f2f8803ea79cb722c466ca76dec9a3b1b732fd69
[deliverable/linux.git] / fs / btrfs / scrub.c
1 /*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
44 */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
58
59 /*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
65
66 struct scrub_page {
67 struct scrub_block *sblock;
68 struct page *page;
69 struct btrfs_device *dev;
70 u64 flags; /* extent flags */
71 u64 generation;
72 u64 logical;
73 u64 physical;
74 u64 physical_for_dev_replace;
75 atomic_t ref_count;
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
80 };
81 u8 csum[BTRFS_CSUM_SIZE];
82 };
83
84 struct scrub_bio {
85 int index;
86 struct scrub_ctx *sctx;
87 struct btrfs_device *dev;
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 int page_count;
98 int next_free;
99 struct btrfs_work work;
100 };
101
102 struct scrub_block {
103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
107 struct scrub_ctx *sctx;
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
113 };
114 };
115
116 struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
122 };
123
124 struct scrub_ctx {
125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
126 struct btrfs_root *dev_root;
127 int first_free;
128 int curr;
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
136 int readonly;
137 int pages_per_rd_bio;
138 u32 sectorsize;
139 u32 nodesize;
140 u32 leafsize;
141
142 int is_dev_replace;
143 struct scrub_wr_ctx wr_ctx;
144
145 /*
146 * statistics
147 */
148 struct btrfs_scrub_progress stat;
149 spinlock_t stat_lock;
150 };
151
152 struct scrub_fixup_nodatasum {
153 struct scrub_ctx *sctx;
154 struct btrfs_device *dev;
155 u64 logical;
156 struct btrfs_root *root;
157 struct btrfs_work work;
158 int mirror_num;
159 };
160
161 struct scrub_nocow_inode {
162 u64 inum;
163 u64 offset;
164 u64 root;
165 struct list_head list;
166 };
167
168 struct scrub_copy_nocow_ctx {
169 struct scrub_ctx *sctx;
170 u64 logical;
171 u64 len;
172 int mirror_num;
173 u64 physical_for_dev_replace;
174 struct list_head inodes;
175 struct btrfs_work work;
176 };
177
178 struct scrub_warning {
179 struct btrfs_path *path;
180 u64 extent_item_size;
181 char *scratch_buf;
182 char *msg_buf;
183 const char *errstr;
184 sector_t sector;
185 u64 logical;
186 struct btrfs_device *dev;
187 int msg_bufsize;
188 int scratch_bufsize;
189 };
190
191
192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198 struct btrfs_fs_info *fs_info,
199 struct scrub_block *original_sblock,
200 u64 length, u64 logical,
201 struct scrub_block *sblocks_for_recheck);
202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203 struct scrub_block *sblock, int is_metadata,
204 int have_csum, u8 *csum, u64 generation,
205 u16 csum_size);
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207 struct scrub_block *sblock,
208 int is_metadata, int have_csum,
209 const u8 *csum, u64 generation,
210 u16 csum_size);
211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212 struct scrub_block *sblock_good,
213 int force_write);
214 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215 struct scrub_block *sblock_good,
216 int page_num, int force_write);
217 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219 int page_num);
220 static int scrub_checksum_data(struct scrub_block *sblock);
221 static int scrub_checksum_tree_block(struct scrub_block *sblock);
222 static int scrub_checksum_super(struct scrub_block *sblock);
223 static void scrub_block_get(struct scrub_block *sblock);
224 static void scrub_block_put(struct scrub_block *sblock);
225 static void scrub_page_get(struct scrub_page *spage);
226 static void scrub_page_put(struct scrub_page *spage);
227 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228 struct scrub_page *spage);
229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230 u64 physical, struct btrfs_device *dev, u64 flags,
231 u64 gen, int mirror_num, u8 *csum, int force,
232 u64 physical_for_dev_replace);
233 static void scrub_bio_end_io(struct bio *bio, int err);
234 static void scrub_bio_end_io_worker(struct btrfs_work *work);
235 static void scrub_block_complete(struct scrub_block *sblock);
236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237 u64 extent_logical, u64 extent_len,
238 u64 *extent_physical,
239 struct btrfs_device **extent_dev,
240 int *extent_mirror_num);
241 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242 struct scrub_wr_ctx *wr_ctx,
243 struct btrfs_fs_info *fs_info,
244 struct btrfs_device *dev,
245 int is_dev_replace);
246 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio, int err);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static int write_page_nocow(struct scrub_ctx *sctx,
253 u64 physical_for_dev_replace, struct page *page);
254 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255 struct scrub_copy_nocow_ctx *ctx);
256 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257 int mirror_num, u64 physical_for_dev_replace);
258 static void copy_nocow_pages_worker(struct btrfs_work *work);
259 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
260 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
261
262
263 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264 {
265 atomic_inc(&sctx->bios_in_flight);
266 }
267
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 {
270 atomic_dec(&sctx->bios_in_flight);
271 wake_up(&sctx->list_wait);
272 }
273
274 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
275 {
276 while (atomic_read(&fs_info->scrub_pause_req)) {
277 mutex_unlock(&fs_info->scrub_lock);
278 wait_event(fs_info->scrub_pause_wait,
279 atomic_read(&fs_info->scrub_pause_req) == 0);
280 mutex_lock(&fs_info->scrub_lock);
281 }
282 }
283
284 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
285 {
286 atomic_inc(&fs_info->scrubs_paused);
287 wake_up(&fs_info->scrub_pause_wait);
288
289 mutex_lock(&fs_info->scrub_lock);
290 __scrub_blocked_if_needed(fs_info);
291 atomic_dec(&fs_info->scrubs_paused);
292 mutex_unlock(&fs_info->scrub_lock);
293
294 wake_up(&fs_info->scrub_pause_wait);
295 }
296
297 /*
298 * used for workers that require transaction commits (i.e., for the
299 * NOCOW case)
300 */
301 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
302 {
303 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
304
305 /*
306 * increment scrubs_running to prevent cancel requests from
307 * completing as long as a worker is running. we must also
308 * increment scrubs_paused to prevent deadlocking on pause
309 * requests used for transactions commits (as the worker uses a
310 * transaction context). it is safe to regard the worker
311 * as paused for all matters practical. effectively, we only
312 * avoid cancellation requests from completing.
313 */
314 mutex_lock(&fs_info->scrub_lock);
315 atomic_inc(&fs_info->scrubs_running);
316 atomic_inc(&fs_info->scrubs_paused);
317 mutex_unlock(&fs_info->scrub_lock);
318 atomic_inc(&sctx->workers_pending);
319 }
320
321 /* used for workers that require transaction commits */
322 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
323 {
324 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
325
326 /*
327 * see scrub_pending_trans_workers_inc() why we're pretending
328 * to be paused in the scrub counters
329 */
330 mutex_lock(&fs_info->scrub_lock);
331 atomic_dec(&fs_info->scrubs_running);
332 atomic_dec(&fs_info->scrubs_paused);
333 mutex_unlock(&fs_info->scrub_lock);
334 atomic_dec(&sctx->workers_pending);
335 wake_up(&fs_info->scrub_pause_wait);
336 wake_up(&sctx->list_wait);
337 }
338
339 static void scrub_free_csums(struct scrub_ctx *sctx)
340 {
341 while (!list_empty(&sctx->csum_list)) {
342 struct btrfs_ordered_sum *sum;
343 sum = list_first_entry(&sctx->csum_list,
344 struct btrfs_ordered_sum, list);
345 list_del(&sum->list);
346 kfree(sum);
347 }
348 }
349
350 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
351 {
352 int i;
353
354 if (!sctx)
355 return;
356
357 scrub_free_wr_ctx(&sctx->wr_ctx);
358
359 /* this can happen when scrub is cancelled */
360 if (sctx->curr != -1) {
361 struct scrub_bio *sbio = sctx->bios[sctx->curr];
362
363 for (i = 0; i < sbio->page_count; i++) {
364 WARN_ON(!sbio->pagev[i]->page);
365 scrub_block_put(sbio->pagev[i]->sblock);
366 }
367 bio_put(sbio->bio);
368 }
369
370 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
371 struct scrub_bio *sbio = sctx->bios[i];
372
373 if (!sbio)
374 break;
375 kfree(sbio);
376 }
377
378 scrub_free_csums(sctx);
379 kfree(sctx);
380 }
381
382 static noinline_for_stack
383 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
384 {
385 struct scrub_ctx *sctx;
386 int i;
387 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
388 int pages_per_rd_bio;
389 int ret;
390
391 /*
392 * the setting of pages_per_rd_bio is correct for scrub but might
393 * be wrong for the dev_replace code where we might read from
394 * different devices in the initial huge bios. However, that
395 * code is able to correctly handle the case when adding a page
396 * to a bio fails.
397 */
398 if (dev->bdev)
399 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
400 bio_get_nr_vecs(dev->bdev));
401 else
402 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
403 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
404 if (!sctx)
405 goto nomem;
406 sctx->is_dev_replace = is_dev_replace;
407 sctx->pages_per_rd_bio = pages_per_rd_bio;
408 sctx->curr = -1;
409 sctx->dev_root = dev->dev_root;
410 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
411 struct scrub_bio *sbio;
412
413 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
414 if (!sbio)
415 goto nomem;
416 sctx->bios[i] = sbio;
417
418 sbio->index = i;
419 sbio->sctx = sctx;
420 sbio->page_count = 0;
421 sbio->work.func = scrub_bio_end_io_worker;
422
423 if (i != SCRUB_BIOS_PER_SCTX - 1)
424 sctx->bios[i]->next_free = i + 1;
425 else
426 sctx->bios[i]->next_free = -1;
427 }
428 sctx->first_free = 0;
429 sctx->nodesize = dev->dev_root->nodesize;
430 sctx->leafsize = dev->dev_root->leafsize;
431 sctx->sectorsize = dev->dev_root->sectorsize;
432 atomic_set(&sctx->bios_in_flight, 0);
433 atomic_set(&sctx->workers_pending, 0);
434 atomic_set(&sctx->cancel_req, 0);
435 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
436 INIT_LIST_HEAD(&sctx->csum_list);
437
438 spin_lock_init(&sctx->list_lock);
439 spin_lock_init(&sctx->stat_lock);
440 init_waitqueue_head(&sctx->list_wait);
441
442 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
443 fs_info->dev_replace.tgtdev, is_dev_replace);
444 if (ret) {
445 scrub_free_ctx(sctx);
446 return ERR_PTR(ret);
447 }
448 return sctx;
449
450 nomem:
451 scrub_free_ctx(sctx);
452 return ERR_PTR(-ENOMEM);
453 }
454
455 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
456 void *warn_ctx)
457 {
458 u64 isize;
459 u32 nlink;
460 int ret;
461 int i;
462 struct extent_buffer *eb;
463 struct btrfs_inode_item *inode_item;
464 struct scrub_warning *swarn = warn_ctx;
465 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
466 struct inode_fs_paths *ipath = NULL;
467 struct btrfs_root *local_root;
468 struct btrfs_key root_key;
469
470 root_key.objectid = root;
471 root_key.type = BTRFS_ROOT_ITEM_KEY;
472 root_key.offset = (u64)-1;
473 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
474 if (IS_ERR(local_root)) {
475 ret = PTR_ERR(local_root);
476 goto err;
477 }
478
479 ret = inode_item_info(inum, 0, local_root, swarn->path);
480 if (ret) {
481 btrfs_release_path(swarn->path);
482 goto err;
483 }
484
485 eb = swarn->path->nodes[0];
486 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
487 struct btrfs_inode_item);
488 isize = btrfs_inode_size(eb, inode_item);
489 nlink = btrfs_inode_nlink(eb, inode_item);
490 btrfs_release_path(swarn->path);
491
492 ipath = init_ipath(4096, local_root, swarn->path);
493 if (IS_ERR(ipath)) {
494 ret = PTR_ERR(ipath);
495 ipath = NULL;
496 goto err;
497 }
498 ret = paths_from_inode(inum, ipath);
499
500 if (ret < 0)
501 goto err;
502
503 /*
504 * we deliberately ignore the bit ipath might have been too small to
505 * hold all of the paths here
506 */
507 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
508 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
509 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
510 "length %llu, links %u (path: %s)\n", swarn->errstr,
511 swarn->logical, rcu_str_deref(swarn->dev->name),
512 (unsigned long long)swarn->sector, root, inum, offset,
513 min(isize - offset, (u64)PAGE_SIZE), nlink,
514 (char *)(unsigned long)ipath->fspath->val[i]);
515
516 free_ipath(ipath);
517 return 0;
518
519 err:
520 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
521 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
522 "resolving failed with ret=%d\n", swarn->errstr,
523 swarn->logical, rcu_str_deref(swarn->dev->name),
524 (unsigned long long)swarn->sector, root, inum, offset, ret);
525
526 free_ipath(ipath);
527 return 0;
528 }
529
530 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
531 {
532 struct btrfs_device *dev;
533 struct btrfs_fs_info *fs_info;
534 struct btrfs_path *path;
535 struct btrfs_key found_key;
536 struct extent_buffer *eb;
537 struct btrfs_extent_item *ei;
538 struct scrub_warning swarn;
539 unsigned long ptr = 0;
540 u64 extent_item_pos;
541 u64 flags = 0;
542 u64 ref_root;
543 u32 item_size;
544 u8 ref_level;
545 const int bufsize = 4096;
546 int ret;
547
548 WARN_ON(sblock->page_count < 1);
549 dev = sblock->pagev[0]->dev;
550 fs_info = sblock->sctx->dev_root->fs_info;
551
552 path = btrfs_alloc_path();
553
554 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
555 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
556 swarn.sector = (sblock->pagev[0]->physical) >> 9;
557 swarn.logical = sblock->pagev[0]->logical;
558 swarn.errstr = errstr;
559 swarn.dev = NULL;
560 swarn.msg_bufsize = bufsize;
561 swarn.scratch_bufsize = bufsize;
562
563 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
564 goto out;
565
566 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
567 &flags);
568 if (ret < 0)
569 goto out;
570
571 extent_item_pos = swarn.logical - found_key.objectid;
572 swarn.extent_item_size = found_key.offset;
573
574 eb = path->nodes[0];
575 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
576 item_size = btrfs_item_size_nr(eb, path->slots[0]);
577
578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
579 do {
580 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
581 &ref_root, &ref_level);
582 printk_in_rcu(KERN_WARNING
583 "BTRFS: %s at logical %llu on dev %s, "
584 "sector %llu: metadata %s (level %d) in tree "
585 "%llu\n", errstr, swarn.logical,
586 rcu_str_deref(dev->name),
587 (unsigned long long)swarn.sector,
588 ref_level ? "node" : "leaf",
589 ret < 0 ? -1 : ref_level,
590 ret < 0 ? -1 : ref_root);
591 } while (ret != 1);
592 btrfs_release_path(path);
593 } else {
594 btrfs_release_path(path);
595 swarn.path = path;
596 swarn.dev = dev;
597 iterate_extent_inodes(fs_info, found_key.objectid,
598 extent_item_pos, 1,
599 scrub_print_warning_inode, &swarn);
600 }
601
602 out:
603 btrfs_free_path(path);
604 kfree(swarn.scratch_buf);
605 kfree(swarn.msg_buf);
606 }
607
608 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
609 {
610 struct page *page = NULL;
611 unsigned long index;
612 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
613 int ret;
614 int corrected = 0;
615 struct btrfs_key key;
616 struct inode *inode = NULL;
617 struct btrfs_fs_info *fs_info;
618 u64 end = offset + PAGE_SIZE - 1;
619 struct btrfs_root *local_root;
620 int srcu_index;
621
622 key.objectid = root;
623 key.type = BTRFS_ROOT_ITEM_KEY;
624 key.offset = (u64)-1;
625
626 fs_info = fixup->root->fs_info;
627 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
628
629 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
630 if (IS_ERR(local_root)) {
631 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
632 return PTR_ERR(local_root);
633 }
634
635 key.type = BTRFS_INODE_ITEM_KEY;
636 key.objectid = inum;
637 key.offset = 0;
638 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
639 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
640 if (IS_ERR(inode))
641 return PTR_ERR(inode);
642
643 index = offset >> PAGE_CACHE_SHIFT;
644
645 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
646 if (!page) {
647 ret = -ENOMEM;
648 goto out;
649 }
650
651 if (PageUptodate(page)) {
652 if (PageDirty(page)) {
653 /*
654 * we need to write the data to the defect sector. the
655 * data that was in that sector is not in memory,
656 * because the page was modified. we must not write the
657 * modified page to that sector.
658 *
659 * TODO: what could be done here: wait for the delalloc
660 * runner to write out that page (might involve
661 * COW) and see whether the sector is still
662 * referenced afterwards.
663 *
664 * For the meantime, we'll treat this error
665 * incorrectable, although there is a chance that a
666 * later scrub will find the bad sector again and that
667 * there's no dirty page in memory, then.
668 */
669 ret = -EIO;
670 goto out;
671 }
672 fs_info = BTRFS_I(inode)->root->fs_info;
673 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
674 fixup->logical, page,
675 fixup->mirror_num);
676 unlock_page(page);
677 corrected = !ret;
678 } else {
679 /*
680 * we need to get good data first. the general readpage path
681 * will call repair_io_failure for us, we just have to make
682 * sure we read the bad mirror.
683 */
684 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
685 EXTENT_DAMAGED, GFP_NOFS);
686 if (ret) {
687 /* set_extent_bits should give proper error */
688 WARN_ON(ret > 0);
689 if (ret > 0)
690 ret = -EFAULT;
691 goto out;
692 }
693
694 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
695 btrfs_get_extent,
696 fixup->mirror_num);
697 wait_on_page_locked(page);
698
699 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
700 end, EXTENT_DAMAGED, 0, NULL);
701 if (!corrected)
702 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
703 EXTENT_DAMAGED, GFP_NOFS);
704 }
705
706 out:
707 if (page)
708 put_page(page);
709 if (inode)
710 iput(inode);
711
712 if (ret < 0)
713 return ret;
714
715 if (ret == 0 && corrected) {
716 /*
717 * we only need to call readpage for one of the inodes belonging
718 * to this extent. so make iterate_extent_inodes stop
719 */
720 return 1;
721 }
722
723 return -EIO;
724 }
725
726 static void scrub_fixup_nodatasum(struct btrfs_work *work)
727 {
728 int ret;
729 struct scrub_fixup_nodatasum *fixup;
730 struct scrub_ctx *sctx;
731 struct btrfs_trans_handle *trans = NULL;
732 struct btrfs_path *path;
733 int uncorrectable = 0;
734
735 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
736 sctx = fixup->sctx;
737
738 path = btrfs_alloc_path();
739 if (!path) {
740 spin_lock(&sctx->stat_lock);
741 ++sctx->stat.malloc_errors;
742 spin_unlock(&sctx->stat_lock);
743 uncorrectable = 1;
744 goto out;
745 }
746
747 trans = btrfs_join_transaction(fixup->root);
748 if (IS_ERR(trans)) {
749 uncorrectable = 1;
750 goto out;
751 }
752
753 /*
754 * the idea is to trigger a regular read through the standard path. we
755 * read a page from the (failed) logical address by specifying the
756 * corresponding copynum of the failed sector. thus, that readpage is
757 * expected to fail.
758 * that is the point where on-the-fly error correction will kick in
759 * (once it's finished) and rewrite the failed sector if a good copy
760 * can be found.
761 */
762 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
763 path, scrub_fixup_readpage,
764 fixup);
765 if (ret < 0) {
766 uncorrectable = 1;
767 goto out;
768 }
769 WARN_ON(ret != 1);
770
771 spin_lock(&sctx->stat_lock);
772 ++sctx->stat.corrected_errors;
773 spin_unlock(&sctx->stat_lock);
774
775 out:
776 if (trans && !IS_ERR(trans))
777 btrfs_end_transaction(trans, fixup->root);
778 if (uncorrectable) {
779 spin_lock(&sctx->stat_lock);
780 ++sctx->stat.uncorrectable_errors;
781 spin_unlock(&sctx->stat_lock);
782 btrfs_dev_replace_stats_inc(
783 &sctx->dev_root->fs_info->dev_replace.
784 num_uncorrectable_read_errors);
785 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
786 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
787 fixup->logical, rcu_str_deref(fixup->dev->name));
788 }
789
790 btrfs_free_path(path);
791 kfree(fixup);
792
793 scrub_pending_trans_workers_dec(sctx);
794 }
795
796 /*
797 * scrub_handle_errored_block gets called when either verification of the
798 * pages failed or the bio failed to read, e.g. with EIO. In the latter
799 * case, this function handles all pages in the bio, even though only one
800 * may be bad.
801 * The goal of this function is to repair the errored block by using the
802 * contents of one of the mirrors.
803 */
804 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
805 {
806 struct scrub_ctx *sctx = sblock_to_check->sctx;
807 struct btrfs_device *dev;
808 struct btrfs_fs_info *fs_info;
809 u64 length;
810 u64 logical;
811 u64 generation;
812 unsigned int failed_mirror_index;
813 unsigned int is_metadata;
814 unsigned int have_csum;
815 u8 *csum;
816 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
817 struct scrub_block *sblock_bad;
818 int ret;
819 int mirror_index;
820 int page_num;
821 int success;
822 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
823 DEFAULT_RATELIMIT_BURST);
824
825 BUG_ON(sblock_to_check->page_count < 1);
826 fs_info = sctx->dev_root->fs_info;
827 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
828 /*
829 * if we find an error in a super block, we just report it.
830 * They will get written with the next transaction commit
831 * anyway
832 */
833 spin_lock(&sctx->stat_lock);
834 ++sctx->stat.super_errors;
835 spin_unlock(&sctx->stat_lock);
836 return 0;
837 }
838 length = sblock_to_check->page_count * PAGE_SIZE;
839 logical = sblock_to_check->pagev[0]->logical;
840 generation = sblock_to_check->pagev[0]->generation;
841 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
842 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
843 is_metadata = !(sblock_to_check->pagev[0]->flags &
844 BTRFS_EXTENT_FLAG_DATA);
845 have_csum = sblock_to_check->pagev[0]->have_csum;
846 csum = sblock_to_check->pagev[0]->csum;
847 dev = sblock_to_check->pagev[0]->dev;
848
849 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
850 sblocks_for_recheck = NULL;
851 goto nodatasum_case;
852 }
853
854 /*
855 * read all mirrors one after the other. This includes to
856 * re-read the extent or metadata block that failed (that was
857 * the cause that this fixup code is called) another time,
858 * page by page this time in order to know which pages
859 * caused I/O errors and which ones are good (for all mirrors).
860 * It is the goal to handle the situation when more than one
861 * mirror contains I/O errors, but the errors do not
862 * overlap, i.e. the data can be repaired by selecting the
863 * pages from those mirrors without I/O error on the
864 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
865 * would be that mirror #1 has an I/O error on the first page,
866 * the second page is good, and mirror #2 has an I/O error on
867 * the second page, but the first page is good.
868 * Then the first page of the first mirror can be repaired by
869 * taking the first page of the second mirror, and the
870 * second page of the second mirror can be repaired by
871 * copying the contents of the 2nd page of the 1st mirror.
872 * One more note: if the pages of one mirror contain I/O
873 * errors, the checksum cannot be verified. In order to get
874 * the best data for repairing, the first attempt is to find
875 * a mirror without I/O errors and with a validated checksum.
876 * Only if this is not possible, the pages are picked from
877 * mirrors with I/O errors without considering the checksum.
878 * If the latter is the case, at the end, the checksum of the
879 * repaired area is verified in order to correctly maintain
880 * the statistics.
881 */
882
883 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
884 sizeof(*sblocks_for_recheck),
885 GFP_NOFS);
886 if (!sblocks_for_recheck) {
887 spin_lock(&sctx->stat_lock);
888 sctx->stat.malloc_errors++;
889 sctx->stat.read_errors++;
890 sctx->stat.uncorrectable_errors++;
891 spin_unlock(&sctx->stat_lock);
892 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
893 goto out;
894 }
895
896 /* setup the context, map the logical blocks and alloc the pages */
897 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
898 logical, sblocks_for_recheck);
899 if (ret) {
900 spin_lock(&sctx->stat_lock);
901 sctx->stat.read_errors++;
902 sctx->stat.uncorrectable_errors++;
903 spin_unlock(&sctx->stat_lock);
904 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
905 goto out;
906 }
907 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
908 sblock_bad = sblocks_for_recheck + failed_mirror_index;
909
910 /* build and submit the bios for the failed mirror, check checksums */
911 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
912 csum, generation, sctx->csum_size);
913
914 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
915 sblock_bad->no_io_error_seen) {
916 /*
917 * the error disappeared after reading page by page, or
918 * the area was part of a huge bio and other parts of the
919 * bio caused I/O errors, or the block layer merged several
920 * read requests into one and the error is caused by a
921 * different bio (usually one of the two latter cases is
922 * the cause)
923 */
924 spin_lock(&sctx->stat_lock);
925 sctx->stat.unverified_errors++;
926 spin_unlock(&sctx->stat_lock);
927
928 if (sctx->is_dev_replace)
929 scrub_write_block_to_dev_replace(sblock_bad);
930 goto out;
931 }
932
933 if (!sblock_bad->no_io_error_seen) {
934 spin_lock(&sctx->stat_lock);
935 sctx->stat.read_errors++;
936 spin_unlock(&sctx->stat_lock);
937 if (__ratelimit(&_rs))
938 scrub_print_warning("i/o error", sblock_to_check);
939 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
940 } else if (sblock_bad->checksum_error) {
941 spin_lock(&sctx->stat_lock);
942 sctx->stat.csum_errors++;
943 spin_unlock(&sctx->stat_lock);
944 if (__ratelimit(&_rs))
945 scrub_print_warning("checksum error", sblock_to_check);
946 btrfs_dev_stat_inc_and_print(dev,
947 BTRFS_DEV_STAT_CORRUPTION_ERRS);
948 } else if (sblock_bad->header_error) {
949 spin_lock(&sctx->stat_lock);
950 sctx->stat.verify_errors++;
951 spin_unlock(&sctx->stat_lock);
952 if (__ratelimit(&_rs))
953 scrub_print_warning("checksum/header error",
954 sblock_to_check);
955 if (sblock_bad->generation_error)
956 btrfs_dev_stat_inc_and_print(dev,
957 BTRFS_DEV_STAT_GENERATION_ERRS);
958 else
959 btrfs_dev_stat_inc_and_print(dev,
960 BTRFS_DEV_STAT_CORRUPTION_ERRS);
961 }
962
963 if (sctx->readonly) {
964 ASSERT(!sctx->is_dev_replace);
965 goto out;
966 }
967
968 if (!is_metadata && !have_csum) {
969 struct scrub_fixup_nodatasum *fixup_nodatasum;
970
971 nodatasum_case:
972 WARN_ON(sctx->is_dev_replace);
973
974 /*
975 * !is_metadata and !have_csum, this means that the data
976 * might not be COW'ed, that it might be modified
977 * concurrently. The general strategy to work on the
978 * commit root does not help in the case when COW is not
979 * used.
980 */
981 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
982 if (!fixup_nodatasum)
983 goto did_not_correct_error;
984 fixup_nodatasum->sctx = sctx;
985 fixup_nodatasum->dev = dev;
986 fixup_nodatasum->logical = logical;
987 fixup_nodatasum->root = fs_info->extent_root;
988 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
989 scrub_pending_trans_workers_inc(sctx);
990 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
991 btrfs_queue_worker(&fs_info->scrub_workers,
992 &fixup_nodatasum->work);
993 goto out;
994 }
995
996 /*
997 * now build and submit the bios for the other mirrors, check
998 * checksums.
999 * First try to pick the mirror which is completely without I/O
1000 * errors and also does not have a checksum error.
1001 * If one is found, and if a checksum is present, the full block
1002 * that is known to contain an error is rewritten. Afterwards
1003 * the block is known to be corrected.
1004 * If a mirror is found which is completely correct, and no
1005 * checksum is present, only those pages are rewritten that had
1006 * an I/O error in the block to be repaired, since it cannot be
1007 * determined, which copy of the other pages is better (and it
1008 * could happen otherwise that a correct page would be
1009 * overwritten by a bad one).
1010 */
1011 for (mirror_index = 0;
1012 mirror_index < BTRFS_MAX_MIRRORS &&
1013 sblocks_for_recheck[mirror_index].page_count > 0;
1014 mirror_index++) {
1015 struct scrub_block *sblock_other;
1016
1017 if (mirror_index == failed_mirror_index)
1018 continue;
1019 sblock_other = sblocks_for_recheck + mirror_index;
1020
1021 /* build and submit the bios, check checksums */
1022 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1023 have_csum, csum, generation,
1024 sctx->csum_size);
1025
1026 if (!sblock_other->header_error &&
1027 !sblock_other->checksum_error &&
1028 sblock_other->no_io_error_seen) {
1029 if (sctx->is_dev_replace) {
1030 scrub_write_block_to_dev_replace(sblock_other);
1031 } else {
1032 int force_write = is_metadata || have_csum;
1033
1034 ret = scrub_repair_block_from_good_copy(
1035 sblock_bad, sblock_other,
1036 force_write);
1037 }
1038 if (0 == ret)
1039 goto corrected_error;
1040 }
1041 }
1042
1043 /*
1044 * for dev_replace, pick good pages and write to the target device.
1045 */
1046 if (sctx->is_dev_replace) {
1047 success = 1;
1048 for (page_num = 0; page_num < sblock_bad->page_count;
1049 page_num++) {
1050 int sub_success;
1051
1052 sub_success = 0;
1053 for (mirror_index = 0;
1054 mirror_index < BTRFS_MAX_MIRRORS &&
1055 sblocks_for_recheck[mirror_index].page_count > 0;
1056 mirror_index++) {
1057 struct scrub_block *sblock_other =
1058 sblocks_for_recheck + mirror_index;
1059 struct scrub_page *page_other =
1060 sblock_other->pagev[page_num];
1061
1062 if (!page_other->io_error) {
1063 ret = scrub_write_page_to_dev_replace(
1064 sblock_other, page_num);
1065 if (ret == 0) {
1066 /* succeeded for this page */
1067 sub_success = 1;
1068 break;
1069 } else {
1070 btrfs_dev_replace_stats_inc(
1071 &sctx->dev_root->
1072 fs_info->dev_replace.
1073 num_write_errors);
1074 }
1075 }
1076 }
1077
1078 if (!sub_success) {
1079 /*
1080 * did not find a mirror to fetch the page
1081 * from. scrub_write_page_to_dev_replace()
1082 * handles this case (page->io_error), by
1083 * filling the block with zeros before
1084 * submitting the write request
1085 */
1086 success = 0;
1087 ret = scrub_write_page_to_dev_replace(
1088 sblock_bad, page_num);
1089 if (ret)
1090 btrfs_dev_replace_stats_inc(
1091 &sctx->dev_root->fs_info->
1092 dev_replace.num_write_errors);
1093 }
1094 }
1095
1096 goto out;
1097 }
1098
1099 /*
1100 * for regular scrub, repair those pages that are errored.
1101 * In case of I/O errors in the area that is supposed to be
1102 * repaired, continue by picking good copies of those pages.
1103 * Select the good pages from mirrors to rewrite bad pages from
1104 * the area to fix. Afterwards verify the checksum of the block
1105 * that is supposed to be repaired. This verification step is
1106 * only done for the purpose of statistic counting and for the
1107 * final scrub report, whether errors remain.
1108 * A perfect algorithm could make use of the checksum and try
1109 * all possible combinations of pages from the different mirrors
1110 * until the checksum verification succeeds. For example, when
1111 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1112 * of mirror #2 is readable but the final checksum test fails,
1113 * then the 2nd page of mirror #3 could be tried, whether now
1114 * the final checksum succeedes. But this would be a rare
1115 * exception and is therefore not implemented. At least it is
1116 * avoided that the good copy is overwritten.
1117 * A more useful improvement would be to pick the sectors
1118 * without I/O error based on sector sizes (512 bytes on legacy
1119 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1120 * mirror could be repaired by taking 512 byte of a different
1121 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1122 * area are unreadable.
1123 */
1124
1125 /* can only fix I/O errors from here on */
1126 if (sblock_bad->no_io_error_seen)
1127 goto did_not_correct_error;
1128
1129 success = 1;
1130 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1131 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1132
1133 if (!page_bad->io_error)
1134 continue;
1135
1136 for (mirror_index = 0;
1137 mirror_index < BTRFS_MAX_MIRRORS &&
1138 sblocks_for_recheck[mirror_index].page_count > 0;
1139 mirror_index++) {
1140 struct scrub_block *sblock_other = sblocks_for_recheck +
1141 mirror_index;
1142 struct scrub_page *page_other = sblock_other->pagev[
1143 page_num];
1144
1145 if (!page_other->io_error) {
1146 ret = scrub_repair_page_from_good_copy(
1147 sblock_bad, sblock_other, page_num, 0);
1148 if (0 == ret) {
1149 page_bad->io_error = 0;
1150 break; /* succeeded for this page */
1151 }
1152 }
1153 }
1154
1155 if (page_bad->io_error) {
1156 /* did not find a mirror to copy the page from */
1157 success = 0;
1158 }
1159 }
1160
1161 if (success) {
1162 if (is_metadata || have_csum) {
1163 /*
1164 * need to verify the checksum now that all
1165 * sectors on disk are repaired (the write
1166 * request for data to be repaired is on its way).
1167 * Just be lazy and use scrub_recheck_block()
1168 * which re-reads the data before the checksum
1169 * is verified, but most likely the data comes out
1170 * of the page cache.
1171 */
1172 scrub_recheck_block(fs_info, sblock_bad,
1173 is_metadata, have_csum, csum,
1174 generation, sctx->csum_size);
1175 if (!sblock_bad->header_error &&
1176 !sblock_bad->checksum_error &&
1177 sblock_bad->no_io_error_seen)
1178 goto corrected_error;
1179 else
1180 goto did_not_correct_error;
1181 } else {
1182 corrected_error:
1183 spin_lock(&sctx->stat_lock);
1184 sctx->stat.corrected_errors++;
1185 spin_unlock(&sctx->stat_lock);
1186 printk_ratelimited_in_rcu(KERN_ERR
1187 "BTRFS: fixed up error at logical %llu on dev %s\n",
1188 logical, rcu_str_deref(dev->name));
1189 }
1190 } else {
1191 did_not_correct_error:
1192 spin_lock(&sctx->stat_lock);
1193 sctx->stat.uncorrectable_errors++;
1194 spin_unlock(&sctx->stat_lock);
1195 printk_ratelimited_in_rcu(KERN_ERR
1196 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1197 logical, rcu_str_deref(dev->name));
1198 }
1199
1200 out:
1201 if (sblocks_for_recheck) {
1202 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1203 mirror_index++) {
1204 struct scrub_block *sblock = sblocks_for_recheck +
1205 mirror_index;
1206 int page_index;
1207
1208 for (page_index = 0; page_index < sblock->page_count;
1209 page_index++) {
1210 sblock->pagev[page_index]->sblock = NULL;
1211 scrub_page_put(sblock->pagev[page_index]);
1212 }
1213 }
1214 kfree(sblocks_for_recheck);
1215 }
1216
1217 return 0;
1218 }
1219
1220 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1221 struct btrfs_fs_info *fs_info,
1222 struct scrub_block *original_sblock,
1223 u64 length, u64 logical,
1224 struct scrub_block *sblocks_for_recheck)
1225 {
1226 int page_index;
1227 int mirror_index;
1228 int ret;
1229
1230 /*
1231 * note: the two members ref_count and outstanding_pages
1232 * are not used (and not set) in the blocks that are used for
1233 * the recheck procedure
1234 */
1235
1236 page_index = 0;
1237 while (length > 0) {
1238 u64 sublen = min_t(u64, length, PAGE_SIZE);
1239 u64 mapped_length = sublen;
1240 struct btrfs_bio *bbio = NULL;
1241
1242 /*
1243 * with a length of PAGE_SIZE, each returned stripe
1244 * represents one mirror
1245 */
1246 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1247 &mapped_length, &bbio, 0);
1248 if (ret || !bbio || mapped_length < sublen) {
1249 kfree(bbio);
1250 return -EIO;
1251 }
1252
1253 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1254 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1255 mirror_index++) {
1256 struct scrub_block *sblock;
1257 struct scrub_page *page;
1258
1259 if (mirror_index >= BTRFS_MAX_MIRRORS)
1260 continue;
1261
1262 sblock = sblocks_for_recheck + mirror_index;
1263 sblock->sctx = sctx;
1264 page = kzalloc(sizeof(*page), GFP_NOFS);
1265 if (!page) {
1266 leave_nomem:
1267 spin_lock(&sctx->stat_lock);
1268 sctx->stat.malloc_errors++;
1269 spin_unlock(&sctx->stat_lock);
1270 kfree(bbio);
1271 return -ENOMEM;
1272 }
1273 scrub_page_get(page);
1274 sblock->pagev[page_index] = page;
1275 page->logical = logical;
1276 page->physical = bbio->stripes[mirror_index].physical;
1277 BUG_ON(page_index >= original_sblock->page_count);
1278 page->physical_for_dev_replace =
1279 original_sblock->pagev[page_index]->
1280 physical_for_dev_replace;
1281 /* for missing devices, dev->bdev is NULL */
1282 page->dev = bbio->stripes[mirror_index].dev;
1283 page->mirror_num = mirror_index + 1;
1284 sblock->page_count++;
1285 page->page = alloc_page(GFP_NOFS);
1286 if (!page->page)
1287 goto leave_nomem;
1288 }
1289 kfree(bbio);
1290 length -= sublen;
1291 logical += sublen;
1292 page_index++;
1293 }
1294
1295 return 0;
1296 }
1297
1298 /*
1299 * this function will check the on disk data for checksum errors, header
1300 * errors and read I/O errors. If any I/O errors happen, the exact pages
1301 * which are errored are marked as being bad. The goal is to enable scrub
1302 * to take those pages that are not errored from all the mirrors so that
1303 * the pages that are errored in the just handled mirror can be repaired.
1304 */
1305 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1306 struct scrub_block *sblock, int is_metadata,
1307 int have_csum, u8 *csum, u64 generation,
1308 u16 csum_size)
1309 {
1310 int page_num;
1311
1312 sblock->no_io_error_seen = 1;
1313 sblock->header_error = 0;
1314 sblock->checksum_error = 0;
1315
1316 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1317 struct bio *bio;
1318 struct scrub_page *page = sblock->pagev[page_num];
1319
1320 if (page->dev->bdev == NULL) {
1321 page->io_error = 1;
1322 sblock->no_io_error_seen = 0;
1323 continue;
1324 }
1325
1326 WARN_ON(!page->page);
1327 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1328 if (!bio) {
1329 page->io_error = 1;
1330 sblock->no_io_error_seen = 0;
1331 continue;
1332 }
1333 bio->bi_bdev = page->dev->bdev;
1334 bio->bi_sector = page->physical >> 9;
1335
1336 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1337 if (btrfsic_submit_bio_wait(READ, bio))
1338 sblock->no_io_error_seen = 0;
1339
1340 bio_put(bio);
1341 }
1342
1343 if (sblock->no_io_error_seen)
1344 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1345 have_csum, csum, generation,
1346 csum_size);
1347
1348 return;
1349 }
1350
1351 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1352 struct scrub_block *sblock,
1353 int is_metadata, int have_csum,
1354 const u8 *csum, u64 generation,
1355 u16 csum_size)
1356 {
1357 int page_num;
1358 u8 calculated_csum[BTRFS_CSUM_SIZE];
1359 u32 crc = ~(u32)0;
1360 void *mapped_buffer;
1361
1362 WARN_ON(!sblock->pagev[0]->page);
1363 if (is_metadata) {
1364 struct btrfs_header *h;
1365
1366 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1367 h = (struct btrfs_header *)mapped_buffer;
1368
1369 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1370 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1371 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1372 BTRFS_UUID_SIZE)) {
1373 sblock->header_error = 1;
1374 } else if (generation != btrfs_stack_header_generation(h)) {
1375 sblock->header_error = 1;
1376 sblock->generation_error = 1;
1377 }
1378 csum = h->csum;
1379 } else {
1380 if (!have_csum)
1381 return;
1382
1383 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1384 }
1385
1386 for (page_num = 0;;) {
1387 if (page_num == 0 && is_metadata)
1388 crc = btrfs_csum_data(
1389 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1390 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1391 else
1392 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1393
1394 kunmap_atomic(mapped_buffer);
1395 page_num++;
1396 if (page_num >= sblock->page_count)
1397 break;
1398 WARN_ON(!sblock->pagev[page_num]->page);
1399
1400 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1401 }
1402
1403 btrfs_csum_final(crc, calculated_csum);
1404 if (memcmp(calculated_csum, csum, csum_size))
1405 sblock->checksum_error = 1;
1406 }
1407
1408 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1409 struct scrub_block *sblock_good,
1410 int force_write)
1411 {
1412 int page_num;
1413 int ret = 0;
1414
1415 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1416 int ret_sub;
1417
1418 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1419 sblock_good,
1420 page_num,
1421 force_write);
1422 if (ret_sub)
1423 ret = ret_sub;
1424 }
1425
1426 return ret;
1427 }
1428
1429 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1430 struct scrub_block *sblock_good,
1431 int page_num, int force_write)
1432 {
1433 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1434 struct scrub_page *page_good = sblock_good->pagev[page_num];
1435
1436 BUG_ON(page_bad->page == NULL);
1437 BUG_ON(page_good->page == NULL);
1438 if (force_write || sblock_bad->header_error ||
1439 sblock_bad->checksum_error || page_bad->io_error) {
1440 struct bio *bio;
1441 int ret;
1442
1443 if (!page_bad->dev->bdev) {
1444 printk_ratelimited(KERN_WARNING "BTRFS: "
1445 "scrub_repair_page_from_good_copy(bdev == NULL) "
1446 "is unexpected!\n");
1447 return -EIO;
1448 }
1449
1450 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1451 if (!bio)
1452 return -EIO;
1453 bio->bi_bdev = page_bad->dev->bdev;
1454 bio->bi_sector = page_bad->physical >> 9;
1455
1456 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1457 if (PAGE_SIZE != ret) {
1458 bio_put(bio);
1459 return -EIO;
1460 }
1461
1462 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1463 btrfs_dev_stat_inc_and_print(page_bad->dev,
1464 BTRFS_DEV_STAT_WRITE_ERRS);
1465 btrfs_dev_replace_stats_inc(
1466 &sblock_bad->sctx->dev_root->fs_info->
1467 dev_replace.num_write_errors);
1468 bio_put(bio);
1469 return -EIO;
1470 }
1471 bio_put(bio);
1472 }
1473
1474 return 0;
1475 }
1476
1477 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1478 {
1479 int page_num;
1480
1481 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1482 int ret;
1483
1484 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1485 if (ret)
1486 btrfs_dev_replace_stats_inc(
1487 &sblock->sctx->dev_root->fs_info->dev_replace.
1488 num_write_errors);
1489 }
1490 }
1491
1492 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1493 int page_num)
1494 {
1495 struct scrub_page *spage = sblock->pagev[page_num];
1496
1497 BUG_ON(spage->page == NULL);
1498 if (spage->io_error) {
1499 void *mapped_buffer = kmap_atomic(spage->page);
1500
1501 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1502 flush_dcache_page(spage->page);
1503 kunmap_atomic(mapped_buffer);
1504 }
1505 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1506 }
1507
1508 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1509 struct scrub_page *spage)
1510 {
1511 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1512 struct scrub_bio *sbio;
1513 int ret;
1514
1515 mutex_lock(&wr_ctx->wr_lock);
1516 again:
1517 if (!wr_ctx->wr_curr_bio) {
1518 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1519 GFP_NOFS);
1520 if (!wr_ctx->wr_curr_bio) {
1521 mutex_unlock(&wr_ctx->wr_lock);
1522 return -ENOMEM;
1523 }
1524 wr_ctx->wr_curr_bio->sctx = sctx;
1525 wr_ctx->wr_curr_bio->page_count = 0;
1526 }
1527 sbio = wr_ctx->wr_curr_bio;
1528 if (sbio->page_count == 0) {
1529 struct bio *bio;
1530
1531 sbio->physical = spage->physical_for_dev_replace;
1532 sbio->logical = spage->logical;
1533 sbio->dev = wr_ctx->tgtdev;
1534 bio = sbio->bio;
1535 if (!bio) {
1536 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1537 if (!bio) {
1538 mutex_unlock(&wr_ctx->wr_lock);
1539 return -ENOMEM;
1540 }
1541 sbio->bio = bio;
1542 }
1543
1544 bio->bi_private = sbio;
1545 bio->bi_end_io = scrub_wr_bio_end_io;
1546 bio->bi_bdev = sbio->dev->bdev;
1547 bio->bi_sector = sbio->physical >> 9;
1548 sbio->err = 0;
1549 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1550 spage->physical_for_dev_replace ||
1551 sbio->logical + sbio->page_count * PAGE_SIZE !=
1552 spage->logical) {
1553 scrub_wr_submit(sctx);
1554 goto again;
1555 }
1556
1557 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1558 if (ret != PAGE_SIZE) {
1559 if (sbio->page_count < 1) {
1560 bio_put(sbio->bio);
1561 sbio->bio = NULL;
1562 mutex_unlock(&wr_ctx->wr_lock);
1563 return -EIO;
1564 }
1565 scrub_wr_submit(sctx);
1566 goto again;
1567 }
1568
1569 sbio->pagev[sbio->page_count] = spage;
1570 scrub_page_get(spage);
1571 sbio->page_count++;
1572 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1573 scrub_wr_submit(sctx);
1574 mutex_unlock(&wr_ctx->wr_lock);
1575
1576 return 0;
1577 }
1578
1579 static void scrub_wr_submit(struct scrub_ctx *sctx)
1580 {
1581 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1582 struct scrub_bio *sbio;
1583
1584 if (!wr_ctx->wr_curr_bio)
1585 return;
1586
1587 sbio = wr_ctx->wr_curr_bio;
1588 wr_ctx->wr_curr_bio = NULL;
1589 WARN_ON(!sbio->bio->bi_bdev);
1590 scrub_pending_bio_inc(sctx);
1591 /* process all writes in a single worker thread. Then the block layer
1592 * orders the requests before sending them to the driver which
1593 * doubled the write performance on spinning disks when measured
1594 * with Linux 3.5 */
1595 btrfsic_submit_bio(WRITE, sbio->bio);
1596 }
1597
1598 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1599 {
1600 struct scrub_bio *sbio = bio->bi_private;
1601 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1602
1603 sbio->err = err;
1604 sbio->bio = bio;
1605
1606 sbio->work.func = scrub_wr_bio_end_io_worker;
1607 btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1608 }
1609
1610 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1611 {
1612 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1613 struct scrub_ctx *sctx = sbio->sctx;
1614 int i;
1615
1616 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1617 if (sbio->err) {
1618 struct btrfs_dev_replace *dev_replace =
1619 &sbio->sctx->dev_root->fs_info->dev_replace;
1620
1621 for (i = 0; i < sbio->page_count; i++) {
1622 struct scrub_page *spage = sbio->pagev[i];
1623
1624 spage->io_error = 1;
1625 btrfs_dev_replace_stats_inc(&dev_replace->
1626 num_write_errors);
1627 }
1628 }
1629
1630 for (i = 0; i < sbio->page_count; i++)
1631 scrub_page_put(sbio->pagev[i]);
1632
1633 bio_put(sbio->bio);
1634 kfree(sbio);
1635 scrub_pending_bio_dec(sctx);
1636 }
1637
1638 static int scrub_checksum(struct scrub_block *sblock)
1639 {
1640 u64 flags;
1641 int ret;
1642
1643 WARN_ON(sblock->page_count < 1);
1644 flags = sblock->pagev[0]->flags;
1645 ret = 0;
1646 if (flags & BTRFS_EXTENT_FLAG_DATA)
1647 ret = scrub_checksum_data(sblock);
1648 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1649 ret = scrub_checksum_tree_block(sblock);
1650 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1651 (void)scrub_checksum_super(sblock);
1652 else
1653 WARN_ON(1);
1654 if (ret)
1655 scrub_handle_errored_block(sblock);
1656
1657 return ret;
1658 }
1659
1660 static int scrub_checksum_data(struct scrub_block *sblock)
1661 {
1662 struct scrub_ctx *sctx = sblock->sctx;
1663 u8 csum[BTRFS_CSUM_SIZE];
1664 u8 *on_disk_csum;
1665 struct page *page;
1666 void *buffer;
1667 u32 crc = ~(u32)0;
1668 int fail = 0;
1669 u64 len;
1670 int index;
1671
1672 BUG_ON(sblock->page_count < 1);
1673 if (!sblock->pagev[0]->have_csum)
1674 return 0;
1675
1676 on_disk_csum = sblock->pagev[0]->csum;
1677 page = sblock->pagev[0]->page;
1678 buffer = kmap_atomic(page);
1679
1680 len = sctx->sectorsize;
1681 index = 0;
1682 for (;;) {
1683 u64 l = min_t(u64, len, PAGE_SIZE);
1684
1685 crc = btrfs_csum_data(buffer, crc, l);
1686 kunmap_atomic(buffer);
1687 len -= l;
1688 if (len == 0)
1689 break;
1690 index++;
1691 BUG_ON(index >= sblock->page_count);
1692 BUG_ON(!sblock->pagev[index]->page);
1693 page = sblock->pagev[index]->page;
1694 buffer = kmap_atomic(page);
1695 }
1696
1697 btrfs_csum_final(crc, csum);
1698 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1699 fail = 1;
1700
1701 return fail;
1702 }
1703
1704 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1705 {
1706 struct scrub_ctx *sctx = sblock->sctx;
1707 struct btrfs_header *h;
1708 struct btrfs_root *root = sctx->dev_root;
1709 struct btrfs_fs_info *fs_info = root->fs_info;
1710 u8 calculated_csum[BTRFS_CSUM_SIZE];
1711 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1712 struct page *page;
1713 void *mapped_buffer;
1714 u64 mapped_size;
1715 void *p;
1716 u32 crc = ~(u32)0;
1717 int fail = 0;
1718 int crc_fail = 0;
1719 u64 len;
1720 int index;
1721
1722 BUG_ON(sblock->page_count < 1);
1723 page = sblock->pagev[0]->page;
1724 mapped_buffer = kmap_atomic(page);
1725 h = (struct btrfs_header *)mapped_buffer;
1726 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1727
1728 /*
1729 * we don't use the getter functions here, as we
1730 * a) don't have an extent buffer and
1731 * b) the page is already kmapped
1732 */
1733
1734 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1735 ++fail;
1736
1737 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1738 ++fail;
1739
1740 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1741 ++fail;
1742
1743 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1744 BTRFS_UUID_SIZE))
1745 ++fail;
1746
1747 WARN_ON(sctx->nodesize != sctx->leafsize);
1748 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1749 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1750 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1751 index = 0;
1752 for (;;) {
1753 u64 l = min_t(u64, len, mapped_size);
1754
1755 crc = btrfs_csum_data(p, crc, l);
1756 kunmap_atomic(mapped_buffer);
1757 len -= l;
1758 if (len == 0)
1759 break;
1760 index++;
1761 BUG_ON(index >= sblock->page_count);
1762 BUG_ON(!sblock->pagev[index]->page);
1763 page = sblock->pagev[index]->page;
1764 mapped_buffer = kmap_atomic(page);
1765 mapped_size = PAGE_SIZE;
1766 p = mapped_buffer;
1767 }
1768
1769 btrfs_csum_final(crc, calculated_csum);
1770 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1771 ++crc_fail;
1772
1773 return fail || crc_fail;
1774 }
1775
1776 static int scrub_checksum_super(struct scrub_block *sblock)
1777 {
1778 struct btrfs_super_block *s;
1779 struct scrub_ctx *sctx = sblock->sctx;
1780 struct btrfs_root *root = sctx->dev_root;
1781 struct btrfs_fs_info *fs_info = root->fs_info;
1782 u8 calculated_csum[BTRFS_CSUM_SIZE];
1783 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1784 struct page *page;
1785 void *mapped_buffer;
1786 u64 mapped_size;
1787 void *p;
1788 u32 crc = ~(u32)0;
1789 int fail_gen = 0;
1790 int fail_cor = 0;
1791 u64 len;
1792 int index;
1793
1794 BUG_ON(sblock->page_count < 1);
1795 page = sblock->pagev[0]->page;
1796 mapped_buffer = kmap_atomic(page);
1797 s = (struct btrfs_super_block *)mapped_buffer;
1798 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1799
1800 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1801 ++fail_cor;
1802
1803 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1804 ++fail_gen;
1805
1806 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1807 ++fail_cor;
1808
1809 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1810 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1811 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1812 index = 0;
1813 for (;;) {
1814 u64 l = min_t(u64, len, mapped_size);
1815
1816 crc = btrfs_csum_data(p, crc, l);
1817 kunmap_atomic(mapped_buffer);
1818 len -= l;
1819 if (len == 0)
1820 break;
1821 index++;
1822 BUG_ON(index >= sblock->page_count);
1823 BUG_ON(!sblock->pagev[index]->page);
1824 page = sblock->pagev[index]->page;
1825 mapped_buffer = kmap_atomic(page);
1826 mapped_size = PAGE_SIZE;
1827 p = mapped_buffer;
1828 }
1829
1830 btrfs_csum_final(crc, calculated_csum);
1831 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1832 ++fail_cor;
1833
1834 if (fail_cor + fail_gen) {
1835 /*
1836 * if we find an error in a super block, we just report it.
1837 * They will get written with the next transaction commit
1838 * anyway
1839 */
1840 spin_lock(&sctx->stat_lock);
1841 ++sctx->stat.super_errors;
1842 spin_unlock(&sctx->stat_lock);
1843 if (fail_cor)
1844 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1845 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1846 else
1847 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1848 BTRFS_DEV_STAT_GENERATION_ERRS);
1849 }
1850
1851 return fail_cor + fail_gen;
1852 }
1853
1854 static void scrub_block_get(struct scrub_block *sblock)
1855 {
1856 atomic_inc(&sblock->ref_count);
1857 }
1858
1859 static void scrub_block_put(struct scrub_block *sblock)
1860 {
1861 if (atomic_dec_and_test(&sblock->ref_count)) {
1862 int i;
1863
1864 for (i = 0; i < sblock->page_count; i++)
1865 scrub_page_put(sblock->pagev[i]);
1866 kfree(sblock);
1867 }
1868 }
1869
1870 static void scrub_page_get(struct scrub_page *spage)
1871 {
1872 atomic_inc(&spage->ref_count);
1873 }
1874
1875 static void scrub_page_put(struct scrub_page *spage)
1876 {
1877 if (atomic_dec_and_test(&spage->ref_count)) {
1878 if (spage->page)
1879 __free_page(spage->page);
1880 kfree(spage);
1881 }
1882 }
1883
1884 static void scrub_submit(struct scrub_ctx *sctx)
1885 {
1886 struct scrub_bio *sbio;
1887
1888 if (sctx->curr == -1)
1889 return;
1890
1891 sbio = sctx->bios[sctx->curr];
1892 sctx->curr = -1;
1893 scrub_pending_bio_inc(sctx);
1894
1895 if (!sbio->bio->bi_bdev) {
1896 /*
1897 * this case should not happen. If btrfs_map_block() is
1898 * wrong, it could happen for dev-replace operations on
1899 * missing devices when no mirrors are available, but in
1900 * this case it should already fail the mount.
1901 * This case is handled correctly (but _very_ slowly).
1902 */
1903 printk_ratelimited(KERN_WARNING
1904 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1905 bio_endio(sbio->bio, -EIO);
1906 } else {
1907 btrfsic_submit_bio(READ, sbio->bio);
1908 }
1909 }
1910
1911 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1912 struct scrub_page *spage)
1913 {
1914 struct scrub_block *sblock = spage->sblock;
1915 struct scrub_bio *sbio;
1916 int ret;
1917
1918 again:
1919 /*
1920 * grab a fresh bio or wait for one to become available
1921 */
1922 while (sctx->curr == -1) {
1923 spin_lock(&sctx->list_lock);
1924 sctx->curr = sctx->first_free;
1925 if (sctx->curr != -1) {
1926 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1927 sctx->bios[sctx->curr]->next_free = -1;
1928 sctx->bios[sctx->curr]->page_count = 0;
1929 spin_unlock(&sctx->list_lock);
1930 } else {
1931 spin_unlock(&sctx->list_lock);
1932 wait_event(sctx->list_wait, sctx->first_free != -1);
1933 }
1934 }
1935 sbio = sctx->bios[sctx->curr];
1936 if (sbio->page_count == 0) {
1937 struct bio *bio;
1938
1939 sbio->physical = spage->physical;
1940 sbio->logical = spage->logical;
1941 sbio->dev = spage->dev;
1942 bio = sbio->bio;
1943 if (!bio) {
1944 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1945 if (!bio)
1946 return -ENOMEM;
1947 sbio->bio = bio;
1948 }
1949
1950 bio->bi_private = sbio;
1951 bio->bi_end_io = scrub_bio_end_io;
1952 bio->bi_bdev = sbio->dev->bdev;
1953 bio->bi_sector = sbio->physical >> 9;
1954 sbio->err = 0;
1955 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1956 spage->physical ||
1957 sbio->logical + sbio->page_count * PAGE_SIZE !=
1958 spage->logical ||
1959 sbio->dev != spage->dev) {
1960 scrub_submit(sctx);
1961 goto again;
1962 }
1963
1964 sbio->pagev[sbio->page_count] = spage;
1965 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1966 if (ret != PAGE_SIZE) {
1967 if (sbio->page_count < 1) {
1968 bio_put(sbio->bio);
1969 sbio->bio = NULL;
1970 return -EIO;
1971 }
1972 scrub_submit(sctx);
1973 goto again;
1974 }
1975
1976 scrub_block_get(sblock); /* one for the page added to the bio */
1977 atomic_inc(&sblock->outstanding_pages);
1978 sbio->page_count++;
1979 if (sbio->page_count == sctx->pages_per_rd_bio)
1980 scrub_submit(sctx);
1981
1982 return 0;
1983 }
1984
1985 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1986 u64 physical, struct btrfs_device *dev, u64 flags,
1987 u64 gen, int mirror_num, u8 *csum, int force,
1988 u64 physical_for_dev_replace)
1989 {
1990 struct scrub_block *sblock;
1991 int index;
1992
1993 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1994 if (!sblock) {
1995 spin_lock(&sctx->stat_lock);
1996 sctx->stat.malloc_errors++;
1997 spin_unlock(&sctx->stat_lock);
1998 return -ENOMEM;
1999 }
2000
2001 /* one ref inside this function, plus one for each page added to
2002 * a bio later on */
2003 atomic_set(&sblock->ref_count, 1);
2004 sblock->sctx = sctx;
2005 sblock->no_io_error_seen = 1;
2006
2007 for (index = 0; len > 0; index++) {
2008 struct scrub_page *spage;
2009 u64 l = min_t(u64, len, PAGE_SIZE);
2010
2011 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2012 if (!spage) {
2013 leave_nomem:
2014 spin_lock(&sctx->stat_lock);
2015 sctx->stat.malloc_errors++;
2016 spin_unlock(&sctx->stat_lock);
2017 scrub_block_put(sblock);
2018 return -ENOMEM;
2019 }
2020 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2021 scrub_page_get(spage);
2022 sblock->pagev[index] = spage;
2023 spage->sblock = sblock;
2024 spage->dev = dev;
2025 spage->flags = flags;
2026 spage->generation = gen;
2027 spage->logical = logical;
2028 spage->physical = physical;
2029 spage->physical_for_dev_replace = physical_for_dev_replace;
2030 spage->mirror_num = mirror_num;
2031 if (csum) {
2032 spage->have_csum = 1;
2033 memcpy(spage->csum, csum, sctx->csum_size);
2034 } else {
2035 spage->have_csum = 0;
2036 }
2037 sblock->page_count++;
2038 spage->page = alloc_page(GFP_NOFS);
2039 if (!spage->page)
2040 goto leave_nomem;
2041 len -= l;
2042 logical += l;
2043 physical += l;
2044 physical_for_dev_replace += l;
2045 }
2046
2047 WARN_ON(sblock->page_count == 0);
2048 for (index = 0; index < sblock->page_count; index++) {
2049 struct scrub_page *spage = sblock->pagev[index];
2050 int ret;
2051
2052 ret = scrub_add_page_to_rd_bio(sctx, spage);
2053 if (ret) {
2054 scrub_block_put(sblock);
2055 return ret;
2056 }
2057 }
2058
2059 if (force)
2060 scrub_submit(sctx);
2061
2062 /* last one frees, either here or in bio completion for last page */
2063 scrub_block_put(sblock);
2064 return 0;
2065 }
2066
2067 static void scrub_bio_end_io(struct bio *bio, int err)
2068 {
2069 struct scrub_bio *sbio = bio->bi_private;
2070 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2071
2072 sbio->err = err;
2073 sbio->bio = bio;
2074
2075 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2076 }
2077
2078 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2079 {
2080 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2081 struct scrub_ctx *sctx = sbio->sctx;
2082 int i;
2083
2084 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2085 if (sbio->err) {
2086 for (i = 0; i < sbio->page_count; i++) {
2087 struct scrub_page *spage = sbio->pagev[i];
2088
2089 spage->io_error = 1;
2090 spage->sblock->no_io_error_seen = 0;
2091 }
2092 }
2093
2094 /* now complete the scrub_block items that have all pages completed */
2095 for (i = 0; i < sbio->page_count; i++) {
2096 struct scrub_page *spage = sbio->pagev[i];
2097 struct scrub_block *sblock = spage->sblock;
2098
2099 if (atomic_dec_and_test(&sblock->outstanding_pages))
2100 scrub_block_complete(sblock);
2101 scrub_block_put(sblock);
2102 }
2103
2104 bio_put(sbio->bio);
2105 sbio->bio = NULL;
2106 spin_lock(&sctx->list_lock);
2107 sbio->next_free = sctx->first_free;
2108 sctx->first_free = sbio->index;
2109 spin_unlock(&sctx->list_lock);
2110
2111 if (sctx->is_dev_replace &&
2112 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2113 mutex_lock(&sctx->wr_ctx.wr_lock);
2114 scrub_wr_submit(sctx);
2115 mutex_unlock(&sctx->wr_ctx.wr_lock);
2116 }
2117
2118 scrub_pending_bio_dec(sctx);
2119 }
2120
2121 static void scrub_block_complete(struct scrub_block *sblock)
2122 {
2123 if (!sblock->no_io_error_seen) {
2124 scrub_handle_errored_block(sblock);
2125 } else {
2126 /*
2127 * if has checksum error, write via repair mechanism in
2128 * dev replace case, otherwise write here in dev replace
2129 * case.
2130 */
2131 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2132 scrub_write_block_to_dev_replace(sblock);
2133 }
2134 }
2135
2136 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2137 u8 *csum)
2138 {
2139 struct btrfs_ordered_sum *sum = NULL;
2140 unsigned long index;
2141 unsigned long num_sectors;
2142
2143 while (!list_empty(&sctx->csum_list)) {
2144 sum = list_first_entry(&sctx->csum_list,
2145 struct btrfs_ordered_sum, list);
2146 if (sum->bytenr > logical)
2147 return 0;
2148 if (sum->bytenr + sum->len > logical)
2149 break;
2150
2151 ++sctx->stat.csum_discards;
2152 list_del(&sum->list);
2153 kfree(sum);
2154 sum = NULL;
2155 }
2156 if (!sum)
2157 return 0;
2158
2159 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2160 num_sectors = sum->len / sctx->sectorsize;
2161 memcpy(csum, sum->sums + index, sctx->csum_size);
2162 if (index == num_sectors - 1) {
2163 list_del(&sum->list);
2164 kfree(sum);
2165 }
2166 return 1;
2167 }
2168
2169 /* scrub extent tries to collect up to 64 kB for each bio */
2170 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2171 u64 physical, struct btrfs_device *dev, u64 flags,
2172 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2173 {
2174 int ret;
2175 u8 csum[BTRFS_CSUM_SIZE];
2176 u32 blocksize;
2177
2178 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2179 blocksize = sctx->sectorsize;
2180 spin_lock(&sctx->stat_lock);
2181 sctx->stat.data_extents_scrubbed++;
2182 sctx->stat.data_bytes_scrubbed += len;
2183 spin_unlock(&sctx->stat_lock);
2184 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2185 WARN_ON(sctx->nodesize != sctx->leafsize);
2186 blocksize = sctx->nodesize;
2187 spin_lock(&sctx->stat_lock);
2188 sctx->stat.tree_extents_scrubbed++;
2189 sctx->stat.tree_bytes_scrubbed += len;
2190 spin_unlock(&sctx->stat_lock);
2191 } else {
2192 blocksize = sctx->sectorsize;
2193 WARN_ON(1);
2194 }
2195
2196 while (len) {
2197 u64 l = min_t(u64, len, blocksize);
2198 int have_csum = 0;
2199
2200 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2201 /* push csums to sbio */
2202 have_csum = scrub_find_csum(sctx, logical, l, csum);
2203 if (have_csum == 0)
2204 ++sctx->stat.no_csum;
2205 if (sctx->is_dev_replace && !have_csum) {
2206 ret = copy_nocow_pages(sctx, logical, l,
2207 mirror_num,
2208 physical_for_dev_replace);
2209 goto behind_scrub_pages;
2210 }
2211 }
2212 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2213 mirror_num, have_csum ? csum : NULL, 0,
2214 physical_for_dev_replace);
2215 behind_scrub_pages:
2216 if (ret)
2217 return ret;
2218 len -= l;
2219 logical += l;
2220 physical += l;
2221 physical_for_dev_replace += l;
2222 }
2223 return 0;
2224 }
2225
2226 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2227 struct map_lookup *map,
2228 struct btrfs_device *scrub_dev,
2229 int num, u64 base, u64 length,
2230 int is_dev_replace)
2231 {
2232 struct btrfs_path *path;
2233 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2234 struct btrfs_root *root = fs_info->extent_root;
2235 struct btrfs_root *csum_root = fs_info->csum_root;
2236 struct btrfs_extent_item *extent;
2237 struct blk_plug plug;
2238 u64 flags;
2239 int ret;
2240 int slot;
2241 u64 nstripes;
2242 struct extent_buffer *l;
2243 struct btrfs_key key;
2244 u64 physical;
2245 u64 logical;
2246 u64 logic_end;
2247 u64 generation;
2248 int mirror_num;
2249 struct reada_control *reada1;
2250 struct reada_control *reada2;
2251 struct btrfs_key key_start;
2252 struct btrfs_key key_end;
2253 u64 increment = map->stripe_len;
2254 u64 offset;
2255 u64 extent_logical;
2256 u64 extent_physical;
2257 u64 extent_len;
2258 struct btrfs_device *extent_dev;
2259 int extent_mirror_num;
2260 int stop_loop;
2261
2262 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2263 BTRFS_BLOCK_GROUP_RAID6)) {
2264 if (num >= nr_data_stripes(map)) {
2265 return 0;
2266 }
2267 }
2268
2269 nstripes = length;
2270 offset = 0;
2271 do_div(nstripes, map->stripe_len);
2272 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2273 offset = map->stripe_len * num;
2274 increment = map->stripe_len * map->num_stripes;
2275 mirror_num = 1;
2276 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2277 int factor = map->num_stripes / map->sub_stripes;
2278 offset = map->stripe_len * (num / map->sub_stripes);
2279 increment = map->stripe_len * factor;
2280 mirror_num = num % map->sub_stripes + 1;
2281 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2282 increment = map->stripe_len;
2283 mirror_num = num % map->num_stripes + 1;
2284 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2285 increment = map->stripe_len;
2286 mirror_num = num % map->num_stripes + 1;
2287 } else {
2288 increment = map->stripe_len;
2289 mirror_num = 1;
2290 }
2291
2292 path = btrfs_alloc_path();
2293 if (!path)
2294 return -ENOMEM;
2295
2296 /*
2297 * work on commit root. The related disk blocks are static as
2298 * long as COW is applied. This means, it is save to rewrite
2299 * them to repair disk errors without any race conditions
2300 */
2301 path->search_commit_root = 1;
2302 path->skip_locking = 1;
2303
2304 /*
2305 * trigger the readahead for extent tree csum tree and wait for
2306 * completion. During readahead, the scrub is officially paused
2307 * to not hold off transaction commits
2308 */
2309 logical = base + offset;
2310
2311 wait_event(sctx->list_wait,
2312 atomic_read(&sctx->bios_in_flight) == 0);
2313 scrub_blocked_if_needed(fs_info);
2314
2315 /* FIXME it might be better to start readahead at commit root */
2316 key_start.objectid = logical;
2317 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2318 key_start.offset = (u64)0;
2319 key_end.objectid = base + offset + nstripes * increment;
2320 key_end.type = BTRFS_METADATA_ITEM_KEY;
2321 key_end.offset = (u64)-1;
2322 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2323
2324 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2325 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2326 key_start.offset = logical;
2327 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2328 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2329 key_end.offset = base + offset + nstripes * increment;
2330 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2331
2332 if (!IS_ERR(reada1))
2333 btrfs_reada_wait(reada1);
2334 if (!IS_ERR(reada2))
2335 btrfs_reada_wait(reada2);
2336
2337
2338 /*
2339 * collect all data csums for the stripe to avoid seeking during
2340 * the scrub. This might currently (crc32) end up to be about 1MB
2341 */
2342 blk_start_plug(&plug);
2343
2344 /*
2345 * now find all extents for each stripe and scrub them
2346 */
2347 logical = base + offset;
2348 physical = map->stripes[num].physical;
2349 logic_end = logical + increment * nstripes;
2350 ret = 0;
2351 while (logical < logic_end) {
2352 /*
2353 * canceled?
2354 */
2355 if (atomic_read(&fs_info->scrub_cancel_req) ||
2356 atomic_read(&sctx->cancel_req)) {
2357 ret = -ECANCELED;
2358 goto out;
2359 }
2360 /*
2361 * check to see if we have to pause
2362 */
2363 if (atomic_read(&fs_info->scrub_pause_req)) {
2364 /* push queued extents */
2365 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2366 scrub_submit(sctx);
2367 mutex_lock(&sctx->wr_ctx.wr_lock);
2368 scrub_wr_submit(sctx);
2369 mutex_unlock(&sctx->wr_ctx.wr_lock);
2370 wait_event(sctx->list_wait,
2371 atomic_read(&sctx->bios_in_flight) == 0);
2372 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2373 scrub_blocked_if_needed(fs_info);
2374 }
2375
2376 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2377 key.type = BTRFS_METADATA_ITEM_KEY;
2378 else
2379 key.type = BTRFS_EXTENT_ITEM_KEY;
2380 key.objectid = logical;
2381 key.offset = (u64)-1;
2382
2383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2384 if (ret < 0)
2385 goto out;
2386
2387 if (ret > 0) {
2388 ret = btrfs_previous_extent_item(root, path, 0);
2389 if (ret < 0)
2390 goto out;
2391 if (ret > 0) {
2392 /* there's no smaller item, so stick with the
2393 * larger one */
2394 btrfs_release_path(path);
2395 ret = btrfs_search_slot(NULL, root, &key,
2396 path, 0, 0);
2397 if (ret < 0)
2398 goto out;
2399 }
2400 }
2401
2402 stop_loop = 0;
2403 while (1) {
2404 u64 bytes;
2405
2406 l = path->nodes[0];
2407 slot = path->slots[0];
2408 if (slot >= btrfs_header_nritems(l)) {
2409 ret = btrfs_next_leaf(root, path);
2410 if (ret == 0)
2411 continue;
2412 if (ret < 0)
2413 goto out;
2414
2415 stop_loop = 1;
2416 break;
2417 }
2418 btrfs_item_key_to_cpu(l, &key, slot);
2419
2420 if (key.type == BTRFS_METADATA_ITEM_KEY)
2421 bytes = root->leafsize;
2422 else
2423 bytes = key.offset;
2424
2425 if (key.objectid + bytes <= logical)
2426 goto next;
2427
2428 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2429 key.type != BTRFS_METADATA_ITEM_KEY)
2430 goto next;
2431
2432 if (key.objectid >= logical + map->stripe_len) {
2433 /* out of this device extent */
2434 if (key.objectid >= logic_end)
2435 stop_loop = 1;
2436 break;
2437 }
2438
2439 extent = btrfs_item_ptr(l, slot,
2440 struct btrfs_extent_item);
2441 flags = btrfs_extent_flags(l, extent);
2442 generation = btrfs_extent_generation(l, extent);
2443
2444 if (key.objectid < logical &&
2445 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2446 btrfs_err(fs_info,
2447 "scrub: tree block %llu spanning "
2448 "stripes, ignored. logical=%llu",
2449 key.objectid, logical);
2450 goto next;
2451 }
2452
2453 again:
2454 extent_logical = key.objectid;
2455 extent_len = bytes;
2456
2457 /*
2458 * trim extent to this stripe
2459 */
2460 if (extent_logical < logical) {
2461 extent_len -= logical - extent_logical;
2462 extent_logical = logical;
2463 }
2464 if (extent_logical + extent_len >
2465 logical + map->stripe_len) {
2466 extent_len = logical + map->stripe_len -
2467 extent_logical;
2468 }
2469
2470 extent_physical = extent_logical - logical + physical;
2471 extent_dev = scrub_dev;
2472 extent_mirror_num = mirror_num;
2473 if (is_dev_replace)
2474 scrub_remap_extent(fs_info, extent_logical,
2475 extent_len, &extent_physical,
2476 &extent_dev,
2477 &extent_mirror_num);
2478
2479 ret = btrfs_lookup_csums_range(csum_root, logical,
2480 logical + map->stripe_len - 1,
2481 &sctx->csum_list, 1);
2482 if (ret)
2483 goto out;
2484
2485 ret = scrub_extent(sctx, extent_logical, extent_len,
2486 extent_physical, extent_dev, flags,
2487 generation, extent_mirror_num,
2488 extent_logical - logical + physical);
2489 if (ret)
2490 goto out;
2491
2492 scrub_free_csums(sctx);
2493 if (extent_logical + extent_len <
2494 key.objectid + bytes) {
2495 logical += increment;
2496 physical += map->stripe_len;
2497
2498 if (logical < key.objectid + bytes) {
2499 cond_resched();
2500 goto again;
2501 }
2502
2503 if (logical >= logic_end) {
2504 stop_loop = 1;
2505 break;
2506 }
2507 }
2508 next:
2509 path->slots[0]++;
2510 }
2511 btrfs_release_path(path);
2512 logical += increment;
2513 physical += map->stripe_len;
2514 spin_lock(&sctx->stat_lock);
2515 if (stop_loop)
2516 sctx->stat.last_physical = map->stripes[num].physical +
2517 length;
2518 else
2519 sctx->stat.last_physical = physical;
2520 spin_unlock(&sctx->stat_lock);
2521 if (stop_loop)
2522 break;
2523 }
2524 out:
2525 /* push queued extents */
2526 scrub_submit(sctx);
2527 mutex_lock(&sctx->wr_ctx.wr_lock);
2528 scrub_wr_submit(sctx);
2529 mutex_unlock(&sctx->wr_ctx.wr_lock);
2530
2531 blk_finish_plug(&plug);
2532 btrfs_free_path(path);
2533 return ret < 0 ? ret : 0;
2534 }
2535
2536 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2537 struct btrfs_device *scrub_dev,
2538 u64 chunk_tree, u64 chunk_objectid,
2539 u64 chunk_offset, u64 length,
2540 u64 dev_offset, int is_dev_replace)
2541 {
2542 struct btrfs_mapping_tree *map_tree =
2543 &sctx->dev_root->fs_info->mapping_tree;
2544 struct map_lookup *map;
2545 struct extent_map *em;
2546 int i;
2547 int ret = 0;
2548
2549 read_lock(&map_tree->map_tree.lock);
2550 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2551 read_unlock(&map_tree->map_tree.lock);
2552
2553 if (!em)
2554 return -EINVAL;
2555
2556 map = (struct map_lookup *)em->bdev;
2557 if (em->start != chunk_offset)
2558 goto out;
2559
2560 if (em->len < length)
2561 goto out;
2562
2563 for (i = 0; i < map->num_stripes; ++i) {
2564 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2565 map->stripes[i].physical == dev_offset) {
2566 ret = scrub_stripe(sctx, map, scrub_dev, i,
2567 chunk_offset, length,
2568 is_dev_replace);
2569 if (ret)
2570 goto out;
2571 }
2572 }
2573 out:
2574 free_extent_map(em);
2575
2576 return ret;
2577 }
2578
2579 static noinline_for_stack
2580 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2581 struct btrfs_device *scrub_dev, u64 start, u64 end,
2582 int is_dev_replace)
2583 {
2584 struct btrfs_dev_extent *dev_extent = NULL;
2585 struct btrfs_path *path;
2586 struct btrfs_root *root = sctx->dev_root;
2587 struct btrfs_fs_info *fs_info = root->fs_info;
2588 u64 length;
2589 u64 chunk_tree;
2590 u64 chunk_objectid;
2591 u64 chunk_offset;
2592 int ret;
2593 int slot;
2594 struct extent_buffer *l;
2595 struct btrfs_key key;
2596 struct btrfs_key found_key;
2597 struct btrfs_block_group_cache *cache;
2598 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2599
2600 path = btrfs_alloc_path();
2601 if (!path)
2602 return -ENOMEM;
2603
2604 path->reada = 2;
2605 path->search_commit_root = 1;
2606 path->skip_locking = 1;
2607
2608 key.objectid = scrub_dev->devid;
2609 key.offset = 0ull;
2610 key.type = BTRFS_DEV_EXTENT_KEY;
2611
2612 while (1) {
2613 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2614 if (ret < 0)
2615 break;
2616 if (ret > 0) {
2617 if (path->slots[0] >=
2618 btrfs_header_nritems(path->nodes[0])) {
2619 ret = btrfs_next_leaf(root, path);
2620 if (ret)
2621 break;
2622 }
2623 }
2624
2625 l = path->nodes[0];
2626 slot = path->slots[0];
2627
2628 btrfs_item_key_to_cpu(l, &found_key, slot);
2629
2630 if (found_key.objectid != scrub_dev->devid)
2631 break;
2632
2633 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2634 break;
2635
2636 if (found_key.offset >= end)
2637 break;
2638
2639 if (found_key.offset < key.offset)
2640 break;
2641
2642 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2643 length = btrfs_dev_extent_length(l, dev_extent);
2644
2645 if (found_key.offset + length <= start) {
2646 key.offset = found_key.offset + length;
2647 btrfs_release_path(path);
2648 continue;
2649 }
2650
2651 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2652 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2653 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2654
2655 /*
2656 * get a reference on the corresponding block group to prevent
2657 * the chunk from going away while we scrub it
2658 */
2659 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2660 if (!cache) {
2661 ret = -ENOENT;
2662 break;
2663 }
2664 dev_replace->cursor_right = found_key.offset + length;
2665 dev_replace->cursor_left = found_key.offset;
2666 dev_replace->item_needs_writeback = 1;
2667 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2668 chunk_offset, length, found_key.offset,
2669 is_dev_replace);
2670
2671 /*
2672 * flush, submit all pending read and write bios, afterwards
2673 * wait for them.
2674 * Note that in the dev replace case, a read request causes
2675 * write requests that are submitted in the read completion
2676 * worker. Therefore in the current situation, it is required
2677 * that all write requests are flushed, so that all read and
2678 * write requests are really completed when bios_in_flight
2679 * changes to 0.
2680 */
2681 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2682 scrub_submit(sctx);
2683 mutex_lock(&sctx->wr_ctx.wr_lock);
2684 scrub_wr_submit(sctx);
2685 mutex_unlock(&sctx->wr_ctx.wr_lock);
2686
2687 wait_event(sctx->list_wait,
2688 atomic_read(&sctx->bios_in_flight) == 0);
2689 atomic_inc(&fs_info->scrubs_paused);
2690 wake_up(&fs_info->scrub_pause_wait);
2691
2692 /*
2693 * must be called before we decrease @scrub_paused.
2694 * make sure we don't block transaction commit while
2695 * we are waiting pending workers finished.
2696 */
2697 wait_event(sctx->list_wait,
2698 atomic_read(&sctx->workers_pending) == 0);
2699 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2700
2701 mutex_lock(&fs_info->scrub_lock);
2702 __scrub_blocked_if_needed(fs_info);
2703 atomic_dec(&fs_info->scrubs_paused);
2704 mutex_unlock(&fs_info->scrub_lock);
2705 wake_up(&fs_info->scrub_pause_wait);
2706
2707 btrfs_put_block_group(cache);
2708 if (ret)
2709 break;
2710 if (is_dev_replace &&
2711 atomic64_read(&dev_replace->num_write_errors) > 0) {
2712 ret = -EIO;
2713 break;
2714 }
2715 if (sctx->stat.malloc_errors > 0) {
2716 ret = -ENOMEM;
2717 break;
2718 }
2719
2720 dev_replace->cursor_left = dev_replace->cursor_right;
2721 dev_replace->item_needs_writeback = 1;
2722
2723 key.offset = found_key.offset + length;
2724 btrfs_release_path(path);
2725 }
2726
2727 btrfs_free_path(path);
2728
2729 /*
2730 * ret can still be 1 from search_slot or next_leaf,
2731 * that's not an error
2732 */
2733 return ret < 0 ? ret : 0;
2734 }
2735
2736 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2737 struct btrfs_device *scrub_dev)
2738 {
2739 int i;
2740 u64 bytenr;
2741 u64 gen;
2742 int ret;
2743 struct btrfs_root *root = sctx->dev_root;
2744
2745 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2746 return -EIO;
2747
2748 gen = root->fs_info->last_trans_committed;
2749
2750 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2751 bytenr = btrfs_sb_offset(i);
2752 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2753 break;
2754
2755 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2756 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2757 NULL, 1, bytenr);
2758 if (ret)
2759 return ret;
2760 }
2761 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2762
2763 return 0;
2764 }
2765
2766 /*
2767 * get a reference count on fs_info->scrub_workers. start worker if necessary
2768 */
2769 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2770 int is_dev_replace)
2771 {
2772 int ret = 0;
2773
2774 if (fs_info->scrub_workers_refcnt == 0) {
2775 if (is_dev_replace)
2776 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2777 &fs_info->generic_worker);
2778 else
2779 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2780 fs_info->thread_pool_size,
2781 &fs_info->generic_worker);
2782 fs_info->scrub_workers.idle_thresh = 4;
2783 ret = btrfs_start_workers(&fs_info->scrub_workers);
2784 if (ret)
2785 goto out;
2786 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2787 "scrubwrc",
2788 fs_info->thread_pool_size,
2789 &fs_info->generic_worker);
2790 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2791 ret = btrfs_start_workers(
2792 &fs_info->scrub_wr_completion_workers);
2793 if (ret)
2794 goto out;
2795 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2796 &fs_info->generic_worker);
2797 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2798 if (ret)
2799 goto out;
2800 }
2801 ++fs_info->scrub_workers_refcnt;
2802 out:
2803 return ret;
2804 }
2805
2806 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2807 {
2808 if (--fs_info->scrub_workers_refcnt == 0) {
2809 btrfs_stop_workers(&fs_info->scrub_workers);
2810 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2811 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2812 }
2813 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2814 }
2815
2816 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2817 u64 end, struct btrfs_scrub_progress *progress,
2818 int readonly, int is_dev_replace)
2819 {
2820 struct scrub_ctx *sctx;
2821 int ret;
2822 struct btrfs_device *dev;
2823
2824 if (btrfs_fs_closing(fs_info))
2825 return -EINVAL;
2826
2827 /*
2828 * check some assumptions
2829 */
2830 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2831 btrfs_err(fs_info,
2832 "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2833 fs_info->chunk_root->nodesize,
2834 fs_info->chunk_root->leafsize);
2835 return -EINVAL;
2836 }
2837
2838 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2839 /*
2840 * in this case scrub is unable to calculate the checksum
2841 * the way scrub is implemented. Do not handle this
2842 * situation at all because it won't ever happen.
2843 */
2844 btrfs_err(fs_info,
2845 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2846 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2847 return -EINVAL;
2848 }
2849
2850 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2851 /* not supported for data w/o checksums */
2852 btrfs_err(fs_info,
2853 "scrub: size assumption sectorsize != PAGE_SIZE "
2854 "(%d != %lu) fails",
2855 fs_info->chunk_root->sectorsize, PAGE_SIZE);
2856 return -EINVAL;
2857 }
2858
2859 if (fs_info->chunk_root->nodesize >
2860 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2861 fs_info->chunk_root->sectorsize >
2862 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2863 /*
2864 * would exhaust the array bounds of pagev member in
2865 * struct scrub_block
2866 */
2867 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2868 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2869 fs_info->chunk_root->nodesize,
2870 SCRUB_MAX_PAGES_PER_BLOCK,
2871 fs_info->chunk_root->sectorsize,
2872 SCRUB_MAX_PAGES_PER_BLOCK);
2873 return -EINVAL;
2874 }
2875
2876
2877 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2878 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2879 if (!dev || (dev->missing && !is_dev_replace)) {
2880 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2881 return -ENODEV;
2882 }
2883
2884 mutex_lock(&fs_info->scrub_lock);
2885 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2886 mutex_unlock(&fs_info->scrub_lock);
2887 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2888 return -EIO;
2889 }
2890
2891 btrfs_dev_replace_lock(&fs_info->dev_replace);
2892 if (dev->scrub_device ||
2893 (!is_dev_replace &&
2894 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2895 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2896 mutex_unlock(&fs_info->scrub_lock);
2897 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2898 return -EINPROGRESS;
2899 }
2900 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2901
2902 ret = scrub_workers_get(fs_info, is_dev_replace);
2903 if (ret) {
2904 mutex_unlock(&fs_info->scrub_lock);
2905 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2906 return ret;
2907 }
2908
2909 sctx = scrub_setup_ctx(dev, is_dev_replace);
2910 if (IS_ERR(sctx)) {
2911 mutex_unlock(&fs_info->scrub_lock);
2912 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2913 scrub_workers_put(fs_info);
2914 return PTR_ERR(sctx);
2915 }
2916 sctx->readonly = readonly;
2917 dev->scrub_device = sctx;
2918 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2919
2920 /*
2921 * checking @scrub_pause_req here, we can avoid
2922 * race between committing transaction and scrubbing.
2923 */
2924 __scrub_blocked_if_needed(fs_info);
2925 atomic_inc(&fs_info->scrubs_running);
2926 mutex_unlock(&fs_info->scrub_lock);
2927
2928 if (!is_dev_replace) {
2929 /*
2930 * by holding device list mutex, we can
2931 * kick off writing super in log tree sync.
2932 */
2933 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2934 ret = scrub_supers(sctx, dev);
2935 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2936 }
2937
2938 if (!ret)
2939 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2940 is_dev_replace);
2941
2942 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2943 atomic_dec(&fs_info->scrubs_running);
2944 wake_up(&fs_info->scrub_pause_wait);
2945
2946 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2947
2948 if (progress)
2949 memcpy(progress, &sctx->stat, sizeof(*progress));
2950
2951 mutex_lock(&fs_info->scrub_lock);
2952 dev->scrub_device = NULL;
2953 scrub_workers_put(fs_info);
2954 mutex_unlock(&fs_info->scrub_lock);
2955
2956 scrub_free_ctx(sctx);
2957
2958 return ret;
2959 }
2960
2961 void btrfs_scrub_pause(struct btrfs_root *root)
2962 {
2963 struct btrfs_fs_info *fs_info = root->fs_info;
2964
2965 mutex_lock(&fs_info->scrub_lock);
2966 atomic_inc(&fs_info->scrub_pause_req);
2967 while (atomic_read(&fs_info->scrubs_paused) !=
2968 atomic_read(&fs_info->scrubs_running)) {
2969 mutex_unlock(&fs_info->scrub_lock);
2970 wait_event(fs_info->scrub_pause_wait,
2971 atomic_read(&fs_info->scrubs_paused) ==
2972 atomic_read(&fs_info->scrubs_running));
2973 mutex_lock(&fs_info->scrub_lock);
2974 }
2975 mutex_unlock(&fs_info->scrub_lock);
2976 }
2977
2978 void btrfs_scrub_continue(struct btrfs_root *root)
2979 {
2980 struct btrfs_fs_info *fs_info = root->fs_info;
2981
2982 atomic_dec(&fs_info->scrub_pause_req);
2983 wake_up(&fs_info->scrub_pause_wait);
2984 }
2985
2986 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2987 {
2988 mutex_lock(&fs_info->scrub_lock);
2989 if (!atomic_read(&fs_info->scrubs_running)) {
2990 mutex_unlock(&fs_info->scrub_lock);
2991 return -ENOTCONN;
2992 }
2993
2994 atomic_inc(&fs_info->scrub_cancel_req);
2995 while (atomic_read(&fs_info->scrubs_running)) {
2996 mutex_unlock(&fs_info->scrub_lock);
2997 wait_event(fs_info->scrub_pause_wait,
2998 atomic_read(&fs_info->scrubs_running) == 0);
2999 mutex_lock(&fs_info->scrub_lock);
3000 }
3001 atomic_dec(&fs_info->scrub_cancel_req);
3002 mutex_unlock(&fs_info->scrub_lock);
3003
3004 return 0;
3005 }
3006
3007 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3008 struct btrfs_device *dev)
3009 {
3010 struct scrub_ctx *sctx;
3011
3012 mutex_lock(&fs_info->scrub_lock);
3013 sctx = dev->scrub_device;
3014 if (!sctx) {
3015 mutex_unlock(&fs_info->scrub_lock);
3016 return -ENOTCONN;
3017 }
3018 atomic_inc(&sctx->cancel_req);
3019 while (dev->scrub_device) {
3020 mutex_unlock(&fs_info->scrub_lock);
3021 wait_event(fs_info->scrub_pause_wait,
3022 dev->scrub_device == NULL);
3023 mutex_lock(&fs_info->scrub_lock);
3024 }
3025 mutex_unlock(&fs_info->scrub_lock);
3026
3027 return 0;
3028 }
3029
3030 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3031 struct btrfs_scrub_progress *progress)
3032 {
3033 struct btrfs_device *dev;
3034 struct scrub_ctx *sctx = NULL;
3035
3036 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3037 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3038 if (dev)
3039 sctx = dev->scrub_device;
3040 if (sctx)
3041 memcpy(progress, &sctx->stat, sizeof(*progress));
3042 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3043
3044 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3045 }
3046
3047 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3048 u64 extent_logical, u64 extent_len,
3049 u64 *extent_physical,
3050 struct btrfs_device **extent_dev,
3051 int *extent_mirror_num)
3052 {
3053 u64 mapped_length;
3054 struct btrfs_bio *bbio = NULL;
3055 int ret;
3056
3057 mapped_length = extent_len;
3058 ret = btrfs_map_block(fs_info, READ, extent_logical,
3059 &mapped_length, &bbio, 0);
3060 if (ret || !bbio || mapped_length < extent_len ||
3061 !bbio->stripes[0].dev->bdev) {
3062 kfree(bbio);
3063 return;
3064 }
3065
3066 *extent_physical = bbio->stripes[0].physical;
3067 *extent_mirror_num = bbio->mirror_num;
3068 *extent_dev = bbio->stripes[0].dev;
3069 kfree(bbio);
3070 }
3071
3072 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3073 struct scrub_wr_ctx *wr_ctx,
3074 struct btrfs_fs_info *fs_info,
3075 struct btrfs_device *dev,
3076 int is_dev_replace)
3077 {
3078 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3079
3080 mutex_init(&wr_ctx->wr_lock);
3081 wr_ctx->wr_curr_bio = NULL;
3082 if (!is_dev_replace)
3083 return 0;
3084
3085 WARN_ON(!dev->bdev);
3086 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3087 bio_get_nr_vecs(dev->bdev));
3088 wr_ctx->tgtdev = dev;
3089 atomic_set(&wr_ctx->flush_all_writes, 0);
3090 return 0;
3091 }
3092
3093 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3094 {
3095 mutex_lock(&wr_ctx->wr_lock);
3096 kfree(wr_ctx->wr_curr_bio);
3097 wr_ctx->wr_curr_bio = NULL;
3098 mutex_unlock(&wr_ctx->wr_lock);
3099 }
3100
3101 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3102 int mirror_num, u64 physical_for_dev_replace)
3103 {
3104 struct scrub_copy_nocow_ctx *nocow_ctx;
3105 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3106
3107 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3108 if (!nocow_ctx) {
3109 spin_lock(&sctx->stat_lock);
3110 sctx->stat.malloc_errors++;
3111 spin_unlock(&sctx->stat_lock);
3112 return -ENOMEM;
3113 }
3114
3115 scrub_pending_trans_workers_inc(sctx);
3116
3117 nocow_ctx->sctx = sctx;
3118 nocow_ctx->logical = logical;
3119 nocow_ctx->len = len;
3120 nocow_ctx->mirror_num = mirror_num;
3121 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3122 nocow_ctx->work.func = copy_nocow_pages_worker;
3123 INIT_LIST_HEAD(&nocow_ctx->inodes);
3124 btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3125 &nocow_ctx->work);
3126
3127 return 0;
3128 }
3129
3130 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3131 {
3132 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3133 struct scrub_nocow_inode *nocow_inode;
3134
3135 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3136 if (!nocow_inode)
3137 return -ENOMEM;
3138 nocow_inode->inum = inum;
3139 nocow_inode->offset = offset;
3140 nocow_inode->root = root;
3141 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3142 return 0;
3143 }
3144
3145 #define COPY_COMPLETE 1
3146
3147 static void copy_nocow_pages_worker(struct btrfs_work *work)
3148 {
3149 struct scrub_copy_nocow_ctx *nocow_ctx =
3150 container_of(work, struct scrub_copy_nocow_ctx, work);
3151 struct scrub_ctx *sctx = nocow_ctx->sctx;
3152 u64 logical = nocow_ctx->logical;
3153 u64 len = nocow_ctx->len;
3154 int mirror_num = nocow_ctx->mirror_num;
3155 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3156 int ret;
3157 struct btrfs_trans_handle *trans = NULL;
3158 struct btrfs_fs_info *fs_info;
3159 struct btrfs_path *path;
3160 struct btrfs_root *root;
3161 int not_written = 0;
3162
3163 fs_info = sctx->dev_root->fs_info;
3164 root = fs_info->extent_root;
3165
3166 path = btrfs_alloc_path();
3167 if (!path) {
3168 spin_lock(&sctx->stat_lock);
3169 sctx->stat.malloc_errors++;
3170 spin_unlock(&sctx->stat_lock);
3171 not_written = 1;
3172 goto out;
3173 }
3174
3175 trans = btrfs_join_transaction(root);
3176 if (IS_ERR(trans)) {
3177 not_written = 1;
3178 goto out;
3179 }
3180
3181 ret = iterate_inodes_from_logical(logical, fs_info, path,
3182 record_inode_for_nocow, nocow_ctx);
3183 if (ret != 0 && ret != -ENOENT) {
3184 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3185 "phys %llu, len %llu, mir %u, ret %d",
3186 logical, physical_for_dev_replace, len, mirror_num,
3187 ret);
3188 not_written = 1;
3189 goto out;
3190 }
3191
3192 btrfs_end_transaction(trans, root);
3193 trans = NULL;
3194 while (!list_empty(&nocow_ctx->inodes)) {
3195 struct scrub_nocow_inode *entry;
3196 entry = list_first_entry(&nocow_ctx->inodes,
3197 struct scrub_nocow_inode,
3198 list);
3199 list_del_init(&entry->list);
3200 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3201 entry->root, nocow_ctx);
3202 kfree(entry);
3203 if (ret == COPY_COMPLETE) {
3204 ret = 0;
3205 break;
3206 } else if (ret) {
3207 break;
3208 }
3209 }
3210 out:
3211 while (!list_empty(&nocow_ctx->inodes)) {
3212 struct scrub_nocow_inode *entry;
3213 entry = list_first_entry(&nocow_ctx->inodes,
3214 struct scrub_nocow_inode,
3215 list);
3216 list_del_init(&entry->list);
3217 kfree(entry);
3218 }
3219 if (trans && !IS_ERR(trans))
3220 btrfs_end_transaction(trans, root);
3221 if (not_written)
3222 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3223 num_uncorrectable_read_errors);
3224
3225 btrfs_free_path(path);
3226 kfree(nocow_ctx);
3227
3228 scrub_pending_trans_workers_dec(sctx);
3229 }
3230
3231 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3232 struct scrub_copy_nocow_ctx *nocow_ctx)
3233 {
3234 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3235 struct btrfs_key key;
3236 struct inode *inode;
3237 struct page *page;
3238 struct btrfs_root *local_root;
3239 struct btrfs_ordered_extent *ordered;
3240 struct extent_map *em;
3241 struct extent_state *cached_state = NULL;
3242 struct extent_io_tree *io_tree;
3243 u64 physical_for_dev_replace;
3244 u64 len = nocow_ctx->len;
3245 u64 lockstart = offset, lockend = offset + len - 1;
3246 unsigned long index;
3247 int srcu_index;
3248 int ret = 0;
3249 int err = 0;
3250
3251 key.objectid = root;
3252 key.type = BTRFS_ROOT_ITEM_KEY;
3253 key.offset = (u64)-1;
3254
3255 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3256
3257 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3258 if (IS_ERR(local_root)) {
3259 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3260 return PTR_ERR(local_root);
3261 }
3262
3263 key.type = BTRFS_INODE_ITEM_KEY;
3264 key.objectid = inum;
3265 key.offset = 0;
3266 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3267 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3268 if (IS_ERR(inode))
3269 return PTR_ERR(inode);
3270
3271 /* Avoid truncate/dio/punch hole.. */
3272 mutex_lock(&inode->i_mutex);
3273 inode_dio_wait(inode);
3274
3275 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3276 io_tree = &BTRFS_I(inode)->io_tree;
3277
3278 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3279 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3280 if (ordered) {
3281 btrfs_put_ordered_extent(ordered);
3282 goto out_unlock;
3283 }
3284
3285 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3286 if (IS_ERR(em)) {
3287 ret = PTR_ERR(em);
3288 goto out_unlock;
3289 }
3290
3291 /*
3292 * This extent does not actually cover the logical extent anymore,
3293 * move on to the next inode.
3294 */
3295 if (em->block_start > nocow_ctx->logical ||
3296 em->block_start + em->block_len < nocow_ctx->logical + len) {
3297 free_extent_map(em);
3298 goto out_unlock;
3299 }
3300 free_extent_map(em);
3301
3302 while (len >= PAGE_CACHE_SIZE) {
3303 index = offset >> PAGE_CACHE_SHIFT;
3304 again:
3305 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3306 if (!page) {
3307 btrfs_err(fs_info, "find_or_create_page() failed");
3308 ret = -ENOMEM;
3309 goto out;
3310 }
3311
3312 if (PageUptodate(page)) {
3313 if (PageDirty(page))
3314 goto next_page;
3315 } else {
3316 ClearPageError(page);
3317 err = extent_read_full_page_nolock(io_tree, page,
3318 btrfs_get_extent,
3319 nocow_ctx->mirror_num);
3320 if (err) {
3321 ret = err;
3322 goto next_page;
3323 }
3324
3325 lock_page(page);
3326 /*
3327 * If the page has been remove from the page cache,
3328 * the data on it is meaningless, because it may be
3329 * old one, the new data may be written into the new
3330 * page in the page cache.
3331 */
3332 if (page->mapping != inode->i_mapping) {
3333 unlock_page(page);
3334 page_cache_release(page);
3335 goto again;
3336 }
3337 if (!PageUptodate(page)) {
3338 ret = -EIO;
3339 goto next_page;
3340 }
3341 }
3342 err = write_page_nocow(nocow_ctx->sctx,
3343 physical_for_dev_replace, page);
3344 if (err)
3345 ret = err;
3346 next_page:
3347 unlock_page(page);
3348 page_cache_release(page);
3349
3350 if (ret)
3351 break;
3352
3353 offset += PAGE_CACHE_SIZE;
3354 physical_for_dev_replace += PAGE_CACHE_SIZE;
3355 len -= PAGE_CACHE_SIZE;
3356 }
3357 ret = COPY_COMPLETE;
3358 out_unlock:
3359 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3360 GFP_NOFS);
3361 out:
3362 mutex_unlock(&inode->i_mutex);
3363 iput(inode);
3364 return ret;
3365 }
3366
3367 static int write_page_nocow(struct scrub_ctx *sctx,
3368 u64 physical_for_dev_replace, struct page *page)
3369 {
3370 struct bio *bio;
3371 struct btrfs_device *dev;
3372 int ret;
3373
3374 dev = sctx->wr_ctx.tgtdev;
3375 if (!dev)
3376 return -EIO;
3377 if (!dev->bdev) {
3378 printk_ratelimited(KERN_WARNING
3379 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3380 return -EIO;
3381 }
3382 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3383 if (!bio) {
3384 spin_lock(&sctx->stat_lock);
3385 sctx->stat.malloc_errors++;
3386 spin_unlock(&sctx->stat_lock);
3387 return -ENOMEM;
3388 }
3389 bio->bi_size = 0;
3390 bio->bi_sector = physical_for_dev_replace >> 9;
3391 bio->bi_bdev = dev->bdev;
3392 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3393 if (ret != PAGE_CACHE_SIZE) {
3394 leave_with_eio:
3395 bio_put(bio);
3396 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3397 return -EIO;
3398 }
3399
3400 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3401 goto leave_with_eio;
3402
3403 bio_put(bio);
3404 return 0;
3405 }
This page took 0.09503 seconds and 4 git commands to generate.