Merge tag 'v4.1-rockchip-socfixes2' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / btrfs / scrub.c
1 /*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
44 */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
58
59 /*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
65
66 struct scrub_recover {
67 atomic_t refs;
68 struct btrfs_bio *bbio;
69 u64 map_length;
70 };
71
72 struct scrub_page {
73 struct scrub_block *sblock;
74 struct page *page;
75 struct btrfs_device *dev;
76 struct list_head list;
77 u64 flags; /* extent flags */
78 u64 generation;
79 u64 logical;
80 u64 physical;
81 u64 physical_for_dev_replace;
82 atomic_t refs;
83 struct {
84 unsigned int mirror_num:8;
85 unsigned int have_csum:1;
86 unsigned int io_error:1;
87 };
88 u8 csum[BTRFS_CSUM_SIZE];
89
90 struct scrub_recover *recover;
91 };
92
93 struct scrub_bio {
94 int index;
95 struct scrub_ctx *sctx;
96 struct btrfs_device *dev;
97 struct bio *bio;
98 int err;
99 u64 logical;
100 u64 physical;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
103 #else
104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
105 #endif
106 int page_count;
107 int next_free;
108 struct btrfs_work work;
109 };
110
111 struct scrub_block {
112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 int page_count;
114 atomic_t outstanding_pages;
115 atomic_t refs; /* free mem on transition to zero */
116 struct scrub_ctx *sctx;
117 struct scrub_parity *sparity;
118 struct {
119 unsigned int header_error:1;
120 unsigned int checksum_error:1;
121 unsigned int no_io_error_seen:1;
122 unsigned int generation_error:1; /* also sets header_error */
123
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected:1;
127 };
128 };
129
130 /* Used for the chunks with parity stripe such RAID5/6 */
131 struct scrub_parity {
132 struct scrub_ctx *sctx;
133
134 struct btrfs_device *scrub_dev;
135
136 u64 logic_start;
137
138 u64 logic_end;
139
140 int nsectors;
141
142 int stripe_len;
143
144 atomic_t refs;
145
146 struct list_head spages;
147
148 /* Work of parity check and repair */
149 struct btrfs_work work;
150
151 /* Mark the parity blocks which have data */
152 unsigned long *dbitmap;
153
154 /*
155 * Mark the parity blocks which have data, but errors happen when
156 * read data or check data
157 */
158 unsigned long *ebitmap;
159
160 unsigned long bitmap[0];
161 };
162
163 struct scrub_wr_ctx {
164 struct scrub_bio *wr_curr_bio;
165 struct btrfs_device *tgtdev;
166 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
167 atomic_t flush_all_writes;
168 struct mutex wr_lock;
169 };
170
171 struct scrub_ctx {
172 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
173 struct btrfs_root *dev_root;
174 int first_free;
175 int curr;
176 atomic_t bios_in_flight;
177 atomic_t workers_pending;
178 spinlock_t list_lock;
179 wait_queue_head_t list_wait;
180 u16 csum_size;
181 struct list_head csum_list;
182 atomic_t cancel_req;
183 int readonly;
184 int pages_per_rd_bio;
185 u32 sectorsize;
186 u32 nodesize;
187
188 int is_dev_replace;
189 struct scrub_wr_ctx wr_ctx;
190
191 /*
192 * statistics
193 */
194 struct btrfs_scrub_progress stat;
195 spinlock_t stat_lock;
196
197 /*
198 * Use a ref counter to avoid use-after-free issues. Scrub workers
199 * decrement bios_in_flight and workers_pending and then do a wakeup
200 * on the list_wait wait queue. We must ensure the main scrub task
201 * doesn't free the scrub context before or while the workers are
202 * doing the wakeup() call.
203 */
204 atomic_t refs;
205 };
206
207 struct scrub_fixup_nodatasum {
208 struct scrub_ctx *sctx;
209 struct btrfs_device *dev;
210 u64 logical;
211 struct btrfs_root *root;
212 struct btrfs_work work;
213 int mirror_num;
214 };
215
216 struct scrub_nocow_inode {
217 u64 inum;
218 u64 offset;
219 u64 root;
220 struct list_head list;
221 };
222
223 struct scrub_copy_nocow_ctx {
224 struct scrub_ctx *sctx;
225 u64 logical;
226 u64 len;
227 int mirror_num;
228 u64 physical_for_dev_replace;
229 struct list_head inodes;
230 struct btrfs_work work;
231 };
232
233 struct scrub_warning {
234 struct btrfs_path *path;
235 u64 extent_item_size;
236 const char *errstr;
237 sector_t sector;
238 u64 logical;
239 struct btrfs_device *dev;
240 };
241
242 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
243 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
244 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
245 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
246 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
247 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
248 struct scrub_block *sblocks_for_recheck);
249 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
250 struct scrub_block *sblock, int is_metadata,
251 int have_csum, u8 *csum, u64 generation,
252 u16 csum_size, int retry_failed_mirror);
253 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
254 struct scrub_block *sblock,
255 int is_metadata, int have_csum,
256 const u8 *csum, u64 generation,
257 u16 csum_size);
258 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
259 struct scrub_block *sblock_good);
260 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
261 struct scrub_block *sblock_good,
262 int page_num, int force_write);
263 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
264 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
265 int page_num);
266 static int scrub_checksum_data(struct scrub_block *sblock);
267 static int scrub_checksum_tree_block(struct scrub_block *sblock);
268 static int scrub_checksum_super(struct scrub_block *sblock);
269 static void scrub_block_get(struct scrub_block *sblock);
270 static void scrub_block_put(struct scrub_block *sblock);
271 static void scrub_page_get(struct scrub_page *spage);
272 static void scrub_page_put(struct scrub_page *spage);
273 static void scrub_parity_get(struct scrub_parity *sparity);
274 static void scrub_parity_put(struct scrub_parity *sparity);
275 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
276 struct scrub_page *spage);
277 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
278 u64 physical, struct btrfs_device *dev, u64 flags,
279 u64 gen, int mirror_num, u8 *csum, int force,
280 u64 physical_for_dev_replace);
281 static void scrub_bio_end_io(struct bio *bio, int err);
282 static void scrub_bio_end_io_worker(struct btrfs_work *work);
283 static void scrub_block_complete(struct scrub_block *sblock);
284 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
285 u64 extent_logical, u64 extent_len,
286 u64 *extent_physical,
287 struct btrfs_device **extent_dev,
288 int *extent_mirror_num);
289 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
290 struct scrub_wr_ctx *wr_ctx,
291 struct btrfs_fs_info *fs_info,
292 struct btrfs_device *dev,
293 int is_dev_replace);
294 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
295 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
296 struct scrub_page *spage);
297 static void scrub_wr_submit(struct scrub_ctx *sctx);
298 static void scrub_wr_bio_end_io(struct bio *bio, int err);
299 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
300 static int write_page_nocow(struct scrub_ctx *sctx,
301 u64 physical_for_dev_replace, struct page *page);
302 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
303 struct scrub_copy_nocow_ctx *ctx);
304 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
305 int mirror_num, u64 physical_for_dev_replace);
306 static void copy_nocow_pages_worker(struct btrfs_work *work);
307 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
308 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
309 static void scrub_put_ctx(struct scrub_ctx *sctx);
310
311
312 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
313 {
314 atomic_inc(&sctx->refs);
315 atomic_inc(&sctx->bios_in_flight);
316 }
317
318 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
319 {
320 atomic_dec(&sctx->bios_in_flight);
321 wake_up(&sctx->list_wait);
322 scrub_put_ctx(sctx);
323 }
324
325 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
326 {
327 while (atomic_read(&fs_info->scrub_pause_req)) {
328 mutex_unlock(&fs_info->scrub_lock);
329 wait_event(fs_info->scrub_pause_wait,
330 atomic_read(&fs_info->scrub_pause_req) == 0);
331 mutex_lock(&fs_info->scrub_lock);
332 }
333 }
334
335 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
336 {
337 atomic_inc(&fs_info->scrubs_paused);
338 wake_up(&fs_info->scrub_pause_wait);
339
340 mutex_lock(&fs_info->scrub_lock);
341 __scrub_blocked_if_needed(fs_info);
342 atomic_dec(&fs_info->scrubs_paused);
343 mutex_unlock(&fs_info->scrub_lock);
344
345 wake_up(&fs_info->scrub_pause_wait);
346 }
347
348 /*
349 * used for workers that require transaction commits (i.e., for the
350 * NOCOW case)
351 */
352 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
353 {
354 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
355
356 atomic_inc(&sctx->refs);
357 /*
358 * increment scrubs_running to prevent cancel requests from
359 * completing as long as a worker is running. we must also
360 * increment scrubs_paused to prevent deadlocking on pause
361 * requests used for transactions commits (as the worker uses a
362 * transaction context). it is safe to regard the worker
363 * as paused for all matters practical. effectively, we only
364 * avoid cancellation requests from completing.
365 */
366 mutex_lock(&fs_info->scrub_lock);
367 atomic_inc(&fs_info->scrubs_running);
368 atomic_inc(&fs_info->scrubs_paused);
369 mutex_unlock(&fs_info->scrub_lock);
370
371 /*
372 * check if @scrubs_running=@scrubs_paused condition
373 * inside wait_event() is not an atomic operation.
374 * which means we may inc/dec @scrub_running/paused
375 * at any time. Let's wake up @scrub_pause_wait as
376 * much as we can to let commit transaction blocked less.
377 */
378 wake_up(&fs_info->scrub_pause_wait);
379
380 atomic_inc(&sctx->workers_pending);
381 }
382
383 /* used for workers that require transaction commits */
384 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
385 {
386 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
387
388 /*
389 * see scrub_pending_trans_workers_inc() why we're pretending
390 * to be paused in the scrub counters
391 */
392 mutex_lock(&fs_info->scrub_lock);
393 atomic_dec(&fs_info->scrubs_running);
394 atomic_dec(&fs_info->scrubs_paused);
395 mutex_unlock(&fs_info->scrub_lock);
396 atomic_dec(&sctx->workers_pending);
397 wake_up(&fs_info->scrub_pause_wait);
398 wake_up(&sctx->list_wait);
399 scrub_put_ctx(sctx);
400 }
401
402 static void scrub_free_csums(struct scrub_ctx *sctx)
403 {
404 while (!list_empty(&sctx->csum_list)) {
405 struct btrfs_ordered_sum *sum;
406 sum = list_first_entry(&sctx->csum_list,
407 struct btrfs_ordered_sum, list);
408 list_del(&sum->list);
409 kfree(sum);
410 }
411 }
412
413 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
414 {
415 int i;
416
417 if (!sctx)
418 return;
419
420 scrub_free_wr_ctx(&sctx->wr_ctx);
421
422 /* this can happen when scrub is cancelled */
423 if (sctx->curr != -1) {
424 struct scrub_bio *sbio = sctx->bios[sctx->curr];
425
426 for (i = 0; i < sbio->page_count; i++) {
427 WARN_ON(!sbio->pagev[i]->page);
428 scrub_block_put(sbio->pagev[i]->sblock);
429 }
430 bio_put(sbio->bio);
431 }
432
433 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
434 struct scrub_bio *sbio = sctx->bios[i];
435
436 if (!sbio)
437 break;
438 kfree(sbio);
439 }
440
441 scrub_free_csums(sctx);
442 kfree(sctx);
443 }
444
445 static void scrub_put_ctx(struct scrub_ctx *sctx)
446 {
447 if (atomic_dec_and_test(&sctx->refs))
448 scrub_free_ctx(sctx);
449 }
450
451 static noinline_for_stack
452 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
453 {
454 struct scrub_ctx *sctx;
455 int i;
456 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
457 int pages_per_rd_bio;
458 int ret;
459
460 /*
461 * the setting of pages_per_rd_bio is correct for scrub but might
462 * be wrong for the dev_replace code where we might read from
463 * different devices in the initial huge bios. However, that
464 * code is able to correctly handle the case when adding a page
465 * to a bio fails.
466 */
467 if (dev->bdev)
468 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
469 bio_get_nr_vecs(dev->bdev));
470 else
471 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
472 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
473 if (!sctx)
474 goto nomem;
475 atomic_set(&sctx->refs, 1);
476 sctx->is_dev_replace = is_dev_replace;
477 sctx->pages_per_rd_bio = pages_per_rd_bio;
478 sctx->curr = -1;
479 sctx->dev_root = dev->dev_root;
480 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
481 struct scrub_bio *sbio;
482
483 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
484 if (!sbio)
485 goto nomem;
486 sctx->bios[i] = sbio;
487
488 sbio->index = i;
489 sbio->sctx = sctx;
490 sbio->page_count = 0;
491 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
492 scrub_bio_end_io_worker, NULL, NULL);
493
494 if (i != SCRUB_BIOS_PER_SCTX - 1)
495 sctx->bios[i]->next_free = i + 1;
496 else
497 sctx->bios[i]->next_free = -1;
498 }
499 sctx->first_free = 0;
500 sctx->nodesize = dev->dev_root->nodesize;
501 sctx->sectorsize = dev->dev_root->sectorsize;
502 atomic_set(&sctx->bios_in_flight, 0);
503 atomic_set(&sctx->workers_pending, 0);
504 atomic_set(&sctx->cancel_req, 0);
505 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
506 INIT_LIST_HEAD(&sctx->csum_list);
507
508 spin_lock_init(&sctx->list_lock);
509 spin_lock_init(&sctx->stat_lock);
510 init_waitqueue_head(&sctx->list_wait);
511
512 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
513 fs_info->dev_replace.tgtdev, is_dev_replace);
514 if (ret) {
515 scrub_free_ctx(sctx);
516 return ERR_PTR(ret);
517 }
518 return sctx;
519
520 nomem:
521 scrub_free_ctx(sctx);
522 return ERR_PTR(-ENOMEM);
523 }
524
525 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
526 void *warn_ctx)
527 {
528 u64 isize;
529 u32 nlink;
530 int ret;
531 int i;
532 struct extent_buffer *eb;
533 struct btrfs_inode_item *inode_item;
534 struct scrub_warning *swarn = warn_ctx;
535 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
536 struct inode_fs_paths *ipath = NULL;
537 struct btrfs_root *local_root;
538 struct btrfs_key root_key;
539 struct btrfs_key key;
540
541 root_key.objectid = root;
542 root_key.type = BTRFS_ROOT_ITEM_KEY;
543 root_key.offset = (u64)-1;
544 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
545 if (IS_ERR(local_root)) {
546 ret = PTR_ERR(local_root);
547 goto err;
548 }
549
550 /*
551 * this makes the path point to (inum INODE_ITEM ioff)
552 */
553 key.objectid = inum;
554 key.type = BTRFS_INODE_ITEM_KEY;
555 key.offset = 0;
556
557 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558 if (ret) {
559 btrfs_release_path(swarn->path);
560 goto err;
561 }
562
563 eb = swarn->path->nodes[0];
564 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
565 struct btrfs_inode_item);
566 isize = btrfs_inode_size(eb, inode_item);
567 nlink = btrfs_inode_nlink(eb, inode_item);
568 btrfs_release_path(swarn->path);
569
570 ipath = init_ipath(4096, local_root, swarn->path);
571 if (IS_ERR(ipath)) {
572 ret = PTR_ERR(ipath);
573 ipath = NULL;
574 goto err;
575 }
576 ret = paths_from_inode(inum, ipath);
577
578 if (ret < 0)
579 goto err;
580
581 /*
582 * we deliberately ignore the bit ipath might have been too small to
583 * hold all of the paths here
584 */
585 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
586 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
587 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
588 "length %llu, links %u (path: %s)\n", swarn->errstr,
589 swarn->logical, rcu_str_deref(swarn->dev->name),
590 (unsigned long long)swarn->sector, root, inum, offset,
591 min(isize - offset, (u64)PAGE_SIZE), nlink,
592 (char *)(unsigned long)ipath->fspath->val[i]);
593
594 free_ipath(ipath);
595 return 0;
596
597 err:
598 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
599 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
600 "resolving failed with ret=%d\n", swarn->errstr,
601 swarn->logical, rcu_str_deref(swarn->dev->name),
602 (unsigned long long)swarn->sector, root, inum, offset, ret);
603
604 free_ipath(ipath);
605 return 0;
606 }
607
608 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
609 {
610 struct btrfs_device *dev;
611 struct btrfs_fs_info *fs_info;
612 struct btrfs_path *path;
613 struct btrfs_key found_key;
614 struct extent_buffer *eb;
615 struct btrfs_extent_item *ei;
616 struct scrub_warning swarn;
617 unsigned long ptr = 0;
618 u64 extent_item_pos;
619 u64 flags = 0;
620 u64 ref_root;
621 u32 item_size;
622 u8 ref_level;
623 int ret;
624
625 WARN_ON(sblock->page_count < 1);
626 dev = sblock->pagev[0]->dev;
627 fs_info = sblock->sctx->dev_root->fs_info;
628
629 path = btrfs_alloc_path();
630 if (!path)
631 return;
632
633 swarn.sector = (sblock->pagev[0]->physical) >> 9;
634 swarn.logical = sblock->pagev[0]->logical;
635 swarn.errstr = errstr;
636 swarn.dev = NULL;
637
638 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
639 &flags);
640 if (ret < 0)
641 goto out;
642
643 extent_item_pos = swarn.logical - found_key.objectid;
644 swarn.extent_item_size = found_key.offset;
645
646 eb = path->nodes[0];
647 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
648 item_size = btrfs_item_size_nr(eb, path->slots[0]);
649
650 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
651 do {
652 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
653 item_size, &ref_root,
654 &ref_level);
655 printk_in_rcu(KERN_WARNING
656 "BTRFS: %s at logical %llu on dev %s, "
657 "sector %llu: metadata %s (level %d) in tree "
658 "%llu\n", errstr, swarn.logical,
659 rcu_str_deref(dev->name),
660 (unsigned long long)swarn.sector,
661 ref_level ? "node" : "leaf",
662 ret < 0 ? -1 : ref_level,
663 ret < 0 ? -1 : ref_root);
664 } while (ret != 1);
665 btrfs_release_path(path);
666 } else {
667 btrfs_release_path(path);
668 swarn.path = path;
669 swarn.dev = dev;
670 iterate_extent_inodes(fs_info, found_key.objectid,
671 extent_item_pos, 1,
672 scrub_print_warning_inode, &swarn);
673 }
674
675 out:
676 btrfs_free_path(path);
677 }
678
679 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
680 {
681 struct page *page = NULL;
682 unsigned long index;
683 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
684 int ret;
685 int corrected = 0;
686 struct btrfs_key key;
687 struct inode *inode = NULL;
688 struct btrfs_fs_info *fs_info;
689 u64 end = offset + PAGE_SIZE - 1;
690 struct btrfs_root *local_root;
691 int srcu_index;
692
693 key.objectid = root;
694 key.type = BTRFS_ROOT_ITEM_KEY;
695 key.offset = (u64)-1;
696
697 fs_info = fixup->root->fs_info;
698 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
699
700 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
701 if (IS_ERR(local_root)) {
702 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703 return PTR_ERR(local_root);
704 }
705
706 key.type = BTRFS_INODE_ITEM_KEY;
707 key.objectid = inum;
708 key.offset = 0;
709 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
710 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
711 if (IS_ERR(inode))
712 return PTR_ERR(inode);
713
714 index = offset >> PAGE_CACHE_SHIFT;
715
716 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
717 if (!page) {
718 ret = -ENOMEM;
719 goto out;
720 }
721
722 if (PageUptodate(page)) {
723 if (PageDirty(page)) {
724 /*
725 * we need to write the data to the defect sector. the
726 * data that was in that sector is not in memory,
727 * because the page was modified. we must not write the
728 * modified page to that sector.
729 *
730 * TODO: what could be done here: wait for the delalloc
731 * runner to write out that page (might involve
732 * COW) and see whether the sector is still
733 * referenced afterwards.
734 *
735 * For the meantime, we'll treat this error
736 * incorrectable, although there is a chance that a
737 * later scrub will find the bad sector again and that
738 * there's no dirty page in memory, then.
739 */
740 ret = -EIO;
741 goto out;
742 }
743 ret = repair_io_failure(inode, offset, PAGE_SIZE,
744 fixup->logical, page,
745 offset - page_offset(page),
746 fixup->mirror_num);
747 unlock_page(page);
748 corrected = !ret;
749 } else {
750 /*
751 * we need to get good data first. the general readpage path
752 * will call repair_io_failure for us, we just have to make
753 * sure we read the bad mirror.
754 */
755 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
756 EXTENT_DAMAGED, GFP_NOFS);
757 if (ret) {
758 /* set_extent_bits should give proper error */
759 WARN_ON(ret > 0);
760 if (ret > 0)
761 ret = -EFAULT;
762 goto out;
763 }
764
765 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
766 btrfs_get_extent,
767 fixup->mirror_num);
768 wait_on_page_locked(page);
769
770 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
771 end, EXTENT_DAMAGED, 0, NULL);
772 if (!corrected)
773 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
774 EXTENT_DAMAGED, GFP_NOFS);
775 }
776
777 out:
778 if (page)
779 put_page(page);
780
781 iput(inode);
782
783 if (ret < 0)
784 return ret;
785
786 if (ret == 0 && corrected) {
787 /*
788 * we only need to call readpage for one of the inodes belonging
789 * to this extent. so make iterate_extent_inodes stop
790 */
791 return 1;
792 }
793
794 return -EIO;
795 }
796
797 static void scrub_fixup_nodatasum(struct btrfs_work *work)
798 {
799 int ret;
800 struct scrub_fixup_nodatasum *fixup;
801 struct scrub_ctx *sctx;
802 struct btrfs_trans_handle *trans = NULL;
803 struct btrfs_path *path;
804 int uncorrectable = 0;
805
806 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
807 sctx = fixup->sctx;
808
809 path = btrfs_alloc_path();
810 if (!path) {
811 spin_lock(&sctx->stat_lock);
812 ++sctx->stat.malloc_errors;
813 spin_unlock(&sctx->stat_lock);
814 uncorrectable = 1;
815 goto out;
816 }
817
818 trans = btrfs_join_transaction(fixup->root);
819 if (IS_ERR(trans)) {
820 uncorrectable = 1;
821 goto out;
822 }
823
824 /*
825 * the idea is to trigger a regular read through the standard path. we
826 * read a page from the (failed) logical address by specifying the
827 * corresponding copynum of the failed sector. thus, that readpage is
828 * expected to fail.
829 * that is the point where on-the-fly error correction will kick in
830 * (once it's finished) and rewrite the failed sector if a good copy
831 * can be found.
832 */
833 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
834 path, scrub_fixup_readpage,
835 fixup);
836 if (ret < 0) {
837 uncorrectable = 1;
838 goto out;
839 }
840 WARN_ON(ret != 1);
841
842 spin_lock(&sctx->stat_lock);
843 ++sctx->stat.corrected_errors;
844 spin_unlock(&sctx->stat_lock);
845
846 out:
847 if (trans && !IS_ERR(trans))
848 btrfs_end_transaction(trans, fixup->root);
849 if (uncorrectable) {
850 spin_lock(&sctx->stat_lock);
851 ++sctx->stat.uncorrectable_errors;
852 spin_unlock(&sctx->stat_lock);
853 btrfs_dev_replace_stats_inc(
854 &sctx->dev_root->fs_info->dev_replace.
855 num_uncorrectable_read_errors);
856 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
857 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
858 fixup->logical, rcu_str_deref(fixup->dev->name));
859 }
860
861 btrfs_free_path(path);
862 kfree(fixup);
863
864 scrub_pending_trans_workers_dec(sctx);
865 }
866
867 static inline void scrub_get_recover(struct scrub_recover *recover)
868 {
869 atomic_inc(&recover->refs);
870 }
871
872 static inline void scrub_put_recover(struct scrub_recover *recover)
873 {
874 if (atomic_dec_and_test(&recover->refs)) {
875 btrfs_put_bbio(recover->bbio);
876 kfree(recover);
877 }
878 }
879
880 /*
881 * scrub_handle_errored_block gets called when either verification of the
882 * pages failed or the bio failed to read, e.g. with EIO. In the latter
883 * case, this function handles all pages in the bio, even though only one
884 * may be bad.
885 * The goal of this function is to repair the errored block by using the
886 * contents of one of the mirrors.
887 */
888 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
889 {
890 struct scrub_ctx *sctx = sblock_to_check->sctx;
891 struct btrfs_device *dev;
892 struct btrfs_fs_info *fs_info;
893 u64 length;
894 u64 logical;
895 u64 generation;
896 unsigned int failed_mirror_index;
897 unsigned int is_metadata;
898 unsigned int have_csum;
899 u8 *csum;
900 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
901 struct scrub_block *sblock_bad;
902 int ret;
903 int mirror_index;
904 int page_num;
905 int success;
906 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
907 DEFAULT_RATELIMIT_BURST);
908
909 BUG_ON(sblock_to_check->page_count < 1);
910 fs_info = sctx->dev_root->fs_info;
911 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
912 /*
913 * if we find an error in a super block, we just report it.
914 * They will get written with the next transaction commit
915 * anyway
916 */
917 spin_lock(&sctx->stat_lock);
918 ++sctx->stat.super_errors;
919 spin_unlock(&sctx->stat_lock);
920 return 0;
921 }
922 length = sblock_to_check->page_count * PAGE_SIZE;
923 logical = sblock_to_check->pagev[0]->logical;
924 generation = sblock_to_check->pagev[0]->generation;
925 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
926 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
927 is_metadata = !(sblock_to_check->pagev[0]->flags &
928 BTRFS_EXTENT_FLAG_DATA);
929 have_csum = sblock_to_check->pagev[0]->have_csum;
930 csum = sblock_to_check->pagev[0]->csum;
931 dev = sblock_to_check->pagev[0]->dev;
932
933 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
934 sblocks_for_recheck = NULL;
935 goto nodatasum_case;
936 }
937
938 /*
939 * read all mirrors one after the other. This includes to
940 * re-read the extent or metadata block that failed (that was
941 * the cause that this fixup code is called) another time,
942 * page by page this time in order to know which pages
943 * caused I/O errors and which ones are good (for all mirrors).
944 * It is the goal to handle the situation when more than one
945 * mirror contains I/O errors, but the errors do not
946 * overlap, i.e. the data can be repaired by selecting the
947 * pages from those mirrors without I/O error on the
948 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
949 * would be that mirror #1 has an I/O error on the first page,
950 * the second page is good, and mirror #2 has an I/O error on
951 * the second page, but the first page is good.
952 * Then the first page of the first mirror can be repaired by
953 * taking the first page of the second mirror, and the
954 * second page of the second mirror can be repaired by
955 * copying the contents of the 2nd page of the 1st mirror.
956 * One more note: if the pages of one mirror contain I/O
957 * errors, the checksum cannot be verified. In order to get
958 * the best data for repairing, the first attempt is to find
959 * a mirror without I/O errors and with a validated checksum.
960 * Only if this is not possible, the pages are picked from
961 * mirrors with I/O errors without considering the checksum.
962 * If the latter is the case, at the end, the checksum of the
963 * repaired area is verified in order to correctly maintain
964 * the statistics.
965 */
966
967 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
968 sizeof(*sblocks_for_recheck), GFP_NOFS);
969 if (!sblocks_for_recheck) {
970 spin_lock(&sctx->stat_lock);
971 sctx->stat.malloc_errors++;
972 sctx->stat.read_errors++;
973 sctx->stat.uncorrectable_errors++;
974 spin_unlock(&sctx->stat_lock);
975 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
976 goto out;
977 }
978
979 /* setup the context, map the logical blocks and alloc the pages */
980 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
981 if (ret) {
982 spin_lock(&sctx->stat_lock);
983 sctx->stat.read_errors++;
984 sctx->stat.uncorrectable_errors++;
985 spin_unlock(&sctx->stat_lock);
986 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
987 goto out;
988 }
989 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
990 sblock_bad = sblocks_for_recheck + failed_mirror_index;
991
992 /* build and submit the bios for the failed mirror, check checksums */
993 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
994 csum, generation, sctx->csum_size, 1);
995
996 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
997 sblock_bad->no_io_error_seen) {
998 /*
999 * the error disappeared after reading page by page, or
1000 * the area was part of a huge bio and other parts of the
1001 * bio caused I/O errors, or the block layer merged several
1002 * read requests into one and the error is caused by a
1003 * different bio (usually one of the two latter cases is
1004 * the cause)
1005 */
1006 spin_lock(&sctx->stat_lock);
1007 sctx->stat.unverified_errors++;
1008 sblock_to_check->data_corrected = 1;
1009 spin_unlock(&sctx->stat_lock);
1010
1011 if (sctx->is_dev_replace)
1012 scrub_write_block_to_dev_replace(sblock_bad);
1013 goto out;
1014 }
1015
1016 if (!sblock_bad->no_io_error_seen) {
1017 spin_lock(&sctx->stat_lock);
1018 sctx->stat.read_errors++;
1019 spin_unlock(&sctx->stat_lock);
1020 if (__ratelimit(&_rs))
1021 scrub_print_warning("i/o error", sblock_to_check);
1022 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1023 } else if (sblock_bad->checksum_error) {
1024 spin_lock(&sctx->stat_lock);
1025 sctx->stat.csum_errors++;
1026 spin_unlock(&sctx->stat_lock);
1027 if (__ratelimit(&_rs))
1028 scrub_print_warning("checksum error", sblock_to_check);
1029 btrfs_dev_stat_inc_and_print(dev,
1030 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1031 } else if (sblock_bad->header_error) {
1032 spin_lock(&sctx->stat_lock);
1033 sctx->stat.verify_errors++;
1034 spin_unlock(&sctx->stat_lock);
1035 if (__ratelimit(&_rs))
1036 scrub_print_warning("checksum/header error",
1037 sblock_to_check);
1038 if (sblock_bad->generation_error)
1039 btrfs_dev_stat_inc_and_print(dev,
1040 BTRFS_DEV_STAT_GENERATION_ERRS);
1041 else
1042 btrfs_dev_stat_inc_and_print(dev,
1043 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1044 }
1045
1046 if (sctx->readonly) {
1047 ASSERT(!sctx->is_dev_replace);
1048 goto out;
1049 }
1050
1051 if (!is_metadata && !have_csum) {
1052 struct scrub_fixup_nodatasum *fixup_nodatasum;
1053
1054 WARN_ON(sctx->is_dev_replace);
1055
1056 nodatasum_case:
1057
1058 /*
1059 * !is_metadata and !have_csum, this means that the data
1060 * might not be COW'ed, that it might be modified
1061 * concurrently. The general strategy to work on the
1062 * commit root does not help in the case when COW is not
1063 * used.
1064 */
1065 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1066 if (!fixup_nodatasum)
1067 goto did_not_correct_error;
1068 fixup_nodatasum->sctx = sctx;
1069 fixup_nodatasum->dev = dev;
1070 fixup_nodatasum->logical = logical;
1071 fixup_nodatasum->root = fs_info->extent_root;
1072 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1073 scrub_pending_trans_workers_inc(sctx);
1074 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1075 scrub_fixup_nodatasum, NULL, NULL);
1076 btrfs_queue_work(fs_info->scrub_workers,
1077 &fixup_nodatasum->work);
1078 goto out;
1079 }
1080
1081 /*
1082 * now build and submit the bios for the other mirrors, check
1083 * checksums.
1084 * First try to pick the mirror which is completely without I/O
1085 * errors and also does not have a checksum error.
1086 * If one is found, and if a checksum is present, the full block
1087 * that is known to contain an error is rewritten. Afterwards
1088 * the block is known to be corrected.
1089 * If a mirror is found which is completely correct, and no
1090 * checksum is present, only those pages are rewritten that had
1091 * an I/O error in the block to be repaired, since it cannot be
1092 * determined, which copy of the other pages is better (and it
1093 * could happen otherwise that a correct page would be
1094 * overwritten by a bad one).
1095 */
1096 for (mirror_index = 0;
1097 mirror_index < BTRFS_MAX_MIRRORS &&
1098 sblocks_for_recheck[mirror_index].page_count > 0;
1099 mirror_index++) {
1100 struct scrub_block *sblock_other;
1101
1102 if (mirror_index == failed_mirror_index)
1103 continue;
1104 sblock_other = sblocks_for_recheck + mirror_index;
1105
1106 /* build and submit the bios, check checksums */
1107 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1108 have_csum, csum, generation,
1109 sctx->csum_size, 0);
1110
1111 if (!sblock_other->header_error &&
1112 !sblock_other->checksum_error &&
1113 sblock_other->no_io_error_seen) {
1114 if (sctx->is_dev_replace) {
1115 scrub_write_block_to_dev_replace(sblock_other);
1116 goto corrected_error;
1117 } else {
1118 ret = scrub_repair_block_from_good_copy(
1119 sblock_bad, sblock_other);
1120 if (!ret)
1121 goto corrected_error;
1122 }
1123 }
1124 }
1125
1126 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1127 goto did_not_correct_error;
1128
1129 /*
1130 * In case of I/O errors in the area that is supposed to be
1131 * repaired, continue by picking good copies of those pages.
1132 * Select the good pages from mirrors to rewrite bad pages from
1133 * the area to fix. Afterwards verify the checksum of the block
1134 * that is supposed to be repaired. This verification step is
1135 * only done for the purpose of statistic counting and for the
1136 * final scrub report, whether errors remain.
1137 * A perfect algorithm could make use of the checksum and try
1138 * all possible combinations of pages from the different mirrors
1139 * until the checksum verification succeeds. For example, when
1140 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1141 * of mirror #2 is readable but the final checksum test fails,
1142 * then the 2nd page of mirror #3 could be tried, whether now
1143 * the final checksum succeedes. But this would be a rare
1144 * exception and is therefore not implemented. At least it is
1145 * avoided that the good copy is overwritten.
1146 * A more useful improvement would be to pick the sectors
1147 * without I/O error based on sector sizes (512 bytes on legacy
1148 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1149 * mirror could be repaired by taking 512 byte of a different
1150 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1151 * area are unreadable.
1152 */
1153 success = 1;
1154 for (page_num = 0; page_num < sblock_bad->page_count;
1155 page_num++) {
1156 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1157 struct scrub_block *sblock_other = NULL;
1158
1159 /* skip no-io-error page in scrub */
1160 if (!page_bad->io_error && !sctx->is_dev_replace)
1161 continue;
1162
1163 /* try to find no-io-error page in mirrors */
1164 if (page_bad->io_error) {
1165 for (mirror_index = 0;
1166 mirror_index < BTRFS_MAX_MIRRORS &&
1167 sblocks_for_recheck[mirror_index].page_count > 0;
1168 mirror_index++) {
1169 if (!sblocks_for_recheck[mirror_index].
1170 pagev[page_num]->io_error) {
1171 sblock_other = sblocks_for_recheck +
1172 mirror_index;
1173 break;
1174 }
1175 }
1176 if (!sblock_other)
1177 success = 0;
1178 }
1179
1180 if (sctx->is_dev_replace) {
1181 /*
1182 * did not find a mirror to fetch the page
1183 * from. scrub_write_page_to_dev_replace()
1184 * handles this case (page->io_error), by
1185 * filling the block with zeros before
1186 * submitting the write request
1187 */
1188 if (!sblock_other)
1189 sblock_other = sblock_bad;
1190
1191 if (scrub_write_page_to_dev_replace(sblock_other,
1192 page_num) != 0) {
1193 btrfs_dev_replace_stats_inc(
1194 &sctx->dev_root->
1195 fs_info->dev_replace.
1196 num_write_errors);
1197 success = 0;
1198 }
1199 } else if (sblock_other) {
1200 ret = scrub_repair_page_from_good_copy(sblock_bad,
1201 sblock_other,
1202 page_num, 0);
1203 if (0 == ret)
1204 page_bad->io_error = 0;
1205 else
1206 success = 0;
1207 }
1208 }
1209
1210 if (success && !sctx->is_dev_replace) {
1211 if (is_metadata || have_csum) {
1212 /*
1213 * need to verify the checksum now that all
1214 * sectors on disk are repaired (the write
1215 * request for data to be repaired is on its way).
1216 * Just be lazy and use scrub_recheck_block()
1217 * which re-reads the data before the checksum
1218 * is verified, but most likely the data comes out
1219 * of the page cache.
1220 */
1221 scrub_recheck_block(fs_info, sblock_bad,
1222 is_metadata, have_csum, csum,
1223 generation, sctx->csum_size, 1);
1224 if (!sblock_bad->header_error &&
1225 !sblock_bad->checksum_error &&
1226 sblock_bad->no_io_error_seen)
1227 goto corrected_error;
1228 else
1229 goto did_not_correct_error;
1230 } else {
1231 corrected_error:
1232 spin_lock(&sctx->stat_lock);
1233 sctx->stat.corrected_errors++;
1234 sblock_to_check->data_corrected = 1;
1235 spin_unlock(&sctx->stat_lock);
1236 printk_ratelimited_in_rcu(KERN_ERR
1237 "BTRFS: fixed up error at logical %llu on dev %s\n",
1238 logical, rcu_str_deref(dev->name));
1239 }
1240 } else {
1241 did_not_correct_error:
1242 spin_lock(&sctx->stat_lock);
1243 sctx->stat.uncorrectable_errors++;
1244 spin_unlock(&sctx->stat_lock);
1245 printk_ratelimited_in_rcu(KERN_ERR
1246 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1247 logical, rcu_str_deref(dev->name));
1248 }
1249
1250 out:
1251 if (sblocks_for_recheck) {
1252 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1253 mirror_index++) {
1254 struct scrub_block *sblock = sblocks_for_recheck +
1255 mirror_index;
1256 struct scrub_recover *recover;
1257 int page_index;
1258
1259 for (page_index = 0; page_index < sblock->page_count;
1260 page_index++) {
1261 sblock->pagev[page_index]->sblock = NULL;
1262 recover = sblock->pagev[page_index]->recover;
1263 if (recover) {
1264 scrub_put_recover(recover);
1265 sblock->pagev[page_index]->recover =
1266 NULL;
1267 }
1268 scrub_page_put(sblock->pagev[page_index]);
1269 }
1270 }
1271 kfree(sblocks_for_recheck);
1272 }
1273
1274 return 0;
1275 }
1276
1277 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1278 {
1279 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1280 return 2;
1281 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1282 return 3;
1283 else
1284 return (int)bbio->num_stripes;
1285 }
1286
1287 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1288 u64 *raid_map,
1289 u64 mapped_length,
1290 int nstripes, int mirror,
1291 int *stripe_index,
1292 u64 *stripe_offset)
1293 {
1294 int i;
1295
1296 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1297 /* RAID5/6 */
1298 for (i = 0; i < nstripes; i++) {
1299 if (raid_map[i] == RAID6_Q_STRIPE ||
1300 raid_map[i] == RAID5_P_STRIPE)
1301 continue;
1302
1303 if (logical >= raid_map[i] &&
1304 logical < raid_map[i] + mapped_length)
1305 break;
1306 }
1307
1308 *stripe_index = i;
1309 *stripe_offset = logical - raid_map[i];
1310 } else {
1311 /* The other RAID type */
1312 *stripe_index = mirror;
1313 *stripe_offset = 0;
1314 }
1315 }
1316
1317 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1318 struct scrub_block *sblocks_for_recheck)
1319 {
1320 struct scrub_ctx *sctx = original_sblock->sctx;
1321 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
1322 u64 length = original_sblock->page_count * PAGE_SIZE;
1323 u64 logical = original_sblock->pagev[0]->logical;
1324 struct scrub_recover *recover;
1325 struct btrfs_bio *bbio;
1326 u64 sublen;
1327 u64 mapped_length;
1328 u64 stripe_offset;
1329 int stripe_index;
1330 int page_index = 0;
1331 int mirror_index;
1332 int nmirrors;
1333 int ret;
1334
1335 /*
1336 * note: the two members refs and outstanding_pages
1337 * are not used (and not set) in the blocks that are used for
1338 * the recheck procedure
1339 */
1340
1341 while (length > 0) {
1342 sublen = min_t(u64, length, PAGE_SIZE);
1343 mapped_length = sublen;
1344 bbio = NULL;
1345
1346 /*
1347 * with a length of PAGE_SIZE, each returned stripe
1348 * represents one mirror
1349 */
1350 ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1351 &mapped_length, &bbio, 0, 1);
1352 if (ret || !bbio || mapped_length < sublen) {
1353 btrfs_put_bbio(bbio);
1354 return -EIO;
1355 }
1356
1357 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1358 if (!recover) {
1359 btrfs_put_bbio(bbio);
1360 return -ENOMEM;
1361 }
1362
1363 atomic_set(&recover->refs, 1);
1364 recover->bbio = bbio;
1365 recover->map_length = mapped_length;
1366
1367 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1368
1369 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1370
1371 for (mirror_index = 0; mirror_index < nmirrors;
1372 mirror_index++) {
1373 struct scrub_block *sblock;
1374 struct scrub_page *page;
1375
1376 sblock = sblocks_for_recheck + mirror_index;
1377 sblock->sctx = sctx;
1378 page = kzalloc(sizeof(*page), GFP_NOFS);
1379 if (!page) {
1380 leave_nomem:
1381 spin_lock(&sctx->stat_lock);
1382 sctx->stat.malloc_errors++;
1383 spin_unlock(&sctx->stat_lock);
1384 scrub_put_recover(recover);
1385 return -ENOMEM;
1386 }
1387 scrub_page_get(page);
1388 sblock->pagev[page_index] = page;
1389 page->logical = logical;
1390
1391 scrub_stripe_index_and_offset(logical,
1392 bbio->map_type,
1393 bbio->raid_map,
1394 mapped_length,
1395 bbio->num_stripes -
1396 bbio->num_tgtdevs,
1397 mirror_index,
1398 &stripe_index,
1399 &stripe_offset);
1400 page->physical = bbio->stripes[stripe_index].physical +
1401 stripe_offset;
1402 page->dev = bbio->stripes[stripe_index].dev;
1403
1404 BUG_ON(page_index >= original_sblock->page_count);
1405 page->physical_for_dev_replace =
1406 original_sblock->pagev[page_index]->
1407 physical_for_dev_replace;
1408 /* for missing devices, dev->bdev is NULL */
1409 page->mirror_num = mirror_index + 1;
1410 sblock->page_count++;
1411 page->page = alloc_page(GFP_NOFS);
1412 if (!page->page)
1413 goto leave_nomem;
1414
1415 scrub_get_recover(recover);
1416 page->recover = recover;
1417 }
1418 scrub_put_recover(recover);
1419 length -= sublen;
1420 logical += sublen;
1421 page_index++;
1422 }
1423
1424 return 0;
1425 }
1426
1427 struct scrub_bio_ret {
1428 struct completion event;
1429 int error;
1430 };
1431
1432 static void scrub_bio_wait_endio(struct bio *bio, int error)
1433 {
1434 struct scrub_bio_ret *ret = bio->bi_private;
1435
1436 ret->error = error;
1437 complete(&ret->event);
1438 }
1439
1440 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1441 {
1442 return page->recover &&
1443 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1444 }
1445
1446 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1447 struct bio *bio,
1448 struct scrub_page *page)
1449 {
1450 struct scrub_bio_ret done;
1451 int ret;
1452
1453 init_completion(&done.event);
1454 done.error = 0;
1455 bio->bi_iter.bi_sector = page->logical >> 9;
1456 bio->bi_private = &done;
1457 bio->bi_end_io = scrub_bio_wait_endio;
1458
1459 ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
1460 page->recover->map_length,
1461 page->mirror_num, 0);
1462 if (ret)
1463 return ret;
1464
1465 wait_for_completion(&done.event);
1466 if (done.error)
1467 return -EIO;
1468
1469 return 0;
1470 }
1471
1472 /*
1473 * this function will check the on disk data for checksum errors, header
1474 * errors and read I/O errors. If any I/O errors happen, the exact pages
1475 * which are errored are marked as being bad. The goal is to enable scrub
1476 * to take those pages that are not errored from all the mirrors so that
1477 * the pages that are errored in the just handled mirror can be repaired.
1478 */
1479 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1480 struct scrub_block *sblock, int is_metadata,
1481 int have_csum, u8 *csum, u64 generation,
1482 u16 csum_size, int retry_failed_mirror)
1483 {
1484 int page_num;
1485
1486 sblock->no_io_error_seen = 1;
1487 sblock->header_error = 0;
1488 sblock->checksum_error = 0;
1489
1490 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1491 struct bio *bio;
1492 struct scrub_page *page = sblock->pagev[page_num];
1493
1494 if (page->dev->bdev == NULL) {
1495 page->io_error = 1;
1496 sblock->no_io_error_seen = 0;
1497 continue;
1498 }
1499
1500 WARN_ON(!page->page);
1501 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1502 if (!bio) {
1503 page->io_error = 1;
1504 sblock->no_io_error_seen = 0;
1505 continue;
1506 }
1507 bio->bi_bdev = page->dev->bdev;
1508
1509 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1510 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1511 if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
1512 sblock->no_io_error_seen = 0;
1513 } else {
1514 bio->bi_iter.bi_sector = page->physical >> 9;
1515
1516 if (btrfsic_submit_bio_wait(READ, bio))
1517 sblock->no_io_error_seen = 0;
1518 }
1519
1520 bio_put(bio);
1521 }
1522
1523 if (sblock->no_io_error_seen)
1524 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1525 have_csum, csum, generation,
1526 csum_size);
1527
1528 return;
1529 }
1530
1531 static inline int scrub_check_fsid(u8 fsid[],
1532 struct scrub_page *spage)
1533 {
1534 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1535 int ret;
1536
1537 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1538 return !ret;
1539 }
1540
1541 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1542 struct scrub_block *sblock,
1543 int is_metadata, int have_csum,
1544 const u8 *csum, u64 generation,
1545 u16 csum_size)
1546 {
1547 int page_num;
1548 u8 calculated_csum[BTRFS_CSUM_SIZE];
1549 u32 crc = ~(u32)0;
1550 void *mapped_buffer;
1551
1552 WARN_ON(!sblock->pagev[0]->page);
1553 if (is_metadata) {
1554 struct btrfs_header *h;
1555
1556 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1557 h = (struct btrfs_header *)mapped_buffer;
1558
1559 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1560 !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1561 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1562 BTRFS_UUID_SIZE)) {
1563 sblock->header_error = 1;
1564 } else if (generation != btrfs_stack_header_generation(h)) {
1565 sblock->header_error = 1;
1566 sblock->generation_error = 1;
1567 }
1568 csum = h->csum;
1569 } else {
1570 if (!have_csum)
1571 return;
1572
1573 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1574 }
1575
1576 for (page_num = 0;;) {
1577 if (page_num == 0 && is_metadata)
1578 crc = btrfs_csum_data(
1579 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1580 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1581 else
1582 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1583
1584 kunmap_atomic(mapped_buffer);
1585 page_num++;
1586 if (page_num >= sblock->page_count)
1587 break;
1588 WARN_ON(!sblock->pagev[page_num]->page);
1589
1590 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1591 }
1592
1593 btrfs_csum_final(crc, calculated_csum);
1594 if (memcmp(calculated_csum, csum, csum_size))
1595 sblock->checksum_error = 1;
1596 }
1597
1598 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1599 struct scrub_block *sblock_good)
1600 {
1601 int page_num;
1602 int ret = 0;
1603
1604 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1605 int ret_sub;
1606
1607 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1608 sblock_good,
1609 page_num, 1);
1610 if (ret_sub)
1611 ret = ret_sub;
1612 }
1613
1614 return ret;
1615 }
1616
1617 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1618 struct scrub_block *sblock_good,
1619 int page_num, int force_write)
1620 {
1621 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1622 struct scrub_page *page_good = sblock_good->pagev[page_num];
1623
1624 BUG_ON(page_bad->page == NULL);
1625 BUG_ON(page_good->page == NULL);
1626 if (force_write || sblock_bad->header_error ||
1627 sblock_bad->checksum_error || page_bad->io_error) {
1628 struct bio *bio;
1629 int ret;
1630
1631 if (!page_bad->dev->bdev) {
1632 printk_ratelimited(KERN_WARNING "BTRFS: "
1633 "scrub_repair_page_from_good_copy(bdev == NULL) "
1634 "is unexpected!\n");
1635 return -EIO;
1636 }
1637
1638 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1639 if (!bio)
1640 return -EIO;
1641 bio->bi_bdev = page_bad->dev->bdev;
1642 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1643
1644 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1645 if (PAGE_SIZE != ret) {
1646 bio_put(bio);
1647 return -EIO;
1648 }
1649
1650 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1651 btrfs_dev_stat_inc_and_print(page_bad->dev,
1652 BTRFS_DEV_STAT_WRITE_ERRS);
1653 btrfs_dev_replace_stats_inc(
1654 &sblock_bad->sctx->dev_root->fs_info->
1655 dev_replace.num_write_errors);
1656 bio_put(bio);
1657 return -EIO;
1658 }
1659 bio_put(bio);
1660 }
1661
1662 return 0;
1663 }
1664
1665 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1666 {
1667 int page_num;
1668
1669 /*
1670 * This block is used for the check of the parity on the source device,
1671 * so the data needn't be written into the destination device.
1672 */
1673 if (sblock->sparity)
1674 return;
1675
1676 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1677 int ret;
1678
1679 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1680 if (ret)
1681 btrfs_dev_replace_stats_inc(
1682 &sblock->sctx->dev_root->fs_info->dev_replace.
1683 num_write_errors);
1684 }
1685 }
1686
1687 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1688 int page_num)
1689 {
1690 struct scrub_page *spage = sblock->pagev[page_num];
1691
1692 BUG_ON(spage->page == NULL);
1693 if (spage->io_error) {
1694 void *mapped_buffer = kmap_atomic(spage->page);
1695
1696 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1697 flush_dcache_page(spage->page);
1698 kunmap_atomic(mapped_buffer);
1699 }
1700 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1701 }
1702
1703 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1704 struct scrub_page *spage)
1705 {
1706 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1707 struct scrub_bio *sbio;
1708 int ret;
1709
1710 mutex_lock(&wr_ctx->wr_lock);
1711 again:
1712 if (!wr_ctx->wr_curr_bio) {
1713 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1714 GFP_NOFS);
1715 if (!wr_ctx->wr_curr_bio) {
1716 mutex_unlock(&wr_ctx->wr_lock);
1717 return -ENOMEM;
1718 }
1719 wr_ctx->wr_curr_bio->sctx = sctx;
1720 wr_ctx->wr_curr_bio->page_count = 0;
1721 }
1722 sbio = wr_ctx->wr_curr_bio;
1723 if (sbio->page_count == 0) {
1724 struct bio *bio;
1725
1726 sbio->physical = spage->physical_for_dev_replace;
1727 sbio->logical = spage->logical;
1728 sbio->dev = wr_ctx->tgtdev;
1729 bio = sbio->bio;
1730 if (!bio) {
1731 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1732 if (!bio) {
1733 mutex_unlock(&wr_ctx->wr_lock);
1734 return -ENOMEM;
1735 }
1736 sbio->bio = bio;
1737 }
1738
1739 bio->bi_private = sbio;
1740 bio->bi_end_io = scrub_wr_bio_end_io;
1741 bio->bi_bdev = sbio->dev->bdev;
1742 bio->bi_iter.bi_sector = sbio->physical >> 9;
1743 sbio->err = 0;
1744 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1745 spage->physical_for_dev_replace ||
1746 sbio->logical + sbio->page_count * PAGE_SIZE !=
1747 spage->logical) {
1748 scrub_wr_submit(sctx);
1749 goto again;
1750 }
1751
1752 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1753 if (ret != PAGE_SIZE) {
1754 if (sbio->page_count < 1) {
1755 bio_put(sbio->bio);
1756 sbio->bio = NULL;
1757 mutex_unlock(&wr_ctx->wr_lock);
1758 return -EIO;
1759 }
1760 scrub_wr_submit(sctx);
1761 goto again;
1762 }
1763
1764 sbio->pagev[sbio->page_count] = spage;
1765 scrub_page_get(spage);
1766 sbio->page_count++;
1767 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1768 scrub_wr_submit(sctx);
1769 mutex_unlock(&wr_ctx->wr_lock);
1770
1771 return 0;
1772 }
1773
1774 static void scrub_wr_submit(struct scrub_ctx *sctx)
1775 {
1776 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1777 struct scrub_bio *sbio;
1778
1779 if (!wr_ctx->wr_curr_bio)
1780 return;
1781
1782 sbio = wr_ctx->wr_curr_bio;
1783 wr_ctx->wr_curr_bio = NULL;
1784 WARN_ON(!sbio->bio->bi_bdev);
1785 scrub_pending_bio_inc(sctx);
1786 /* process all writes in a single worker thread. Then the block layer
1787 * orders the requests before sending them to the driver which
1788 * doubled the write performance on spinning disks when measured
1789 * with Linux 3.5 */
1790 btrfsic_submit_bio(WRITE, sbio->bio);
1791 }
1792
1793 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1794 {
1795 struct scrub_bio *sbio = bio->bi_private;
1796 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1797
1798 sbio->err = err;
1799 sbio->bio = bio;
1800
1801 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1802 scrub_wr_bio_end_io_worker, NULL, NULL);
1803 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1804 }
1805
1806 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1807 {
1808 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1809 struct scrub_ctx *sctx = sbio->sctx;
1810 int i;
1811
1812 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1813 if (sbio->err) {
1814 struct btrfs_dev_replace *dev_replace =
1815 &sbio->sctx->dev_root->fs_info->dev_replace;
1816
1817 for (i = 0; i < sbio->page_count; i++) {
1818 struct scrub_page *spage = sbio->pagev[i];
1819
1820 spage->io_error = 1;
1821 btrfs_dev_replace_stats_inc(&dev_replace->
1822 num_write_errors);
1823 }
1824 }
1825
1826 for (i = 0; i < sbio->page_count; i++)
1827 scrub_page_put(sbio->pagev[i]);
1828
1829 bio_put(sbio->bio);
1830 kfree(sbio);
1831 scrub_pending_bio_dec(sctx);
1832 }
1833
1834 static int scrub_checksum(struct scrub_block *sblock)
1835 {
1836 u64 flags;
1837 int ret;
1838
1839 WARN_ON(sblock->page_count < 1);
1840 flags = sblock->pagev[0]->flags;
1841 ret = 0;
1842 if (flags & BTRFS_EXTENT_FLAG_DATA)
1843 ret = scrub_checksum_data(sblock);
1844 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1845 ret = scrub_checksum_tree_block(sblock);
1846 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1847 (void)scrub_checksum_super(sblock);
1848 else
1849 WARN_ON(1);
1850 if (ret)
1851 scrub_handle_errored_block(sblock);
1852
1853 return ret;
1854 }
1855
1856 static int scrub_checksum_data(struct scrub_block *sblock)
1857 {
1858 struct scrub_ctx *sctx = sblock->sctx;
1859 u8 csum[BTRFS_CSUM_SIZE];
1860 u8 *on_disk_csum;
1861 struct page *page;
1862 void *buffer;
1863 u32 crc = ~(u32)0;
1864 int fail = 0;
1865 u64 len;
1866 int index;
1867
1868 BUG_ON(sblock->page_count < 1);
1869 if (!sblock->pagev[0]->have_csum)
1870 return 0;
1871
1872 on_disk_csum = sblock->pagev[0]->csum;
1873 page = sblock->pagev[0]->page;
1874 buffer = kmap_atomic(page);
1875
1876 len = sctx->sectorsize;
1877 index = 0;
1878 for (;;) {
1879 u64 l = min_t(u64, len, PAGE_SIZE);
1880
1881 crc = btrfs_csum_data(buffer, crc, l);
1882 kunmap_atomic(buffer);
1883 len -= l;
1884 if (len == 0)
1885 break;
1886 index++;
1887 BUG_ON(index >= sblock->page_count);
1888 BUG_ON(!sblock->pagev[index]->page);
1889 page = sblock->pagev[index]->page;
1890 buffer = kmap_atomic(page);
1891 }
1892
1893 btrfs_csum_final(crc, csum);
1894 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1895 fail = 1;
1896
1897 return fail;
1898 }
1899
1900 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1901 {
1902 struct scrub_ctx *sctx = sblock->sctx;
1903 struct btrfs_header *h;
1904 struct btrfs_root *root = sctx->dev_root;
1905 struct btrfs_fs_info *fs_info = root->fs_info;
1906 u8 calculated_csum[BTRFS_CSUM_SIZE];
1907 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1908 struct page *page;
1909 void *mapped_buffer;
1910 u64 mapped_size;
1911 void *p;
1912 u32 crc = ~(u32)0;
1913 int fail = 0;
1914 int crc_fail = 0;
1915 u64 len;
1916 int index;
1917
1918 BUG_ON(sblock->page_count < 1);
1919 page = sblock->pagev[0]->page;
1920 mapped_buffer = kmap_atomic(page);
1921 h = (struct btrfs_header *)mapped_buffer;
1922 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1923
1924 /*
1925 * we don't use the getter functions here, as we
1926 * a) don't have an extent buffer and
1927 * b) the page is already kmapped
1928 */
1929
1930 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1931 ++fail;
1932
1933 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1934 ++fail;
1935
1936 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1937 ++fail;
1938
1939 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1940 BTRFS_UUID_SIZE))
1941 ++fail;
1942
1943 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1944 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1945 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1946 index = 0;
1947 for (;;) {
1948 u64 l = min_t(u64, len, mapped_size);
1949
1950 crc = btrfs_csum_data(p, crc, l);
1951 kunmap_atomic(mapped_buffer);
1952 len -= l;
1953 if (len == 0)
1954 break;
1955 index++;
1956 BUG_ON(index >= sblock->page_count);
1957 BUG_ON(!sblock->pagev[index]->page);
1958 page = sblock->pagev[index]->page;
1959 mapped_buffer = kmap_atomic(page);
1960 mapped_size = PAGE_SIZE;
1961 p = mapped_buffer;
1962 }
1963
1964 btrfs_csum_final(crc, calculated_csum);
1965 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1966 ++crc_fail;
1967
1968 return fail || crc_fail;
1969 }
1970
1971 static int scrub_checksum_super(struct scrub_block *sblock)
1972 {
1973 struct btrfs_super_block *s;
1974 struct scrub_ctx *sctx = sblock->sctx;
1975 u8 calculated_csum[BTRFS_CSUM_SIZE];
1976 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1977 struct page *page;
1978 void *mapped_buffer;
1979 u64 mapped_size;
1980 void *p;
1981 u32 crc = ~(u32)0;
1982 int fail_gen = 0;
1983 int fail_cor = 0;
1984 u64 len;
1985 int index;
1986
1987 BUG_ON(sblock->page_count < 1);
1988 page = sblock->pagev[0]->page;
1989 mapped_buffer = kmap_atomic(page);
1990 s = (struct btrfs_super_block *)mapped_buffer;
1991 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1992
1993 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1994 ++fail_cor;
1995
1996 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1997 ++fail_gen;
1998
1999 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
2000 ++fail_cor;
2001
2002 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2003 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2004 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2005 index = 0;
2006 for (;;) {
2007 u64 l = min_t(u64, len, mapped_size);
2008
2009 crc = btrfs_csum_data(p, crc, l);
2010 kunmap_atomic(mapped_buffer);
2011 len -= l;
2012 if (len == 0)
2013 break;
2014 index++;
2015 BUG_ON(index >= sblock->page_count);
2016 BUG_ON(!sblock->pagev[index]->page);
2017 page = sblock->pagev[index]->page;
2018 mapped_buffer = kmap_atomic(page);
2019 mapped_size = PAGE_SIZE;
2020 p = mapped_buffer;
2021 }
2022
2023 btrfs_csum_final(crc, calculated_csum);
2024 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
2025 ++fail_cor;
2026
2027 if (fail_cor + fail_gen) {
2028 /*
2029 * if we find an error in a super block, we just report it.
2030 * They will get written with the next transaction commit
2031 * anyway
2032 */
2033 spin_lock(&sctx->stat_lock);
2034 ++sctx->stat.super_errors;
2035 spin_unlock(&sctx->stat_lock);
2036 if (fail_cor)
2037 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2038 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2039 else
2040 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
2041 BTRFS_DEV_STAT_GENERATION_ERRS);
2042 }
2043
2044 return fail_cor + fail_gen;
2045 }
2046
2047 static void scrub_block_get(struct scrub_block *sblock)
2048 {
2049 atomic_inc(&sblock->refs);
2050 }
2051
2052 static void scrub_block_put(struct scrub_block *sblock)
2053 {
2054 if (atomic_dec_and_test(&sblock->refs)) {
2055 int i;
2056
2057 if (sblock->sparity)
2058 scrub_parity_put(sblock->sparity);
2059
2060 for (i = 0; i < sblock->page_count; i++)
2061 scrub_page_put(sblock->pagev[i]);
2062 kfree(sblock);
2063 }
2064 }
2065
2066 static void scrub_page_get(struct scrub_page *spage)
2067 {
2068 atomic_inc(&spage->refs);
2069 }
2070
2071 static void scrub_page_put(struct scrub_page *spage)
2072 {
2073 if (atomic_dec_and_test(&spage->refs)) {
2074 if (spage->page)
2075 __free_page(spage->page);
2076 kfree(spage);
2077 }
2078 }
2079
2080 static void scrub_submit(struct scrub_ctx *sctx)
2081 {
2082 struct scrub_bio *sbio;
2083
2084 if (sctx->curr == -1)
2085 return;
2086
2087 sbio = sctx->bios[sctx->curr];
2088 sctx->curr = -1;
2089 scrub_pending_bio_inc(sctx);
2090
2091 if (!sbio->bio->bi_bdev) {
2092 /*
2093 * this case should not happen. If btrfs_map_block() is
2094 * wrong, it could happen for dev-replace operations on
2095 * missing devices when no mirrors are available, but in
2096 * this case it should already fail the mount.
2097 * This case is handled correctly (but _very_ slowly).
2098 */
2099 printk_ratelimited(KERN_WARNING
2100 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
2101 bio_endio(sbio->bio, -EIO);
2102 } else {
2103 btrfsic_submit_bio(READ, sbio->bio);
2104 }
2105 }
2106
2107 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2108 struct scrub_page *spage)
2109 {
2110 struct scrub_block *sblock = spage->sblock;
2111 struct scrub_bio *sbio;
2112 int ret;
2113
2114 again:
2115 /*
2116 * grab a fresh bio or wait for one to become available
2117 */
2118 while (sctx->curr == -1) {
2119 spin_lock(&sctx->list_lock);
2120 sctx->curr = sctx->first_free;
2121 if (sctx->curr != -1) {
2122 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2123 sctx->bios[sctx->curr]->next_free = -1;
2124 sctx->bios[sctx->curr]->page_count = 0;
2125 spin_unlock(&sctx->list_lock);
2126 } else {
2127 spin_unlock(&sctx->list_lock);
2128 wait_event(sctx->list_wait, sctx->first_free != -1);
2129 }
2130 }
2131 sbio = sctx->bios[sctx->curr];
2132 if (sbio->page_count == 0) {
2133 struct bio *bio;
2134
2135 sbio->physical = spage->physical;
2136 sbio->logical = spage->logical;
2137 sbio->dev = spage->dev;
2138 bio = sbio->bio;
2139 if (!bio) {
2140 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
2141 if (!bio)
2142 return -ENOMEM;
2143 sbio->bio = bio;
2144 }
2145
2146 bio->bi_private = sbio;
2147 bio->bi_end_io = scrub_bio_end_io;
2148 bio->bi_bdev = sbio->dev->bdev;
2149 bio->bi_iter.bi_sector = sbio->physical >> 9;
2150 sbio->err = 0;
2151 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2152 spage->physical ||
2153 sbio->logical + sbio->page_count * PAGE_SIZE !=
2154 spage->logical ||
2155 sbio->dev != spage->dev) {
2156 scrub_submit(sctx);
2157 goto again;
2158 }
2159
2160 sbio->pagev[sbio->page_count] = spage;
2161 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2162 if (ret != PAGE_SIZE) {
2163 if (sbio->page_count < 1) {
2164 bio_put(sbio->bio);
2165 sbio->bio = NULL;
2166 return -EIO;
2167 }
2168 scrub_submit(sctx);
2169 goto again;
2170 }
2171
2172 scrub_block_get(sblock); /* one for the page added to the bio */
2173 atomic_inc(&sblock->outstanding_pages);
2174 sbio->page_count++;
2175 if (sbio->page_count == sctx->pages_per_rd_bio)
2176 scrub_submit(sctx);
2177
2178 return 0;
2179 }
2180
2181 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2182 u64 physical, struct btrfs_device *dev, u64 flags,
2183 u64 gen, int mirror_num, u8 *csum, int force,
2184 u64 physical_for_dev_replace)
2185 {
2186 struct scrub_block *sblock;
2187 int index;
2188
2189 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2190 if (!sblock) {
2191 spin_lock(&sctx->stat_lock);
2192 sctx->stat.malloc_errors++;
2193 spin_unlock(&sctx->stat_lock);
2194 return -ENOMEM;
2195 }
2196
2197 /* one ref inside this function, plus one for each page added to
2198 * a bio later on */
2199 atomic_set(&sblock->refs, 1);
2200 sblock->sctx = sctx;
2201 sblock->no_io_error_seen = 1;
2202
2203 for (index = 0; len > 0; index++) {
2204 struct scrub_page *spage;
2205 u64 l = min_t(u64, len, PAGE_SIZE);
2206
2207 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2208 if (!spage) {
2209 leave_nomem:
2210 spin_lock(&sctx->stat_lock);
2211 sctx->stat.malloc_errors++;
2212 spin_unlock(&sctx->stat_lock);
2213 scrub_block_put(sblock);
2214 return -ENOMEM;
2215 }
2216 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2217 scrub_page_get(spage);
2218 sblock->pagev[index] = spage;
2219 spage->sblock = sblock;
2220 spage->dev = dev;
2221 spage->flags = flags;
2222 spage->generation = gen;
2223 spage->logical = logical;
2224 spage->physical = physical;
2225 spage->physical_for_dev_replace = physical_for_dev_replace;
2226 spage->mirror_num = mirror_num;
2227 if (csum) {
2228 spage->have_csum = 1;
2229 memcpy(spage->csum, csum, sctx->csum_size);
2230 } else {
2231 spage->have_csum = 0;
2232 }
2233 sblock->page_count++;
2234 spage->page = alloc_page(GFP_NOFS);
2235 if (!spage->page)
2236 goto leave_nomem;
2237 len -= l;
2238 logical += l;
2239 physical += l;
2240 physical_for_dev_replace += l;
2241 }
2242
2243 WARN_ON(sblock->page_count == 0);
2244 for (index = 0; index < sblock->page_count; index++) {
2245 struct scrub_page *spage = sblock->pagev[index];
2246 int ret;
2247
2248 ret = scrub_add_page_to_rd_bio(sctx, spage);
2249 if (ret) {
2250 scrub_block_put(sblock);
2251 return ret;
2252 }
2253 }
2254
2255 if (force)
2256 scrub_submit(sctx);
2257
2258 /* last one frees, either here or in bio completion for last page */
2259 scrub_block_put(sblock);
2260 return 0;
2261 }
2262
2263 static void scrub_bio_end_io(struct bio *bio, int err)
2264 {
2265 struct scrub_bio *sbio = bio->bi_private;
2266 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2267
2268 sbio->err = err;
2269 sbio->bio = bio;
2270
2271 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2272 }
2273
2274 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2275 {
2276 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2277 struct scrub_ctx *sctx = sbio->sctx;
2278 int i;
2279
2280 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2281 if (sbio->err) {
2282 for (i = 0; i < sbio->page_count; i++) {
2283 struct scrub_page *spage = sbio->pagev[i];
2284
2285 spage->io_error = 1;
2286 spage->sblock->no_io_error_seen = 0;
2287 }
2288 }
2289
2290 /* now complete the scrub_block items that have all pages completed */
2291 for (i = 0; i < sbio->page_count; i++) {
2292 struct scrub_page *spage = sbio->pagev[i];
2293 struct scrub_block *sblock = spage->sblock;
2294
2295 if (atomic_dec_and_test(&sblock->outstanding_pages))
2296 scrub_block_complete(sblock);
2297 scrub_block_put(sblock);
2298 }
2299
2300 bio_put(sbio->bio);
2301 sbio->bio = NULL;
2302 spin_lock(&sctx->list_lock);
2303 sbio->next_free = sctx->first_free;
2304 sctx->first_free = sbio->index;
2305 spin_unlock(&sctx->list_lock);
2306
2307 if (sctx->is_dev_replace &&
2308 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2309 mutex_lock(&sctx->wr_ctx.wr_lock);
2310 scrub_wr_submit(sctx);
2311 mutex_unlock(&sctx->wr_ctx.wr_lock);
2312 }
2313
2314 scrub_pending_bio_dec(sctx);
2315 }
2316
2317 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2318 unsigned long *bitmap,
2319 u64 start, u64 len)
2320 {
2321 u32 offset;
2322 int nsectors;
2323 int sectorsize = sparity->sctx->dev_root->sectorsize;
2324
2325 if (len >= sparity->stripe_len) {
2326 bitmap_set(bitmap, 0, sparity->nsectors);
2327 return;
2328 }
2329
2330 start -= sparity->logic_start;
2331 start = div_u64_rem(start, sparity->stripe_len, &offset);
2332 offset /= sectorsize;
2333 nsectors = (int)len / sectorsize;
2334
2335 if (offset + nsectors <= sparity->nsectors) {
2336 bitmap_set(bitmap, offset, nsectors);
2337 return;
2338 }
2339
2340 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2341 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2342 }
2343
2344 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2345 u64 start, u64 len)
2346 {
2347 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2348 }
2349
2350 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2351 u64 start, u64 len)
2352 {
2353 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2354 }
2355
2356 static void scrub_block_complete(struct scrub_block *sblock)
2357 {
2358 int corrupted = 0;
2359
2360 if (!sblock->no_io_error_seen) {
2361 corrupted = 1;
2362 scrub_handle_errored_block(sblock);
2363 } else {
2364 /*
2365 * if has checksum error, write via repair mechanism in
2366 * dev replace case, otherwise write here in dev replace
2367 * case.
2368 */
2369 corrupted = scrub_checksum(sblock);
2370 if (!corrupted && sblock->sctx->is_dev_replace)
2371 scrub_write_block_to_dev_replace(sblock);
2372 }
2373
2374 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2375 u64 start = sblock->pagev[0]->logical;
2376 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2377 PAGE_SIZE;
2378
2379 scrub_parity_mark_sectors_error(sblock->sparity,
2380 start, end - start);
2381 }
2382 }
2383
2384 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2385 u8 *csum)
2386 {
2387 struct btrfs_ordered_sum *sum = NULL;
2388 unsigned long index;
2389 unsigned long num_sectors;
2390
2391 while (!list_empty(&sctx->csum_list)) {
2392 sum = list_first_entry(&sctx->csum_list,
2393 struct btrfs_ordered_sum, list);
2394 if (sum->bytenr > logical)
2395 return 0;
2396 if (sum->bytenr + sum->len > logical)
2397 break;
2398
2399 ++sctx->stat.csum_discards;
2400 list_del(&sum->list);
2401 kfree(sum);
2402 sum = NULL;
2403 }
2404 if (!sum)
2405 return 0;
2406
2407 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2408 num_sectors = sum->len / sctx->sectorsize;
2409 memcpy(csum, sum->sums + index, sctx->csum_size);
2410 if (index == num_sectors - 1) {
2411 list_del(&sum->list);
2412 kfree(sum);
2413 }
2414 return 1;
2415 }
2416
2417 /* scrub extent tries to collect up to 64 kB for each bio */
2418 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2419 u64 physical, struct btrfs_device *dev, u64 flags,
2420 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2421 {
2422 int ret;
2423 u8 csum[BTRFS_CSUM_SIZE];
2424 u32 blocksize;
2425
2426 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2427 blocksize = sctx->sectorsize;
2428 spin_lock(&sctx->stat_lock);
2429 sctx->stat.data_extents_scrubbed++;
2430 sctx->stat.data_bytes_scrubbed += len;
2431 spin_unlock(&sctx->stat_lock);
2432 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2433 blocksize = sctx->nodesize;
2434 spin_lock(&sctx->stat_lock);
2435 sctx->stat.tree_extents_scrubbed++;
2436 sctx->stat.tree_bytes_scrubbed += len;
2437 spin_unlock(&sctx->stat_lock);
2438 } else {
2439 blocksize = sctx->sectorsize;
2440 WARN_ON(1);
2441 }
2442
2443 while (len) {
2444 u64 l = min_t(u64, len, blocksize);
2445 int have_csum = 0;
2446
2447 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2448 /* push csums to sbio */
2449 have_csum = scrub_find_csum(sctx, logical, l, csum);
2450 if (have_csum == 0)
2451 ++sctx->stat.no_csum;
2452 if (sctx->is_dev_replace && !have_csum) {
2453 ret = copy_nocow_pages(sctx, logical, l,
2454 mirror_num,
2455 physical_for_dev_replace);
2456 goto behind_scrub_pages;
2457 }
2458 }
2459 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2460 mirror_num, have_csum ? csum : NULL, 0,
2461 physical_for_dev_replace);
2462 behind_scrub_pages:
2463 if (ret)
2464 return ret;
2465 len -= l;
2466 logical += l;
2467 physical += l;
2468 physical_for_dev_replace += l;
2469 }
2470 return 0;
2471 }
2472
2473 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2474 u64 logical, u64 len,
2475 u64 physical, struct btrfs_device *dev,
2476 u64 flags, u64 gen, int mirror_num, u8 *csum)
2477 {
2478 struct scrub_ctx *sctx = sparity->sctx;
2479 struct scrub_block *sblock;
2480 int index;
2481
2482 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2483 if (!sblock) {
2484 spin_lock(&sctx->stat_lock);
2485 sctx->stat.malloc_errors++;
2486 spin_unlock(&sctx->stat_lock);
2487 return -ENOMEM;
2488 }
2489
2490 /* one ref inside this function, plus one for each page added to
2491 * a bio later on */
2492 atomic_set(&sblock->refs, 1);
2493 sblock->sctx = sctx;
2494 sblock->no_io_error_seen = 1;
2495 sblock->sparity = sparity;
2496 scrub_parity_get(sparity);
2497
2498 for (index = 0; len > 0; index++) {
2499 struct scrub_page *spage;
2500 u64 l = min_t(u64, len, PAGE_SIZE);
2501
2502 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2503 if (!spage) {
2504 leave_nomem:
2505 spin_lock(&sctx->stat_lock);
2506 sctx->stat.malloc_errors++;
2507 spin_unlock(&sctx->stat_lock);
2508 scrub_block_put(sblock);
2509 return -ENOMEM;
2510 }
2511 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2512 /* For scrub block */
2513 scrub_page_get(spage);
2514 sblock->pagev[index] = spage;
2515 /* For scrub parity */
2516 scrub_page_get(spage);
2517 list_add_tail(&spage->list, &sparity->spages);
2518 spage->sblock = sblock;
2519 spage->dev = dev;
2520 spage->flags = flags;
2521 spage->generation = gen;
2522 spage->logical = logical;
2523 spage->physical = physical;
2524 spage->mirror_num = mirror_num;
2525 if (csum) {
2526 spage->have_csum = 1;
2527 memcpy(spage->csum, csum, sctx->csum_size);
2528 } else {
2529 spage->have_csum = 0;
2530 }
2531 sblock->page_count++;
2532 spage->page = alloc_page(GFP_NOFS);
2533 if (!spage->page)
2534 goto leave_nomem;
2535 len -= l;
2536 logical += l;
2537 physical += l;
2538 }
2539
2540 WARN_ON(sblock->page_count == 0);
2541 for (index = 0; index < sblock->page_count; index++) {
2542 struct scrub_page *spage = sblock->pagev[index];
2543 int ret;
2544
2545 ret = scrub_add_page_to_rd_bio(sctx, spage);
2546 if (ret) {
2547 scrub_block_put(sblock);
2548 return ret;
2549 }
2550 }
2551
2552 /* last one frees, either here or in bio completion for last page */
2553 scrub_block_put(sblock);
2554 return 0;
2555 }
2556
2557 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2558 u64 logical, u64 len,
2559 u64 physical, struct btrfs_device *dev,
2560 u64 flags, u64 gen, int mirror_num)
2561 {
2562 struct scrub_ctx *sctx = sparity->sctx;
2563 int ret;
2564 u8 csum[BTRFS_CSUM_SIZE];
2565 u32 blocksize;
2566
2567 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2568 blocksize = sctx->sectorsize;
2569 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2570 blocksize = sctx->nodesize;
2571 } else {
2572 blocksize = sctx->sectorsize;
2573 WARN_ON(1);
2574 }
2575
2576 while (len) {
2577 u64 l = min_t(u64, len, blocksize);
2578 int have_csum = 0;
2579
2580 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2581 /* push csums to sbio */
2582 have_csum = scrub_find_csum(sctx, logical, l, csum);
2583 if (have_csum == 0)
2584 goto skip;
2585 }
2586 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2587 flags, gen, mirror_num,
2588 have_csum ? csum : NULL);
2589 if (ret)
2590 return ret;
2591 skip:
2592 len -= l;
2593 logical += l;
2594 physical += l;
2595 }
2596 return 0;
2597 }
2598
2599 /*
2600 * Given a physical address, this will calculate it's
2601 * logical offset. if this is a parity stripe, it will return
2602 * the most left data stripe's logical offset.
2603 *
2604 * return 0 if it is a data stripe, 1 means parity stripe.
2605 */
2606 static int get_raid56_logic_offset(u64 physical, int num,
2607 struct map_lookup *map, u64 *offset,
2608 u64 *stripe_start)
2609 {
2610 int i;
2611 int j = 0;
2612 u64 stripe_nr;
2613 u64 last_offset;
2614 u32 stripe_index;
2615 u32 rot;
2616
2617 last_offset = (physical - map->stripes[num].physical) *
2618 nr_data_stripes(map);
2619 if (stripe_start)
2620 *stripe_start = last_offset;
2621
2622 *offset = last_offset;
2623 for (i = 0; i < nr_data_stripes(map); i++) {
2624 *offset = last_offset + i * map->stripe_len;
2625
2626 stripe_nr = div_u64(*offset, map->stripe_len);
2627 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2628
2629 /* Work out the disk rotation on this stripe-set */
2630 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2631 /* calculate which stripe this data locates */
2632 rot += i;
2633 stripe_index = rot % map->num_stripes;
2634 if (stripe_index == num)
2635 return 0;
2636 if (stripe_index < num)
2637 j++;
2638 }
2639 *offset = last_offset + j * map->stripe_len;
2640 return 1;
2641 }
2642
2643 static void scrub_free_parity(struct scrub_parity *sparity)
2644 {
2645 struct scrub_ctx *sctx = sparity->sctx;
2646 struct scrub_page *curr, *next;
2647 int nbits;
2648
2649 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2650 if (nbits) {
2651 spin_lock(&sctx->stat_lock);
2652 sctx->stat.read_errors += nbits;
2653 sctx->stat.uncorrectable_errors += nbits;
2654 spin_unlock(&sctx->stat_lock);
2655 }
2656
2657 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2658 list_del_init(&curr->list);
2659 scrub_page_put(curr);
2660 }
2661
2662 kfree(sparity);
2663 }
2664
2665 static void scrub_parity_bio_endio(struct bio *bio, int error)
2666 {
2667 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2668 struct scrub_ctx *sctx = sparity->sctx;
2669
2670 if (error)
2671 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2672 sparity->nsectors);
2673
2674 scrub_free_parity(sparity);
2675 scrub_pending_bio_dec(sctx);
2676 bio_put(bio);
2677 }
2678
2679 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2680 {
2681 struct scrub_ctx *sctx = sparity->sctx;
2682 struct bio *bio;
2683 struct btrfs_raid_bio *rbio;
2684 struct scrub_page *spage;
2685 struct btrfs_bio *bbio = NULL;
2686 u64 length;
2687 int ret;
2688
2689 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2690 sparity->nsectors))
2691 goto out;
2692
2693 length = sparity->logic_end - sparity->logic_start + 1;
2694 ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2695 sparity->logic_start,
2696 &length, &bbio, 0, 1);
2697 if (ret || !bbio || !bbio->raid_map)
2698 goto bbio_out;
2699
2700 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2701 if (!bio)
2702 goto bbio_out;
2703
2704 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2705 bio->bi_private = sparity;
2706 bio->bi_end_io = scrub_parity_bio_endio;
2707
2708 rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2709 length, sparity->scrub_dev,
2710 sparity->dbitmap,
2711 sparity->nsectors);
2712 if (!rbio)
2713 goto rbio_out;
2714
2715 list_for_each_entry(spage, &sparity->spages, list)
2716 raid56_parity_add_scrub_pages(rbio, spage->page,
2717 spage->logical);
2718
2719 scrub_pending_bio_inc(sctx);
2720 raid56_parity_submit_scrub_rbio(rbio);
2721 return;
2722
2723 rbio_out:
2724 bio_put(bio);
2725 bbio_out:
2726 btrfs_put_bbio(bbio);
2727 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2728 sparity->nsectors);
2729 spin_lock(&sctx->stat_lock);
2730 sctx->stat.malloc_errors++;
2731 spin_unlock(&sctx->stat_lock);
2732 out:
2733 scrub_free_parity(sparity);
2734 }
2735
2736 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2737 {
2738 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * (BITS_PER_LONG / 8);
2739 }
2740
2741 static void scrub_parity_get(struct scrub_parity *sparity)
2742 {
2743 atomic_inc(&sparity->refs);
2744 }
2745
2746 static void scrub_parity_put(struct scrub_parity *sparity)
2747 {
2748 if (!atomic_dec_and_test(&sparity->refs))
2749 return;
2750
2751 scrub_parity_check_and_repair(sparity);
2752 }
2753
2754 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2755 struct map_lookup *map,
2756 struct btrfs_device *sdev,
2757 struct btrfs_path *path,
2758 u64 logic_start,
2759 u64 logic_end)
2760 {
2761 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2762 struct btrfs_root *root = fs_info->extent_root;
2763 struct btrfs_root *csum_root = fs_info->csum_root;
2764 struct btrfs_extent_item *extent;
2765 u64 flags;
2766 int ret;
2767 int slot;
2768 struct extent_buffer *l;
2769 struct btrfs_key key;
2770 u64 generation;
2771 u64 extent_logical;
2772 u64 extent_physical;
2773 u64 extent_len;
2774 struct btrfs_device *extent_dev;
2775 struct scrub_parity *sparity;
2776 int nsectors;
2777 int bitmap_len;
2778 int extent_mirror_num;
2779 int stop_loop = 0;
2780
2781 nsectors = map->stripe_len / root->sectorsize;
2782 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2783 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2784 GFP_NOFS);
2785 if (!sparity) {
2786 spin_lock(&sctx->stat_lock);
2787 sctx->stat.malloc_errors++;
2788 spin_unlock(&sctx->stat_lock);
2789 return -ENOMEM;
2790 }
2791
2792 sparity->stripe_len = map->stripe_len;
2793 sparity->nsectors = nsectors;
2794 sparity->sctx = sctx;
2795 sparity->scrub_dev = sdev;
2796 sparity->logic_start = logic_start;
2797 sparity->logic_end = logic_end;
2798 atomic_set(&sparity->refs, 1);
2799 INIT_LIST_HEAD(&sparity->spages);
2800 sparity->dbitmap = sparity->bitmap;
2801 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2802
2803 ret = 0;
2804 while (logic_start < logic_end) {
2805 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2806 key.type = BTRFS_METADATA_ITEM_KEY;
2807 else
2808 key.type = BTRFS_EXTENT_ITEM_KEY;
2809 key.objectid = logic_start;
2810 key.offset = (u64)-1;
2811
2812 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2813 if (ret < 0)
2814 goto out;
2815
2816 if (ret > 0) {
2817 ret = btrfs_previous_extent_item(root, path, 0);
2818 if (ret < 0)
2819 goto out;
2820 if (ret > 0) {
2821 btrfs_release_path(path);
2822 ret = btrfs_search_slot(NULL, root, &key,
2823 path, 0, 0);
2824 if (ret < 0)
2825 goto out;
2826 }
2827 }
2828
2829 stop_loop = 0;
2830 while (1) {
2831 u64 bytes;
2832
2833 l = path->nodes[0];
2834 slot = path->slots[0];
2835 if (slot >= btrfs_header_nritems(l)) {
2836 ret = btrfs_next_leaf(root, path);
2837 if (ret == 0)
2838 continue;
2839 if (ret < 0)
2840 goto out;
2841
2842 stop_loop = 1;
2843 break;
2844 }
2845 btrfs_item_key_to_cpu(l, &key, slot);
2846
2847 if (key.type == BTRFS_METADATA_ITEM_KEY)
2848 bytes = root->nodesize;
2849 else
2850 bytes = key.offset;
2851
2852 if (key.objectid + bytes <= logic_start)
2853 goto next;
2854
2855 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2856 key.type != BTRFS_METADATA_ITEM_KEY)
2857 goto next;
2858
2859 if (key.objectid > logic_end) {
2860 stop_loop = 1;
2861 break;
2862 }
2863
2864 while (key.objectid >= logic_start + map->stripe_len)
2865 logic_start += map->stripe_len;
2866
2867 extent = btrfs_item_ptr(l, slot,
2868 struct btrfs_extent_item);
2869 flags = btrfs_extent_flags(l, extent);
2870 generation = btrfs_extent_generation(l, extent);
2871
2872 if (key.objectid < logic_start &&
2873 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2874 btrfs_err(fs_info,
2875 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2876 key.objectid, logic_start);
2877 goto next;
2878 }
2879 again:
2880 extent_logical = key.objectid;
2881 extent_len = bytes;
2882
2883 if (extent_logical < logic_start) {
2884 extent_len -= logic_start - extent_logical;
2885 extent_logical = logic_start;
2886 }
2887
2888 if (extent_logical + extent_len >
2889 logic_start + map->stripe_len)
2890 extent_len = logic_start + map->stripe_len -
2891 extent_logical;
2892
2893 scrub_parity_mark_sectors_data(sparity, extent_logical,
2894 extent_len);
2895
2896 scrub_remap_extent(fs_info, extent_logical,
2897 extent_len, &extent_physical,
2898 &extent_dev,
2899 &extent_mirror_num);
2900
2901 ret = btrfs_lookup_csums_range(csum_root,
2902 extent_logical,
2903 extent_logical + extent_len - 1,
2904 &sctx->csum_list, 1);
2905 if (ret)
2906 goto out;
2907
2908 ret = scrub_extent_for_parity(sparity, extent_logical,
2909 extent_len,
2910 extent_physical,
2911 extent_dev, flags,
2912 generation,
2913 extent_mirror_num);
2914 if (ret)
2915 goto out;
2916
2917 scrub_free_csums(sctx);
2918 if (extent_logical + extent_len <
2919 key.objectid + bytes) {
2920 logic_start += map->stripe_len;
2921
2922 if (logic_start >= logic_end) {
2923 stop_loop = 1;
2924 break;
2925 }
2926
2927 if (logic_start < key.objectid + bytes) {
2928 cond_resched();
2929 goto again;
2930 }
2931 }
2932 next:
2933 path->slots[0]++;
2934 }
2935
2936 btrfs_release_path(path);
2937
2938 if (stop_loop)
2939 break;
2940
2941 logic_start += map->stripe_len;
2942 }
2943 out:
2944 if (ret < 0)
2945 scrub_parity_mark_sectors_error(sparity, logic_start,
2946 logic_end - logic_start + 1);
2947 scrub_parity_put(sparity);
2948 scrub_submit(sctx);
2949 mutex_lock(&sctx->wr_ctx.wr_lock);
2950 scrub_wr_submit(sctx);
2951 mutex_unlock(&sctx->wr_ctx.wr_lock);
2952
2953 btrfs_release_path(path);
2954 return ret < 0 ? ret : 0;
2955 }
2956
2957 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2958 struct map_lookup *map,
2959 struct btrfs_device *scrub_dev,
2960 int num, u64 base, u64 length,
2961 int is_dev_replace)
2962 {
2963 struct btrfs_path *path, *ppath;
2964 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2965 struct btrfs_root *root = fs_info->extent_root;
2966 struct btrfs_root *csum_root = fs_info->csum_root;
2967 struct btrfs_extent_item *extent;
2968 struct blk_plug plug;
2969 u64 flags;
2970 int ret;
2971 int slot;
2972 u64 nstripes;
2973 struct extent_buffer *l;
2974 struct btrfs_key key;
2975 u64 physical;
2976 u64 logical;
2977 u64 logic_end;
2978 u64 physical_end;
2979 u64 generation;
2980 int mirror_num;
2981 struct reada_control *reada1;
2982 struct reada_control *reada2;
2983 struct btrfs_key key_start;
2984 struct btrfs_key key_end;
2985 u64 increment = map->stripe_len;
2986 u64 offset;
2987 u64 extent_logical;
2988 u64 extent_physical;
2989 u64 extent_len;
2990 u64 stripe_logical;
2991 u64 stripe_end;
2992 struct btrfs_device *extent_dev;
2993 int extent_mirror_num;
2994 int stop_loop = 0;
2995
2996 physical = map->stripes[num].physical;
2997 offset = 0;
2998 nstripes = div_u64(length, map->stripe_len);
2999 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3000 offset = map->stripe_len * num;
3001 increment = map->stripe_len * map->num_stripes;
3002 mirror_num = 1;
3003 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3004 int factor = map->num_stripes / map->sub_stripes;
3005 offset = map->stripe_len * (num / map->sub_stripes);
3006 increment = map->stripe_len * factor;
3007 mirror_num = num % map->sub_stripes + 1;
3008 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3009 increment = map->stripe_len;
3010 mirror_num = num % map->num_stripes + 1;
3011 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3012 increment = map->stripe_len;
3013 mirror_num = num % map->num_stripes + 1;
3014 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3015 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3016 increment = map->stripe_len * nr_data_stripes(map);
3017 mirror_num = 1;
3018 } else {
3019 increment = map->stripe_len;
3020 mirror_num = 1;
3021 }
3022
3023 path = btrfs_alloc_path();
3024 if (!path)
3025 return -ENOMEM;
3026
3027 ppath = btrfs_alloc_path();
3028 if (!ppath) {
3029 btrfs_free_path(path);
3030 return -ENOMEM;
3031 }
3032
3033 /*
3034 * work on commit root. The related disk blocks are static as
3035 * long as COW is applied. This means, it is save to rewrite
3036 * them to repair disk errors without any race conditions
3037 */
3038 path->search_commit_root = 1;
3039 path->skip_locking = 1;
3040
3041 ppath->search_commit_root = 1;
3042 ppath->skip_locking = 1;
3043 /*
3044 * trigger the readahead for extent tree csum tree and wait for
3045 * completion. During readahead, the scrub is officially paused
3046 * to not hold off transaction commits
3047 */
3048 logical = base + offset;
3049 physical_end = physical + nstripes * map->stripe_len;
3050 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3051 get_raid56_logic_offset(physical_end, num,
3052 map, &logic_end, NULL);
3053 logic_end += base;
3054 } else {
3055 logic_end = logical + increment * nstripes;
3056 }
3057 wait_event(sctx->list_wait,
3058 atomic_read(&sctx->bios_in_flight) == 0);
3059 scrub_blocked_if_needed(fs_info);
3060
3061 /* FIXME it might be better to start readahead at commit root */
3062 key_start.objectid = logical;
3063 key_start.type = BTRFS_EXTENT_ITEM_KEY;
3064 key_start.offset = (u64)0;
3065 key_end.objectid = logic_end;
3066 key_end.type = BTRFS_METADATA_ITEM_KEY;
3067 key_end.offset = (u64)-1;
3068 reada1 = btrfs_reada_add(root, &key_start, &key_end);
3069
3070 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3071 key_start.type = BTRFS_EXTENT_CSUM_KEY;
3072 key_start.offset = logical;
3073 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3074 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3075 key_end.offset = logic_end;
3076 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
3077
3078 if (!IS_ERR(reada1))
3079 btrfs_reada_wait(reada1);
3080 if (!IS_ERR(reada2))
3081 btrfs_reada_wait(reada2);
3082
3083
3084 /*
3085 * collect all data csums for the stripe to avoid seeking during
3086 * the scrub. This might currently (crc32) end up to be about 1MB
3087 */
3088 blk_start_plug(&plug);
3089
3090 /*
3091 * now find all extents for each stripe and scrub them
3092 */
3093 ret = 0;
3094 while (physical < physical_end) {
3095 /* for raid56, we skip parity stripe */
3096 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3097 ret = get_raid56_logic_offset(physical, num,
3098 map, &logical, &stripe_logical);
3099 logical += base;
3100 if (ret) {
3101 stripe_logical += base;
3102 stripe_end = stripe_logical + increment - 1;
3103 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3104 ppath, stripe_logical,
3105 stripe_end);
3106 if (ret)
3107 goto out;
3108 goto skip;
3109 }
3110 }
3111 /*
3112 * canceled?
3113 */
3114 if (atomic_read(&fs_info->scrub_cancel_req) ||
3115 atomic_read(&sctx->cancel_req)) {
3116 ret = -ECANCELED;
3117 goto out;
3118 }
3119 /*
3120 * check to see if we have to pause
3121 */
3122 if (atomic_read(&fs_info->scrub_pause_req)) {
3123 /* push queued extents */
3124 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3125 scrub_submit(sctx);
3126 mutex_lock(&sctx->wr_ctx.wr_lock);
3127 scrub_wr_submit(sctx);
3128 mutex_unlock(&sctx->wr_ctx.wr_lock);
3129 wait_event(sctx->list_wait,
3130 atomic_read(&sctx->bios_in_flight) == 0);
3131 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3132 scrub_blocked_if_needed(fs_info);
3133 }
3134
3135 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3136 key.type = BTRFS_METADATA_ITEM_KEY;
3137 else
3138 key.type = BTRFS_EXTENT_ITEM_KEY;
3139 key.objectid = logical;
3140 key.offset = (u64)-1;
3141
3142 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3143 if (ret < 0)
3144 goto out;
3145
3146 if (ret > 0) {
3147 ret = btrfs_previous_extent_item(root, path, 0);
3148 if (ret < 0)
3149 goto out;
3150 if (ret > 0) {
3151 /* there's no smaller item, so stick with the
3152 * larger one */
3153 btrfs_release_path(path);
3154 ret = btrfs_search_slot(NULL, root, &key,
3155 path, 0, 0);
3156 if (ret < 0)
3157 goto out;
3158 }
3159 }
3160
3161 stop_loop = 0;
3162 while (1) {
3163 u64 bytes;
3164
3165 l = path->nodes[0];
3166 slot = path->slots[0];
3167 if (slot >= btrfs_header_nritems(l)) {
3168 ret = btrfs_next_leaf(root, path);
3169 if (ret == 0)
3170 continue;
3171 if (ret < 0)
3172 goto out;
3173
3174 stop_loop = 1;
3175 break;
3176 }
3177 btrfs_item_key_to_cpu(l, &key, slot);
3178
3179 if (key.type == BTRFS_METADATA_ITEM_KEY)
3180 bytes = root->nodesize;
3181 else
3182 bytes = key.offset;
3183
3184 if (key.objectid + bytes <= logical)
3185 goto next;
3186
3187 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3188 key.type != BTRFS_METADATA_ITEM_KEY)
3189 goto next;
3190
3191 if (key.objectid >= logical + map->stripe_len) {
3192 /* out of this device extent */
3193 if (key.objectid >= logic_end)
3194 stop_loop = 1;
3195 break;
3196 }
3197
3198 extent = btrfs_item_ptr(l, slot,
3199 struct btrfs_extent_item);
3200 flags = btrfs_extent_flags(l, extent);
3201 generation = btrfs_extent_generation(l, extent);
3202
3203 if (key.objectid < logical &&
3204 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
3205 btrfs_err(fs_info,
3206 "scrub: tree block %llu spanning "
3207 "stripes, ignored. logical=%llu",
3208 key.objectid, logical);
3209 goto next;
3210 }
3211
3212 again:
3213 extent_logical = key.objectid;
3214 extent_len = bytes;
3215
3216 /*
3217 * trim extent to this stripe
3218 */
3219 if (extent_logical < logical) {
3220 extent_len -= logical - extent_logical;
3221 extent_logical = logical;
3222 }
3223 if (extent_logical + extent_len >
3224 logical + map->stripe_len) {
3225 extent_len = logical + map->stripe_len -
3226 extent_logical;
3227 }
3228
3229 extent_physical = extent_logical - logical + physical;
3230 extent_dev = scrub_dev;
3231 extent_mirror_num = mirror_num;
3232 if (is_dev_replace)
3233 scrub_remap_extent(fs_info, extent_logical,
3234 extent_len, &extent_physical,
3235 &extent_dev,
3236 &extent_mirror_num);
3237
3238 ret = btrfs_lookup_csums_range(csum_root, logical,
3239 logical + map->stripe_len - 1,
3240 &sctx->csum_list, 1);
3241 if (ret)
3242 goto out;
3243
3244 ret = scrub_extent(sctx, extent_logical, extent_len,
3245 extent_physical, extent_dev, flags,
3246 generation, extent_mirror_num,
3247 extent_logical - logical + physical);
3248 if (ret)
3249 goto out;
3250
3251 scrub_free_csums(sctx);
3252 if (extent_logical + extent_len <
3253 key.objectid + bytes) {
3254 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3255 /*
3256 * loop until we find next data stripe
3257 * or we have finished all stripes.
3258 */
3259 loop:
3260 physical += map->stripe_len;
3261 ret = get_raid56_logic_offset(physical,
3262 num, map, &logical,
3263 &stripe_logical);
3264 logical += base;
3265
3266 if (ret && physical < physical_end) {
3267 stripe_logical += base;
3268 stripe_end = stripe_logical +
3269 increment - 1;
3270 ret = scrub_raid56_parity(sctx,
3271 map, scrub_dev, ppath,
3272 stripe_logical,
3273 stripe_end);
3274 if (ret)
3275 goto out;
3276 goto loop;
3277 }
3278 } else {
3279 physical += map->stripe_len;
3280 logical += increment;
3281 }
3282 if (logical < key.objectid + bytes) {
3283 cond_resched();
3284 goto again;
3285 }
3286
3287 if (physical >= physical_end) {
3288 stop_loop = 1;
3289 break;
3290 }
3291 }
3292 next:
3293 path->slots[0]++;
3294 }
3295 btrfs_release_path(path);
3296 skip:
3297 logical += increment;
3298 physical += map->stripe_len;
3299 spin_lock(&sctx->stat_lock);
3300 if (stop_loop)
3301 sctx->stat.last_physical = map->stripes[num].physical +
3302 length;
3303 else
3304 sctx->stat.last_physical = physical;
3305 spin_unlock(&sctx->stat_lock);
3306 if (stop_loop)
3307 break;
3308 }
3309 out:
3310 /* push queued extents */
3311 scrub_submit(sctx);
3312 mutex_lock(&sctx->wr_ctx.wr_lock);
3313 scrub_wr_submit(sctx);
3314 mutex_unlock(&sctx->wr_ctx.wr_lock);
3315
3316 blk_finish_plug(&plug);
3317 btrfs_free_path(path);
3318 btrfs_free_path(ppath);
3319 return ret < 0 ? ret : 0;
3320 }
3321
3322 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3323 struct btrfs_device *scrub_dev,
3324 u64 chunk_tree, u64 chunk_objectid,
3325 u64 chunk_offset, u64 length,
3326 u64 dev_offset, int is_dev_replace)
3327 {
3328 struct btrfs_mapping_tree *map_tree =
3329 &sctx->dev_root->fs_info->mapping_tree;
3330 struct map_lookup *map;
3331 struct extent_map *em;
3332 int i;
3333 int ret = 0;
3334
3335 read_lock(&map_tree->map_tree.lock);
3336 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3337 read_unlock(&map_tree->map_tree.lock);
3338
3339 if (!em)
3340 return -EINVAL;
3341
3342 map = (struct map_lookup *)em->bdev;
3343 if (em->start != chunk_offset)
3344 goto out;
3345
3346 if (em->len < length)
3347 goto out;
3348
3349 for (i = 0; i < map->num_stripes; ++i) {
3350 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3351 map->stripes[i].physical == dev_offset) {
3352 ret = scrub_stripe(sctx, map, scrub_dev, i,
3353 chunk_offset, length,
3354 is_dev_replace);
3355 if (ret)
3356 goto out;
3357 }
3358 }
3359 out:
3360 free_extent_map(em);
3361
3362 return ret;
3363 }
3364
3365 static noinline_for_stack
3366 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3367 struct btrfs_device *scrub_dev, u64 start, u64 end,
3368 int is_dev_replace)
3369 {
3370 struct btrfs_dev_extent *dev_extent = NULL;
3371 struct btrfs_path *path;
3372 struct btrfs_root *root = sctx->dev_root;
3373 struct btrfs_fs_info *fs_info = root->fs_info;
3374 u64 length;
3375 u64 chunk_tree;
3376 u64 chunk_objectid;
3377 u64 chunk_offset;
3378 int ret;
3379 int slot;
3380 struct extent_buffer *l;
3381 struct btrfs_key key;
3382 struct btrfs_key found_key;
3383 struct btrfs_block_group_cache *cache;
3384 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3385
3386 path = btrfs_alloc_path();
3387 if (!path)
3388 return -ENOMEM;
3389
3390 path->reada = 2;
3391 path->search_commit_root = 1;
3392 path->skip_locking = 1;
3393
3394 key.objectid = scrub_dev->devid;
3395 key.offset = 0ull;
3396 key.type = BTRFS_DEV_EXTENT_KEY;
3397
3398 while (1) {
3399 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3400 if (ret < 0)
3401 break;
3402 if (ret > 0) {
3403 if (path->slots[0] >=
3404 btrfs_header_nritems(path->nodes[0])) {
3405 ret = btrfs_next_leaf(root, path);
3406 if (ret)
3407 break;
3408 }
3409 }
3410
3411 l = path->nodes[0];
3412 slot = path->slots[0];
3413
3414 btrfs_item_key_to_cpu(l, &found_key, slot);
3415
3416 if (found_key.objectid != scrub_dev->devid)
3417 break;
3418
3419 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3420 break;
3421
3422 if (found_key.offset >= end)
3423 break;
3424
3425 if (found_key.offset < key.offset)
3426 break;
3427
3428 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3429 length = btrfs_dev_extent_length(l, dev_extent);
3430
3431 if (found_key.offset + length <= start)
3432 goto skip;
3433
3434 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3435 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3436 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3437
3438 /*
3439 * get a reference on the corresponding block group to prevent
3440 * the chunk from going away while we scrub it
3441 */
3442 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3443
3444 /* some chunks are removed but not committed to disk yet,
3445 * continue scrubbing */
3446 if (!cache)
3447 goto skip;
3448
3449 dev_replace->cursor_right = found_key.offset + length;
3450 dev_replace->cursor_left = found_key.offset;
3451 dev_replace->item_needs_writeback = 1;
3452 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
3453 chunk_offset, length, found_key.offset,
3454 is_dev_replace);
3455
3456 /*
3457 * flush, submit all pending read and write bios, afterwards
3458 * wait for them.
3459 * Note that in the dev replace case, a read request causes
3460 * write requests that are submitted in the read completion
3461 * worker. Therefore in the current situation, it is required
3462 * that all write requests are flushed, so that all read and
3463 * write requests are really completed when bios_in_flight
3464 * changes to 0.
3465 */
3466 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3467 scrub_submit(sctx);
3468 mutex_lock(&sctx->wr_ctx.wr_lock);
3469 scrub_wr_submit(sctx);
3470 mutex_unlock(&sctx->wr_ctx.wr_lock);
3471
3472 wait_event(sctx->list_wait,
3473 atomic_read(&sctx->bios_in_flight) == 0);
3474 atomic_inc(&fs_info->scrubs_paused);
3475 wake_up(&fs_info->scrub_pause_wait);
3476
3477 /*
3478 * must be called before we decrease @scrub_paused.
3479 * make sure we don't block transaction commit while
3480 * we are waiting pending workers finished.
3481 */
3482 wait_event(sctx->list_wait,
3483 atomic_read(&sctx->workers_pending) == 0);
3484 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3485
3486 mutex_lock(&fs_info->scrub_lock);
3487 __scrub_blocked_if_needed(fs_info);
3488 atomic_dec(&fs_info->scrubs_paused);
3489 mutex_unlock(&fs_info->scrub_lock);
3490 wake_up(&fs_info->scrub_pause_wait);
3491
3492 btrfs_put_block_group(cache);
3493 if (ret)
3494 break;
3495 if (is_dev_replace &&
3496 atomic64_read(&dev_replace->num_write_errors) > 0) {
3497 ret = -EIO;
3498 break;
3499 }
3500 if (sctx->stat.malloc_errors > 0) {
3501 ret = -ENOMEM;
3502 break;
3503 }
3504
3505 dev_replace->cursor_left = dev_replace->cursor_right;
3506 dev_replace->item_needs_writeback = 1;
3507 skip:
3508 key.offset = found_key.offset + length;
3509 btrfs_release_path(path);
3510 }
3511
3512 btrfs_free_path(path);
3513
3514 /*
3515 * ret can still be 1 from search_slot or next_leaf,
3516 * that's not an error
3517 */
3518 return ret < 0 ? ret : 0;
3519 }
3520
3521 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3522 struct btrfs_device *scrub_dev)
3523 {
3524 int i;
3525 u64 bytenr;
3526 u64 gen;
3527 int ret;
3528 struct btrfs_root *root = sctx->dev_root;
3529
3530 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3531 return -EIO;
3532
3533 /* Seed devices of a new filesystem has their own generation. */
3534 if (scrub_dev->fs_devices != root->fs_info->fs_devices)
3535 gen = scrub_dev->generation;
3536 else
3537 gen = root->fs_info->last_trans_committed;
3538
3539 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3540 bytenr = btrfs_sb_offset(i);
3541 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3542 scrub_dev->commit_total_bytes)
3543 break;
3544
3545 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3546 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3547 NULL, 1, bytenr);
3548 if (ret)
3549 return ret;
3550 }
3551 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3552
3553 return 0;
3554 }
3555
3556 /*
3557 * get a reference count on fs_info->scrub_workers. start worker if necessary
3558 */
3559 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3560 int is_dev_replace)
3561 {
3562 int ret = 0;
3563 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3564 int max_active = fs_info->thread_pool_size;
3565
3566 if (fs_info->scrub_workers_refcnt == 0) {
3567 if (is_dev_replace)
3568 fs_info->scrub_workers =
3569 btrfs_alloc_workqueue("btrfs-scrub", flags,
3570 1, 4);
3571 else
3572 fs_info->scrub_workers =
3573 btrfs_alloc_workqueue("btrfs-scrub", flags,
3574 max_active, 4);
3575 if (!fs_info->scrub_workers) {
3576 ret = -ENOMEM;
3577 goto out;
3578 }
3579 fs_info->scrub_wr_completion_workers =
3580 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
3581 max_active, 2);
3582 if (!fs_info->scrub_wr_completion_workers) {
3583 ret = -ENOMEM;
3584 goto out;
3585 }
3586 fs_info->scrub_nocow_workers =
3587 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
3588 if (!fs_info->scrub_nocow_workers) {
3589 ret = -ENOMEM;
3590 goto out;
3591 }
3592 }
3593 ++fs_info->scrub_workers_refcnt;
3594 out:
3595 return ret;
3596 }
3597
3598 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3599 {
3600 if (--fs_info->scrub_workers_refcnt == 0) {
3601 btrfs_destroy_workqueue(fs_info->scrub_workers);
3602 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3603 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3604 }
3605 WARN_ON(fs_info->scrub_workers_refcnt < 0);
3606 }
3607
3608 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3609 u64 end, struct btrfs_scrub_progress *progress,
3610 int readonly, int is_dev_replace)
3611 {
3612 struct scrub_ctx *sctx;
3613 int ret;
3614 struct btrfs_device *dev;
3615 struct rcu_string *name;
3616
3617 if (btrfs_fs_closing(fs_info))
3618 return -EINVAL;
3619
3620 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3621 /*
3622 * in this case scrub is unable to calculate the checksum
3623 * the way scrub is implemented. Do not handle this
3624 * situation at all because it won't ever happen.
3625 */
3626 btrfs_err(fs_info,
3627 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3628 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3629 return -EINVAL;
3630 }
3631
3632 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3633 /* not supported for data w/o checksums */
3634 btrfs_err(fs_info,
3635 "scrub: size assumption sectorsize != PAGE_SIZE "
3636 "(%d != %lu) fails",
3637 fs_info->chunk_root->sectorsize, PAGE_SIZE);
3638 return -EINVAL;
3639 }
3640
3641 if (fs_info->chunk_root->nodesize >
3642 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3643 fs_info->chunk_root->sectorsize >
3644 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3645 /*
3646 * would exhaust the array bounds of pagev member in
3647 * struct scrub_block
3648 */
3649 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
3650 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3651 fs_info->chunk_root->nodesize,
3652 SCRUB_MAX_PAGES_PER_BLOCK,
3653 fs_info->chunk_root->sectorsize,
3654 SCRUB_MAX_PAGES_PER_BLOCK);
3655 return -EINVAL;
3656 }
3657
3658
3659 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3660 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3661 if (!dev || (dev->missing && !is_dev_replace)) {
3662 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3663 return -ENODEV;
3664 }
3665
3666 if (!is_dev_replace && !readonly && !dev->writeable) {
3667 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3668 rcu_read_lock();
3669 name = rcu_dereference(dev->name);
3670 btrfs_err(fs_info, "scrub: device %s is not writable",
3671 name->str);
3672 rcu_read_unlock();
3673 return -EROFS;
3674 }
3675
3676 mutex_lock(&fs_info->scrub_lock);
3677 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
3678 mutex_unlock(&fs_info->scrub_lock);
3679 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3680 return -EIO;
3681 }
3682
3683 btrfs_dev_replace_lock(&fs_info->dev_replace);
3684 if (dev->scrub_device ||
3685 (!is_dev_replace &&
3686 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3687 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3688 mutex_unlock(&fs_info->scrub_lock);
3689 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3690 return -EINPROGRESS;
3691 }
3692 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3693
3694 ret = scrub_workers_get(fs_info, is_dev_replace);
3695 if (ret) {
3696 mutex_unlock(&fs_info->scrub_lock);
3697 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3698 return ret;
3699 }
3700
3701 sctx = scrub_setup_ctx(dev, is_dev_replace);
3702 if (IS_ERR(sctx)) {
3703 mutex_unlock(&fs_info->scrub_lock);
3704 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3705 scrub_workers_put(fs_info);
3706 return PTR_ERR(sctx);
3707 }
3708 sctx->readonly = readonly;
3709 dev->scrub_device = sctx;
3710 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3711
3712 /*
3713 * checking @scrub_pause_req here, we can avoid
3714 * race between committing transaction and scrubbing.
3715 */
3716 __scrub_blocked_if_needed(fs_info);
3717 atomic_inc(&fs_info->scrubs_running);
3718 mutex_unlock(&fs_info->scrub_lock);
3719
3720 if (!is_dev_replace) {
3721 /*
3722 * by holding device list mutex, we can
3723 * kick off writing super in log tree sync.
3724 */
3725 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3726 ret = scrub_supers(sctx, dev);
3727 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3728 }
3729
3730 if (!ret)
3731 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3732 is_dev_replace);
3733
3734 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3735 atomic_dec(&fs_info->scrubs_running);
3736 wake_up(&fs_info->scrub_pause_wait);
3737
3738 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3739
3740 if (progress)
3741 memcpy(progress, &sctx->stat, sizeof(*progress));
3742
3743 mutex_lock(&fs_info->scrub_lock);
3744 dev->scrub_device = NULL;
3745 scrub_workers_put(fs_info);
3746 mutex_unlock(&fs_info->scrub_lock);
3747
3748 scrub_put_ctx(sctx);
3749
3750 return ret;
3751 }
3752
3753 void btrfs_scrub_pause(struct btrfs_root *root)
3754 {
3755 struct btrfs_fs_info *fs_info = root->fs_info;
3756
3757 mutex_lock(&fs_info->scrub_lock);
3758 atomic_inc(&fs_info->scrub_pause_req);
3759 while (atomic_read(&fs_info->scrubs_paused) !=
3760 atomic_read(&fs_info->scrubs_running)) {
3761 mutex_unlock(&fs_info->scrub_lock);
3762 wait_event(fs_info->scrub_pause_wait,
3763 atomic_read(&fs_info->scrubs_paused) ==
3764 atomic_read(&fs_info->scrubs_running));
3765 mutex_lock(&fs_info->scrub_lock);
3766 }
3767 mutex_unlock(&fs_info->scrub_lock);
3768 }
3769
3770 void btrfs_scrub_continue(struct btrfs_root *root)
3771 {
3772 struct btrfs_fs_info *fs_info = root->fs_info;
3773
3774 atomic_dec(&fs_info->scrub_pause_req);
3775 wake_up(&fs_info->scrub_pause_wait);
3776 }
3777
3778 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3779 {
3780 mutex_lock(&fs_info->scrub_lock);
3781 if (!atomic_read(&fs_info->scrubs_running)) {
3782 mutex_unlock(&fs_info->scrub_lock);
3783 return -ENOTCONN;
3784 }
3785
3786 atomic_inc(&fs_info->scrub_cancel_req);
3787 while (atomic_read(&fs_info->scrubs_running)) {
3788 mutex_unlock(&fs_info->scrub_lock);
3789 wait_event(fs_info->scrub_pause_wait,
3790 atomic_read(&fs_info->scrubs_running) == 0);
3791 mutex_lock(&fs_info->scrub_lock);
3792 }
3793 atomic_dec(&fs_info->scrub_cancel_req);
3794 mutex_unlock(&fs_info->scrub_lock);
3795
3796 return 0;
3797 }
3798
3799 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3800 struct btrfs_device *dev)
3801 {
3802 struct scrub_ctx *sctx;
3803
3804 mutex_lock(&fs_info->scrub_lock);
3805 sctx = dev->scrub_device;
3806 if (!sctx) {
3807 mutex_unlock(&fs_info->scrub_lock);
3808 return -ENOTCONN;
3809 }
3810 atomic_inc(&sctx->cancel_req);
3811 while (dev->scrub_device) {
3812 mutex_unlock(&fs_info->scrub_lock);
3813 wait_event(fs_info->scrub_pause_wait,
3814 dev->scrub_device == NULL);
3815 mutex_lock(&fs_info->scrub_lock);
3816 }
3817 mutex_unlock(&fs_info->scrub_lock);
3818
3819 return 0;
3820 }
3821
3822 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3823 struct btrfs_scrub_progress *progress)
3824 {
3825 struct btrfs_device *dev;
3826 struct scrub_ctx *sctx = NULL;
3827
3828 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3829 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3830 if (dev)
3831 sctx = dev->scrub_device;
3832 if (sctx)
3833 memcpy(progress, &sctx->stat, sizeof(*progress));
3834 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3835
3836 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3837 }
3838
3839 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3840 u64 extent_logical, u64 extent_len,
3841 u64 *extent_physical,
3842 struct btrfs_device **extent_dev,
3843 int *extent_mirror_num)
3844 {
3845 u64 mapped_length;
3846 struct btrfs_bio *bbio = NULL;
3847 int ret;
3848
3849 mapped_length = extent_len;
3850 ret = btrfs_map_block(fs_info, READ, extent_logical,
3851 &mapped_length, &bbio, 0);
3852 if (ret || !bbio || mapped_length < extent_len ||
3853 !bbio->stripes[0].dev->bdev) {
3854 btrfs_put_bbio(bbio);
3855 return;
3856 }
3857
3858 *extent_physical = bbio->stripes[0].physical;
3859 *extent_mirror_num = bbio->mirror_num;
3860 *extent_dev = bbio->stripes[0].dev;
3861 btrfs_put_bbio(bbio);
3862 }
3863
3864 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3865 struct scrub_wr_ctx *wr_ctx,
3866 struct btrfs_fs_info *fs_info,
3867 struct btrfs_device *dev,
3868 int is_dev_replace)
3869 {
3870 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3871
3872 mutex_init(&wr_ctx->wr_lock);
3873 wr_ctx->wr_curr_bio = NULL;
3874 if (!is_dev_replace)
3875 return 0;
3876
3877 WARN_ON(!dev->bdev);
3878 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3879 bio_get_nr_vecs(dev->bdev));
3880 wr_ctx->tgtdev = dev;
3881 atomic_set(&wr_ctx->flush_all_writes, 0);
3882 return 0;
3883 }
3884
3885 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3886 {
3887 mutex_lock(&wr_ctx->wr_lock);
3888 kfree(wr_ctx->wr_curr_bio);
3889 wr_ctx->wr_curr_bio = NULL;
3890 mutex_unlock(&wr_ctx->wr_lock);
3891 }
3892
3893 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3894 int mirror_num, u64 physical_for_dev_replace)
3895 {
3896 struct scrub_copy_nocow_ctx *nocow_ctx;
3897 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3898
3899 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3900 if (!nocow_ctx) {
3901 spin_lock(&sctx->stat_lock);
3902 sctx->stat.malloc_errors++;
3903 spin_unlock(&sctx->stat_lock);
3904 return -ENOMEM;
3905 }
3906
3907 scrub_pending_trans_workers_inc(sctx);
3908
3909 nocow_ctx->sctx = sctx;
3910 nocow_ctx->logical = logical;
3911 nocow_ctx->len = len;
3912 nocow_ctx->mirror_num = mirror_num;
3913 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3914 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3915 copy_nocow_pages_worker, NULL, NULL);
3916 INIT_LIST_HEAD(&nocow_ctx->inodes);
3917 btrfs_queue_work(fs_info->scrub_nocow_workers,
3918 &nocow_ctx->work);
3919
3920 return 0;
3921 }
3922
3923 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3924 {
3925 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3926 struct scrub_nocow_inode *nocow_inode;
3927
3928 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3929 if (!nocow_inode)
3930 return -ENOMEM;
3931 nocow_inode->inum = inum;
3932 nocow_inode->offset = offset;
3933 nocow_inode->root = root;
3934 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3935 return 0;
3936 }
3937
3938 #define COPY_COMPLETE 1
3939
3940 static void copy_nocow_pages_worker(struct btrfs_work *work)
3941 {
3942 struct scrub_copy_nocow_ctx *nocow_ctx =
3943 container_of(work, struct scrub_copy_nocow_ctx, work);
3944 struct scrub_ctx *sctx = nocow_ctx->sctx;
3945 u64 logical = nocow_ctx->logical;
3946 u64 len = nocow_ctx->len;
3947 int mirror_num = nocow_ctx->mirror_num;
3948 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3949 int ret;
3950 struct btrfs_trans_handle *trans = NULL;
3951 struct btrfs_fs_info *fs_info;
3952 struct btrfs_path *path;
3953 struct btrfs_root *root;
3954 int not_written = 0;
3955
3956 fs_info = sctx->dev_root->fs_info;
3957 root = fs_info->extent_root;
3958
3959 path = btrfs_alloc_path();
3960 if (!path) {
3961 spin_lock(&sctx->stat_lock);
3962 sctx->stat.malloc_errors++;
3963 spin_unlock(&sctx->stat_lock);
3964 not_written = 1;
3965 goto out;
3966 }
3967
3968 trans = btrfs_join_transaction(root);
3969 if (IS_ERR(trans)) {
3970 not_written = 1;
3971 goto out;
3972 }
3973
3974 ret = iterate_inodes_from_logical(logical, fs_info, path,
3975 record_inode_for_nocow, nocow_ctx);
3976 if (ret != 0 && ret != -ENOENT) {
3977 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3978 "phys %llu, len %llu, mir %u, ret %d",
3979 logical, physical_for_dev_replace, len, mirror_num,
3980 ret);
3981 not_written = 1;
3982 goto out;
3983 }
3984
3985 btrfs_end_transaction(trans, root);
3986 trans = NULL;
3987 while (!list_empty(&nocow_ctx->inodes)) {
3988 struct scrub_nocow_inode *entry;
3989 entry = list_first_entry(&nocow_ctx->inodes,
3990 struct scrub_nocow_inode,
3991 list);
3992 list_del_init(&entry->list);
3993 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3994 entry->root, nocow_ctx);
3995 kfree(entry);
3996 if (ret == COPY_COMPLETE) {
3997 ret = 0;
3998 break;
3999 } else if (ret) {
4000 break;
4001 }
4002 }
4003 out:
4004 while (!list_empty(&nocow_ctx->inodes)) {
4005 struct scrub_nocow_inode *entry;
4006 entry = list_first_entry(&nocow_ctx->inodes,
4007 struct scrub_nocow_inode,
4008 list);
4009 list_del_init(&entry->list);
4010 kfree(entry);
4011 }
4012 if (trans && !IS_ERR(trans))
4013 btrfs_end_transaction(trans, root);
4014 if (not_written)
4015 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4016 num_uncorrectable_read_errors);
4017
4018 btrfs_free_path(path);
4019 kfree(nocow_ctx);
4020
4021 scrub_pending_trans_workers_dec(sctx);
4022 }
4023
4024 static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
4025 u64 logical)
4026 {
4027 struct extent_state *cached_state = NULL;
4028 struct btrfs_ordered_extent *ordered;
4029 struct extent_io_tree *io_tree;
4030 struct extent_map *em;
4031 u64 lockstart = start, lockend = start + len - 1;
4032 int ret = 0;
4033
4034 io_tree = &BTRFS_I(inode)->io_tree;
4035
4036 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
4037 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
4038 if (ordered) {
4039 btrfs_put_ordered_extent(ordered);
4040 ret = 1;
4041 goto out_unlock;
4042 }
4043
4044 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4045 if (IS_ERR(em)) {
4046 ret = PTR_ERR(em);
4047 goto out_unlock;
4048 }
4049
4050 /*
4051 * This extent does not actually cover the logical extent anymore,
4052 * move on to the next inode.
4053 */
4054 if (em->block_start > logical ||
4055 em->block_start + em->block_len < logical + len) {
4056 free_extent_map(em);
4057 ret = 1;
4058 goto out_unlock;
4059 }
4060 free_extent_map(em);
4061
4062 out_unlock:
4063 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4064 GFP_NOFS);
4065 return ret;
4066 }
4067
4068 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4069 struct scrub_copy_nocow_ctx *nocow_ctx)
4070 {
4071 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4072 struct btrfs_key key;
4073 struct inode *inode;
4074 struct page *page;
4075 struct btrfs_root *local_root;
4076 struct extent_io_tree *io_tree;
4077 u64 physical_for_dev_replace;
4078 u64 nocow_ctx_logical;
4079 u64 len = nocow_ctx->len;
4080 unsigned long index;
4081 int srcu_index;
4082 int ret = 0;
4083 int err = 0;
4084
4085 key.objectid = root;
4086 key.type = BTRFS_ROOT_ITEM_KEY;
4087 key.offset = (u64)-1;
4088
4089 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4090
4091 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4092 if (IS_ERR(local_root)) {
4093 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4094 return PTR_ERR(local_root);
4095 }
4096
4097 key.type = BTRFS_INODE_ITEM_KEY;
4098 key.objectid = inum;
4099 key.offset = 0;
4100 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4101 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4102 if (IS_ERR(inode))
4103 return PTR_ERR(inode);
4104
4105 /* Avoid truncate/dio/punch hole.. */
4106 mutex_lock(&inode->i_mutex);
4107 inode_dio_wait(inode);
4108
4109 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4110 io_tree = &BTRFS_I(inode)->io_tree;
4111 nocow_ctx_logical = nocow_ctx->logical;
4112
4113 ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
4114 if (ret) {
4115 ret = ret > 0 ? 0 : ret;
4116 goto out;
4117 }
4118
4119 while (len >= PAGE_CACHE_SIZE) {
4120 index = offset >> PAGE_CACHE_SHIFT;
4121 again:
4122 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4123 if (!page) {
4124 btrfs_err(fs_info, "find_or_create_page() failed");
4125 ret = -ENOMEM;
4126 goto out;
4127 }
4128
4129 if (PageUptodate(page)) {
4130 if (PageDirty(page))
4131 goto next_page;
4132 } else {
4133 ClearPageError(page);
4134 err = extent_read_full_page(io_tree, page,
4135 btrfs_get_extent,
4136 nocow_ctx->mirror_num);
4137 if (err) {
4138 ret = err;
4139 goto next_page;
4140 }
4141
4142 lock_page(page);
4143 /*
4144 * If the page has been remove from the page cache,
4145 * the data on it is meaningless, because it may be
4146 * old one, the new data may be written into the new
4147 * page in the page cache.
4148 */
4149 if (page->mapping != inode->i_mapping) {
4150 unlock_page(page);
4151 page_cache_release(page);
4152 goto again;
4153 }
4154 if (!PageUptodate(page)) {
4155 ret = -EIO;
4156 goto next_page;
4157 }
4158 }
4159
4160 ret = check_extent_to_block(inode, offset, len,
4161 nocow_ctx_logical);
4162 if (ret) {
4163 ret = ret > 0 ? 0 : ret;
4164 goto next_page;
4165 }
4166
4167 err = write_page_nocow(nocow_ctx->sctx,
4168 physical_for_dev_replace, page);
4169 if (err)
4170 ret = err;
4171 next_page:
4172 unlock_page(page);
4173 page_cache_release(page);
4174
4175 if (ret)
4176 break;
4177
4178 offset += PAGE_CACHE_SIZE;
4179 physical_for_dev_replace += PAGE_CACHE_SIZE;
4180 nocow_ctx_logical += PAGE_CACHE_SIZE;
4181 len -= PAGE_CACHE_SIZE;
4182 }
4183 ret = COPY_COMPLETE;
4184 out:
4185 mutex_unlock(&inode->i_mutex);
4186 iput(inode);
4187 return ret;
4188 }
4189
4190 static int write_page_nocow(struct scrub_ctx *sctx,
4191 u64 physical_for_dev_replace, struct page *page)
4192 {
4193 struct bio *bio;
4194 struct btrfs_device *dev;
4195 int ret;
4196
4197 dev = sctx->wr_ctx.tgtdev;
4198 if (!dev)
4199 return -EIO;
4200 if (!dev->bdev) {
4201 printk_ratelimited(KERN_WARNING
4202 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
4203 return -EIO;
4204 }
4205 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4206 if (!bio) {
4207 spin_lock(&sctx->stat_lock);
4208 sctx->stat.malloc_errors++;
4209 spin_unlock(&sctx->stat_lock);
4210 return -ENOMEM;
4211 }
4212 bio->bi_iter.bi_size = 0;
4213 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4214 bio->bi_bdev = dev->bdev;
4215 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
4216 if (ret != PAGE_CACHE_SIZE) {
4217 leave_with_eio:
4218 bio_put(bio);
4219 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4220 return -EIO;
4221 }
4222
4223 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4224 goto leave_with_eio;
4225
4226 bio_put(bio);
4227 return 0;
4228 }
This page took 0.154555 seconds and 6 git commands to generate.