Btrfs: don't mix the ordered extents of all files together during logging the inodes
[deliverable/linux.git] / fs / btrfs / ordered-data.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
36 }
37
38 /* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
43 {
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
46 struct btrfs_ordered_extent *entry;
47
48 while (*p) {
49 parent = *p;
50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52 if (file_offset < entry->file_offset)
53 p = &(*p)->rb_left;
54 else if (file_offset >= entry_end(entry))
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63 }
64
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67 {
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 "%llu\n", offset);
71 }
72
73 /*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
79 {
80 struct rb_node *n = root->rb_node;
81 struct rb_node *prev = NULL;
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
85
86 while (n) {
87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 prev = n;
89 prev_entry = entry;
90
91 if (file_offset < entry->file_offset)
92 n = n->rb_left;
93 else if (file_offset >= entry_end(entry))
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
101 while (prev && file_offset >= entry_end(prev_entry)) {
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
115 while (prev && file_offset < entry_end(prev_entry)) {
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
122 }
123 *prev_ret = prev;
124 return NULL;
125 }
126
127 /*
128 * helper to check if a given offset is inside a given entry
129 */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136 }
137
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140 {
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145 }
146
147 /*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
153 {
154 struct rb_root *root = &tree->tree;
155 struct rb_node *prev = NULL;
156 struct rb_node *ret;
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
166 if (!ret)
167 ret = prev;
168 if (ret)
169 tree->last = ret;
170 return ret;
171 }
172
173 /* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
186 int type, int dio, int compress_type)
187 {
188 struct btrfs_root *root = BTRFS_I(inode)->root;
189 struct btrfs_ordered_inode_tree *tree;
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
192
193 tree = &BTRFS_I(inode)->ordered_tree;
194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 if (!entry)
196 return -ENOMEM;
197
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
204 entry->disk_len = disk_len;
205 entry->bytes_left = len;
206 entry->inode = igrab(inode);
207 entry->compress_type = compress_type;
208 entry->truncated_len = (u64)-1;
209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210 set_bit(type, &entry->flags);
211
212 if (dio)
213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
215 /* one ref for the tree */
216 atomic_set(&entry->refs, 1);
217 init_waitqueue_head(&entry->wait);
218 INIT_LIST_HEAD(&entry->list);
219 INIT_LIST_HEAD(&entry->root_extent_list);
220 INIT_LIST_HEAD(&entry->work_list);
221 init_completion(&entry->completion);
222 INIT_LIST_HEAD(&entry->log_list);
223
224 trace_btrfs_ordered_extent_add(inode, entry);
225
226 spin_lock_irq(&tree->lock);
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
229 if (node)
230 ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 spin_unlock_irq(&tree->lock);
232
233 spin_lock(&root->ordered_extent_lock);
234 list_add_tail(&entry->root_extent_list,
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&root->fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root,
241 &root->fs_info->ordered_roots);
242 spin_unlock(&root->fs_info->ordered_root_lock);
243 }
244 spin_unlock(&root->ordered_extent_lock);
245
246 return 0;
247 }
248
249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
251 {
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
255 }
256
257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
259 {
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
263 }
264
265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
268 {
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
272 }
273
274 /*
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
278 */
279 void btrfs_add_ordered_sum(struct inode *inode,
280 struct btrfs_ordered_extent *entry,
281 struct btrfs_ordered_sum *sum)
282 {
283 struct btrfs_ordered_inode_tree *tree;
284
285 tree = &BTRFS_I(inode)->ordered_tree;
286 spin_lock_irq(&tree->lock);
287 list_add_tail(&sum->list, &entry->list);
288 WARN_ON(entry->csum_bytes_left < sum->len);
289 entry->csum_bytes_left -= sum->len;
290 if (entry->csum_bytes_left == 0)
291 wake_up(&entry->wait);
292 spin_unlock_irq(&tree->lock);
293 }
294
295 /*
296 * this is used to account for finished IO across a given range
297 * of the file. The IO may span ordered extents. If
298 * a given ordered_extent is completely done, 1 is returned, otherwise
299 * 0.
300 *
301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302 * to make sure this function only returns 1 once for a given ordered extent.
303 *
304 * file_offset is updated to one byte past the range that is recorded as
305 * complete. This allows you to walk forward in the file.
306 */
307 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 struct btrfs_ordered_extent **cached,
309 u64 *file_offset, u64 io_size, int uptodate)
310 {
311 struct btrfs_ordered_inode_tree *tree;
312 struct rb_node *node;
313 struct btrfs_ordered_extent *entry = NULL;
314 int ret;
315 unsigned long flags;
316 u64 dec_end;
317 u64 dec_start;
318 u64 to_dec;
319
320 tree = &BTRFS_I(inode)->ordered_tree;
321 spin_lock_irqsave(&tree->lock, flags);
322 node = tree_search(tree, *file_offset);
323 if (!node) {
324 ret = 1;
325 goto out;
326 }
327
328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 if (!offset_in_entry(entry, *file_offset)) {
330 ret = 1;
331 goto out;
332 }
333
334 dec_start = max(*file_offset, entry->file_offset);
335 dec_end = min(*file_offset + io_size, entry->file_offset +
336 entry->len);
337 *file_offset = dec_end;
338 if (dec_start > dec_end) {
339 btrfs_crit(BTRFS_I(inode)->root->fs_info,
340 "bad ordering dec_start %llu end %llu", dec_start, dec_end);
341 }
342 to_dec = dec_end - dec_start;
343 if (to_dec > entry->bytes_left) {
344 btrfs_crit(BTRFS_I(inode)->root->fs_info,
345 "bad ordered accounting left %llu size %llu",
346 entry->bytes_left, to_dec);
347 }
348 entry->bytes_left -= to_dec;
349 if (!uptodate)
350 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
351
352 if (entry->bytes_left == 0)
353 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
354 else
355 ret = 1;
356 out:
357 if (!ret && cached && entry) {
358 *cached = entry;
359 atomic_inc(&entry->refs);
360 }
361 spin_unlock_irqrestore(&tree->lock, flags);
362 return ret == 0;
363 }
364
365 /*
366 * this is used to account for finished IO across a given range
367 * of the file. The IO should not span ordered extents. If
368 * a given ordered_extent is completely done, 1 is returned, otherwise
369 * 0.
370 *
371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
372 * to make sure this function only returns 1 once for a given ordered extent.
373 */
374 int btrfs_dec_test_ordered_pending(struct inode *inode,
375 struct btrfs_ordered_extent **cached,
376 u64 file_offset, u64 io_size, int uptodate)
377 {
378 struct btrfs_ordered_inode_tree *tree;
379 struct rb_node *node;
380 struct btrfs_ordered_extent *entry = NULL;
381 unsigned long flags;
382 int ret;
383
384 tree = &BTRFS_I(inode)->ordered_tree;
385 spin_lock_irqsave(&tree->lock, flags);
386 if (cached && *cached) {
387 entry = *cached;
388 goto have_entry;
389 }
390
391 node = tree_search(tree, file_offset);
392 if (!node) {
393 ret = 1;
394 goto out;
395 }
396
397 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
398 have_entry:
399 if (!offset_in_entry(entry, file_offset)) {
400 ret = 1;
401 goto out;
402 }
403
404 if (io_size > entry->bytes_left) {
405 btrfs_crit(BTRFS_I(inode)->root->fs_info,
406 "bad ordered accounting left %llu size %llu",
407 entry->bytes_left, io_size);
408 }
409 entry->bytes_left -= io_size;
410 if (!uptodate)
411 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
412
413 if (entry->bytes_left == 0)
414 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
415 else
416 ret = 1;
417 out:
418 if (!ret && cached && entry) {
419 *cached = entry;
420 atomic_inc(&entry->refs);
421 }
422 spin_unlock_irqrestore(&tree->lock, flags);
423 return ret == 0;
424 }
425
426 /* Needs to either be called under a log transaction or the log_mutex */
427 void btrfs_get_logged_extents(struct inode *inode,
428 struct list_head *logged_list)
429 {
430 struct btrfs_ordered_inode_tree *tree;
431 struct btrfs_ordered_extent *ordered;
432 struct rb_node *n;
433
434 tree = &BTRFS_I(inode)->ordered_tree;
435 spin_lock_irq(&tree->lock);
436 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
437 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
438 if (!list_empty(&ordered->log_list))
439 continue;
440 list_add_tail(&ordered->log_list, logged_list);
441 atomic_inc(&ordered->refs);
442 }
443 spin_unlock_irq(&tree->lock);
444 }
445
446 void btrfs_put_logged_extents(struct list_head *logged_list)
447 {
448 struct btrfs_ordered_extent *ordered;
449
450 while (!list_empty(logged_list)) {
451 ordered = list_first_entry(logged_list,
452 struct btrfs_ordered_extent,
453 log_list);
454 list_del_init(&ordered->log_list);
455 btrfs_put_ordered_extent(ordered);
456 }
457 }
458
459 void btrfs_submit_logged_extents(struct list_head *logged_list,
460 struct btrfs_root *log)
461 {
462 int index = log->log_transid % 2;
463
464 spin_lock_irq(&log->log_extents_lock[index]);
465 list_splice_tail(logged_list, &log->logged_list[index]);
466 spin_unlock_irq(&log->log_extents_lock[index]);
467 }
468
469 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
470 {
471 struct btrfs_ordered_extent *ordered;
472 int index = transid % 2;
473
474 spin_lock_irq(&log->log_extents_lock[index]);
475 while (!list_empty(&log->logged_list[index])) {
476 ordered = list_first_entry(&log->logged_list[index],
477 struct btrfs_ordered_extent,
478 log_list);
479 list_del_init(&ordered->log_list);
480 spin_unlock_irq(&log->log_extents_lock[index]);
481 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
482 &ordered->flags));
483 btrfs_put_ordered_extent(ordered);
484 spin_lock_irq(&log->log_extents_lock[index]);
485 }
486 spin_unlock_irq(&log->log_extents_lock[index]);
487 }
488
489 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
490 {
491 struct btrfs_ordered_extent *ordered;
492 int index = transid % 2;
493
494 spin_lock_irq(&log->log_extents_lock[index]);
495 while (!list_empty(&log->logged_list[index])) {
496 ordered = list_first_entry(&log->logged_list[index],
497 struct btrfs_ordered_extent,
498 log_list);
499 list_del_init(&ordered->log_list);
500 spin_unlock_irq(&log->log_extents_lock[index]);
501 btrfs_put_ordered_extent(ordered);
502 spin_lock_irq(&log->log_extents_lock[index]);
503 }
504 spin_unlock_irq(&log->log_extents_lock[index]);
505 }
506
507 /*
508 * used to drop a reference on an ordered extent. This will free
509 * the extent if the last reference is dropped
510 */
511 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
512 {
513 struct list_head *cur;
514 struct btrfs_ordered_sum *sum;
515
516 trace_btrfs_ordered_extent_put(entry->inode, entry);
517
518 if (atomic_dec_and_test(&entry->refs)) {
519 if (entry->inode)
520 btrfs_add_delayed_iput(entry->inode);
521 while (!list_empty(&entry->list)) {
522 cur = entry->list.next;
523 sum = list_entry(cur, struct btrfs_ordered_sum, list);
524 list_del(&sum->list);
525 kfree(sum);
526 }
527 kmem_cache_free(btrfs_ordered_extent_cache, entry);
528 }
529 }
530
531 /*
532 * remove an ordered extent from the tree. No references are dropped
533 * and waiters are woken up.
534 */
535 void btrfs_remove_ordered_extent(struct inode *inode,
536 struct btrfs_ordered_extent *entry)
537 {
538 struct btrfs_ordered_inode_tree *tree;
539 struct btrfs_root *root = BTRFS_I(inode)->root;
540 struct rb_node *node;
541
542 tree = &BTRFS_I(inode)->ordered_tree;
543 spin_lock_irq(&tree->lock);
544 node = &entry->rb_node;
545 rb_erase(node, &tree->tree);
546 if (tree->last == node)
547 tree->last = NULL;
548 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
549 spin_unlock_irq(&tree->lock);
550
551 spin_lock(&root->ordered_extent_lock);
552 list_del_init(&entry->root_extent_list);
553 root->nr_ordered_extents--;
554
555 trace_btrfs_ordered_extent_remove(inode, entry);
556
557 /*
558 * we have no more ordered extents for this inode and
559 * no dirty pages. We can safely remove it from the
560 * list of ordered extents
561 */
562 if (RB_EMPTY_ROOT(&tree->tree) &&
563 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
564 spin_lock(&root->fs_info->ordered_root_lock);
565 list_del_init(&BTRFS_I(inode)->ordered_operations);
566 spin_unlock(&root->fs_info->ordered_root_lock);
567 }
568
569 if (!root->nr_ordered_extents) {
570 spin_lock(&root->fs_info->ordered_root_lock);
571 BUG_ON(list_empty(&root->ordered_root));
572 list_del_init(&root->ordered_root);
573 spin_unlock(&root->fs_info->ordered_root_lock);
574 }
575 spin_unlock(&root->ordered_extent_lock);
576 wake_up(&entry->wait);
577 }
578
579 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
580 {
581 struct btrfs_ordered_extent *ordered;
582
583 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
584 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
585 complete(&ordered->completion);
586 }
587
588 /*
589 * wait for all the ordered extents in a root. This is done when balancing
590 * space between drives.
591 */
592 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
593 {
594 struct list_head splice, works;
595 struct btrfs_ordered_extent *ordered, *next;
596 int count = 0;
597
598 INIT_LIST_HEAD(&splice);
599 INIT_LIST_HEAD(&works);
600
601 mutex_lock(&root->fs_info->ordered_operations_mutex);
602 spin_lock(&root->ordered_extent_lock);
603 list_splice_init(&root->ordered_extents, &splice);
604 while (!list_empty(&splice) && nr) {
605 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
606 root_extent_list);
607 list_move_tail(&ordered->root_extent_list,
608 &root->ordered_extents);
609 atomic_inc(&ordered->refs);
610 spin_unlock(&root->ordered_extent_lock);
611
612 ordered->flush_work.func = btrfs_run_ordered_extent_work;
613 list_add_tail(&ordered->work_list, &works);
614 btrfs_queue_worker(&root->fs_info->flush_workers,
615 &ordered->flush_work);
616
617 cond_resched();
618 spin_lock(&root->ordered_extent_lock);
619 if (nr != -1)
620 nr--;
621 count++;
622 }
623 list_splice_tail(&splice, &root->ordered_extents);
624 spin_unlock(&root->ordered_extent_lock);
625
626 list_for_each_entry_safe(ordered, next, &works, work_list) {
627 list_del_init(&ordered->work_list);
628 wait_for_completion(&ordered->completion);
629 btrfs_put_ordered_extent(ordered);
630 cond_resched();
631 }
632 mutex_unlock(&root->fs_info->ordered_operations_mutex);
633
634 return count;
635 }
636
637 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
638 {
639 struct btrfs_root *root;
640 struct list_head splice;
641 int done;
642
643 INIT_LIST_HEAD(&splice);
644
645 spin_lock(&fs_info->ordered_root_lock);
646 list_splice_init(&fs_info->ordered_roots, &splice);
647 while (!list_empty(&splice) && nr) {
648 root = list_first_entry(&splice, struct btrfs_root,
649 ordered_root);
650 root = btrfs_grab_fs_root(root);
651 BUG_ON(!root);
652 list_move_tail(&root->ordered_root,
653 &fs_info->ordered_roots);
654 spin_unlock(&fs_info->ordered_root_lock);
655
656 done = btrfs_wait_ordered_extents(root, nr);
657 btrfs_put_fs_root(root);
658
659 spin_lock(&fs_info->ordered_root_lock);
660 if (nr != -1) {
661 nr -= done;
662 WARN_ON(nr < 0);
663 }
664 }
665 list_splice_tail(&splice, &fs_info->ordered_roots);
666 spin_unlock(&fs_info->ordered_root_lock);
667 }
668
669 /*
670 * this is used during transaction commit to write all the inodes
671 * added to the ordered operation list. These files must be fully on
672 * disk before the transaction commits.
673 *
674 * we have two modes here, one is to just start the IO via filemap_flush
675 * and the other is to wait for all the io. When we wait, we have an
676 * extra check to make sure the ordered operation list really is empty
677 * before we return
678 */
679 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root, int wait)
681 {
682 struct btrfs_inode *btrfs_inode;
683 struct inode *inode;
684 struct btrfs_transaction *cur_trans = trans->transaction;
685 struct list_head splice;
686 struct list_head works;
687 struct btrfs_delalloc_work *work, *next;
688 int ret = 0;
689
690 INIT_LIST_HEAD(&splice);
691 INIT_LIST_HEAD(&works);
692
693 mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
694 spin_lock(&root->fs_info->ordered_root_lock);
695 list_splice_init(&cur_trans->ordered_operations, &splice);
696 while (!list_empty(&splice)) {
697 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
698 ordered_operations);
699 inode = &btrfs_inode->vfs_inode;
700
701 list_del_init(&btrfs_inode->ordered_operations);
702
703 /*
704 * the inode may be getting freed (in sys_unlink path).
705 */
706 inode = igrab(inode);
707 if (!inode)
708 continue;
709
710 if (!wait)
711 list_add_tail(&BTRFS_I(inode)->ordered_operations,
712 &cur_trans->ordered_operations);
713 spin_unlock(&root->fs_info->ordered_root_lock);
714
715 work = btrfs_alloc_delalloc_work(inode, wait, 1);
716 if (!work) {
717 spin_lock(&root->fs_info->ordered_root_lock);
718 if (list_empty(&BTRFS_I(inode)->ordered_operations))
719 list_add_tail(&btrfs_inode->ordered_operations,
720 &splice);
721 list_splice_tail(&splice,
722 &cur_trans->ordered_operations);
723 spin_unlock(&root->fs_info->ordered_root_lock);
724 ret = -ENOMEM;
725 goto out;
726 }
727 list_add_tail(&work->list, &works);
728 btrfs_queue_worker(&root->fs_info->flush_workers,
729 &work->work);
730
731 cond_resched();
732 spin_lock(&root->fs_info->ordered_root_lock);
733 }
734 spin_unlock(&root->fs_info->ordered_root_lock);
735 out:
736 list_for_each_entry_safe(work, next, &works, list) {
737 list_del_init(&work->list);
738 btrfs_wait_and_free_delalloc_work(work);
739 }
740 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
741 return ret;
742 }
743
744 /*
745 * Used to start IO or wait for a given ordered extent to finish.
746 *
747 * If wait is one, this effectively waits on page writeback for all the pages
748 * in the extent, and it waits on the io completion code to insert
749 * metadata into the btree corresponding to the extent
750 */
751 void btrfs_start_ordered_extent(struct inode *inode,
752 struct btrfs_ordered_extent *entry,
753 int wait)
754 {
755 u64 start = entry->file_offset;
756 u64 end = start + entry->len - 1;
757
758 trace_btrfs_ordered_extent_start(inode, entry);
759
760 /*
761 * pages in the range can be dirty, clean or writeback. We
762 * start IO on any dirty ones so the wait doesn't stall waiting
763 * for the flusher thread to find them
764 */
765 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
766 filemap_fdatawrite_range(inode->i_mapping, start, end);
767 if (wait) {
768 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
769 &entry->flags));
770 }
771 }
772
773 /*
774 * Used to wait on ordered extents across a large range of bytes.
775 */
776 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
777 {
778 int ret = 0;
779 u64 end;
780 u64 orig_end;
781 struct btrfs_ordered_extent *ordered;
782
783 if (start + len < start) {
784 orig_end = INT_LIMIT(loff_t);
785 } else {
786 orig_end = start + len - 1;
787 if (orig_end > INT_LIMIT(loff_t))
788 orig_end = INT_LIMIT(loff_t);
789 }
790
791 /* start IO across the range first to instantiate any delalloc
792 * extents
793 */
794 ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
795 if (ret)
796 return ret;
797 /*
798 * So with compression we will find and lock a dirty page and clear the
799 * first one as dirty, setup an async extent, and immediately return
800 * with the entire range locked but with nobody actually marked with
801 * writeback. So we can't just filemap_write_and_wait_range() and
802 * expect it to work since it will just kick off a thread to do the
803 * actual work. So we need to call filemap_fdatawrite_range _again_
804 * since it will wait on the page lock, which won't be unlocked until
805 * after the pages have been marked as writeback and so we're good to go
806 * from there. We have to do this otherwise we'll miss the ordered
807 * extents and that results in badness. Please Josef, do not think you
808 * know better and pull this out at some point in the future, it is
809 * right and you are wrong.
810 */
811 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
812 &BTRFS_I(inode)->runtime_flags)) {
813 ret = filemap_fdatawrite_range(inode->i_mapping, start,
814 orig_end);
815 if (ret)
816 return ret;
817 }
818 ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
819 if (ret)
820 return ret;
821
822 end = orig_end;
823 while (1) {
824 ordered = btrfs_lookup_first_ordered_extent(inode, end);
825 if (!ordered)
826 break;
827 if (ordered->file_offset > orig_end) {
828 btrfs_put_ordered_extent(ordered);
829 break;
830 }
831 if (ordered->file_offset + ordered->len <= start) {
832 btrfs_put_ordered_extent(ordered);
833 break;
834 }
835 btrfs_start_ordered_extent(inode, ordered, 1);
836 end = ordered->file_offset;
837 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
838 ret = -EIO;
839 btrfs_put_ordered_extent(ordered);
840 if (ret || end == 0 || end == start)
841 break;
842 end--;
843 }
844 return ret;
845 }
846
847 /*
848 * find an ordered extent corresponding to file_offset. return NULL if
849 * nothing is found, otherwise take a reference on the extent and return it
850 */
851 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
852 u64 file_offset)
853 {
854 struct btrfs_ordered_inode_tree *tree;
855 struct rb_node *node;
856 struct btrfs_ordered_extent *entry = NULL;
857
858 tree = &BTRFS_I(inode)->ordered_tree;
859 spin_lock_irq(&tree->lock);
860 node = tree_search(tree, file_offset);
861 if (!node)
862 goto out;
863
864 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
865 if (!offset_in_entry(entry, file_offset))
866 entry = NULL;
867 if (entry)
868 atomic_inc(&entry->refs);
869 out:
870 spin_unlock_irq(&tree->lock);
871 return entry;
872 }
873
874 /* Since the DIO code tries to lock a wide area we need to look for any ordered
875 * extents that exist in the range, rather than just the start of the range.
876 */
877 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
878 u64 file_offset,
879 u64 len)
880 {
881 struct btrfs_ordered_inode_tree *tree;
882 struct rb_node *node;
883 struct btrfs_ordered_extent *entry = NULL;
884
885 tree = &BTRFS_I(inode)->ordered_tree;
886 spin_lock_irq(&tree->lock);
887 node = tree_search(tree, file_offset);
888 if (!node) {
889 node = tree_search(tree, file_offset + len);
890 if (!node)
891 goto out;
892 }
893
894 while (1) {
895 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
896 if (range_overlaps(entry, file_offset, len))
897 break;
898
899 if (entry->file_offset >= file_offset + len) {
900 entry = NULL;
901 break;
902 }
903 entry = NULL;
904 node = rb_next(node);
905 if (!node)
906 break;
907 }
908 out:
909 if (entry)
910 atomic_inc(&entry->refs);
911 spin_unlock_irq(&tree->lock);
912 return entry;
913 }
914
915 /*
916 * lookup and return any extent before 'file_offset'. NULL is returned
917 * if none is found
918 */
919 struct btrfs_ordered_extent *
920 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
921 {
922 struct btrfs_ordered_inode_tree *tree;
923 struct rb_node *node;
924 struct btrfs_ordered_extent *entry = NULL;
925
926 tree = &BTRFS_I(inode)->ordered_tree;
927 spin_lock_irq(&tree->lock);
928 node = tree_search(tree, file_offset);
929 if (!node)
930 goto out;
931
932 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
933 atomic_inc(&entry->refs);
934 out:
935 spin_unlock_irq(&tree->lock);
936 return entry;
937 }
938
939 /*
940 * After an extent is done, call this to conditionally update the on disk
941 * i_size. i_size is updated to cover any fully written part of the file.
942 */
943 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
944 struct btrfs_ordered_extent *ordered)
945 {
946 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
947 u64 disk_i_size;
948 u64 new_i_size;
949 u64 i_size = i_size_read(inode);
950 struct rb_node *node;
951 struct rb_node *prev = NULL;
952 struct btrfs_ordered_extent *test;
953 int ret = 1;
954
955 spin_lock_irq(&tree->lock);
956 if (ordered) {
957 offset = entry_end(ordered);
958 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
959 offset = min(offset,
960 ordered->file_offset +
961 ordered->truncated_len);
962 } else {
963 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
964 }
965 disk_i_size = BTRFS_I(inode)->disk_i_size;
966
967 /* truncate file */
968 if (disk_i_size > i_size) {
969 BTRFS_I(inode)->disk_i_size = i_size;
970 ret = 0;
971 goto out;
972 }
973
974 /*
975 * if the disk i_size is already at the inode->i_size, or
976 * this ordered extent is inside the disk i_size, we're done
977 */
978 if (disk_i_size == i_size)
979 goto out;
980
981 /*
982 * We still need to update disk_i_size if outstanding_isize is greater
983 * than disk_i_size.
984 */
985 if (offset <= disk_i_size &&
986 (!ordered || ordered->outstanding_isize <= disk_i_size))
987 goto out;
988
989 /*
990 * walk backward from this ordered extent to disk_i_size.
991 * if we find an ordered extent then we can't update disk i_size
992 * yet
993 */
994 if (ordered) {
995 node = rb_prev(&ordered->rb_node);
996 } else {
997 prev = tree_search(tree, offset);
998 /*
999 * we insert file extents without involving ordered struct,
1000 * so there should be no ordered struct cover this offset
1001 */
1002 if (prev) {
1003 test = rb_entry(prev, struct btrfs_ordered_extent,
1004 rb_node);
1005 BUG_ON(offset_in_entry(test, offset));
1006 }
1007 node = prev;
1008 }
1009 for (; node; node = rb_prev(node)) {
1010 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1011
1012 /* We treat this entry as if it doesnt exist */
1013 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1014 continue;
1015 if (test->file_offset + test->len <= disk_i_size)
1016 break;
1017 if (test->file_offset >= i_size)
1018 break;
1019 if (entry_end(test) > disk_i_size) {
1020 /*
1021 * we don't update disk_i_size now, so record this
1022 * undealt i_size. Or we will not know the real
1023 * i_size.
1024 */
1025 if (test->outstanding_isize < offset)
1026 test->outstanding_isize = offset;
1027 if (ordered &&
1028 ordered->outstanding_isize >
1029 test->outstanding_isize)
1030 test->outstanding_isize =
1031 ordered->outstanding_isize;
1032 goto out;
1033 }
1034 }
1035 new_i_size = min_t(u64, offset, i_size);
1036
1037 /*
1038 * Some ordered extents may completed before the current one, and
1039 * we hold the real i_size in ->outstanding_isize.
1040 */
1041 if (ordered && ordered->outstanding_isize > new_i_size)
1042 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1043 BTRFS_I(inode)->disk_i_size = new_i_size;
1044 ret = 0;
1045 out:
1046 /*
1047 * We need to do this because we can't remove ordered extents until
1048 * after the i_disk_size has been updated and then the inode has been
1049 * updated to reflect the change, so we need to tell anybody who finds
1050 * this ordered extent that we've already done all the real work, we
1051 * just haven't completed all the other work.
1052 */
1053 if (ordered)
1054 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1055 spin_unlock_irq(&tree->lock);
1056 return ret;
1057 }
1058
1059 /*
1060 * search the ordered extents for one corresponding to 'offset' and
1061 * try to find a checksum. This is used because we allow pages to
1062 * be reclaimed before their checksum is actually put into the btree
1063 */
1064 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1065 u32 *sum, int len)
1066 {
1067 struct btrfs_ordered_sum *ordered_sum;
1068 struct btrfs_ordered_extent *ordered;
1069 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1070 unsigned long num_sectors;
1071 unsigned long i;
1072 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1073 int index = 0;
1074
1075 ordered = btrfs_lookup_ordered_extent(inode, offset);
1076 if (!ordered)
1077 return 0;
1078
1079 spin_lock_irq(&tree->lock);
1080 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1081 if (disk_bytenr >= ordered_sum->bytenr &&
1082 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1083 i = (disk_bytenr - ordered_sum->bytenr) >>
1084 inode->i_sb->s_blocksize_bits;
1085 num_sectors = ordered_sum->len >>
1086 inode->i_sb->s_blocksize_bits;
1087 num_sectors = min_t(int, len - index, num_sectors - i);
1088 memcpy(sum + index, ordered_sum->sums + i,
1089 num_sectors);
1090
1091 index += (int)num_sectors;
1092 if (index == len)
1093 goto out;
1094 disk_bytenr += num_sectors * sectorsize;
1095 }
1096 }
1097 out:
1098 spin_unlock_irq(&tree->lock);
1099 btrfs_put_ordered_extent(ordered);
1100 return index;
1101 }
1102
1103
1104 /*
1105 * add a given inode to the list of inodes that must be fully on
1106 * disk before a transaction commit finishes.
1107 *
1108 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1109 * used to make sure renamed files are fully on disk.
1110 *
1111 * It is a noop if the inode is already fully on disk.
1112 *
1113 * If trans is not null, we'll do a friendly check for a transaction that
1114 * is already flushing things and force the IO down ourselves.
1115 */
1116 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1117 struct btrfs_root *root, struct inode *inode)
1118 {
1119 struct btrfs_transaction *cur_trans = trans->transaction;
1120 u64 last_mod;
1121
1122 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1123
1124 /*
1125 * if this file hasn't been changed since the last transaction
1126 * commit, we can safely return without doing anything
1127 */
1128 if (last_mod <= root->fs_info->last_trans_committed)
1129 return;
1130
1131 spin_lock(&root->fs_info->ordered_root_lock);
1132 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1133 list_add_tail(&BTRFS_I(inode)->ordered_operations,
1134 &cur_trans->ordered_operations);
1135 }
1136 spin_unlock(&root->fs_info->ordered_root_lock);
1137 }
1138
1139 int __init ordered_data_init(void)
1140 {
1141 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1142 sizeof(struct btrfs_ordered_extent), 0,
1143 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1144 NULL);
1145 if (!btrfs_ordered_extent_cache)
1146 return -ENOMEM;
1147
1148 return 0;
1149 }
1150
1151 void ordered_data_exit(void)
1152 {
1153 if (btrfs_ordered_extent_cache)
1154 kmem_cache_destroy(btrfs_ordered_extent_cache);
1155 }
This page took 0.056022 seconds and 5 git commands to generate.