
3728 kfree(sa);
3729 drop_write:
3730 mnt_drop_write_file(file);
3731 return ret;
3732 }
3733
3734 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3735 {
3736 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3737 struct btrfs_ioctl_qgroup_limit_args *sa;
3738 struct btrfs_trans_handle *trans;
3739 int ret;
3740 int err;
3741 u64 qgroupid;
3742
3743 if (!capable(CAP_SYS_ADMIN))
3744 return -EPERM;
3745
3746 ret = mnt_want_write_file(file);
3747 if (ret)
3748 return ret;
3749
3750 sa = memdup_user(arg, sizeof(*sa));
3751 if (IS_ERR(sa)) {
3752 ret = PTR_ERR(sa);
3753 goto drop_write;
3754 }
3755
3756 trans = btrfs_join_transaction(root);
3757 if (IS_ERR(trans)) {
3758 ret = PTR_ERR(trans);
3759 goto out;
3760 }
3761
3762 qgroupid = sa->qgroupid;
3763 if (!qgroupid) {
3764 /* take the current subvol as qgroup */
3765 qgroupid = root->root_key.objectid;
3766 }
3767
3768 /* FIXME: check if the IDs really exist */
3769 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3770
3771 err = btrfs_end_transaction(trans, root);
3772 if (err && !ret)
3773 ret = err;
3774
3775 out:
3776 kfree(sa);
3777 drop_write:
3778 mnt_drop_write_file(file);
3779 return ret;
3780 }
3781
3782 static long btrfs_ioctl_set_received_subvol(struct file *file,
3783 void __user *arg)
3784 {
3785 struct btrfs_ioctl_received_subvol_args *sa = NULL;
3786 struct inode *inode = fdentry(file)->d_inode;
3787 struct btrfs_root *root = BTRFS_I(inode)->root;
3788 struct btrfs_root_item *root_item = &root->root_item;
3789 struct btrfs_trans_handle *trans;
3790 struct timespec ct = CURRENT_TIME;
3791 int ret = 0;
3792
3793 ret = mnt_want_write_file(file);
3794 if (ret < 0)
3795 return ret;
3796
3797 down_write(&root->fs_info->subvol_sem);
3798
3799 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3800 ret = -EINVAL;
3801 goto out;
3802 }
3803
3804 if (btrfs_root_readonly(root)) {
3805 ret = -EROFS;
3806 goto out;
3807 }
3808
3809 if (!inode_owner_or_capable(inode)) {
3810 ret = -EACCES;
3811 goto out;
3812 }
3813
3814 sa = memdup_user(arg, sizeof(*sa));
3815 if (IS_ERR(sa)) {
3816 ret = PTR_ERR(sa);
3817 sa = NULL;
3818 goto out;
3819 }
3820
3821 trans = btrfs_start_transaction(root, 1);
3822 if (IS_ERR(trans)) {
3823 ret = PTR_ERR(trans);
3824 trans = NULL;
3825 goto out;
3826 }
3827
3828 sa->rtransid = trans->transid;
3829 sa->rtime.sec = ct.tv_sec;
3830 sa->rtime.nsec = ct.tv_nsec;
3831
3832 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3833 btrfs_set_root_stransid(root_item, sa->stransid);
3834 btrfs_set_root_rtransid(root_item, sa->rtransid);
3835 root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3836 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3837 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3838 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3839
3840 ret = btrfs_update_root(trans, root->fs_info->tree_root,
3841 &root->root_key, &root->root_item);
3842 if (ret < 0) {
3843 btrfs_end_transaction(trans, root);
3844 trans = NULL;
3845 goto out;
3846 } else {
3847 ret = btrfs_commit_transaction(trans, root);
3848 if (ret < 0)
3849 goto out;
3850 }
3851
3852 ret = copy_to_user(arg, sa, sizeof(*sa));
3853 if (ret)
3854 ret = -EFAULT;
3855
3856 out:
3857 kfree(sa);
3858 up_write(&root->fs_info->subvol_sem);
3859 mnt_drop_write_file(file);
3860 return ret;
3861 }
3862
3863 long btrfs_ioctl(struct file *file, unsigned int
3864 cmd, unsigned long arg)
3865 {
3866 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3867 void __user *argp = (void __user *)arg;
3868
3869 switch (cmd) {
3870 case FS_IOC_GETFLAGS:
3871 return btrfs_ioctl_getflags(file, argp);
3872 case FS_IOC_SETFLAGS:
3873 return btrfs_ioctl_setflags(file, argp);
3874 case FS_IOC_GETVERSION:
3875 return btrfs_ioctl_getversion(file, argp);
3876 case FITRIM:
3877 return btrfs_ioctl_fitrim(file, argp);
3878 case BTRFS_IOC_SNAP_CREATE:
3879 return btrfs_ioctl_snap_create(file, argp, 0);
3880 case BTRFS_IOC_SNAP_CREATE_V2:
3881 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3882 case BTRFS_IOC_SUBVOL_CREATE:
3883 return btrfs_ioctl_snap_create(file, argp, 1);
3884 case BTRFS_IOC_SUBVOL_CREATE_V2:
3885 return btrfs_ioctl_snap_create_v2(file, argp, 1);
3886 case BTRFS_IOC_SNAP_DESTROY:
3887 return btrfs_ioctl_snap_destroy(file, argp);
3888 case BTRFS_IOC_SUBVOL_GETFLAGS:
3889 return btrfs_ioctl_subvol_getflags(file, argp);
3890 case BTRFS_IOC_SUBVOL_SETFLAGS:
3891 return btrfs_ioctl_subvol_setflags(file, argp);
3892 case BTRFS_IOC_DEFAULT_SUBVOL:
3893 return btrfs_ioctl_default_subvol(file, argp);
3894 case BTRFS_IOC_DEFRAG:
3895 return btrfs_ioctl_defrag(file, NULL);
3896 case BTRFS_IOC_DEFRAG_RANGE:
3897 return btrfs_ioctl_defrag(file, argp);
3898 case BTRFS_IOC_RESIZE:
3899 return btrfs_ioctl_resize(file, argp);
3900 case BTRFS_IOC_ADD_DEV:
3901 return btrfs_ioctl_add_dev(root, argp);
3902 case BTRFS_IOC_RM_DEV:
3903 return btrfs_ioctl_rm_dev(file, argp);
3904 case BTRFS_IOC_FS_INFO:
3905 return btrfs_ioctl_fs_info(root, argp);
3906 case BTRFS_IOC_DEV_INFO:
3907 return btrfs_ioctl_dev_info(root, argp);
3908 case BTRFS_IOC_BALANCE:
3909 return btrfs_ioctl_balance(file, NULL);
3910 case BTRFS_IOC_CLONE:
3911 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3912 case BTRFS_IOC_CLONE_RANGE:
3913 return btrfs_ioctl_clone_range(file, argp);
3914 case BTRFS_IOC_TRANS_START:
3915 return btrfs_ioctl_trans_start(file);
3916 case BTRFS_IOC_TRANS_END:
3917 return btrfs_ioctl_trans_end(file);
3918 case BTRFS_IOC_TREE_SEARCH:
3919 return btrfs_ioctl_tree_search(file, argp);
3920 case BTRFS_IOC_INO_LOOKUP:
3921 return btrfs_ioctl_ino_lookup(file, argp);
3922 case BTRFS_IOC_INO_PATHS:
3923 return btrfs_ioctl_ino_to_path(root, argp);
3924 case BTRFS_IOC_LOGICAL_INO:
3925 return btrfs_ioctl_logical_to_ino(root, argp);
3926 case BTRFS_IOC_SPACE_INFO:
3927 return btrfs_ioctl_space_info(root, argp);
3928 case BTRFS_IOC_SYNC:
3929 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3930 return 0;
3931 case BTRFS_IOC_START_SYNC:
3932 return btrfs_ioctl_start_sync(root, argp);
3933 case BTRFS_IOC_WAIT_SYNC:
3934 return btrfs_ioctl_wait_sync(root, argp);
3935 case BTRFS_IOC_SCRUB:
3936 return btrfs_ioctl_scrub(file, argp);
3937 case BTRFS_IOC_SCRUB_CANCEL:
3938 return btrfs_ioctl_scrub_cancel(root, argp);
3939 case BTRFS_IOC_SCRUB_PROGRESS:
3940 return btrfs_ioctl_scrub_progress(root, argp);
3941 case BTRFS_IOC_BALANCE_V2:
3942 return btrfs_ioctl_balance(file, argp);
3943 case BTRFS_IOC_BALANCE_CTL:
3944 return btrfs_ioctl_balance_ctl(root, arg);
3945 case BTRFS_IOC_BALANCE_PROGRESS:
3946 return btrfs_ioctl_balance_progress(root, argp);
3947 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
3948 return btrfs_ioctl_set_received_subvol(file, argp);
3949 case BTRFS_IOC_SEND:
3950 return btrfs_ioctl_send(file, argp);
3951 case BTRFS_IOC_GET_DEV_STATS:
3952 return btrfs_ioctl_get_dev_stats(root, argp);
3953 case BTRFS_IOC_QUOTA_CTL:
3954 return btrfs_ioctl_quota_ctl(file, argp);
3955 case BTRFS_IOC_QGROUP_ASSIGN:
3956 return btrfs_ioctl_qgroup_assign(file, argp);
3957 case BTRFS_IOC_QGROUP_CREATE:
3958 return btrfs_ioctl_qgroup_create(file, argp);
3959 case BTRFS_IOC_QGROUP_LIMIT:
3960 return btrfs_ioctl_qgroup_limit(file, argp);
3961 case BTRFS_IOC_DEV_REPLACE:
3962 return btrfs_ioctl_dev_replace(root, argp);
3963 }
3964
3965 return -ENOTTY;
3966 }
This page took 0.150228 seconds and 6 git commands to generate.