Merge branch 'fix/asoc' into for-linus
[deliverable/linux.git] / fs / btrfs / ordered-data.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27
28 static u64 entry_end(struct btrfs_ordered_extent *entry)
29 {
30 if (entry->file_offset + entry->len < entry->file_offset)
31 return (u64)-1;
32 return entry->file_offset + entry->len;
33 }
34
35 /* returns NULL if the insertion worked, or it returns the node it did find
36 * in the tree
37 */
38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 struct rb_node *node)
40 {
41 struct rb_node **p = &root->rb_node;
42 struct rb_node *parent = NULL;
43 struct btrfs_ordered_extent *entry;
44
45 while (*p) {
46 parent = *p;
47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48
49 if (file_offset < entry->file_offset)
50 p = &(*p)->rb_left;
51 else if (file_offset >= entry_end(entry))
52 p = &(*p)->rb_right;
53 else
54 return parent;
55 }
56
57 rb_link_node(node, parent, p);
58 rb_insert_color(node, root);
59 return NULL;
60 }
61
62 /*
63 * look for a given offset in the tree, and if it can't be found return the
64 * first lesser offset
65 */
66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 struct rb_node **prev_ret)
68 {
69 struct rb_node *n = root->rb_node;
70 struct rb_node *prev = NULL;
71 struct rb_node *test;
72 struct btrfs_ordered_extent *entry;
73 struct btrfs_ordered_extent *prev_entry = NULL;
74
75 while (n) {
76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
77 prev = n;
78 prev_entry = entry;
79
80 if (file_offset < entry->file_offset)
81 n = n->rb_left;
82 else if (file_offset >= entry_end(entry))
83 n = n->rb_right;
84 else
85 return n;
86 }
87 if (!prev_ret)
88 return NULL;
89
90 while (prev && file_offset >= entry_end(prev_entry)) {
91 test = rb_next(prev);
92 if (!test)
93 break;
94 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 rb_node);
96 if (file_offset < entry_end(prev_entry))
97 break;
98
99 prev = test;
100 }
101 if (prev)
102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 rb_node);
104 while (prev && file_offset < entry_end(prev_entry)) {
105 test = rb_prev(prev);
106 if (!test)
107 break;
108 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 rb_node);
110 prev = test;
111 }
112 *prev_ret = prev;
113 return NULL;
114 }
115
116 /*
117 * helper to check if a given offset is inside a given entry
118 */
119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120 {
121 if (file_offset < entry->file_offset ||
122 entry->file_offset + entry->len <= file_offset)
123 return 0;
124 return 1;
125 }
126
127 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
128 u64 len)
129 {
130 if (file_offset + len <= entry->file_offset ||
131 entry->file_offset + entry->len <= file_offset)
132 return 0;
133 return 1;
134 }
135
136 /*
137 * look find the first ordered struct that has this offset, otherwise
138 * the first one less than this offset
139 */
140 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
141 u64 file_offset)
142 {
143 struct rb_root *root = &tree->tree;
144 struct rb_node *prev;
145 struct rb_node *ret;
146 struct btrfs_ordered_extent *entry;
147
148 if (tree->last) {
149 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
150 rb_node);
151 if (offset_in_entry(entry, file_offset))
152 return tree->last;
153 }
154 ret = __tree_search(root, file_offset, &prev);
155 if (!ret)
156 ret = prev;
157 if (ret)
158 tree->last = ret;
159 return ret;
160 }
161
162 /* allocate and add a new ordered_extent into the per-inode tree.
163 * file_offset is the logical offset in the file
164 *
165 * start is the disk block number of an extent already reserved in the
166 * extent allocation tree
167 *
168 * len is the length of the extent
169 *
170 * The tree is given a single reference on the ordered extent that was
171 * inserted.
172 */
173 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
174 u64 start, u64 len, u64 disk_len,
175 int type, int dio)
176 {
177 struct btrfs_ordered_inode_tree *tree;
178 struct rb_node *node;
179 struct btrfs_ordered_extent *entry;
180
181 tree = &BTRFS_I(inode)->ordered_tree;
182 entry = kzalloc(sizeof(*entry), GFP_NOFS);
183 if (!entry)
184 return -ENOMEM;
185
186 entry->file_offset = file_offset;
187 entry->start = start;
188 entry->len = len;
189 entry->disk_len = disk_len;
190 entry->bytes_left = len;
191 entry->inode = inode;
192 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
193 set_bit(type, &entry->flags);
194
195 if (dio)
196 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
197
198 /* one ref for the tree */
199 atomic_set(&entry->refs, 1);
200 init_waitqueue_head(&entry->wait);
201 INIT_LIST_HEAD(&entry->list);
202 INIT_LIST_HEAD(&entry->root_extent_list);
203
204 spin_lock(&tree->lock);
205 node = tree_insert(&tree->tree, file_offset,
206 &entry->rb_node);
207 BUG_ON(node);
208 spin_unlock(&tree->lock);
209
210 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
211 list_add_tail(&entry->root_extent_list,
212 &BTRFS_I(inode)->root->fs_info->ordered_extents);
213 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
214
215 BUG_ON(node);
216 return 0;
217 }
218
219 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
220 u64 start, u64 len, u64 disk_len, int type)
221 {
222 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
223 disk_len, type, 0);
224 }
225
226 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
227 u64 start, u64 len, u64 disk_len, int type)
228 {
229 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
230 disk_len, type, 1);
231 }
232
233 /*
234 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
235 * when an ordered extent is finished. If the list covers more than one
236 * ordered extent, it is split across multiples.
237 */
238 int btrfs_add_ordered_sum(struct inode *inode,
239 struct btrfs_ordered_extent *entry,
240 struct btrfs_ordered_sum *sum)
241 {
242 struct btrfs_ordered_inode_tree *tree;
243
244 tree = &BTRFS_I(inode)->ordered_tree;
245 spin_lock(&tree->lock);
246 list_add_tail(&sum->list, &entry->list);
247 spin_unlock(&tree->lock);
248 return 0;
249 }
250
251 /*
252 * this is used to account for finished IO across a given range
253 * of the file. The IO should not span ordered extents. If
254 * a given ordered_extent is completely done, 1 is returned, otherwise
255 * 0.
256 *
257 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
258 * to make sure this function only returns 1 once for a given ordered extent.
259 */
260 int btrfs_dec_test_ordered_pending(struct inode *inode,
261 struct btrfs_ordered_extent **cached,
262 u64 file_offset, u64 io_size)
263 {
264 struct btrfs_ordered_inode_tree *tree;
265 struct rb_node *node;
266 struct btrfs_ordered_extent *entry = NULL;
267 int ret;
268
269 tree = &BTRFS_I(inode)->ordered_tree;
270 spin_lock(&tree->lock);
271 node = tree_search(tree, file_offset);
272 if (!node) {
273 ret = 1;
274 goto out;
275 }
276
277 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
278 if (!offset_in_entry(entry, file_offset)) {
279 ret = 1;
280 goto out;
281 }
282
283 if (io_size > entry->bytes_left) {
284 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
285 (unsigned long long)entry->bytes_left,
286 (unsigned long long)io_size);
287 }
288 entry->bytes_left -= io_size;
289 if (entry->bytes_left == 0)
290 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
291 else
292 ret = 1;
293 out:
294 if (!ret && cached && entry) {
295 *cached = entry;
296 atomic_inc(&entry->refs);
297 }
298 spin_unlock(&tree->lock);
299 return ret == 0;
300 }
301
302 /*
303 * used to drop a reference on an ordered extent. This will free
304 * the extent if the last reference is dropped
305 */
306 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
307 {
308 struct list_head *cur;
309 struct btrfs_ordered_sum *sum;
310
311 if (atomic_dec_and_test(&entry->refs)) {
312 while (!list_empty(&entry->list)) {
313 cur = entry->list.next;
314 sum = list_entry(cur, struct btrfs_ordered_sum, list);
315 list_del(&sum->list);
316 kfree(sum);
317 }
318 kfree(entry);
319 }
320 return 0;
321 }
322
323 /*
324 * remove an ordered extent from the tree. No references are dropped
325 * and you must wake_up entry->wait. You must hold the tree lock
326 * while you call this function.
327 */
328 static int __btrfs_remove_ordered_extent(struct inode *inode,
329 struct btrfs_ordered_extent *entry)
330 {
331 struct btrfs_ordered_inode_tree *tree;
332 struct btrfs_root *root = BTRFS_I(inode)->root;
333 struct rb_node *node;
334
335 tree = &BTRFS_I(inode)->ordered_tree;
336 node = &entry->rb_node;
337 rb_erase(node, &tree->tree);
338 tree->last = NULL;
339 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
340
341 spin_lock(&root->fs_info->ordered_extent_lock);
342 list_del_init(&entry->root_extent_list);
343
344 /*
345 * we have no more ordered extents for this inode and
346 * no dirty pages. We can safely remove it from the
347 * list of ordered extents
348 */
349 if (RB_EMPTY_ROOT(&tree->tree) &&
350 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
351 list_del_init(&BTRFS_I(inode)->ordered_operations);
352 }
353 spin_unlock(&root->fs_info->ordered_extent_lock);
354
355 return 0;
356 }
357
358 /*
359 * remove an ordered extent from the tree. No references are dropped
360 * but any waiters are woken.
361 */
362 int btrfs_remove_ordered_extent(struct inode *inode,
363 struct btrfs_ordered_extent *entry)
364 {
365 struct btrfs_ordered_inode_tree *tree;
366 int ret;
367
368 tree = &BTRFS_I(inode)->ordered_tree;
369 spin_lock(&tree->lock);
370 ret = __btrfs_remove_ordered_extent(inode, entry);
371 spin_unlock(&tree->lock);
372 wake_up(&entry->wait);
373
374 return ret;
375 }
376
377 /*
378 * wait for all the ordered extents in a root. This is done when balancing
379 * space between drives.
380 */
381 int btrfs_wait_ordered_extents(struct btrfs_root *root,
382 int nocow_only, int delay_iput)
383 {
384 struct list_head splice;
385 struct list_head *cur;
386 struct btrfs_ordered_extent *ordered;
387 struct inode *inode;
388
389 INIT_LIST_HEAD(&splice);
390
391 spin_lock(&root->fs_info->ordered_extent_lock);
392 list_splice_init(&root->fs_info->ordered_extents, &splice);
393 while (!list_empty(&splice)) {
394 cur = splice.next;
395 ordered = list_entry(cur, struct btrfs_ordered_extent,
396 root_extent_list);
397 if (nocow_only &&
398 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
399 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
400 list_move(&ordered->root_extent_list,
401 &root->fs_info->ordered_extents);
402 cond_resched_lock(&root->fs_info->ordered_extent_lock);
403 continue;
404 }
405
406 list_del_init(&ordered->root_extent_list);
407 atomic_inc(&ordered->refs);
408
409 /*
410 * the inode may be getting freed (in sys_unlink path).
411 */
412 inode = igrab(ordered->inode);
413
414 spin_unlock(&root->fs_info->ordered_extent_lock);
415
416 if (inode) {
417 btrfs_start_ordered_extent(inode, ordered, 1);
418 btrfs_put_ordered_extent(ordered);
419 if (delay_iput)
420 btrfs_add_delayed_iput(inode);
421 else
422 iput(inode);
423 } else {
424 btrfs_put_ordered_extent(ordered);
425 }
426
427 spin_lock(&root->fs_info->ordered_extent_lock);
428 }
429 spin_unlock(&root->fs_info->ordered_extent_lock);
430 return 0;
431 }
432
433 /*
434 * this is used during transaction commit to write all the inodes
435 * added to the ordered operation list. These files must be fully on
436 * disk before the transaction commits.
437 *
438 * we have two modes here, one is to just start the IO via filemap_flush
439 * and the other is to wait for all the io. When we wait, we have an
440 * extra check to make sure the ordered operation list really is empty
441 * before we return
442 */
443 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
444 {
445 struct btrfs_inode *btrfs_inode;
446 struct inode *inode;
447 struct list_head splice;
448
449 INIT_LIST_HEAD(&splice);
450
451 mutex_lock(&root->fs_info->ordered_operations_mutex);
452 spin_lock(&root->fs_info->ordered_extent_lock);
453 again:
454 list_splice_init(&root->fs_info->ordered_operations, &splice);
455
456 while (!list_empty(&splice)) {
457 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
458 ordered_operations);
459
460 inode = &btrfs_inode->vfs_inode;
461
462 list_del_init(&btrfs_inode->ordered_operations);
463
464 /*
465 * the inode may be getting freed (in sys_unlink path).
466 */
467 inode = igrab(inode);
468
469 if (!wait && inode) {
470 list_add_tail(&BTRFS_I(inode)->ordered_operations,
471 &root->fs_info->ordered_operations);
472 }
473 spin_unlock(&root->fs_info->ordered_extent_lock);
474
475 if (inode) {
476 if (wait)
477 btrfs_wait_ordered_range(inode, 0, (u64)-1);
478 else
479 filemap_flush(inode->i_mapping);
480 btrfs_add_delayed_iput(inode);
481 }
482
483 cond_resched();
484 spin_lock(&root->fs_info->ordered_extent_lock);
485 }
486 if (wait && !list_empty(&root->fs_info->ordered_operations))
487 goto again;
488
489 spin_unlock(&root->fs_info->ordered_extent_lock);
490 mutex_unlock(&root->fs_info->ordered_operations_mutex);
491
492 return 0;
493 }
494
495 /*
496 * Used to start IO or wait for a given ordered extent to finish.
497 *
498 * If wait is one, this effectively waits on page writeback for all the pages
499 * in the extent, and it waits on the io completion code to insert
500 * metadata into the btree corresponding to the extent
501 */
502 void btrfs_start_ordered_extent(struct inode *inode,
503 struct btrfs_ordered_extent *entry,
504 int wait)
505 {
506 u64 start = entry->file_offset;
507 u64 end = start + entry->len - 1;
508
509 /*
510 * pages in the range can be dirty, clean or writeback. We
511 * start IO on any dirty ones so the wait doesn't stall waiting
512 * for pdflush to find them
513 */
514 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
515 filemap_fdatawrite_range(inode->i_mapping, start, end);
516 if (wait) {
517 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
518 &entry->flags));
519 }
520 }
521
522 /*
523 * Used to wait on ordered extents across a large range of bytes.
524 */
525 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
526 {
527 u64 end;
528 u64 orig_end;
529 struct btrfs_ordered_extent *ordered;
530 int found;
531
532 if (start + len < start) {
533 orig_end = INT_LIMIT(loff_t);
534 } else {
535 orig_end = start + len - 1;
536 if (orig_end > INT_LIMIT(loff_t))
537 orig_end = INT_LIMIT(loff_t);
538 }
539 again:
540 /* start IO across the range first to instantiate any delalloc
541 * extents
542 */
543 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
544
545 /* The compression code will leave pages locked but return from
546 * writepage without setting the page writeback. Starting again
547 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
548 */
549 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
550
551 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
552
553 end = orig_end;
554 found = 0;
555 while (1) {
556 ordered = btrfs_lookup_first_ordered_extent(inode, end);
557 if (!ordered)
558 break;
559 if (ordered->file_offset > orig_end) {
560 btrfs_put_ordered_extent(ordered);
561 break;
562 }
563 if (ordered->file_offset + ordered->len < start) {
564 btrfs_put_ordered_extent(ordered);
565 break;
566 }
567 found++;
568 btrfs_start_ordered_extent(inode, ordered, 1);
569 end = ordered->file_offset;
570 btrfs_put_ordered_extent(ordered);
571 if (end == 0 || end == start)
572 break;
573 end--;
574 }
575 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
576 EXTENT_DELALLOC, 0, NULL)) {
577 schedule_timeout(1);
578 goto again;
579 }
580 return 0;
581 }
582
583 /*
584 * find an ordered extent corresponding to file_offset. return NULL if
585 * nothing is found, otherwise take a reference on the extent and return it
586 */
587 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
588 u64 file_offset)
589 {
590 struct btrfs_ordered_inode_tree *tree;
591 struct rb_node *node;
592 struct btrfs_ordered_extent *entry = NULL;
593
594 tree = &BTRFS_I(inode)->ordered_tree;
595 spin_lock(&tree->lock);
596 node = tree_search(tree, file_offset);
597 if (!node)
598 goto out;
599
600 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
601 if (!offset_in_entry(entry, file_offset))
602 entry = NULL;
603 if (entry)
604 atomic_inc(&entry->refs);
605 out:
606 spin_unlock(&tree->lock);
607 return entry;
608 }
609
610 /* Since the DIO code tries to lock a wide area we need to look for any ordered
611 * extents that exist in the range, rather than just the start of the range.
612 */
613 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
614 u64 file_offset,
615 u64 len)
616 {
617 struct btrfs_ordered_inode_tree *tree;
618 struct rb_node *node;
619 struct btrfs_ordered_extent *entry = NULL;
620
621 tree = &BTRFS_I(inode)->ordered_tree;
622 spin_lock(&tree->lock);
623 node = tree_search(tree, file_offset);
624 if (!node) {
625 node = tree_search(tree, file_offset + len);
626 if (!node)
627 goto out;
628 }
629
630 while (1) {
631 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
632 if (range_overlaps(entry, file_offset, len))
633 break;
634
635 if (entry->file_offset >= file_offset + len) {
636 entry = NULL;
637 break;
638 }
639 entry = NULL;
640 node = rb_next(node);
641 if (!node)
642 break;
643 }
644 out:
645 if (entry)
646 atomic_inc(&entry->refs);
647 spin_unlock(&tree->lock);
648 return entry;
649 }
650
651 /*
652 * lookup and return any extent before 'file_offset'. NULL is returned
653 * if none is found
654 */
655 struct btrfs_ordered_extent *
656 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
657 {
658 struct btrfs_ordered_inode_tree *tree;
659 struct rb_node *node;
660 struct btrfs_ordered_extent *entry = NULL;
661
662 tree = &BTRFS_I(inode)->ordered_tree;
663 spin_lock(&tree->lock);
664 node = tree_search(tree, file_offset);
665 if (!node)
666 goto out;
667
668 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
669 atomic_inc(&entry->refs);
670 out:
671 spin_unlock(&tree->lock);
672 return entry;
673 }
674
675 /*
676 * After an extent is done, call this to conditionally update the on disk
677 * i_size. i_size is updated to cover any fully written part of the file.
678 */
679 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
680 struct btrfs_ordered_extent *ordered)
681 {
682 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
683 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
684 u64 disk_i_size;
685 u64 new_i_size;
686 u64 i_size_test;
687 u64 i_size = i_size_read(inode);
688 struct rb_node *node;
689 struct rb_node *prev = NULL;
690 struct btrfs_ordered_extent *test;
691 int ret = 1;
692
693 if (ordered)
694 offset = entry_end(ordered);
695 else
696 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
697
698 spin_lock(&tree->lock);
699 disk_i_size = BTRFS_I(inode)->disk_i_size;
700
701 /* truncate file */
702 if (disk_i_size > i_size) {
703 BTRFS_I(inode)->disk_i_size = i_size;
704 ret = 0;
705 goto out;
706 }
707
708 /*
709 * if the disk i_size is already at the inode->i_size, or
710 * this ordered extent is inside the disk i_size, we're done
711 */
712 if (disk_i_size == i_size || offset <= disk_i_size) {
713 goto out;
714 }
715
716 /*
717 * we can't update the disk_isize if there are delalloc bytes
718 * between disk_i_size and this ordered extent
719 */
720 if (test_range_bit(io_tree, disk_i_size, offset - 1,
721 EXTENT_DELALLOC, 0, NULL)) {
722 goto out;
723 }
724 /*
725 * walk backward from this ordered extent to disk_i_size.
726 * if we find an ordered extent then we can't update disk i_size
727 * yet
728 */
729 if (ordered) {
730 node = rb_prev(&ordered->rb_node);
731 } else {
732 prev = tree_search(tree, offset);
733 /*
734 * we insert file extents without involving ordered struct,
735 * so there should be no ordered struct cover this offset
736 */
737 if (prev) {
738 test = rb_entry(prev, struct btrfs_ordered_extent,
739 rb_node);
740 BUG_ON(offset_in_entry(test, offset));
741 }
742 node = prev;
743 }
744 while (node) {
745 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
746 if (test->file_offset + test->len <= disk_i_size)
747 break;
748 if (test->file_offset >= i_size)
749 break;
750 if (test->file_offset >= disk_i_size)
751 goto out;
752 node = rb_prev(node);
753 }
754 new_i_size = min_t(u64, offset, i_size);
755
756 /*
757 * at this point, we know we can safely update i_size to at least
758 * the offset from this ordered extent. But, we need to
759 * walk forward and see if ios from higher up in the file have
760 * finished.
761 */
762 if (ordered) {
763 node = rb_next(&ordered->rb_node);
764 } else {
765 if (prev)
766 node = rb_next(prev);
767 else
768 node = rb_first(&tree->tree);
769 }
770 i_size_test = 0;
771 if (node) {
772 /*
773 * do we have an area where IO might have finished
774 * between our ordered extent and the next one.
775 */
776 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
777 if (test->file_offset > offset)
778 i_size_test = test->file_offset;
779 } else {
780 i_size_test = i_size;
781 }
782
783 /*
784 * i_size_test is the end of a region after this ordered
785 * extent where there are no ordered extents. As long as there
786 * are no delalloc bytes in this area, it is safe to update
787 * disk_i_size to the end of the region.
788 */
789 if (i_size_test > offset &&
790 !test_range_bit(io_tree, offset, i_size_test - 1,
791 EXTENT_DELALLOC, 0, NULL)) {
792 new_i_size = min_t(u64, i_size_test, i_size);
793 }
794 BTRFS_I(inode)->disk_i_size = new_i_size;
795 ret = 0;
796 out:
797 /*
798 * we need to remove the ordered extent with the tree lock held
799 * so that other people calling this function don't find our fully
800 * processed ordered entry and skip updating the i_size
801 */
802 if (ordered)
803 __btrfs_remove_ordered_extent(inode, ordered);
804 spin_unlock(&tree->lock);
805 if (ordered)
806 wake_up(&ordered->wait);
807 return ret;
808 }
809
810 /*
811 * search the ordered extents for one corresponding to 'offset' and
812 * try to find a checksum. This is used because we allow pages to
813 * be reclaimed before their checksum is actually put into the btree
814 */
815 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
816 u32 *sum)
817 {
818 struct btrfs_ordered_sum *ordered_sum;
819 struct btrfs_sector_sum *sector_sums;
820 struct btrfs_ordered_extent *ordered;
821 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
822 unsigned long num_sectors;
823 unsigned long i;
824 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
825 int ret = 1;
826
827 ordered = btrfs_lookup_ordered_extent(inode, offset);
828 if (!ordered)
829 return 1;
830
831 spin_lock(&tree->lock);
832 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
833 if (disk_bytenr >= ordered_sum->bytenr) {
834 num_sectors = ordered_sum->len / sectorsize;
835 sector_sums = ordered_sum->sums;
836 for (i = 0; i < num_sectors; i++) {
837 if (sector_sums[i].bytenr == disk_bytenr) {
838 *sum = sector_sums[i].sum;
839 ret = 0;
840 goto out;
841 }
842 }
843 }
844 }
845 out:
846 spin_unlock(&tree->lock);
847 btrfs_put_ordered_extent(ordered);
848 return ret;
849 }
850
851
852 /*
853 * add a given inode to the list of inodes that must be fully on
854 * disk before a transaction commit finishes.
855 *
856 * This basically gives us the ext3 style data=ordered mode, and it is mostly
857 * used to make sure renamed files are fully on disk.
858 *
859 * It is a noop if the inode is already fully on disk.
860 *
861 * If trans is not null, we'll do a friendly check for a transaction that
862 * is already flushing things and force the IO down ourselves.
863 */
864 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
865 struct btrfs_root *root,
866 struct inode *inode)
867 {
868 u64 last_mod;
869
870 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
871
872 /*
873 * if this file hasn't been changed since the last transaction
874 * commit, we can safely return without doing anything
875 */
876 if (last_mod < root->fs_info->last_trans_committed)
877 return 0;
878
879 /*
880 * the transaction is already committing. Just start the IO and
881 * don't bother with all of this list nonsense
882 */
883 if (trans && root->fs_info->running_transaction->blocked) {
884 btrfs_wait_ordered_range(inode, 0, (u64)-1);
885 return 0;
886 }
887
888 spin_lock(&root->fs_info->ordered_extent_lock);
889 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
890 list_add_tail(&BTRFS_I(inode)->ordered_operations,
891 &root->fs_info->ordered_operations);
892 }
893 spin_unlock(&root->fs_info->ordered_extent_lock);
894
895 return 0;
896 }
This page took 0.05494 seconds and 6 git commands to generate.