Btrfs: avoid syncing log in the fast fsync path when not necessary
[deliverable/linux.git] / fs / btrfs / ordered-data.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
36 }
37
38 /* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
43 {
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
46 struct btrfs_ordered_extent *entry;
47
48 while (*p) {
49 parent = *p;
50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52 if (file_offset < entry->file_offset)
53 p = &(*p)->rb_left;
54 else if (file_offset >= entry_end(entry))
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63 }
64
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67 {
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 "%llu", offset);
71 }
72
73 /*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
79 {
80 struct rb_node *n = root->rb_node;
81 struct rb_node *prev = NULL;
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
85
86 while (n) {
87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 prev = n;
89 prev_entry = entry;
90
91 if (file_offset < entry->file_offset)
92 n = n->rb_left;
93 else if (file_offset >= entry_end(entry))
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
101 while (prev && file_offset >= entry_end(prev_entry)) {
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
115 while (prev && file_offset < entry_end(prev_entry)) {
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
122 }
123 *prev_ret = prev;
124 return NULL;
125 }
126
127 /*
128 * helper to check if a given offset is inside a given entry
129 */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136 }
137
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140 {
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145 }
146
147 /*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
153 {
154 struct rb_root *root = &tree->tree;
155 struct rb_node *prev = NULL;
156 struct rb_node *ret;
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
166 if (!ret)
167 ret = prev;
168 if (ret)
169 tree->last = ret;
170 return ret;
171 }
172
173 /* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
186 int type, int dio, int compress_type)
187 {
188 struct btrfs_root *root = BTRFS_I(inode)->root;
189 struct btrfs_ordered_inode_tree *tree;
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
192
193 tree = &BTRFS_I(inode)->ordered_tree;
194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 if (!entry)
196 return -ENOMEM;
197
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
201 entry->disk_len = disk_len;
202 entry->bytes_left = len;
203 entry->inode = igrab(inode);
204 entry->compress_type = compress_type;
205 entry->truncated_len = (u64)-1;
206 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
207 set_bit(type, &entry->flags);
208
209 if (dio)
210 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211
212 /* one ref for the tree */
213 atomic_set(&entry->refs, 1);
214 init_waitqueue_head(&entry->wait);
215 INIT_LIST_HEAD(&entry->list);
216 INIT_LIST_HEAD(&entry->root_extent_list);
217 INIT_LIST_HEAD(&entry->work_list);
218 init_completion(&entry->completion);
219 INIT_LIST_HEAD(&entry->log_list);
220 INIT_LIST_HEAD(&entry->trans_list);
221
222 trace_btrfs_ordered_extent_add(inode, entry);
223
224 spin_lock_irq(&tree->lock);
225 node = tree_insert(&tree->tree, file_offset,
226 &entry->rb_node);
227 if (node)
228 ordered_data_tree_panic(inode, -EEXIST, file_offset);
229 spin_unlock_irq(&tree->lock);
230
231 spin_lock(&root->ordered_extent_lock);
232 list_add_tail(&entry->root_extent_list,
233 &root->ordered_extents);
234 root->nr_ordered_extents++;
235 if (root->nr_ordered_extents == 1) {
236 spin_lock(&root->fs_info->ordered_root_lock);
237 BUG_ON(!list_empty(&root->ordered_root));
238 list_add_tail(&root->ordered_root,
239 &root->fs_info->ordered_roots);
240 spin_unlock(&root->fs_info->ordered_root_lock);
241 }
242 spin_unlock(&root->ordered_extent_lock);
243
244 return 0;
245 }
246
247 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
248 u64 start, u64 len, u64 disk_len, int type)
249 {
250 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 disk_len, type, 0,
252 BTRFS_COMPRESS_NONE);
253 }
254
255 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
256 u64 start, u64 len, u64 disk_len, int type)
257 {
258 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
259 disk_len, type, 1,
260 BTRFS_COMPRESS_NONE);
261 }
262
263 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
264 u64 start, u64 len, u64 disk_len,
265 int type, int compress_type)
266 {
267 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
268 disk_len, type, 0,
269 compress_type);
270 }
271
272 /*
273 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
274 * when an ordered extent is finished. If the list covers more than one
275 * ordered extent, it is split across multiples.
276 */
277 void btrfs_add_ordered_sum(struct inode *inode,
278 struct btrfs_ordered_extent *entry,
279 struct btrfs_ordered_sum *sum)
280 {
281 struct btrfs_ordered_inode_tree *tree;
282
283 tree = &BTRFS_I(inode)->ordered_tree;
284 spin_lock_irq(&tree->lock);
285 list_add_tail(&sum->list, &entry->list);
286 spin_unlock_irq(&tree->lock);
287 }
288
289 /*
290 * this is used to account for finished IO across a given range
291 * of the file. The IO may span ordered extents. If
292 * a given ordered_extent is completely done, 1 is returned, otherwise
293 * 0.
294 *
295 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
296 * to make sure this function only returns 1 once for a given ordered extent.
297 *
298 * file_offset is updated to one byte past the range that is recorded as
299 * complete. This allows you to walk forward in the file.
300 */
301 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
302 struct btrfs_ordered_extent **cached,
303 u64 *file_offset, u64 io_size, int uptodate)
304 {
305 struct btrfs_ordered_inode_tree *tree;
306 struct rb_node *node;
307 struct btrfs_ordered_extent *entry = NULL;
308 int ret;
309 unsigned long flags;
310 u64 dec_end;
311 u64 dec_start;
312 u64 to_dec;
313
314 tree = &BTRFS_I(inode)->ordered_tree;
315 spin_lock_irqsave(&tree->lock, flags);
316 node = tree_search(tree, *file_offset);
317 if (!node) {
318 ret = 1;
319 goto out;
320 }
321
322 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
323 if (!offset_in_entry(entry, *file_offset)) {
324 ret = 1;
325 goto out;
326 }
327
328 dec_start = max(*file_offset, entry->file_offset);
329 dec_end = min(*file_offset + io_size, entry->file_offset +
330 entry->len);
331 *file_offset = dec_end;
332 if (dec_start > dec_end) {
333 btrfs_crit(BTRFS_I(inode)->root->fs_info,
334 "bad ordering dec_start %llu end %llu", dec_start, dec_end);
335 }
336 to_dec = dec_end - dec_start;
337 if (to_dec > entry->bytes_left) {
338 btrfs_crit(BTRFS_I(inode)->root->fs_info,
339 "bad ordered accounting left %llu size %llu",
340 entry->bytes_left, to_dec);
341 }
342 entry->bytes_left -= to_dec;
343 if (!uptodate)
344 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
345
346 if (entry->bytes_left == 0) {
347 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
348 if (waitqueue_active(&entry->wait))
349 wake_up(&entry->wait);
350 } else {
351 ret = 1;
352 }
353 out:
354 if (!ret && cached && entry) {
355 *cached = entry;
356 atomic_inc(&entry->refs);
357 }
358 spin_unlock_irqrestore(&tree->lock, flags);
359 return ret == 0;
360 }
361
362 /*
363 * this is used to account for finished IO across a given range
364 * of the file. The IO should not span ordered extents. If
365 * a given ordered_extent is completely done, 1 is returned, otherwise
366 * 0.
367 *
368 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
369 * to make sure this function only returns 1 once for a given ordered extent.
370 */
371 int btrfs_dec_test_ordered_pending(struct inode *inode,
372 struct btrfs_ordered_extent **cached,
373 u64 file_offset, u64 io_size, int uptodate)
374 {
375 struct btrfs_ordered_inode_tree *tree;
376 struct rb_node *node;
377 struct btrfs_ordered_extent *entry = NULL;
378 unsigned long flags;
379 int ret;
380
381 tree = &BTRFS_I(inode)->ordered_tree;
382 spin_lock_irqsave(&tree->lock, flags);
383 if (cached && *cached) {
384 entry = *cached;
385 goto have_entry;
386 }
387
388 node = tree_search(tree, file_offset);
389 if (!node) {
390 ret = 1;
391 goto out;
392 }
393
394 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
395 have_entry:
396 if (!offset_in_entry(entry, file_offset)) {
397 ret = 1;
398 goto out;
399 }
400
401 if (io_size > entry->bytes_left) {
402 btrfs_crit(BTRFS_I(inode)->root->fs_info,
403 "bad ordered accounting left %llu size %llu",
404 entry->bytes_left, io_size);
405 }
406 entry->bytes_left -= io_size;
407 if (!uptodate)
408 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
409
410 if (entry->bytes_left == 0) {
411 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
412 if (waitqueue_active(&entry->wait))
413 wake_up(&entry->wait);
414 } else {
415 ret = 1;
416 }
417 out:
418 if (!ret && cached && entry) {
419 *cached = entry;
420 atomic_inc(&entry->refs);
421 }
422 spin_unlock_irqrestore(&tree->lock, flags);
423 return ret == 0;
424 }
425
426 /* Needs to either be called under a log transaction or the log_mutex */
427 void btrfs_get_logged_extents(struct inode *inode,
428 struct list_head *logged_list,
429 const loff_t start,
430 const loff_t end)
431 {
432 struct btrfs_ordered_inode_tree *tree;
433 struct btrfs_ordered_extent *ordered;
434 struct rb_node *n;
435 struct rb_node *prev;
436
437 tree = &BTRFS_I(inode)->ordered_tree;
438 spin_lock_irq(&tree->lock);
439 n = __tree_search(&tree->tree, end, &prev);
440 if (!n)
441 n = prev;
442 for (; n; n = rb_prev(n)) {
443 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
444 if (ordered->file_offset > end)
445 continue;
446 if (entry_end(ordered) <= start)
447 break;
448 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
449 continue;
450 list_add(&ordered->log_list, logged_list);
451 atomic_inc(&ordered->refs);
452 }
453 spin_unlock_irq(&tree->lock);
454 }
455
456 void btrfs_put_logged_extents(struct list_head *logged_list)
457 {
458 struct btrfs_ordered_extent *ordered;
459
460 while (!list_empty(logged_list)) {
461 ordered = list_first_entry(logged_list,
462 struct btrfs_ordered_extent,
463 log_list);
464 list_del_init(&ordered->log_list);
465 btrfs_put_ordered_extent(ordered);
466 }
467 }
468
469 void btrfs_submit_logged_extents(struct list_head *logged_list,
470 struct btrfs_root *log)
471 {
472 int index = log->log_transid % 2;
473
474 spin_lock_irq(&log->log_extents_lock[index]);
475 list_splice_tail(logged_list, &log->logged_list[index]);
476 spin_unlock_irq(&log->log_extents_lock[index]);
477 }
478
479 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
480 struct btrfs_root *log, u64 transid)
481 {
482 struct btrfs_ordered_extent *ordered;
483 int index = transid % 2;
484
485 spin_lock_irq(&log->log_extents_lock[index]);
486 while (!list_empty(&log->logged_list[index])) {
487 ordered = list_first_entry(&log->logged_list[index],
488 struct btrfs_ordered_extent,
489 log_list);
490 list_del_init(&ordered->log_list);
491 spin_unlock_irq(&log->log_extents_lock[index]);
492
493 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
494 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
495 struct inode *inode = ordered->inode;
496 u64 start = ordered->file_offset;
497 u64 end = ordered->file_offset + ordered->len - 1;
498
499 WARN_ON(!inode);
500 filemap_fdatawrite_range(inode->i_mapping, start, end);
501 }
502 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
503 &ordered->flags));
504
505 list_add_tail(&ordered->trans_list, &trans->ordered);
506 spin_lock_irq(&log->log_extents_lock[index]);
507 }
508 spin_unlock_irq(&log->log_extents_lock[index]);
509 }
510
511 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
512 {
513 struct btrfs_ordered_extent *ordered;
514 int index = transid % 2;
515
516 spin_lock_irq(&log->log_extents_lock[index]);
517 while (!list_empty(&log->logged_list[index])) {
518 ordered = list_first_entry(&log->logged_list[index],
519 struct btrfs_ordered_extent,
520 log_list);
521 list_del_init(&ordered->log_list);
522 spin_unlock_irq(&log->log_extents_lock[index]);
523 btrfs_put_ordered_extent(ordered);
524 spin_lock_irq(&log->log_extents_lock[index]);
525 }
526 spin_unlock_irq(&log->log_extents_lock[index]);
527 }
528
529 /*
530 * used to drop a reference on an ordered extent. This will free
531 * the extent if the last reference is dropped
532 */
533 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
534 {
535 struct list_head *cur;
536 struct btrfs_ordered_sum *sum;
537
538 trace_btrfs_ordered_extent_put(entry->inode, entry);
539
540 if (atomic_dec_and_test(&entry->refs)) {
541 if (entry->inode)
542 btrfs_add_delayed_iput(entry->inode);
543 while (!list_empty(&entry->list)) {
544 cur = entry->list.next;
545 sum = list_entry(cur, struct btrfs_ordered_sum, list);
546 list_del(&sum->list);
547 kfree(sum);
548 }
549 kmem_cache_free(btrfs_ordered_extent_cache, entry);
550 }
551 }
552
553 /*
554 * remove an ordered extent from the tree. No references are dropped
555 * and waiters are woken up.
556 */
557 void btrfs_remove_ordered_extent(struct inode *inode,
558 struct btrfs_ordered_extent *entry)
559 {
560 struct btrfs_ordered_inode_tree *tree;
561 struct btrfs_root *root = BTRFS_I(inode)->root;
562 struct rb_node *node;
563
564 tree = &BTRFS_I(inode)->ordered_tree;
565 spin_lock_irq(&tree->lock);
566 node = &entry->rb_node;
567 rb_erase(node, &tree->tree);
568 if (tree->last == node)
569 tree->last = NULL;
570 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
571 spin_unlock_irq(&tree->lock);
572
573 spin_lock(&root->ordered_extent_lock);
574 list_del_init(&entry->root_extent_list);
575 root->nr_ordered_extents--;
576
577 trace_btrfs_ordered_extent_remove(inode, entry);
578
579 if (!root->nr_ordered_extents) {
580 spin_lock(&root->fs_info->ordered_root_lock);
581 BUG_ON(list_empty(&root->ordered_root));
582 list_del_init(&root->ordered_root);
583 spin_unlock(&root->fs_info->ordered_root_lock);
584 }
585 spin_unlock(&root->ordered_extent_lock);
586 wake_up(&entry->wait);
587 }
588
589 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
590 {
591 struct btrfs_ordered_extent *ordered;
592
593 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
594 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
595 complete(&ordered->completion);
596 }
597
598 /*
599 * wait for all the ordered extents in a root. This is done when balancing
600 * space between drives.
601 */
602 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
603 {
604 struct list_head splice, works;
605 struct btrfs_ordered_extent *ordered, *next;
606 int count = 0;
607
608 INIT_LIST_HEAD(&splice);
609 INIT_LIST_HEAD(&works);
610
611 mutex_lock(&root->ordered_extent_mutex);
612 spin_lock(&root->ordered_extent_lock);
613 list_splice_init(&root->ordered_extents, &splice);
614 while (!list_empty(&splice) && nr) {
615 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
616 root_extent_list);
617 list_move_tail(&ordered->root_extent_list,
618 &root->ordered_extents);
619 atomic_inc(&ordered->refs);
620 spin_unlock(&root->ordered_extent_lock);
621
622 btrfs_init_work(&ordered->flush_work,
623 btrfs_flush_delalloc_helper,
624 btrfs_run_ordered_extent_work, NULL, NULL);
625 list_add_tail(&ordered->work_list, &works);
626 btrfs_queue_work(root->fs_info->flush_workers,
627 &ordered->flush_work);
628
629 cond_resched();
630 spin_lock(&root->ordered_extent_lock);
631 if (nr != -1)
632 nr--;
633 count++;
634 }
635 list_splice_tail(&splice, &root->ordered_extents);
636 spin_unlock(&root->ordered_extent_lock);
637
638 list_for_each_entry_safe(ordered, next, &works, work_list) {
639 list_del_init(&ordered->work_list);
640 wait_for_completion(&ordered->completion);
641 btrfs_put_ordered_extent(ordered);
642 cond_resched();
643 }
644 mutex_unlock(&root->ordered_extent_mutex);
645
646 return count;
647 }
648
649 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
650 {
651 struct btrfs_root *root;
652 struct list_head splice;
653 int done;
654
655 INIT_LIST_HEAD(&splice);
656
657 mutex_lock(&fs_info->ordered_operations_mutex);
658 spin_lock(&fs_info->ordered_root_lock);
659 list_splice_init(&fs_info->ordered_roots, &splice);
660 while (!list_empty(&splice) && nr) {
661 root = list_first_entry(&splice, struct btrfs_root,
662 ordered_root);
663 root = btrfs_grab_fs_root(root);
664 BUG_ON(!root);
665 list_move_tail(&root->ordered_root,
666 &fs_info->ordered_roots);
667 spin_unlock(&fs_info->ordered_root_lock);
668
669 done = btrfs_wait_ordered_extents(root, nr);
670 btrfs_put_fs_root(root);
671
672 spin_lock(&fs_info->ordered_root_lock);
673 if (nr != -1) {
674 nr -= done;
675 WARN_ON(nr < 0);
676 }
677 }
678 list_splice_tail(&splice, &fs_info->ordered_roots);
679 spin_unlock(&fs_info->ordered_root_lock);
680 mutex_unlock(&fs_info->ordered_operations_mutex);
681 }
682
683 /*
684 * Used to start IO or wait for a given ordered extent to finish.
685 *
686 * If wait is one, this effectively waits on page writeback for all the pages
687 * in the extent, and it waits on the io completion code to insert
688 * metadata into the btree corresponding to the extent
689 */
690 void btrfs_start_ordered_extent(struct inode *inode,
691 struct btrfs_ordered_extent *entry,
692 int wait)
693 {
694 u64 start = entry->file_offset;
695 u64 end = start + entry->len - 1;
696
697 trace_btrfs_ordered_extent_start(inode, entry);
698
699 /*
700 * pages in the range can be dirty, clean or writeback. We
701 * start IO on any dirty ones so the wait doesn't stall waiting
702 * for the flusher thread to find them
703 */
704 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
705 filemap_fdatawrite_range(inode->i_mapping, start, end);
706 if (wait) {
707 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
708 &entry->flags));
709 }
710 }
711
712 /*
713 * Used to wait on ordered extents across a large range of bytes.
714 */
715 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
716 {
717 int ret = 0;
718 int ret_wb = 0;
719 u64 end;
720 u64 orig_end;
721 struct btrfs_ordered_extent *ordered;
722
723 if (start + len < start) {
724 orig_end = INT_LIMIT(loff_t);
725 } else {
726 orig_end = start + len - 1;
727 if (orig_end > INT_LIMIT(loff_t))
728 orig_end = INT_LIMIT(loff_t);
729 }
730
731 /* start IO across the range first to instantiate any delalloc
732 * extents
733 */
734 ret = btrfs_fdatawrite_range(inode, start, orig_end);
735 if (ret)
736 return ret;
737
738 /*
739 * If we have a writeback error don't return immediately. Wait first
740 * for any ordered extents that haven't completed yet. This is to make
741 * sure no one can dirty the same page ranges and call writepages()
742 * before the ordered extents complete - to avoid failures (-EEXIST)
743 * when adding the new ordered extents to the ordered tree.
744 */
745 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
746
747 end = orig_end;
748 while (1) {
749 ordered = btrfs_lookup_first_ordered_extent(inode, end);
750 if (!ordered)
751 break;
752 if (ordered->file_offset > orig_end) {
753 btrfs_put_ordered_extent(ordered);
754 break;
755 }
756 if (ordered->file_offset + ordered->len <= start) {
757 btrfs_put_ordered_extent(ordered);
758 break;
759 }
760 btrfs_start_ordered_extent(inode, ordered, 1);
761 end = ordered->file_offset;
762 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
763 ret = -EIO;
764 btrfs_put_ordered_extent(ordered);
765 if (ret || end == 0 || end == start)
766 break;
767 end--;
768 }
769 return ret_wb ? ret_wb : ret;
770 }
771
772 /*
773 * find an ordered extent corresponding to file_offset. return NULL if
774 * nothing is found, otherwise take a reference on the extent and return it
775 */
776 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
777 u64 file_offset)
778 {
779 struct btrfs_ordered_inode_tree *tree;
780 struct rb_node *node;
781 struct btrfs_ordered_extent *entry = NULL;
782
783 tree = &BTRFS_I(inode)->ordered_tree;
784 spin_lock_irq(&tree->lock);
785 node = tree_search(tree, file_offset);
786 if (!node)
787 goto out;
788
789 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
790 if (!offset_in_entry(entry, file_offset))
791 entry = NULL;
792 if (entry)
793 atomic_inc(&entry->refs);
794 out:
795 spin_unlock_irq(&tree->lock);
796 return entry;
797 }
798
799 /* Since the DIO code tries to lock a wide area we need to look for any ordered
800 * extents that exist in the range, rather than just the start of the range.
801 */
802 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
803 u64 file_offset,
804 u64 len)
805 {
806 struct btrfs_ordered_inode_tree *tree;
807 struct rb_node *node;
808 struct btrfs_ordered_extent *entry = NULL;
809
810 tree = &BTRFS_I(inode)->ordered_tree;
811 spin_lock_irq(&tree->lock);
812 node = tree_search(tree, file_offset);
813 if (!node) {
814 node = tree_search(tree, file_offset + len);
815 if (!node)
816 goto out;
817 }
818
819 while (1) {
820 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
821 if (range_overlaps(entry, file_offset, len))
822 break;
823
824 if (entry->file_offset >= file_offset + len) {
825 entry = NULL;
826 break;
827 }
828 entry = NULL;
829 node = rb_next(node);
830 if (!node)
831 break;
832 }
833 out:
834 if (entry)
835 atomic_inc(&entry->refs);
836 spin_unlock_irq(&tree->lock);
837 return entry;
838 }
839
840 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
841 u64 file_offset,
842 u64 len)
843 {
844 struct btrfs_ordered_extent *oe;
845
846 oe = btrfs_lookup_ordered_range(inode, file_offset, len);
847 if (oe) {
848 btrfs_put_ordered_extent(oe);
849 return true;
850 }
851 return false;
852 }
853
854 /*
855 * lookup and return any extent before 'file_offset'. NULL is returned
856 * if none is found
857 */
858 struct btrfs_ordered_extent *
859 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
860 {
861 struct btrfs_ordered_inode_tree *tree;
862 struct rb_node *node;
863 struct btrfs_ordered_extent *entry = NULL;
864
865 tree = &BTRFS_I(inode)->ordered_tree;
866 spin_lock_irq(&tree->lock);
867 node = tree_search(tree, file_offset);
868 if (!node)
869 goto out;
870
871 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
872 atomic_inc(&entry->refs);
873 out:
874 spin_unlock_irq(&tree->lock);
875 return entry;
876 }
877
878 /*
879 * After an extent is done, call this to conditionally update the on disk
880 * i_size. i_size is updated to cover any fully written part of the file.
881 */
882 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
883 struct btrfs_ordered_extent *ordered)
884 {
885 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
886 u64 disk_i_size;
887 u64 new_i_size;
888 u64 i_size = i_size_read(inode);
889 struct rb_node *node;
890 struct rb_node *prev = NULL;
891 struct btrfs_ordered_extent *test;
892 int ret = 1;
893
894 spin_lock_irq(&tree->lock);
895 if (ordered) {
896 offset = entry_end(ordered);
897 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
898 offset = min(offset,
899 ordered->file_offset +
900 ordered->truncated_len);
901 } else {
902 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
903 }
904 disk_i_size = BTRFS_I(inode)->disk_i_size;
905
906 /* truncate file */
907 if (disk_i_size > i_size) {
908 BTRFS_I(inode)->disk_i_size = i_size;
909 ret = 0;
910 goto out;
911 }
912
913 /*
914 * if the disk i_size is already at the inode->i_size, or
915 * this ordered extent is inside the disk i_size, we're done
916 */
917 if (disk_i_size == i_size)
918 goto out;
919
920 /*
921 * We still need to update disk_i_size if outstanding_isize is greater
922 * than disk_i_size.
923 */
924 if (offset <= disk_i_size &&
925 (!ordered || ordered->outstanding_isize <= disk_i_size))
926 goto out;
927
928 /*
929 * walk backward from this ordered extent to disk_i_size.
930 * if we find an ordered extent then we can't update disk i_size
931 * yet
932 */
933 if (ordered) {
934 node = rb_prev(&ordered->rb_node);
935 } else {
936 prev = tree_search(tree, offset);
937 /*
938 * we insert file extents without involving ordered struct,
939 * so there should be no ordered struct cover this offset
940 */
941 if (prev) {
942 test = rb_entry(prev, struct btrfs_ordered_extent,
943 rb_node);
944 BUG_ON(offset_in_entry(test, offset));
945 }
946 node = prev;
947 }
948 for (; node; node = rb_prev(node)) {
949 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
950
951 /* We treat this entry as if it doesnt exist */
952 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
953 continue;
954 if (test->file_offset + test->len <= disk_i_size)
955 break;
956 if (test->file_offset >= i_size)
957 break;
958 if (entry_end(test) > disk_i_size) {
959 /*
960 * we don't update disk_i_size now, so record this
961 * undealt i_size. Or we will not know the real
962 * i_size.
963 */
964 if (test->outstanding_isize < offset)
965 test->outstanding_isize = offset;
966 if (ordered &&
967 ordered->outstanding_isize >
968 test->outstanding_isize)
969 test->outstanding_isize =
970 ordered->outstanding_isize;
971 goto out;
972 }
973 }
974 new_i_size = min_t(u64, offset, i_size);
975
976 /*
977 * Some ordered extents may completed before the current one, and
978 * we hold the real i_size in ->outstanding_isize.
979 */
980 if (ordered && ordered->outstanding_isize > new_i_size)
981 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
982 BTRFS_I(inode)->disk_i_size = new_i_size;
983 ret = 0;
984 out:
985 /*
986 * We need to do this because we can't remove ordered extents until
987 * after the i_disk_size has been updated and then the inode has been
988 * updated to reflect the change, so we need to tell anybody who finds
989 * this ordered extent that we've already done all the real work, we
990 * just haven't completed all the other work.
991 */
992 if (ordered)
993 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
994 spin_unlock_irq(&tree->lock);
995 return ret;
996 }
997
998 /*
999 * search the ordered extents for one corresponding to 'offset' and
1000 * try to find a checksum. This is used because we allow pages to
1001 * be reclaimed before their checksum is actually put into the btree
1002 */
1003 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1004 u32 *sum, int len)
1005 {
1006 struct btrfs_ordered_sum *ordered_sum;
1007 struct btrfs_ordered_extent *ordered;
1008 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1009 unsigned long num_sectors;
1010 unsigned long i;
1011 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1012 int index = 0;
1013
1014 ordered = btrfs_lookup_ordered_extent(inode, offset);
1015 if (!ordered)
1016 return 0;
1017
1018 spin_lock_irq(&tree->lock);
1019 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1020 if (disk_bytenr >= ordered_sum->bytenr &&
1021 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1022 i = (disk_bytenr - ordered_sum->bytenr) >>
1023 inode->i_sb->s_blocksize_bits;
1024 num_sectors = ordered_sum->len >>
1025 inode->i_sb->s_blocksize_bits;
1026 num_sectors = min_t(int, len - index, num_sectors - i);
1027 memcpy(sum + index, ordered_sum->sums + i,
1028 num_sectors);
1029
1030 index += (int)num_sectors;
1031 if (index == len)
1032 goto out;
1033 disk_bytenr += num_sectors * sectorsize;
1034 }
1035 }
1036 out:
1037 spin_unlock_irq(&tree->lock);
1038 btrfs_put_ordered_extent(ordered);
1039 return index;
1040 }
1041
1042 int __init ordered_data_init(void)
1043 {
1044 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1045 sizeof(struct btrfs_ordered_extent), 0,
1046 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1047 NULL);
1048 if (!btrfs_ordered_extent_cache)
1049 return -ENOMEM;
1050
1051 return 0;
1052 }
1053
1054 void ordered_data_exit(void)
1055 {
1056 if (btrfs_ordered_extent_cache)
1057 kmem_cache_destroy(btrfs_ordered_extent_cache);
1058 }
This page took 0.080514 seconds and 5 git commands to generate.