Btrfs: Remove superfluous casts from u64 to unsigned long long
[deliverable/linux.git] / fs / btrfs / ordered-data.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
36 }
37
38 /* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
43 {
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
46 struct btrfs_ordered_extent *entry;
47
48 while (*p) {
49 parent = *p;
50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52 if (file_offset < entry->file_offset)
53 p = &(*p)->rb_left;
54 else if (file_offset >= entry_end(entry))
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63 }
64
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67 {
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 "%llu\n", offset);
71 }
72
73 /*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
79 {
80 struct rb_node *n = root->rb_node;
81 struct rb_node *prev = NULL;
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
85
86 while (n) {
87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 prev = n;
89 prev_entry = entry;
90
91 if (file_offset < entry->file_offset)
92 n = n->rb_left;
93 else if (file_offset >= entry_end(entry))
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
101 while (prev && file_offset >= entry_end(prev_entry)) {
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
115 while (prev && file_offset < entry_end(prev_entry)) {
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
122 }
123 *prev_ret = prev;
124 return NULL;
125 }
126
127 /*
128 * helper to check if a given offset is inside a given entry
129 */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136 }
137
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140 {
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145 }
146
147 /*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
153 {
154 struct rb_root *root = &tree->tree;
155 struct rb_node *prev = NULL;
156 struct rb_node *ret;
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
166 if (!ret)
167 ret = prev;
168 if (ret)
169 tree->last = ret;
170 return ret;
171 }
172
173 /* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
186 int type, int dio, int compress_type)
187 {
188 struct btrfs_root *root = BTRFS_I(inode)->root;
189 struct btrfs_ordered_inode_tree *tree;
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
192
193 tree = &BTRFS_I(inode)->ordered_tree;
194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 if (!entry)
196 return -ENOMEM;
197
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
204 entry->disk_len = disk_len;
205 entry->bytes_left = len;
206 entry->inode = igrab(inode);
207 entry->compress_type = compress_type;
208 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
209 set_bit(type, &entry->flags);
210
211 if (dio)
212 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
213
214 /* one ref for the tree */
215 atomic_set(&entry->refs, 1);
216 init_waitqueue_head(&entry->wait);
217 INIT_LIST_HEAD(&entry->list);
218 INIT_LIST_HEAD(&entry->root_extent_list);
219 INIT_LIST_HEAD(&entry->work_list);
220 init_completion(&entry->completion);
221 INIT_LIST_HEAD(&entry->log_list);
222
223 trace_btrfs_ordered_extent_add(inode, entry);
224
225 spin_lock_irq(&tree->lock);
226 node = tree_insert(&tree->tree, file_offset,
227 &entry->rb_node);
228 if (node)
229 ordered_data_tree_panic(inode, -EEXIST, file_offset);
230 spin_unlock_irq(&tree->lock);
231
232 spin_lock(&root->ordered_extent_lock);
233 list_add_tail(&entry->root_extent_list,
234 &root->ordered_extents);
235 root->nr_ordered_extents++;
236 if (root->nr_ordered_extents == 1) {
237 spin_lock(&root->fs_info->ordered_root_lock);
238 BUG_ON(!list_empty(&root->ordered_root));
239 list_add_tail(&root->ordered_root,
240 &root->fs_info->ordered_roots);
241 spin_unlock(&root->fs_info->ordered_root_lock);
242 }
243 spin_unlock(&root->ordered_extent_lock);
244
245 return 0;
246 }
247
248 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
249 u64 start, u64 len, u64 disk_len, int type)
250 {
251 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
252 disk_len, type, 0,
253 BTRFS_COMPRESS_NONE);
254 }
255
256 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
257 u64 start, u64 len, u64 disk_len, int type)
258 {
259 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
260 disk_len, type, 1,
261 BTRFS_COMPRESS_NONE);
262 }
263
264 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
265 u64 start, u64 len, u64 disk_len,
266 int type, int compress_type)
267 {
268 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
269 disk_len, type, 0,
270 compress_type);
271 }
272
273 /*
274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
275 * when an ordered extent is finished. If the list covers more than one
276 * ordered extent, it is split across multiples.
277 */
278 void btrfs_add_ordered_sum(struct inode *inode,
279 struct btrfs_ordered_extent *entry,
280 struct btrfs_ordered_sum *sum)
281 {
282 struct btrfs_ordered_inode_tree *tree;
283
284 tree = &BTRFS_I(inode)->ordered_tree;
285 spin_lock_irq(&tree->lock);
286 list_add_tail(&sum->list, &entry->list);
287 WARN_ON(entry->csum_bytes_left < sum->len);
288 entry->csum_bytes_left -= sum->len;
289 if (entry->csum_bytes_left == 0)
290 wake_up(&entry->wait);
291 spin_unlock_irq(&tree->lock);
292 }
293
294 /*
295 * this is used to account for finished IO across a given range
296 * of the file. The IO may span ordered extents. If
297 * a given ordered_extent is completely done, 1 is returned, otherwise
298 * 0.
299 *
300 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
301 * to make sure this function only returns 1 once for a given ordered extent.
302 *
303 * file_offset is updated to one byte past the range that is recorded as
304 * complete. This allows you to walk forward in the file.
305 */
306 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
307 struct btrfs_ordered_extent **cached,
308 u64 *file_offset, u64 io_size, int uptodate)
309 {
310 struct btrfs_ordered_inode_tree *tree;
311 struct rb_node *node;
312 struct btrfs_ordered_extent *entry = NULL;
313 int ret;
314 unsigned long flags;
315 u64 dec_end;
316 u64 dec_start;
317 u64 to_dec;
318
319 tree = &BTRFS_I(inode)->ordered_tree;
320 spin_lock_irqsave(&tree->lock, flags);
321 node = tree_search(tree, *file_offset);
322 if (!node) {
323 ret = 1;
324 goto out;
325 }
326
327 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
328 if (!offset_in_entry(entry, *file_offset)) {
329 ret = 1;
330 goto out;
331 }
332
333 dec_start = max(*file_offset, entry->file_offset);
334 dec_end = min(*file_offset + io_size, entry->file_offset +
335 entry->len);
336 *file_offset = dec_end;
337 if (dec_start > dec_end) {
338 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
339 dec_start, dec_end);
340 }
341 to_dec = dec_end - dec_start;
342 if (to_dec > entry->bytes_left) {
343 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
344 entry->bytes_left, to_dec);
345 }
346 entry->bytes_left -= to_dec;
347 if (!uptodate)
348 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
349
350 if (entry->bytes_left == 0)
351 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
352 else
353 ret = 1;
354 out:
355 if (!ret && cached && entry) {
356 *cached = entry;
357 atomic_inc(&entry->refs);
358 }
359 spin_unlock_irqrestore(&tree->lock, flags);
360 return ret == 0;
361 }
362
363 /*
364 * this is used to account for finished IO across a given range
365 * of the file. The IO should not span ordered extents. If
366 * a given ordered_extent is completely done, 1 is returned, otherwise
367 * 0.
368 *
369 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
370 * to make sure this function only returns 1 once for a given ordered extent.
371 */
372 int btrfs_dec_test_ordered_pending(struct inode *inode,
373 struct btrfs_ordered_extent **cached,
374 u64 file_offset, u64 io_size, int uptodate)
375 {
376 struct btrfs_ordered_inode_tree *tree;
377 struct rb_node *node;
378 struct btrfs_ordered_extent *entry = NULL;
379 unsigned long flags;
380 int ret;
381
382 tree = &BTRFS_I(inode)->ordered_tree;
383 spin_lock_irqsave(&tree->lock, flags);
384 if (cached && *cached) {
385 entry = *cached;
386 goto have_entry;
387 }
388
389 node = tree_search(tree, file_offset);
390 if (!node) {
391 ret = 1;
392 goto out;
393 }
394
395 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
396 have_entry:
397 if (!offset_in_entry(entry, file_offset)) {
398 ret = 1;
399 goto out;
400 }
401
402 if (io_size > entry->bytes_left) {
403 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
404 entry->bytes_left, io_size);
405 }
406 entry->bytes_left -= io_size;
407 if (!uptodate)
408 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
409
410 if (entry->bytes_left == 0)
411 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
412 else
413 ret = 1;
414 out:
415 if (!ret && cached && entry) {
416 *cached = entry;
417 atomic_inc(&entry->refs);
418 }
419 spin_unlock_irqrestore(&tree->lock, flags);
420 return ret == 0;
421 }
422
423 /* Needs to either be called under a log transaction or the log_mutex */
424 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
425 {
426 struct btrfs_ordered_inode_tree *tree;
427 struct btrfs_ordered_extent *ordered;
428 struct rb_node *n;
429 int index = log->log_transid % 2;
430
431 tree = &BTRFS_I(inode)->ordered_tree;
432 spin_lock_irq(&tree->lock);
433 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
434 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
435 spin_lock(&log->log_extents_lock[index]);
436 if (list_empty(&ordered->log_list)) {
437 list_add_tail(&ordered->log_list, &log->logged_list[index]);
438 atomic_inc(&ordered->refs);
439 }
440 spin_unlock(&log->log_extents_lock[index]);
441 }
442 spin_unlock_irq(&tree->lock);
443 }
444
445 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
446 {
447 struct btrfs_ordered_extent *ordered;
448 int index = transid % 2;
449
450 spin_lock_irq(&log->log_extents_lock[index]);
451 while (!list_empty(&log->logged_list[index])) {
452 ordered = list_first_entry(&log->logged_list[index],
453 struct btrfs_ordered_extent,
454 log_list);
455 list_del_init(&ordered->log_list);
456 spin_unlock_irq(&log->log_extents_lock[index]);
457 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
458 &ordered->flags));
459 btrfs_put_ordered_extent(ordered);
460 spin_lock_irq(&log->log_extents_lock[index]);
461 }
462 spin_unlock_irq(&log->log_extents_lock[index]);
463 }
464
465 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
466 {
467 struct btrfs_ordered_extent *ordered;
468 int index = transid % 2;
469
470 spin_lock_irq(&log->log_extents_lock[index]);
471 while (!list_empty(&log->logged_list[index])) {
472 ordered = list_first_entry(&log->logged_list[index],
473 struct btrfs_ordered_extent,
474 log_list);
475 list_del_init(&ordered->log_list);
476 spin_unlock_irq(&log->log_extents_lock[index]);
477 btrfs_put_ordered_extent(ordered);
478 spin_lock_irq(&log->log_extents_lock[index]);
479 }
480 spin_unlock_irq(&log->log_extents_lock[index]);
481 }
482
483 /*
484 * used to drop a reference on an ordered extent. This will free
485 * the extent if the last reference is dropped
486 */
487 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
488 {
489 struct list_head *cur;
490 struct btrfs_ordered_sum *sum;
491
492 trace_btrfs_ordered_extent_put(entry->inode, entry);
493
494 if (atomic_dec_and_test(&entry->refs)) {
495 if (entry->inode)
496 btrfs_add_delayed_iput(entry->inode);
497 while (!list_empty(&entry->list)) {
498 cur = entry->list.next;
499 sum = list_entry(cur, struct btrfs_ordered_sum, list);
500 list_del(&sum->list);
501 kfree(sum);
502 }
503 kmem_cache_free(btrfs_ordered_extent_cache, entry);
504 }
505 }
506
507 /*
508 * remove an ordered extent from the tree. No references are dropped
509 * and waiters are woken up.
510 */
511 void btrfs_remove_ordered_extent(struct inode *inode,
512 struct btrfs_ordered_extent *entry)
513 {
514 struct btrfs_ordered_inode_tree *tree;
515 struct btrfs_root *root = BTRFS_I(inode)->root;
516 struct rb_node *node;
517
518 tree = &BTRFS_I(inode)->ordered_tree;
519 spin_lock_irq(&tree->lock);
520 node = &entry->rb_node;
521 rb_erase(node, &tree->tree);
522 tree->last = NULL;
523 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
524 spin_unlock_irq(&tree->lock);
525
526 spin_lock(&root->ordered_extent_lock);
527 list_del_init(&entry->root_extent_list);
528 root->nr_ordered_extents--;
529
530 trace_btrfs_ordered_extent_remove(inode, entry);
531
532 /*
533 * we have no more ordered extents for this inode and
534 * no dirty pages. We can safely remove it from the
535 * list of ordered extents
536 */
537 if (RB_EMPTY_ROOT(&tree->tree) &&
538 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
539 list_del_init(&BTRFS_I(inode)->ordered_operations);
540 }
541
542 if (!root->nr_ordered_extents) {
543 spin_lock(&root->fs_info->ordered_root_lock);
544 BUG_ON(list_empty(&root->ordered_root));
545 list_del_init(&root->ordered_root);
546 spin_unlock(&root->fs_info->ordered_root_lock);
547 }
548 spin_unlock(&root->ordered_extent_lock);
549 wake_up(&entry->wait);
550 }
551
552 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
553 {
554 struct btrfs_ordered_extent *ordered;
555
556 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
557 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
558 complete(&ordered->completion);
559 }
560
561 /*
562 * wait for all the ordered extents in a root. This is done when balancing
563 * space between drives.
564 */
565 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
566 {
567 struct list_head splice, works;
568 struct btrfs_ordered_extent *ordered, *next;
569 struct inode *inode;
570
571 INIT_LIST_HEAD(&splice);
572 INIT_LIST_HEAD(&works);
573
574 mutex_lock(&root->fs_info->ordered_operations_mutex);
575 spin_lock(&root->ordered_extent_lock);
576 list_splice_init(&root->ordered_extents, &splice);
577 while (!list_empty(&splice)) {
578 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
579 root_extent_list);
580 list_move_tail(&ordered->root_extent_list,
581 &root->ordered_extents);
582 /*
583 * the inode may be getting freed (in sys_unlink path).
584 */
585 inode = igrab(ordered->inode);
586 if (!inode) {
587 cond_resched_lock(&root->ordered_extent_lock);
588 continue;
589 }
590
591 atomic_inc(&ordered->refs);
592 spin_unlock(&root->ordered_extent_lock);
593
594 ordered->flush_work.func = btrfs_run_ordered_extent_work;
595 list_add_tail(&ordered->work_list, &works);
596 btrfs_queue_worker(&root->fs_info->flush_workers,
597 &ordered->flush_work);
598
599 cond_resched();
600 spin_lock(&root->ordered_extent_lock);
601 }
602 spin_unlock(&root->ordered_extent_lock);
603
604 list_for_each_entry_safe(ordered, next, &works, work_list) {
605 list_del_init(&ordered->work_list);
606 wait_for_completion(&ordered->completion);
607
608 inode = ordered->inode;
609 btrfs_put_ordered_extent(ordered);
610 if (delay_iput)
611 btrfs_add_delayed_iput(inode);
612 else
613 iput(inode);
614
615 cond_resched();
616 }
617 mutex_unlock(&root->fs_info->ordered_operations_mutex);
618 }
619
620 void btrfs_wait_all_ordered_extents(struct btrfs_fs_info *fs_info,
621 int delay_iput)
622 {
623 struct btrfs_root *root;
624 struct list_head splice;
625
626 INIT_LIST_HEAD(&splice);
627
628 spin_lock(&fs_info->ordered_root_lock);
629 list_splice_init(&fs_info->ordered_roots, &splice);
630 while (!list_empty(&splice)) {
631 root = list_first_entry(&splice, struct btrfs_root,
632 ordered_root);
633 root = btrfs_grab_fs_root(root);
634 BUG_ON(!root);
635 list_move_tail(&root->ordered_root,
636 &fs_info->ordered_roots);
637 spin_unlock(&fs_info->ordered_root_lock);
638
639 btrfs_wait_ordered_extents(root, delay_iput);
640 btrfs_put_fs_root(root);
641
642 spin_lock(&fs_info->ordered_root_lock);
643 }
644 spin_unlock(&fs_info->ordered_root_lock);
645 }
646
647 /*
648 * this is used during transaction commit to write all the inodes
649 * added to the ordered operation list. These files must be fully on
650 * disk before the transaction commits.
651 *
652 * we have two modes here, one is to just start the IO via filemap_flush
653 * and the other is to wait for all the io. When we wait, we have an
654 * extra check to make sure the ordered operation list really is empty
655 * before we return
656 */
657 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
658 struct btrfs_root *root, int wait)
659 {
660 struct btrfs_inode *btrfs_inode;
661 struct inode *inode;
662 struct btrfs_transaction *cur_trans = trans->transaction;
663 struct list_head splice;
664 struct list_head works;
665 struct btrfs_delalloc_work *work, *next;
666 int ret = 0;
667
668 INIT_LIST_HEAD(&splice);
669 INIT_LIST_HEAD(&works);
670
671 mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
672 spin_lock(&root->fs_info->ordered_root_lock);
673 list_splice_init(&cur_trans->ordered_operations, &splice);
674 while (!list_empty(&splice)) {
675 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
676 ordered_operations);
677 inode = &btrfs_inode->vfs_inode;
678
679 list_del_init(&btrfs_inode->ordered_operations);
680
681 /*
682 * the inode may be getting freed (in sys_unlink path).
683 */
684 inode = igrab(inode);
685 if (!inode)
686 continue;
687
688 if (!wait)
689 list_add_tail(&BTRFS_I(inode)->ordered_operations,
690 &cur_trans->ordered_operations);
691 spin_unlock(&root->fs_info->ordered_root_lock);
692
693 work = btrfs_alloc_delalloc_work(inode, wait, 1);
694 if (!work) {
695 spin_lock(&root->fs_info->ordered_root_lock);
696 if (list_empty(&BTRFS_I(inode)->ordered_operations))
697 list_add_tail(&btrfs_inode->ordered_operations,
698 &splice);
699 list_splice_tail(&splice,
700 &cur_trans->ordered_operations);
701 spin_unlock(&root->fs_info->ordered_root_lock);
702 ret = -ENOMEM;
703 goto out;
704 }
705 list_add_tail(&work->list, &works);
706 btrfs_queue_worker(&root->fs_info->flush_workers,
707 &work->work);
708
709 cond_resched();
710 spin_lock(&root->fs_info->ordered_root_lock);
711 }
712 spin_unlock(&root->fs_info->ordered_root_lock);
713 out:
714 list_for_each_entry_safe(work, next, &works, list) {
715 list_del_init(&work->list);
716 btrfs_wait_and_free_delalloc_work(work);
717 }
718 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
719 return ret;
720 }
721
722 /*
723 * Used to start IO or wait for a given ordered extent to finish.
724 *
725 * If wait is one, this effectively waits on page writeback for all the pages
726 * in the extent, and it waits on the io completion code to insert
727 * metadata into the btree corresponding to the extent
728 */
729 void btrfs_start_ordered_extent(struct inode *inode,
730 struct btrfs_ordered_extent *entry,
731 int wait)
732 {
733 u64 start = entry->file_offset;
734 u64 end = start + entry->len - 1;
735
736 trace_btrfs_ordered_extent_start(inode, entry);
737
738 /*
739 * pages in the range can be dirty, clean or writeback. We
740 * start IO on any dirty ones so the wait doesn't stall waiting
741 * for the flusher thread to find them
742 */
743 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
744 filemap_fdatawrite_range(inode->i_mapping, start, end);
745 if (wait) {
746 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
747 &entry->flags));
748 }
749 }
750
751 /*
752 * Used to wait on ordered extents across a large range of bytes.
753 */
754 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
755 {
756 u64 end;
757 u64 orig_end;
758 struct btrfs_ordered_extent *ordered;
759
760 if (start + len < start) {
761 orig_end = INT_LIMIT(loff_t);
762 } else {
763 orig_end = start + len - 1;
764 if (orig_end > INT_LIMIT(loff_t))
765 orig_end = INT_LIMIT(loff_t);
766 }
767
768 /* start IO across the range first to instantiate any delalloc
769 * extents
770 */
771 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
772
773 /*
774 * So with compression we will find and lock a dirty page and clear the
775 * first one as dirty, setup an async extent, and immediately return
776 * with the entire range locked but with nobody actually marked with
777 * writeback. So we can't just filemap_write_and_wait_range() and
778 * expect it to work since it will just kick off a thread to do the
779 * actual work. So we need to call filemap_fdatawrite_range _again_
780 * since it will wait on the page lock, which won't be unlocked until
781 * after the pages have been marked as writeback and so we're good to go
782 * from there. We have to do this otherwise we'll miss the ordered
783 * extents and that results in badness. Please Josef, do not think you
784 * know better and pull this out at some point in the future, it is
785 * right and you are wrong.
786 */
787 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
788 &BTRFS_I(inode)->runtime_flags))
789 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
790
791 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
792
793 end = orig_end;
794 while (1) {
795 ordered = btrfs_lookup_first_ordered_extent(inode, end);
796 if (!ordered)
797 break;
798 if (ordered->file_offset > orig_end) {
799 btrfs_put_ordered_extent(ordered);
800 break;
801 }
802 if (ordered->file_offset + ordered->len < start) {
803 btrfs_put_ordered_extent(ordered);
804 break;
805 }
806 btrfs_start_ordered_extent(inode, ordered, 1);
807 end = ordered->file_offset;
808 btrfs_put_ordered_extent(ordered);
809 if (end == 0 || end == start)
810 break;
811 end--;
812 }
813 }
814
815 /*
816 * find an ordered extent corresponding to file_offset. return NULL if
817 * nothing is found, otherwise take a reference on the extent and return it
818 */
819 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
820 u64 file_offset)
821 {
822 struct btrfs_ordered_inode_tree *tree;
823 struct rb_node *node;
824 struct btrfs_ordered_extent *entry = NULL;
825
826 tree = &BTRFS_I(inode)->ordered_tree;
827 spin_lock_irq(&tree->lock);
828 node = tree_search(tree, file_offset);
829 if (!node)
830 goto out;
831
832 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
833 if (!offset_in_entry(entry, file_offset))
834 entry = NULL;
835 if (entry)
836 atomic_inc(&entry->refs);
837 out:
838 spin_unlock_irq(&tree->lock);
839 return entry;
840 }
841
842 /* Since the DIO code tries to lock a wide area we need to look for any ordered
843 * extents that exist in the range, rather than just the start of the range.
844 */
845 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
846 u64 file_offset,
847 u64 len)
848 {
849 struct btrfs_ordered_inode_tree *tree;
850 struct rb_node *node;
851 struct btrfs_ordered_extent *entry = NULL;
852
853 tree = &BTRFS_I(inode)->ordered_tree;
854 spin_lock_irq(&tree->lock);
855 node = tree_search(tree, file_offset);
856 if (!node) {
857 node = tree_search(tree, file_offset + len);
858 if (!node)
859 goto out;
860 }
861
862 while (1) {
863 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
864 if (range_overlaps(entry, file_offset, len))
865 break;
866
867 if (entry->file_offset >= file_offset + len) {
868 entry = NULL;
869 break;
870 }
871 entry = NULL;
872 node = rb_next(node);
873 if (!node)
874 break;
875 }
876 out:
877 if (entry)
878 atomic_inc(&entry->refs);
879 spin_unlock_irq(&tree->lock);
880 return entry;
881 }
882
883 /*
884 * lookup and return any extent before 'file_offset'. NULL is returned
885 * if none is found
886 */
887 struct btrfs_ordered_extent *
888 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
889 {
890 struct btrfs_ordered_inode_tree *tree;
891 struct rb_node *node;
892 struct btrfs_ordered_extent *entry = NULL;
893
894 tree = &BTRFS_I(inode)->ordered_tree;
895 spin_lock_irq(&tree->lock);
896 node = tree_search(tree, file_offset);
897 if (!node)
898 goto out;
899
900 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
901 atomic_inc(&entry->refs);
902 out:
903 spin_unlock_irq(&tree->lock);
904 return entry;
905 }
906
907 /*
908 * After an extent is done, call this to conditionally update the on disk
909 * i_size. i_size is updated to cover any fully written part of the file.
910 */
911 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
912 struct btrfs_ordered_extent *ordered)
913 {
914 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
915 u64 disk_i_size;
916 u64 new_i_size;
917 u64 i_size = i_size_read(inode);
918 struct rb_node *node;
919 struct rb_node *prev = NULL;
920 struct btrfs_ordered_extent *test;
921 int ret = 1;
922
923 if (ordered)
924 offset = entry_end(ordered);
925 else
926 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
927
928 spin_lock_irq(&tree->lock);
929 disk_i_size = BTRFS_I(inode)->disk_i_size;
930
931 /* truncate file */
932 if (disk_i_size > i_size) {
933 BTRFS_I(inode)->disk_i_size = i_size;
934 ret = 0;
935 goto out;
936 }
937
938 /*
939 * if the disk i_size is already at the inode->i_size, or
940 * this ordered extent is inside the disk i_size, we're done
941 */
942 if (disk_i_size == i_size)
943 goto out;
944
945 /*
946 * We still need to update disk_i_size if outstanding_isize is greater
947 * than disk_i_size.
948 */
949 if (offset <= disk_i_size &&
950 (!ordered || ordered->outstanding_isize <= disk_i_size))
951 goto out;
952
953 /*
954 * walk backward from this ordered extent to disk_i_size.
955 * if we find an ordered extent then we can't update disk i_size
956 * yet
957 */
958 if (ordered) {
959 node = rb_prev(&ordered->rb_node);
960 } else {
961 prev = tree_search(tree, offset);
962 /*
963 * we insert file extents without involving ordered struct,
964 * so there should be no ordered struct cover this offset
965 */
966 if (prev) {
967 test = rb_entry(prev, struct btrfs_ordered_extent,
968 rb_node);
969 BUG_ON(offset_in_entry(test, offset));
970 }
971 node = prev;
972 }
973 for (; node; node = rb_prev(node)) {
974 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
975
976 /* We treat this entry as if it doesnt exist */
977 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
978 continue;
979 if (test->file_offset + test->len <= disk_i_size)
980 break;
981 if (test->file_offset >= i_size)
982 break;
983 if (entry_end(test) > disk_i_size) {
984 /*
985 * we don't update disk_i_size now, so record this
986 * undealt i_size. Or we will not know the real
987 * i_size.
988 */
989 if (test->outstanding_isize < offset)
990 test->outstanding_isize = offset;
991 if (ordered &&
992 ordered->outstanding_isize >
993 test->outstanding_isize)
994 test->outstanding_isize =
995 ordered->outstanding_isize;
996 goto out;
997 }
998 }
999 new_i_size = min_t(u64, offset, i_size);
1000
1001 /*
1002 * Some ordered extents may completed before the current one, and
1003 * we hold the real i_size in ->outstanding_isize.
1004 */
1005 if (ordered && ordered->outstanding_isize > new_i_size)
1006 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1007 BTRFS_I(inode)->disk_i_size = new_i_size;
1008 ret = 0;
1009 out:
1010 /*
1011 * We need to do this because we can't remove ordered extents until
1012 * after the i_disk_size has been updated and then the inode has been
1013 * updated to reflect the change, so we need to tell anybody who finds
1014 * this ordered extent that we've already done all the real work, we
1015 * just haven't completed all the other work.
1016 */
1017 if (ordered)
1018 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1019 spin_unlock_irq(&tree->lock);
1020 return ret;
1021 }
1022
1023 /*
1024 * search the ordered extents for one corresponding to 'offset' and
1025 * try to find a checksum. This is used because we allow pages to
1026 * be reclaimed before their checksum is actually put into the btree
1027 */
1028 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1029 u32 *sum, int len)
1030 {
1031 struct btrfs_ordered_sum *ordered_sum;
1032 struct btrfs_ordered_extent *ordered;
1033 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1034 unsigned long num_sectors;
1035 unsigned long i;
1036 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1037 int index = 0;
1038
1039 ordered = btrfs_lookup_ordered_extent(inode, offset);
1040 if (!ordered)
1041 return 0;
1042
1043 spin_lock_irq(&tree->lock);
1044 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1045 if (disk_bytenr >= ordered_sum->bytenr &&
1046 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1047 i = (disk_bytenr - ordered_sum->bytenr) >>
1048 inode->i_sb->s_blocksize_bits;
1049 num_sectors = ordered_sum->len >>
1050 inode->i_sb->s_blocksize_bits;
1051 num_sectors = min_t(int, len - index, num_sectors - i);
1052 memcpy(sum + index, ordered_sum->sums + i,
1053 num_sectors);
1054
1055 index += (int)num_sectors;
1056 if (index == len)
1057 goto out;
1058 disk_bytenr += num_sectors * sectorsize;
1059 }
1060 }
1061 out:
1062 spin_unlock_irq(&tree->lock);
1063 btrfs_put_ordered_extent(ordered);
1064 return index;
1065 }
1066
1067
1068 /*
1069 * add a given inode to the list of inodes that must be fully on
1070 * disk before a transaction commit finishes.
1071 *
1072 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1073 * used to make sure renamed files are fully on disk.
1074 *
1075 * It is a noop if the inode is already fully on disk.
1076 *
1077 * If trans is not null, we'll do a friendly check for a transaction that
1078 * is already flushing things and force the IO down ourselves.
1079 */
1080 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1081 struct btrfs_root *root, struct inode *inode)
1082 {
1083 struct btrfs_transaction *cur_trans = trans->transaction;
1084 u64 last_mod;
1085
1086 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1087
1088 /*
1089 * if this file hasn't been changed since the last transaction
1090 * commit, we can safely return without doing anything
1091 */
1092 if (last_mod < root->fs_info->last_trans_committed)
1093 return;
1094
1095 spin_lock(&root->fs_info->ordered_root_lock);
1096 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1097 list_add_tail(&BTRFS_I(inode)->ordered_operations,
1098 &cur_trans->ordered_operations);
1099 }
1100 spin_unlock(&root->fs_info->ordered_root_lock);
1101 }
1102
1103 int __init ordered_data_init(void)
1104 {
1105 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1106 sizeof(struct btrfs_ordered_extent), 0,
1107 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1108 NULL);
1109 if (!btrfs_ordered_extent_cache)
1110 return -ENOMEM;
1111
1112 return 0;
1113 }
1114
1115 void ordered_data_exit(void)
1116 {
1117 if (btrfs_ordered_extent_cache)
1118 kmem_cache_destroy(btrfs_ordered_extent_cache);
1119 }
This page took 0.207759 seconds and 5 git commands to generate.