Merge remote-tracking branch 'asoc/topic/adsp' into asoc-next
[deliverable/linux.git] / fs / btrfs / ordered-data.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27
28 static struct kmem_cache *btrfs_ordered_extent_cache;
29
30 static u64 entry_end(struct btrfs_ordered_extent *entry)
31 {
32 if (entry->file_offset + entry->len < entry->file_offset)
33 return (u64)-1;
34 return entry->file_offset + entry->len;
35 }
36
37 /* returns NULL if the insertion worked, or it returns the node it did find
38 * in the tree
39 */
40 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
41 struct rb_node *node)
42 {
43 struct rb_node **p = &root->rb_node;
44 struct rb_node *parent = NULL;
45 struct btrfs_ordered_extent *entry;
46
47 while (*p) {
48 parent = *p;
49 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
50
51 if (file_offset < entry->file_offset)
52 p = &(*p)->rb_left;
53 else if (file_offset >= entry_end(entry))
54 p = &(*p)->rb_right;
55 else
56 return parent;
57 }
58
59 rb_link_node(node, parent, p);
60 rb_insert_color(node, root);
61 return NULL;
62 }
63
64 static void ordered_data_tree_panic(struct inode *inode, int errno,
65 u64 offset)
66 {
67 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
68 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
69 "%llu\n", (unsigned long long)offset);
70 }
71
72 /*
73 * look for a given offset in the tree, and if it can't be found return the
74 * first lesser offset
75 */
76 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
77 struct rb_node **prev_ret)
78 {
79 struct rb_node *n = root->rb_node;
80 struct rb_node *prev = NULL;
81 struct rb_node *test;
82 struct btrfs_ordered_extent *entry;
83 struct btrfs_ordered_extent *prev_entry = NULL;
84
85 while (n) {
86 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
87 prev = n;
88 prev_entry = entry;
89
90 if (file_offset < entry->file_offset)
91 n = n->rb_left;
92 else if (file_offset >= entry_end(entry))
93 n = n->rb_right;
94 else
95 return n;
96 }
97 if (!prev_ret)
98 return NULL;
99
100 while (prev && file_offset >= entry_end(prev_entry)) {
101 test = rb_next(prev);
102 if (!test)
103 break;
104 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
105 rb_node);
106 if (file_offset < entry_end(prev_entry))
107 break;
108
109 prev = test;
110 }
111 if (prev)
112 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
113 rb_node);
114 while (prev && file_offset < entry_end(prev_entry)) {
115 test = rb_prev(prev);
116 if (!test)
117 break;
118 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
119 rb_node);
120 prev = test;
121 }
122 *prev_ret = prev;
123 return NULL;
124 }
125
126 /*
127 * helper to check if a given offset is inside a given entry
128 */
129 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
130 {
131 if (file_offset < entry->file_offset ||
132 entry->file_offset + entry->len <= file_offset)
133 return 0;
134 return 1;
135 }
136
137 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
138 u64 len)
139 {
140 if (file_offset + len <= entry->file_offset ||
141 entry->file_offset + entry->len <= file_offset)
142 return 0;
143 return 1;
144 }
145
146 /*
147 * look find the first ordered struct that has this offset, otherwise
148 * the first one less than this offset
149 */
150 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
151 u64 file_offset)
152 {
153 struct rb_root *root = &tree->tree;
154 struct rb_node *prev = NULL;
155 struct rb_node *ret;
156 struct btrfs_ordered_extent *entry;
157
158 if (tree->last) {
159 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
160 rb_node);
161 if (offset_in_entry(entry, file_offset))
162 return tree->last;
163 }
164 ret = __tree_search(root, file_offset, &prev);
165 if (!ret)
166 ret = prev;
167 if (ret)
168 tree->last = ret;
169 return ret;
170 }
171
172 /* allocate and add a new ordered_extent into the per-inode tree.
173 * file_offset is the logical offset in the file
174 *
175 * start is the disk block number of an extent already reserved in the
176 * extent allocation tree
177 *
178 * len is the length of the extent
179 *
180 * The tree is given a single reference on the ordered extent that was
181 * inserted.
182 */
183 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
184 u64 start, u64 len, u64 disk_len,
185 int type, int dio, int compress_type)
186 {
187 struct btrfs_ordered_inode_tree *tree;
188 struct rb_node *node;
189 struct btrfs_ordered_extent *entry;
190
191 tree = &BTRFS_I(inode)->ordered_tree;
192 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
193 if (!entry)
194 return -ENOMEM;
195
196 entry->file_offset = file_offset;
197 entry->start = start;
198 entry->len = len;
199 entry->disk_len = disk_len;
200 entry->bytes_left = len;
201 entry->inode = igrab(inode);
202 entry->compress_type = compress_type;
203 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
204 set_bit(type, &entry->flags);
205
206 if (dio)
207 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
208
209 /* one ref for the tree */
210 atomic_set(&entry->refs, 1);
211 init_waitqueue_head(&entry->wait);
212 INIT_LIST_HEAD(&entry->list);
213 INIT_LIST_HEAD(&entry->root_extent_list);
214
215 trace_btrfs_ordered_extent_add(inode, entry);
216
217 spin_lock_irq(&tree->lock);
218 node = tree_insert(&tree->tree, file_offset,
219 &entry->rb_node);
220 if (node)
221 ordered_data_tree_panic(inode, -EEXIST, file_offset);
222 spin_unlock_irq(&tree->lock);
223
224 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
225 list_add_tail(&entry->root_extent_list,
226 &BTRFS_I(inode)->root->fs_info->ordered_extents);
227 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
228
229 return 0;
230 }
231
232 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
233 u64 start, u64 len, u64 disk_len, int type)
234 {
235 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
236 disk_len, type, 0,
237 BTRFS_COMPRESS_NONE);
238 }
239
240 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
241 u64 start, u64 len, u64 disk_len, int type)
242 {
243 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
244 disk_len, type, 1,
245 BTRFS_COMPRESS_NONE);
246 }
247
248 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
249 u64 start, u64 len, u64 disk_len,
250 int type, int compress_type)
251 {
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 disk_len, type, 0,
254 compress_type);
255 }
256
257 /*
258 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
259 * when an ordered extent is finished. If the list covers more than one
260 * ordered extent, it is split across multiples.
261 */
262 void btrfs_add_ordered_sum(struct inode *inode,
263 struct btrfs_ordered_extent *entry,
264 struct btrfs_ordered_sum *sum)
265 {
266 struct btrfs_ordered_inode_tree *tree;
267
268 tree = &BTRFS_I(inode)->ordered_tree;
269 spin_lock_irq(&tree->lock);
270 list_add_tail(&sum->list, &entry->list);
271 spin_unlock_irq(&tree->lock);
272 }
273
274 /*
275 * this is used to account for finished IO across a given range
276 * of the file. The IO may span ordered extents. If
277 * a given ordered_extent is completely done, 1 is returned, otherwise
278 * 0.
279 *
280 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
281 * to make sure this function only returns 1 once for a given ordered extent.
282 *
283 * file_offset is updated to one byte past the range that is recorded as
284 * complete. This allows you to walk forward in the file.
285 */
286 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
287 struct btrfs_ordered_extent **cached,
288 u64 *file_offset, u64 io_size, int uptodate)
289 {
290 struct btrfs_ordered_inode_tree *tree;
291 struct rb_node *node;
292 struct btrfs_ordered_extent *entry = NULL;
293 int ret;
294 unsigned long flags;
295 u64 dec_end;
296 u64 dec_start;
297 u64 to_dec;
298
299 tree = &BTRFS_I(inode)->ordered_tree;
300 spin_lock_irqsave(&tree->lock, flags);
301 node = tree_search(tree, *file_offset);
302 if (!node) {
303 ret = 1;
304 goto out;
305 }
306
307 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
308 if (!offset_in_entry(entry, *file_offset)) {
309 ret = 1;
310 goto out;
311 }
312
313 dec_start = max(*file_offset, entry->file_offset);
314 dec_end = min(*file_offset + io_size, entry->file_offset +
315 entry->len);
316 *file_offset = dec_end;
317 if (dec_start > dec_end) {
318 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
319 (unsigned long long)dec_start,
320 (unsigned long long)dec_end);
321 }
322 to_dec = dec_end - dec_start;
323 if (to_dec > entry->bytes_left) {
324 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
325 (unsigned long long)entry->bytes_left,
326 (unsigned long long)to_dec);
327 }
328 entry->bytes_left -= to_dec;
329 if (!uptodate)
330 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
331
332 if (entry->bytes_left == 0)
333 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
334 else
335 ret = 1;
336 out:
337 if (!ret && cached && entry) {
338 *cached = entry;
339 atomic_inc(&entry->refs);
340 }
341 spin_unlock_irqrestore(&tree->lock, flags);
342 return ret == 0;
343 }
344
345 /*
346 * this is used to account for finished IO across a given range
347 * of the file. The IO should not span ordered extents. If
348 * a given ordered_extent is completely done, 1 is returned, otherwise
349 * 0.
350 *
351 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
352 * to make sure this function only returns 1 once for a given ordered extent.
353 */
354 int btrfs_dec_test_ordered_pending(struct inode *inode,
355 struct btrfs_ordered_extent **cached,
356 u64 file_offset, u64 io_size, int uptodate)
357 {
358 struct btrfs_ordered_inode_tree *tree;
359 struct rb_node *node;
360 struct btrfs_ordered_extent *entry = NULL;
361 unsigned long flags;
362 int ret;
363
364 tree = &BTRFS_I(inode)->ordered_tree;
365 spin_lock_irqsave(&tree->lock, flags);
366 if (cached && *cached) {
367 entry = *cached;
368 goto have_entry;
369 }
370
371 node = tree_search(tree, file_offset);
372 if (!node) {
373 ret = 1;
374 goto out;
375 }
376
377 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
378 have_entry:
379 if (!offset_in_entry(entry, file_offset)) {
380 ret = 1;
381 goto out;
382 }
383
384 if (io_size > entry->bytes_left) {
385 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
386 (unsigned long long)entry->bytes_left,
387 (unsigned long long)io_size);
388 }
389 entry->bytes_left -= io_size;
390 if (!uptodate)
391 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
392
393 if (entry->bytes_left == 0)
394 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
395 else
396 ret = 1;
397 out:
398 if (!ret && cached && entry) {
399 *cached = entry;
400 atomic_inc(&entry->refs);
401 }
402 spin_unlock_irqrestore(&tree->lock, flags);
403 return ret == 0;
404 }
405
406 /*
407 * used to drop a reference on an ordered extent. This will free
408 * the extent if the last reference is dropped
409 */
410 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
411 {
412 struct list_head *cur;
413 struct btrfs_ordered_sum *sum;
414
415 trace_btrfs_ordered_extent_put(entry->inode, entry);
416
417 if (atomic_dec_and_test(&entry->refs)) {
418 if (entry->inode)
419 btrfs_add_delayed_iput(entry->inode);
420 while (!list_empty(&entry->list)) {
421 cur = entry->list.next;
422 sum = list_entry(cur, struct btrfs_ordered_sum, list);
423 list_del(&sum->list);
424 kfree(sum);
425 }
426 kmem_cache_free(btrfs_ordered_extent_cache, entry);
427 }
428 }
429
430 /*
431 * remove an ordered extent from the tree. No references are dropped
432 * and waiters are woken up.
433 */
434 void btrfs_remove_ordered_extent(struct inode *inode,
435 struct btrfs_ordered_extent *entry)
436 {
437 struct btrfs_ordered_inode_tree *tree;
438 struct btrfs_root *root = BTRFS_I(inode)->root;
439 struct rb_node *node;
440
441 tree = &BTRFS_I(inode)->ordered_tree;
442 spin_lock_irq(&tree->lock);
443 node = &entry->rb_node;
444 rb_erase(node, &tree->tree);
445 tree->last = NULL;
446 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
447 spin_unlock_irq(&tree->lock);
448
449 spin_lock(&root->fs_info->ordered_extent_lock);
450 list_del_init(&entry->root_extent_list);
451
452 trace_btrfs_ordered_extent_remove(inode, entry);
453
454 /*
455 * we have no more ordered extents for this inode and
456 * no dirty pages. We can safely remove it from the
457 * list of ordered extents
458 */
459 if (RB_EMPTY_ROOT(&tree->tree) &&
460 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
461 list_del_init(&BTRFS_I(inode)->ordered_operations);
462 }
463 spin_unlock(&root->fs_info->ordered_extent_lock);
464 wake_up(&entry->wait);
465 }
466
467 /*
468 * wait for all the ordered extents in a root. This is done when balancing
469 * space between drives.
470 */
471 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
472 {
473 struct list_head splice;
474 struct list_head *cur;
475 struct btrfs_ordered_extent *ordered;
476 struct inode *inode;
477
478 INIT_LIST_HEAD(&splice);
479
480 spin_lock(&root->fs_info->ordered_extent_lock);
481 list_splice_init(&root->fs_info->ordered_extents, &splice);
482 while (!list_empty(&splice)) {
483 cur = splice.next;
484 ordered = list_entry(cur, struct btrfs_ordered_extent,
485 root_extent_list);
486 list_del_init(&ordered->root_extent_list);
487 atomic_inc(&ordered->refs);
488
489 /*
490 * the inode may be getting freed (in sys_unlink path).
491 */
492 inode = igrab(ordered->inode);
493
494 spin_unlock(&root->fs_info->ordered_extent_lock);
495
496 if (inode) {
497 btrfs_start_ordered_extent(inode, ordered, 1);
498 btrfs_put_ordered_extent(ordered);
499 if (delay_iput)
500 btrfs_add_delayed_iput(inode);
501 else
502 iput(inode);
503 } else {
504 btrfs_put_ordered_extent(ordered);
505 }
506
507 spin_lock(&root->fs_info->ordered_extent_lock);
508 }
509 spin_unlock(&root->fs_info->ordered_extent_lock);
510 }
511
512 /*
513 * this is used during transaction commit to write all the inodes
514 * added to the ordered operation list. These files must be fully on
515 * disk before the transaction commits.
516 *
517 * we have two modes here, one is to just start the IO via filemap_flush
518 * and the other is to wait for all the io. When we wait, we have an
519 * extra check to make sure the ordered operation list really is empty
520 * before we return
521 */
522 void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
523 {
524 struct btrfs_inode *btrfs_inode;
525 struct inode *inode;
526 struct list_head splice;
527
528 INIT_LIST_HEAD(&splice);
529
530 mutex_lock(&root->fs_info->ordered_operations_mutex);
531 spin_lock(&root->fs_info->ordered_extent_lock);
532 again:
533 list_splice_init(&root->fs_info->ordered_operations, &splice);
534
535 while (!list_empty(&splice)) {
536 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
537 ordered_operations);
538
539 inode = &btrfs_inode->vfs_inode;
540
541 list_del_init(&btrfs_inode->ordered_operations);
542
543 /*
544 * the inode may be getting freed (in sys_unlink path).
545 */
546 inode = igrab(inode);
547
548 if (!wait && inode) {
549 list_add_tail(&BTRFS_I(inode)->ordered_operations,
550 &root->fs_info->ordered_operations);
551 }
552 spin_unlock(&root->fs_info->ordered_extent_lock);
553
554 if (inode) {
555 if (wait)
556 btrfs_wait_ordered_range(inode, 0, (u64)-1);
557 else
558 filemap_flush(inode->i_mapping);
559 btrfs_add_delayed_iput(inode);
560 }
561
562 cond_resched();
563 spin_lock(&root->fs_info->ordered_extent_lock);
564 }
565 if (wait && !list_empty(&root->fs_info->ordered_operations))
566 goto again;
567
568 spin_unlock(&root->fs_info->ordered_extent_lock);
569 mutex_unlock(&root->fs_info->ordered_operations_mutex);
570 }
571
572 /*
573 * Used to start IO or wait for a given ordered extent to finish.
574 *
575 * If wait is one, this effectively waits on page writeback for all the pages
576 * in the extent, and it waits on the io completion code to insert
577 * metadata into the btree corresponding to the extent
578 */
579 void btrfs_start_ordered_extent(struct inode *inode,
580 struct btrfs_ordered_extent *entry,
581 int wait)
582 {
583 u64 start = entry->file_offset;
584 u64 end = start + entry->len - 1;
585
586 trace_btrfs_ordered_extent_start(inode, entry);
587
588 /*
589 * pages in the range can be dirty, clean or writeback. We
590 * start IO on any dirty ones so the wait doesn't stall waiting
591 * for the flusher thread to find them
592 */
593 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
594 filemap_fdatawrite_range(inode->i_mapping, start, end);
595 if (wait) {
596 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
597 &entry->flags));
598 }
599 }
600
601 /*
602 * Used to wait on ordered extents across a large range of bytes.
603 */
604 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
605 {
606 u64 end;
607 u64 orig_end;
608 struct btrfs_ordered_extent *ordered;
609 int found;
610
611 if (start + len < start) {
612 orig_end = INT_LIMIT(loff_t);
613 } else {
614 orig_end = start + len - 1;
615 if (orig_end > INT_LIMIT(loff_t))
616 orig_end = INT_LIMIT(loff_t);
617 }
618
619 /* start IO across the range first to instantiate any delalloc
620 * extents
621 */
622 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
623
624 /*
625 * So with compression we will find and lock a dirty page and clear the
626 * first one as dirty, setup an async extent, and immediately return
627 * with the entire range locked but with nobody actually marked with
628 * writeback. So we can't just filemap_write_and_wait_range() and
629 * expect it to work since it will just kick off a thread to do the
630 * actual work. So we need to call filemap_fdatawrite_range _again_
631 * since it will wait on the page lock, which won't be unlocked until
632 * after the pages have been marked as writeback and so we're good to go
633 * from there. We have to do this otherwise we'll miss the ordered
634 * extents and that results in badness. Please Josef, do not think you
635 * know better and pull this out at some point in the future, it is
636 * right and you are wrong.
637 */
638 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
639 &BTRFS_I(inode)->runtime_flags))
640 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
641
642 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
643
644 end = orig_end;
645 found = 0;
646 while (1) {
647 ordered = btrfs_lookup_first_ordered_extent(inode, end);
648 if (!ordered)
649 break;
650 if (ordered->file_offset > orig_end) {
651 btrfs_put_ordered_extent(ordered);
652 break;
653 }
654 if (ordered->file_offset + ordered->len < start) {
655 btrfs_put_ordered_extent(ordered);
656 break;
657 }
658 found++;
659 btrfs_start_ordered_extent(inode, ordered, 1);
660 end = ordered->file_offset;
661 btrfs_put_ordered_extent(ordered);
662 if (end == 0 || end == start)
663 break;
664 end--;
665 }
666 }
667
668 /*
669 * find an ordered extent corresponding to file_offset. return NULL if
670 * nothing is found, otherwise take a reference on the extent and return it
671 */
672 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
673 u64 file_offset)
674 {
675 struct btrfs_ordered_inode_tree *tree;
676 struct rb_node *node;
677 struct btrfs_ordered_extent *entry = NULL;
678
679 tree = &BTRFS_I(inode)->ordered_tree;
680 spin_lock_irq(&tree->lock);
681 node = tree_search(tree, file_offset);
682 if (!node)
683 goto out;
684
685 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
686 if (!offset_in_entry(entry, file_offset))
687 entry = NULL;
688 if (entry)
689 atomic_inc(&entry->refs);
690 out:
691 spin_unlock_irq(&tree->lock);
692 return entry;
693 }
694
695 /* Since the DIO code tries to lock a wide area we need to look for any ordered
696 * extents that exist in the range, rather than just the start of the range.
697 */
698 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
699 u64 file_offset,
700 u64 len)
701 {
702 struct btrfs_ordered_inode_tree *tree;
703 struct rb_node *node;
704 struct btrfs_ordered_extent *entry = NULL;
705
706 tree = &BTRFS_I(inode)->ordered_tree;
707 spin_lock_irq(&tree->lock);
708 node = tree_search(tree, file_offset);
709 if (!node) {
710 node = tree_search(tree, file_offset + len);
711 if (!node)
712 goto out;
713 }
714
715 while (1) {
716 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
717 if (range_overlaps(entry, file_offset, len))
718 break;
719
720 if (entry->file_offset >= file_offset + len) {
721 entry = NULL;
722 break;
723 }
724 entry = NULL;
725 node = rb_next(node);
726 if (!node)
727 break;
728 }
729 out:
730 if (entry)
731 atomic_inc(&entry->refs);
732 spin_unlock_irq(&tree->lock);
733 return entry;
734 }
735
736 /*
737 * lookup and return any extent before 'file_offset'. NULL is returned
738 * if none is found
739 */
740 struct btrfs_ordered_extent *
741 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
742 {
743 struct btrfs_ordered_inode_tree *tree;
744 struct rb_node *node;
745 struct btrfs_ordered_extent *entry = NULL;
746
747 tree = &BTRFS_I(inode)->ordered_tree;
748 spin_lock_irq(&tree->lock);
749 node = tree_search(tree, file_offset);
750 if (!node)
751 goto out;
752
753 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
754 atomic_inc(&entry->refs);
755 out:
756 spin_unlock_irq(&tree->lock);
757 return entry;
758 }
759
760 /*
761 * After an extent is done, call this to conditionally update the on disk
762 * i_size. i_size is updated to cover any fully written part of the file.
763 */
764 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
765 struct btrfs_ordered_extent *ordered)
766 {
767 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
768 u64 disk_i_size;
769 u64 new_i_size;
770 u64 i_size = i_size_read(inode);
771 struct rb_node *node;
772 struct rb_node *prev = NULL;
773 struct btrfs_ordered_extent *test;
774 int ret = 1;
775
776 if (ordered)
777 offset = entry_end(ordered);
778 else
779 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
780
781 spin_lock_irq(&tree->lock);
782 disk_i_size = BTRFS_I(inode)->disk_i_size;
783
784 /* truncate file */
785 if (disk_i_size > i_size) {
786 BTRFS_I(inode)->disk_i_size = i_size;
787 ret = 0;
788 goto out;
789 }
790
791 /*
792 * if the disk i_size is already at the inode->i_size, or
793 * this ordered extent is inside the disk i_size, we're done
794 */
795 if (disk_i_size == i_size || offset <= disk_i_size) {
796 goto out;
797 }
798
799 /*
800 * walk backward from this ordered extent to disk_i_size.
801 * if we find an ordered extent then we can't update disk i_size
802 * yet
803 */
804 if (ordered) {
805 node = rb_prev(&ordered->rb_node);
806 } else {
807 prev = tree_search(tree, offset);
808 /*
809 * we insert file extents without involving ordered struct,
810 * so there should be no ordered struct cover this offset
811 */
812 if (prev) {
813 test = rb_entry(prev, struct btrfs_ordered_extent,
814 rb_node);
815 BUG_ON(offset_in_entry(test, offset));
816 }
817 node = prev;
818 }
819 for (; node; node = rb_prev(node)) {
820 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
821
822 /* We treat this entry as if it doesnt exist */
823 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
824 continue;
825 if (test->file_offset + test->len <= disk_i_size)
826 break;
827 if (test->file_offset >= i_size)
828 break;
829 if (test->file_offset >= disk_i_size) {
830 /*
831 * we don't update disk_i_size now, so record this
832 * undealt i_size. Or we will not know the real
833 * i_size.
834 */
835 if (test->outstanding_isize < offset)
836 test->outstanding_isize = offset;
837 if (ordered &&
838 ordered->outstanding_isize >
839 test->outstanding_isize)
840 test->outstanding_isize =
841 ordered->outstanding_isize;
842 goto out;
843 }
844 }
845 new_i_size = min_t(u64, offset, i_size);
846
847 /*
848 * Some ordered extents may completed before the current one, and
849 * we hold the real i_size in ->outstanding_isize.
850 */
851 if (ordered && ordered->outstanding_isize > new_i_size)
852 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
853 BTRFS_I(inode)->disk_i_size = new_i_size;
854 ret = 0;
855 out:
856 /*
857 * We need to do this because we can't remove ordered extents until
858 * after the i_disk_size has been updated and then the inode has been
859 * updated to reflect the change, so we need to tell anybody who finds
860 * this ordered extent that we've already done all the real work, we
861 * just haven't completed all the other work.
862 */
863 if (ordered)
864 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
865 spin_unlock_irq(&tree->lock);
866 return ret;
867 }
868
869 /*
870 * search the ordered extents for one corresponding to 'offset' and
871 * try to find a checksum. This is used because we allow pages to
872 * be reclaimed before their checksum is actually put into the btree
873 */
874 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
875 u32 *sum)
876 {
877 struct btrfs_ordered_sum *ordered_sum;
878 struct btrfs_sector_sum *sector_sums;
879 struct btrfs_ordered_extent *ordered;
880 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
881 unsigned long num_sectors;
882 unsigned long i;
883 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
884 int ret = 1;
885
886 ordered = btrfs_lookup_ordered_extent(inode, offset);
887 if (!ordered)
888 return 1;
889
890 spin_lock_irq(&tree->lock);
891 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
892 if (disk_bytenr >= ordered_sum->bytenr) {
893 num_sectors = ordered_sum->len / sectorsize;
894 sector_sums = ordered_sum->sums;
895 for (i = 0; i < num_sectors; i++) {
896 if (sector_sums[i].bytenr == disk_bytenr) {
897 *sum = sector_sums[i].sum;
898 ret = 0;
899 goto out;
900 }
901 }
902 }
903 }
904 out:
905 spin_unlock_irq(&tree->lock);
906 btrfs_put_ordered_extent(ordered);
907 return ret;
908 }
909
910
911 /*
912 * add a given inode to the list of inodes that must be fully on
913 * disk before a transaction commit finishes.
914 *
915 * This basically gives us the ext3 style data=ordered mode, and it is mostly
916 * used to make sure renamed files are fully on disk.
917 *
918 * It is a noop if the inode is already fully on disk.
919 *
920 * If trans is not null, we'll do a friendly check for a transaction that
921 * is already flushing things and force the IO down ourselves.
922 */
923 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root, struct inode *inode)
925 {
926 u64 last_mod;
927
928 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
929
930 /*
931 * if this file hasn't been changed since the last transaction
932 * commit, we can safely return without doing anything
933 */
934 if (last_mod < root->fs_info->last_trans_committed)
935 return;
936
937 /*
938 * the transaction is already committing. Just start the IO and
939 * don't bother with all of this list nonsense
940 */
941 if (trans && root->fs_info->running_transaction->blocked) {
942 btrfs_wait_ordered_range(inode, 0, (u64)-1);
943 return;
944 }
945
946 spin_lock(&root->fs_info->ordered_extent_lock);
947 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
948 list_add_tail(&BTRFS_I(inode)->ordered_operations,
949 &root->fs_info->ordered_operations);
950 }
951 spin_unlock(&root->fs_info->ordered_extent_lock);
952 }
953
954 int __init ordered_data_init(void)
955 {
956 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
957 sizeof(struct btrfs_ordered_extent), 0,
958 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
959 NULL);
960 if (!btrfs_ordered_extent_cache)
961 return -ENOMEM;
962 return 0;
963 }
964
965 void ordered_data_exit(void)
966 {
967 if (btrfs_ordered_extent_cache)
968 kmem_cache_destroy(btrfs_ordered_extent_cache);
969 }
This page took 0.072823 seconds and 6 git commands to generate.