Btrfs: cache ordered extent when completing io
[deliverable/linux.git] / fs / btrfs / ordered-data.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/gfp.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/writeback.h>
23 #include <linux/pagevec.h>
24 #include "ctree.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "extent_io.h"
28
29 static u64 entry_end(struct btrfs_ordered_extent *entry)
30 {
31 if (entry->file_offset + entry->len < entry->file_offset)
32 return (u64)-1;
33 return entry->file_offset + entry->len;
34 }
35
36 /* returns NULL if the insertion worked, or it returns the node it did find
37 * in the tree
38 */
39 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
40 struct rb_node *node)
41 {
42 struct rb_node **p = &root->rb_node;
43 struct rb_node *parent = NULL;
44 struct btrfs_ordered_extent *entry;
45
46 while (*p) {
47 parent = *p;
48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
49
50 if (file_offset < entry->file_offset)
51 p = &(*p)->rb_left;
52 else if (file_offset >= entry_end(entry))
53 p = &(*p)->rb_right;
54 else
55 return parent;
56 }
57
58 rb_link_node(node, parent, p);
59 rb_insert_color(node, root);
60 return NULL;
61 }
62
63 /*
64 * look for a given offset in the tree, and if it can't be found return the
65 * first lesser offset
66 */
67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 struct rb_node **prev_ret)
69 {
70 struct rb_node *n = root->rb_node;
71 struct rb_node *prev = NULL;
72 struct rb_node *test;
73 struct btrfs_ordered_extent *entry;
74 struct btrfs_ordered_extent *prev_entry = NULL;
75
76 while (n) {
77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
78 prev = n;
79 prev_entry = entry;
80
81 if (file_offset < entry->file_offset)
82 n = n->rb_left;
83 else if (file_offset >= entry_end(entry))
84 n = n->rb_right;
85 else
86 return n;
87 }
88 if (!prev_ret)
89 return NULL;
90
91 while (prev && file_offset >= entry_end(prev_entry)) {
92 test = rb_next(prev);
93 if (!test)
94 break;
95 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 rb_node);
97 if (file_offset < entry_end(prev_entry))
98 break;
99
100 prev = test;
101 }
102 if (prev)
103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 rb_node);
105 while (prev && file_offset < entry_end(prev_entry)) {
106 test = rb_prev(prev);
107 if (!test)
108 break;
109 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 rb_node);
111 prev = test;
112 }
113 *prev_ret = prev;
114 return NULL;
115 }
116
117 /*
118 * helper to check if a given offset is inside a given entry
119 */
120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121 {
122 if (file_offset < entry->file_offset ||
123 entry->file_offset + entry->len <= file_offset)
124 return 0;
125 return 1;
126 }
127
128 /*
129 * look find the first ordered struct that has this offset, otherwise
130 * the first one less than this offset
131 */
132 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
133 u64 file_offset)
134 {
135 struct rb_root *root = &tree->tree;
136 struct rb_node *prev;
137 struct rb_node *ret;
138 struct btrfs_ordered_extent *entry;
139
140 if (tree->last) {
141 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
142 rb_node);
143 if (offset_in_entry(entry, file_offset))
144 return tree->last;
145 }
146 ret = __tree_search(root, file_offset, &prev);
147 if (!ret)
148 ret = prev;
149 if (ret)
150 tree->last = ret;
151 return ret;
152 }
153
154 /* allocate and add a new ordered_extent into the per-inode tree.
155 * file_offset is the logical offset in the file
156 *
157 * start is the disk block number of an extent already reserved in the
158 * extent allocation tree
159 *
160 * len is the length of the extent
161 *
162 * The tree is given a single reference on the ordered extent that was
163 * inserted.
164 */
165 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
166 u64 start, u64 len, u64 disk_len, int type)
167 {
168 struct btrfs_ordered_inode_tree *tree;
169 struct rb_node *node;
170 struct btrfs_ordered_extent *entry;
171
172 tree = &BTRFS_I(inode)->ordered_tree;
173 entry = kzalloc(sizeof(*entry), GFP_NOFS);
174 if (!entry)
175 return -ENOMEM;
176
177 entry->file_offset = file_offset;
178 entry->start = start;
179 entry->len = len;
180 entry->disk_len = disk_len;
181 entry->bytes_left = len;
182 entry->inode = inode;
183 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
184 set_bit(type, &entry->flags);
185
186 /* one ref for the tree */
187 atomic_set(&entry->refs, 1);
188 init_waitqueue_head(&entry->wait);
189 INIT_LIST_HEAD(&entry->list);
190 INIT_LIST_HEAD(&entry->root_extent_list);
191
192 spin_lock(&tree->lock);
193 node = tree_insert(&tree->tree, file_offset,
194 &entry->rb_node);
195 BUG_ON(node);
196 spin_unlock(&tree->lock);
197
198 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
199 list_add_tail(&entry->root_extent_list,
200 &BTRFS_I(inode)->root->fs_info->ordered_extents);
201 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
202
203 BUG_ON(node);
204 return 0;
205 }
206
207 /*
208 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
209 * when an ordered extent is finished. If the list covers more than one
210 * ordered extent, it is split across multiples.
211 */
212 int btrfs_add_ordered_sum(struct inode *inode,
213 struct btrfs_ordered_extent *entry,
214 struct btrfs_ordered_sum *sum)
215 {
216 struct btrfs_ordered_inode_tree *tree;
217
218 tree = &BTRFS_I(inode)->ordered_tree;
219 spin_lock(&tree->lock);
220 list_add_tail(&sum->list, &entry->list);
221 spin_unlock(&tree->lock);
222 return 0;
223 }
224
225 /*
226 * this is used to account for finished IO across a given range
227 * of the file. The IO should not span ordered extents. If
228 * a given ordered_extent is completely done, 1 is returned, otherwise
229 * 0.
230 *
231 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
232 * to make sure this function only returns 1 once for a given ordered extent.
233 */
234 int btrfs_dec_test_ordered_pending(struct inode *inode,
235 struct btrfs_ordered_extent **cached,
236 u64 file_offset, u64 io_size)
237 {
238 struct btrfs_ordered_inode_tree *tree;
239 struct rb_node *node;
240 struct btrfs_ordered_extent *entry = NULL;
241 int ret;
242
243 tree = &BTRFS_I(inode)->ordered_tree;
244 spin_lock(&tree->lock);
245 node = tree_search(tree, file_offset);
246 if (!node) {
247 ret = 1;
248 goto out;
249 }
250
251 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
252 if (!offset_in_entry(entry, file_offset)) {
253 ret = 1;
254 goto out;
255 }
256
257 if (io_size > entry->bytes_left) {
258 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
259 (unsigned long long)entry->bytes_left,
260 (unsigned long long)io_size);
261 }
262 entry->bytes_left -= io_size;
263 if (entry->bytes_left == 0)
264 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
265 else
266 ret = 1;
267 out:
268 if (!ret && cached && entry) {
269 *cached = entry;
270 atomic_inc(&entry->refs);
271 }
272 spin_unlock(&tree->lock);
273 return ret == 0;
274 }
275
276 /*
277 * used to drop a reference on an ordered extent. This will free
278 * the extent if the last reference is dropped
279 */
280 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
281 {
282 struct list_head *cur;
283 struct btrfs_ordered_sum *sum;
284
285 if (atomic_dec_and_test(&entry->refs)) {
286 while (!list_empty(&entry->list)) {
287 cur = entry->list.next;
288 sum = list_entry(cur, struct btrfs_ordered_sum, list);
289 list_del(&sum->list);
290 kfree(sum);
291 }
292 kfree(entry);
293 }
294 return 0;
295 }
296
297 /*
298 * remove an ordered extent from the tree. No references are dropped
299 * and you must wake_up entry->wait. You must hold the tree lock
300 * while you call this function.
301 */
302 static int __btrfs_remove_ordered_extent(struct inode *inode,
303 struct btrfs_ordered_extent *entry)
304 {
305 struct btrfs_ordered_inode_tree *tree;
306 struct rb_node *node;
307
308 tree = &BTRFS_I(inode)->ordered_tree;
309 node = &entry->rb_node;
310 rb_erase(node, &tree->tree);
311 tree->last = NULL;
312 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
313
314 spin_lock(&BTRFS_I(inode)->accounting_lock);
315 BTRFS_I(inode)->outstanding_extents--;
316 spin_unlock(&BTRFS_I(inode)->accounting_lock);
317 btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode)->root,
318 inode, 1);
319
320 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
321 list_del_init(&entry->root_extent_list);
322
323 /*
324 * we have no more ordered extents for this inode and
325 * no dirty pages. We can safely remove it from the
326 * list of ordered extents
327 */
328 if (RB_EMPTY_ROOT(&tree->tree) &&
329 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
330 list_del_init(&BTRFS_I(inode)->ordered_operations);
331 }
332 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
333
334 return 0;
335 }
336
337 /*
338 * remove an ordered extent from the tree. No references are dropped
339 * but any waiters are woken.
340 */
341 int btrfs_remove_ordered_extent(struct inode *inode,
342 struct btrfs_ordered_extent *entry)
343 {
344 struct btrfs_ordered_inode_tree *tree;
345 int ret;
346
347 tree = &BTRFS_I(inode)->ordered_tree;
348 spin_lock(&tree->lock);
349 ret = __btrfs_remove_ordered_extent(inode, entry);
350 spin_unlock(&tree->lock);
351 wake_up(&entry->wait);
352
353 return ret;
354 }
355
356 /*
357 * wait for all the ordered extents in a root. This is done when balancing
358 * space between drives.
359 */
360 int btrfs_wait_ordered_extents(struct btrfs_root *root,
361 int nocow_only, int delay_iput)
362 {
363 struct list_head splice;
364 struct list_head *cur;
365 struct btrfs_ordered_extent *ordered;
366 struct inode *inode;
367
368 INIT_LIST_HEAD(&splice);
369
370 spin_lock(&root->fs_info->ordered_extent_lock);
371 list_splice_init(&root->fs_info->ordered_extents, &splice);
372 while (!list_empty(&splice)) {
373 cur = splice.next;
374 ordered = list_entry(cur, struct btrfs_ordered_extent,
375 root_extent_list);
376 if (nocow_only &&
377 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
378 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
379 list_move(&ordered->root_extent_list,
380 &root->fs_info->ordered_extents);
381 cond_resched_lock(&root->fs_info->ordered_extent_lock);
382 continue;
383 }
384
385 list_del_init(&ordered->root_extent_list);
386 atomic_inc(&ordered->refs);
387
388 /*
389 * the inode may be getting freed (in sys_unlink path).
390 */
391 inode = igrab(ordered->inode);
392
393 spin_unlock(&root->fs_info->ordered_extent_lock);
394
395 if (inode) {
396 btrfs_start_ordered_extent(inode, ordered, 1);
397 btrfs_put_ordered_extent(ordered);
398 if (delay_iput)
399 btrfs_add_delayed_iput(inode);
400 else
401 iput(inode);
402 } else {
403 btrfs_put_ordered_extent(ordered);
404 }
405
406 spin_lock(&root->fs_info->ordered_extent_lock);
407 }
408 spin_unlock(&root->fs_info->ordered_extent_lock);
409 return 0;
410 }
411
412 /*
413 * this is used during transaction commit to write all the inodes
414 * added to the ordered operation list. These files must be fully on
415 * disk before the transaction commits.
416 *
417 * we have two modes here, one is to just start the IO via filemap_flush
418 * and the other is to wait for all the io. When we wait, we have an
419 * extra check to make sure the ordered operation list really is empty
420 * before we return
421 */
422 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
423 {
424 struct btrfs_inode *btrfs_inode;
425 struct inode *inode;
426 struct list_head splice;
427
428 INIT_LIST_HEAD(&splice);
429
430 mutex_lock(&root->fs_info->ordered_operations_mutex);
431 spin_lock(&root->fs_info->ordered_extent_lock);
432 again:
433 list_splice_init(&root->fs_info->ordered_operations, &splice);
434
435 while (!list_empty(&splice)) {
436 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
437 ordered_operations);
438
439 inode = &btrfs_inode->vfs_inode;
440
441 list_del_init(&btrfs_inode->ordered_operations);
442
443 /*
444 * the inode may be getting freed (in sys_unlink path).
445 */
446 inode = igrab(inode);
447
448 if (!wait && inode) {
449 list_add_tail(&BTRFS_I(inode)->ordered_operations,
450 &root->fs_info->ordered_operations);
451 }
452 spin_unlock(&root->fs_info->ordered_extent_lock);
453
454 if (inode) {
455 if (wait)
456 btrfs_wait_ordered_range(inode, 0, (u64)-1);
457 else
458 filemap_flush(inode->i_mapping);
459 btrfs_add_delayed_iput(inode);
460 }
461
462 cond_resched();
463 spin_lock(&root->fs_info->ordered_extent_lock);
464 }
465 if (wait && !list_empty(&root->fs_info->ordered_operations))
466 goto again;
467
468 spin_unlock(&root->fs_info->ordered_extent_lock);
469 mutex_unlock(&root->fs_info->ordered_operations_mutex);
470
471 return 0;
472 }
473
474 /*
475 * Used to start IO or wait for a given ordered extent to finish.
476 *
477 * If wait is one, this effectively waits on page writeback for all the pages
478 * in the extent, and it waits on the io completion code to insert
479 * metadata into the btree corresponding to the extent
480 */
481 void btrfs_start_ordered_extent(struct inode *inode,
482 struct btrfs_ordered_extent *entry,
483 int wait)
484 {
485 u64 start = entry->file_offset;
486 u64 end = start + entry->len - 1;
487
488 /*
489 * pages in the range can be dirty, clean or writeback. We
490 * start IO on any dirty ones so the wait doesn't stall waiting
491 * for pdflush to find them
492 */
493 filemap_fdatawrite_range(inode->i_mapping, start, end);
494 if (wait) {
495 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
496 &entry->flags));
497 }
498 }
499
500 /*
501 * Used to wait on ordered extents across a large range of bytes.
502 */
503 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
504 {
505 u64 end;
506 u64 orig_end;
507 u64 wait_end;
508 struct btrfs_ordered_extent *ordered;
509 int found;
510
511 if (start + len < start) {
512 orig_end = INT_LIMIT(loff_t);
513 } else {
514 orig_end = start + len - 1;
515 if (orig_end > INT_LIMIT(loff_t))
516 orig_end = INT_LIMIT(loff_t);
517 }
518 wait_end = orig_end;
519 again:
520 /* start IO across the range first to instantiate any delalloc
521 * extents
522 */
523 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
524
525 /* The compression code will leave pages locked but return from
526 * writepage without setting the page writeback. Starting again
527 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
528 */
529 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
530
531 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
532
533 end = orig_end;
534 found = 0;
535 while (1) {
536 ordered = btrfs_lookup_first_ordered_extent(inode, end);
537 if (!ordered)
538 break;
539 if (ordered->file_offset > orig_end) {
540 btrfs_put_ordered_extent(ordered);
541 break;
542 }
543 if (ordered->file_offset + ordered->len < start) {
544 btrfs_put_ordered_extent(ordered);
545 break;
546 }
547 found++;
548 btrfs_start_ordered_extent(inode, ordered, 1);
549 end = ordered->file_offset;
550 btrfs_put_ordered_extent(ordered);
551 if (end == 0 || end == start)
552 break;
553 end--;
554 }
555 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
556 EXTENT_DELALLOC, 0, NULL)) {
557 schedule_timeout(1);
558 goto again;
559 }
560 return 0;
561 }
562
563 /*
564 * find an ordered extent corresponding to file_offset. return NULL if
565 * nothing is found, otherwise take a reference on the extent and return it
566 */
567 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
568 u64 file_offset)
569 {
570 struct btrfs_ordered_inode_tree *tree;
571 struct rb_node *node;
572 struct btrfs_ordered_extent *entry = NULL;
573
574 tree = &BTRFS_I(inode)->ordered_tree;
575 spin_lock(&tree->lock);
576 node = tree_search(tree, file_offset);
577 if (!node)
578 goto out;
579
580 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
581 if (!offset_in_entry(entry, file_offset))
582 entry = NULL;
583 if (entry)
584 atomic_inc(&entry->refs);
585 out:
586 spin_unlock(&tree->lock);
587 return entry;
588 }
589
590 /*
591 * lookup and return any extent before 'file_offset'. NULL is returned
592 * if none is found
593 */
594 struct btrfs_ordered_extent *
595 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
596 {
597 struct btrfs_ordered_inode_tree *tree;
598 struct rb_node *node;
599 struct btrfs_ordered_extent *entry = NULL;
600
601 tree = &BTRFS_I(inode)->ordered_tree;
602 spin_lock(&tree->lock);
603 node = tree_search(tree, file_offset);
604 if (!node)
605 goto out;
606
607 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
608 atomic_inc(&entry->refs);
609 out:
610 spin_unlock(&tree->lock);
611 return entry;
612 }
613
614 /*
615 * After an extent is done, call this to conditionally update the on disk
616 * i_size. i_size is updated to cover any fully written part of the file.
617 */
618 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
619 struct btrfs_ordered_extent *ordered)
620 {
621 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
622 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
623 u64 disk_i_size;
624 u64 new_i_size;
625 u64 i_size_test;
626 u64 i_size = i_size_read(inode);
627 struct rb_node *node;
628 struct rb_node *prev = NULL;
629 struct btrfs_ordered_extent *test;
630 int ret = 1;
631
632 if (ordered)
633 offset = entry_end(ordered);
634 else
635 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
636
637 spin_lock(&tree->lock);
638 disk_i_size = BTRFS_I(inode)->disk_i_size;
639
640 /* truncate file */
641 if (disk_i_size > i_size) {
642 BTRFS_I(inode)->disk_i_size = i_size;
643 ret = 0;
644 goto out;
645 }
646
647 /*
648 * if the disk i_size is already at the inode->i_size, or
649 * this ordered extent is inside the disk i_size, we're done
650 */
651 if (disk_i_size == i_size || offset <= disk_i_size) {
652 goto out;
653 }
654
655 /*
656 * we can't update the disk_isize if there are delalloc bytes
657 * between disk_i_size and this ordered extent
658 */
659 if (test_range_bit(io_tree, disk_i_size, offset - 1,
660 EXTENT_DELALLOC, 0, NULL)) {
661 goto out;
662 }
663 /*
664 * walk backward from this ordered extent to disk_i_size.
665 * if we find an ordered extent then we can't update disk i_size
666 * yet
667 */
668 if (ordered) {
669 node = rb_prev(&ordered->rb_node);
670 } else {
671 prev = tree_search(tree, offset);
672 /*
673 * we insert file extents without involving ordered struct,
674 * so there should be no ordered struct cover this offset
675 */
676 if (prev) {
677 test = rb_entry(prev, struct btrfs_ordered_extent,
678 rb_node);
679 BUG_ON(offset_in_entry(test, offset));
680 }
681 node = prev;
682 }
683 while (node) {
684 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
685 if (test->file_offset + test->len <= disk_i_size)
686 break;
687 if (test->file_offset >= i_size)
688 break;
689 if (test->file_offset >= disk_i_size)
690 goto out;
691 node = rb_prev(node);
692 }
693 new_i_size = min_t(u64, offset, i_size);
694
695 /*
696 * at this point, we know we can safely update i_size to at least
697 * the offset from this ordered extent. But, we need to
698 * walk forward and see if ios from higher up in the file have
699 * finished.
700 */
701 if (ordered) {
702 node = rb_next(&ordered->rb_node);
703 } else {
704 if (prev)
705 node = rb_next(prev);
706 else
707 node = rb_first(&tree->tree);
708 }
709 i_size_test = 0;
710 if (node) {
711 /*
712 * do we have an area where IO might have finished
713 * between our ordered extent and the next one.
714 */
715 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
716 if (test->file_offset > offset)
717 i_size_test = test->file_offset;
718 } else {
719 i_size_test = i_size;
720 }
721
722 /*
723 * i_size_test is the end of a region after this ordered
724 * extent where there are no ordered extents. As long as there
725 * are no delalloc bytes in this area, it is safe to update
726 * disk_i_size to the end of the region.
727 */
728 if (i_size_test > offset &&
729 !test_range_bit(io_tree, offset, i_size_test - 1,
730 EXTENT_DELALLOC, 0, NULL)) {
731 new_i_size = min_t(u64, i_size_test, i_size);
732 }
733 BTRFS_I(inode)->disk_i_size = new_i_size;
734 ret = 0;
735 out:
736 /*
737 * we need to remove the ordered extent with the tree lock held
738 * so that other people calling this function don't find our fully
739 * processed ordered entry and skip updating the i_size
740 */
741 if (ordered)
742 __btrfs_remove_ordered_extent(inode, ordered);
743 spin_unlock(&tree->lock);
744 if (ordered)
745 wake_up(&ordered->wait);
746 return ret;
747 }
748
749 /*
750 * search the ordered extents for one corresponding to 'offset' and
751 * try to find a checksum. This is used because we allow pages to
752 * be reclaimed before their checksum is actually put into the btree
753 */
754 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
755 u32 *sum)
756 {
757 struct btrfs_ordered_sum *ordered_sum;
758 struct btrfs_sector_sum *sector_sums;
759 struct btrfs_ordered_extent *ordered;
760 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
761 unsigned long num_sectors;
762 unsigned long i;
763 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
764 int ret = 1;
765
766 ordered = btrfs_lookup_ordered_extent(inode, offset);
767 if (!ordered)
768 return 1;
769
770 spin_lock(&tree->lock);
771 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
772 if (disk_bytenr >= ordered_sum->bytenr) {
773 num_sectors = ordered_sum->len / sectorsize;
774 sector_sums = ordered_sum->sums;
775 for (i = 0; i < num_sectors; i++) {
776 if (sector_sums[i].bytenr == disk_bytenr) {
777 *sum = sector_sums[i].sum;
778 ret = 0;
779 goto out;
780 }
781 }
782 }
783 }
784 out:
785 spin_unlock(&tree->lock);
786 btrfs_put_ordered_extent(ordered);
787 return ret;
788 }
789
790
791 /*
792 * add a given inode to the list of inodes that must be fully on
793 * disk before a transaction commit finishes.
794 *
795 * This basically gives us the ext3 style data=ordered mode, and it is mostly
796 * used to make sure renamed files are fully on disk.
797 *
798 * It is a noop if the inode is already fully on disk.
799 *
800 * If trans is not null, we'll do a friendly check for a transaction that
801 * is already flushing things and force the IO down ourselves.
802 */
803 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
804 struct btrfs_root *root,
805 struct inode *inode)
806 {
807 u64 last_mod;
808
809 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
810
811 /*
812 * if this file hasn't been changed since the last transaction
813 * commit, we can safely return without doing anything
814 */
815 if (last_mod < root->fs_info->last_trans_committed)
816 return 0;
817
818 /*
819 * the transaction is already committing. Just start the IO and
820 * don't bother with all of this list nonsense
821 */
822 if (trans && root->fs_info->running_transaction->blocked) {
823 btrfs_wait_ordered_range(inode, 0, (u64)-1);
824 return 0;
825 }
826
827 spin_lock(&root->fs_info->ordered_extent_lock);
828 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
829 list_add_tail(&BTRFS_I(inode)->ordered_operations,
830 &root->fs_info->ordered_operations);
831 }
832 spin_unlock(&root->fs_info->ordered_extent_lock);
833
834 return 0;
835 }
This page took 0.067135 seconds and 5 git commands to generate.