Merge tag 'stable/for-linus-3.9-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / btrfs / scrub.c
1 /*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
44 */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
58
59 /*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
65
66 struct scrub_page {
67 struct scrub_block *sblock;
68 struct page *page;
69 struct btrfs_device *dev;
70 u64 flags; /* extent flags */
71 u64 generation;
72 u64 logical;
73 u64 physical;
74 u64 physical_for_dev_replace;
75 atomic_t ref_count;
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
80 };
81 u8 csum[BTRFS_CSUM_SIZE];
82 };
83
84 struct scrub_bio {
85 int index;
86 struct scrub_ctx *sctx;
87 struct btrfs_device *dev;
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 int page_count;
98 int next_free;
99 struct btrfs_work work;
100 };
101
102 struct scrub_block {
103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
107 struct scrub_ctx *sctx;
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
113 };
114 };
115
116 struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
122 };
123
124 struct scrub_ctx {
125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
126 struct btrfs_root *dev_root;
127 int first_free;
128 int curr;
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
136 int readonly;
137 int pages_per_rd_bio;
138 u32 sectorsize;
139 u32 nodesize;
140 u32 leafsize;
141
142 int is_dev_replace;
143 struct scrub_wr_ctx wr_ctx;
144
145 /*
146 * statistics
147 */
148 struct btrfs_scrub_progress stat;
149 spinlock_t stat_lock;
150 };
151
152 struct scrub_fixup_nodatasum {
153 struct scrub_ctx *sctx;
154 struct btrfs_device *dev;
155 u64 logical;
156 struct btrfs_root *root;
157 struct btrfs_work work;
158 int mirror_num;
159 };
160
161 struct scrub_copy_nocow_ctx {
162 struct scrub_ctx *sctx;
163 u64 logical;
164 u64 len;
165 int mirror_num;
166 u64 physical_for_dev_replace;
167 struct btrfs_work work;
168 };
169
170 struct scrub_warning {
171 struct btrfs_path *path;
172 u64 extent_item_size;
173 char *scratch_buf;
174 char *msg_buf;
175 const char *errstr;
176 sector_t sector;
177 u64 logical;
178 struct btrfs_device *dev;
179 int msg_bufsize;
180 int scratch_bufsize;
181 };
182
183
184 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
185 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
186 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
187 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
188 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
189 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
190 struct btrfs_fs_info *fs_info,
191 struct scrub_block *original_sblock,
192 u64 length, u64 logical,
193 struct scrub_block *sblocks_for_recheck);
194 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
195 struct scrub_block *sblock, int is_metadata,
196 int have_csum, u8 *csum, u64 generation,
197 u16 csum_size);
198 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
199 struct scrub_block *sblock,
200 int is_metadata, int have_csum,
201 const u8 *csum, u64 generation,
202 u16 csum_size);
203 static void scrub_complete_bio_end_io(struct bio *bio, int err);
204 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
205 struct scrub_block *sblock_good,
206 int force_write);
207 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
208 struct scrub_block *sblock_good,
209 int page_num, int force_write);
210 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
211 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
212 int page_num);
213 static int scrub_checksum_data(struct scrub_block *sblock);
214 static int scrub_checksum_tree_block(struct scrub_block *sblock);
215 static int scrub_checksum_super(struct scrub_block *sblock);
216 static void scrub_block_get(struct scrub_block *sblock);
217 static void scrub_block_put(struct scrub_block *sblock);
218 static void scrub_page_get(struct scrub_page *spage);
219 static void scrub_page_put(struct scrub_page *spage);
220 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
221 struct scrub_page *spage);
222 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
223 u64 physical, struct btrfs_device *dev, u64 flags,
224 u64 gen, int mirror_num, u8 *csum, int force,
225 u64 physical_for_dev_replace);
226 static void scrub_bio_end_io(struct bio *bio, int err);
227 static void scrub_bio_end_io_worker(struct btrfs_work *work);
228 static void scrub_block_complete(struct scrub_block *sblock);
229 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
230 u64 extent_logical, u64 extent_len,
231 u64 *extent_physical,
232 struct btrfs_device **extent_dev,
233 int *extent_mirror_num);
234 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
235 struct scrub_wr_ctx *wr_ctx,
236 struct btrfs_fs_info *fs_info,
237 struct btrfs_device *dev,
238 int is_dev_replace);
239 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
240 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
241 struct scrub_page *spage);
242 static void scrub_wr_submit(struct scrub_ctx *sctx);
243 static void scrub_wr_bio_end_io(struct bio *bio, int err);
244 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
245 static int write_page_nocow(struct scrub_ctx *sctx,
246 u64 physical_for_dev_replace, struct page *page);
247 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
248 void *ctx);
249 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
250 int mirror_num, u64 physical_for_dev_replace);
251 static void copy_nocow_pages_worker(struct btrfs_work *work);
252
253
254 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255 {
256 atomic_inc(&sctx->bios_in_flight);
257 }
258
259 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
260 {
261 atomic_dec(&sctx->bios_in_flight);
262 wake_up(&sctx->list_wait);
263 }
264
265 /*
266 * used for workers that require transaction commits (i.e., for the
267 * NOCOW case)
268 */
269 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
270 {
271 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
272
273 /*
274 * increment scrubs_running to prevent cancel requests from
275 * completing as long as a worker is running. we must also
276 * increment scrubs_paused to prevent deadlocking on pause
277 * requests used for transactions commits (as the worker uses a
278 * transaction context). it is safe to regard the worker
279 * as paused for all matters practical. effectively, we only
280 * avoid cancellation requests from completing.
281 */
282 mutex_lock(&fs_info->scrub_lock);
283 atomic_inc(&fs_info->scrubs_running);
284 atomic_inc(&fs_info->scrubs_paused);
285 mutex_unlock(&fs_info->scrub_lock);
286 atomic_inc(&sctx->workers_pending);
287 }
288
289 /* used for workers that require transaction commits */
290 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
291 {
292 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
293
294 /*
295 * see scrub_pending_trans_workers_inc() why we're pretending
296 * to be paused in the scrub counters
297 */
298 mutex_lock(&fs_info->scrub_lock);
299 atomic_dec(&fs_info->scrubs_running);
300 atomic_dec(&fs_info->scrubs_paused);
301 mutex_unlock(&fs_info->scrub_lock);
302 atomic_dec(&sctx->workers_pending);
303 wake_up(&fs_info->scrub_pause_wait);
304 wake_up(&sctx->list_wait);
305 }
306
307 static void scrub_free_csums(struct scrub_ctx *sctx)
308 {
309 while (!list_empty(&sctx->csum_list)) {
310 struct btrfs_ordered_sum *sum;
311 sum = list_first_entry(&sctx->csum_list,
312 struct btrfs_ordered_sum, list);
313 list_del(&sum->list);
314 kfree(sum);
315 }
316 }
317
318 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
319 {
320 int i;
321
322 if (!sctx)
323 return;
324
325 scrub_free_wr_ctx(&sctx->wr_ctx);
326
327 /* this can happen when scrub is cancelled */
328 if (sctx->curr != -1) {
329 struct scrub_bio *sbio = sctx->bios[sctx->curr];
330
331 for (i = 0; i < sbio->page_count; i++) {
332 WARN_ON(!sbio->pagev[i]->page);
333 scrub_block_put(sbio->pagev[i]->sblock);
334 }
335 bio_put(sbio->bio);
336 }
337
338 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
339 struct scrub_bio *sbio = sctx->bios[i];
340
341 if (!sbio)
342 break;
343 kfree(sbio);
344 }
345
346 scrub_free_csums(sctx);
347 kfree(sctx);
348 }
349
350 static noinline_for_stack
351 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
352 {
353 struct scrub_ctx *sctx;
354 int i;
355 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
356 int pages_per_rd_bio;
357 int ret;
358
359 /*
360 * the setting of pages_per_rd_bio is correct for scrub but might
361 * be wrong for the dev_replace code where we might read from
362 * different devices in the initial huge bios. However, that
363 * code is able to correctly handle the case when adding a page
364 * to a bio fails.
365 */
366 if (dev->bdev)
367 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
368 bio_get_nr_vecs(dev->bdev));
369 else
370 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
371 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
372 if (!sctx)
373 goto nomem;
374 sctx->is_dev_replace = is_dev_replace;
375 sctx->pages_per_rd_bio = pages_per_rd_bio;
376 sctx->curr = -1;
377 sctx->dev_root = dev->dev_root;
378 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
379 struct scrub_bio *sbio;
380
381 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
382 if (!sbio)
383 goto nomem;
384 sctx->bios[i] = sbio;
385
386 sbio->index = i;
387 sbio->sctx = sctx;
388 sbio->page_count = 0;
389 sbio->work.func = scrub_bio_end_io_worker;
390
391 if (i != SCRUB_BIOS_PER_SCTX - 1)
392 sctx->bios[i]->next_free = i + 1;
393 else
394 sctx->bios[i]->next_free = -1;
395 }
396 sctx->first_free = 0;
397 sctx->nodesize = dev->dev_root->nodesize;
398 sctx->leafsize = dev->dev_root->leafsize;
399 sctx->sectorsize = dev->dev_root->sectorsize;
400 atomic_set(&sctx->bios_in_flight, 0);
401 atomic_set(&sctx->workers_pending, 0);
402 atomic_set(&sctx->cancel_req, 0);
403 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
404 INIT_LIST_HEAD(&sctx->csum_list);
405
406 spin_lock_init(&sctx->list_lock);
407 spin_lock_init(&sctx->stat_lock);
408 init_waitqueue_head(&sctx->list_wait);
409
410 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
411 fs_info->dev_replace.tgtdev, is_dev_replace);
412 if (ret) {
413 scrub_free_ctx(sctx);
414 return ERR_PTR(ret);
415 }
416 return sctx;
417
418 nomem:
419 scrub_free_ctx(sctx);
420 return ERR_PTR(-ENOMEM);
421 }
422
423 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
424 void *warn_ctx)
425 {
426 u64 isize;
427 u32 nlink;
428 int ret;
429 int i;
430 struct extent_buffer *eb;
431 struct btrfs_inode_item *inode_item;
432 struct scrub_warning *swarn = warn_ctx;
433 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
434 struct inode_fs_paths *ipath = NULL;
435 struct btrfs_root *local_root;
436 struct btrfs_key root_key;
437
438 root_key.objectid = root;
439 root_key.type = BTRFS_ROOT_ITEM_KEY;
440 root_key.offset = (u64)-1;
441 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
442 if (IS_ERR(local_root)) {
443 ret = PTR_ERR(local_root);
444 goto err;
445 }
446
447 ret = inode_item_info(inum, 0, local_root, swarn->path);
448 if (ret) {
449 btrfs_release_path(swarn->path);
450 goto err;
451 }
452
453 eb = swarn->path->nodes[0];
454 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
455 struct btrfs_inode_item);
456 isize = btrfs_inode_size(eb, inode_item);
457 nlink = btrfs_inode_nlink(eb, inode_item);
458 btrfs_release_path(swarn->path);
459
460 ipath = init_ipath(4096, local_root, swarn->path);
461 if (IS_ERR(ipath)) {
462 ret = PTR_ERR(ipath);
463 ipath = NULL;
464 goto err;
465 }
466 ret = paths_from_inode(inum, ipath);
467
468 if (ret < 0)
469 goto err;
470
471 /*
472 * we deliberately ignore the bit ipath might have been too small to
473 * hold all of the paths here
474 */
475 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
476 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
477 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
478 "length %llu, links %u (path: %s)\n", swarn->errstr,
479 swarn->logical, rcu_str_deref(swarn->dev->name),
480 (unsigned long long)swarn->sector, root, inum, offset,
481 min(isize - offset, (u64)PAGE_SIZE), nlink,
482 (char *)(unsigned long)ipath->fspath->val[i]);
483
484 free_ipath(ipath);
485 return 0;
486
487 err:
488 printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
489 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
490 "resolving failed with ret=%d\n", swarn->errstr,
491 swarn->logical, rcu_str_deref(swarn->dev->name),
492 (unsigned long long)swarn->sector, root, inum, offset, ret);
493
494 free_ipath(ipath);
495 return 0;
496 }
497
498 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
499 {
500 struct btrfs_device *dev;
501 struct btrfs_fs_info *fs_info;
502 struct btrfs_path *path;
503 struct btrfs_key found_key;
504 struct extent_buffer *eb;
505 struct btrfs_extent_item *ei;
506 struct scrub_warning swarn;
507 unsigned long ptr = 0;
508 u64 extent_item_pos;
509 u64 flags = 0;
510 u64 ref_root;
511 u32 item_size;
512 u8 ref_level;
513 const int bufsize = 4096;
514 int ret;
515
516 WARN_ON(sblock->page_count < 1);
517 dev = sblock->pagev[0]->dev;
518 fs_info = sblock->sctx->dev_root->fs_info;
519
520 path = btrfs_alloc_path();
521
522 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
523 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
524 swarn.sector = (sblock->pagev[0]->physical) >> 9;
525 swarn.logical = sblock->pagev[0]->logical;
526 swarn.errstr = errstr;
527 swarn.dev = NULL;
528 swarn.msg_bufsize = bufsize;
529 swarn.scratch_bufsize = bufsize;
530
531 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
532 goto out;
533
534 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
535 &flags);
536 if (ret < 0)
537 goto out;
538
539 extent_item_pos = swarn.logical - found_key.objectid;
540 swarn.extent_item_size = found_key.offset;
541
542 eb = path->nodes[0];
543 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
544 item_size = btrfs_item_size_nr(eb, path->slots[0]);
545
546 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
547 do {
548 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
549 &ref_root, &ref_level);
550 printk_in_rcu(KERN_WARNING
551 "btrfs: %s at logical %llu on dev %s, "
552 "sector %llu: metadata %s (level %d) in tree "
553 "%llu\n", errstr, swarn.logical,
554 rcu_str_deref(dev->name),
555 (unsigned long long)swarn.sector,
556 ref_level ? "node" : "leaf",
557 ret < 0 ? -1 : ref_level,
558 ret < 0 ? -1 : ref_root);
559 } while (ret != 1);
560 btrfs_release_path(path);
561 } else {
562 btrfs_release_path(path);
563 swarn.path = path;
564 swarn.dev = dev;
565 iterate_extent_inodes(fs_info, found_key.objectid,
566 extent_item_pos, 1,
567 scrub_print_warning_inode, &swarn);
568 }
569
570 out:
571 btrfs_free_path(path);
572 kfree(swarn.scratch_buf);
573 kfree(swarn.msg_buf);
574 }
575
576 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
577 {
578 struct page *page = NULL;
579 unsigned long index;
580 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
581 int ret;
582 int corrected = 0;
583 struct btrfs_key key;
584 struct inode *inode = NULL;
585 struct btrfs_fs_info *fs_info;
586 u64 end = offset + PAGE_SIZE - 1;
587 struct btrfs_root *local_root;
588 int srcu_index;
589
590 key.objectid = root;
591 key.type = BTRFS_ROOT_ITEM_KEY;
592 key.offset = (u64)-1;
593
594 fs_info = fixup->root->fs_info;
595 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
596
597 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
598 if (IS_ERR(local_root)) {
599 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
600 return PTR_ERR(local_root);
601 }
602
603 key.type = BTRFS_INODE_ITEM_KEY;
604 key.objectid = inum;
605 key.offset = 0;
606 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
607 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
608 if (IS_ERR(inode))
609 return PTR_ERR(inode);
610
611 index = offset >> PAGE_CACHE_SHIFT;
612
613 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
614 if (!page) {
615 ret = -ENOMEM;
616 goto out;
617 }
618
619 if (PageUptodate(page)) {
620 if (PageDirty(page)) {
621 /*
622 * we need to write the data to the defect sector. the
623 * data that was in that sector is not in memory,
624 * because the page was modified. we must not write the
625 * modified page to that sector.
626 *
627 * TODO: what could be done here: wait for the delalloc
628 * runner to write out that page (might involve
629 * COW) and see whether the sector is still
630 * referenced afterwards.
631 *
632 * For the meantime, we'll treat this error
633 * incorrectable, although there is a chance that a
634 * later scrub will find the bad sector again and that
635 * there's no dirty page in memory, then.
636 */
637 ret = -EIO;
638 goto out;
639 }
640 fs_info = BTRFS_I(inode)->root->fs_info;
641 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
642 fixup->logical, page,
643 fixup->mirror_num);
644 unlock_page(page);
645 corrected = !ret;
646 } else {
647 /*
648 * we need to get good data first. the general readpage path
649 * will call repair_io_failure for us, we just have to make
650 * sure we read the bad mirror.
651 */
652 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
653 EXTENT_DAMAGED, GFP_NOFS);
654 if (ret) {
655 /* set_extent_bits should give proper error */
656 WARN_ON(ret > 0);
657 if (ret > 0)
658 ret = -EFAULT;
659 goto out;
660 }
661
662 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
663 btrfs_get_extent,
664 fixup->mirror_num);
665 wait_on_page_locked(page);
666
667 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
668 end, EXTENT_DAMAGED, 0, NULL);
669 if (!corrected)
670 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
671 EXTENT_DAMAGED, GFP_NOFS);
672 }
673
674 out:
675 if (page)
676 put_page(page);
677 if (inode)
678 iput(inode);
679
680 if (ret < 0)
681 return ret;
682
683 if (ret == 0 && corrected) {
684 /*
685 * we only need to call readpage for one of the inodes belonging
686 * to this extent. so make iterate_extent_inodes stop
687 */
688 return 1;
689 }
690
691 return -EIO;
692 }
693
694 static void scrub_fixup_nodatasum(struct btrfs_work *work)
695 {
696 int ret;
697 struct scrub_fixup_nodatasum *fixup;
698 struct scrub_ctx *sctx;
699 struct btrfs_trans_handle *trans = NULL;
700 struct btrfs_fs_info *fs_info;
701 struct btrfs_path *path;
702 int uncorrectable = 0;
703
704 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
705 sctx = fixup->sctx;
706 fs_info = fixup->root->fs_info;
707
708 path = btrfs_alloc_path();
709 if (!path) {
710 spin_lock(&sctx->stat_lock);
711 ++sctx->stat.malloc_errors;
712 spin_unlock(&sctx->stat_lock);
713 uncorrectable = 1;
714 goto out;
715 }
716
717 trans = btrfs_join_transaction(fixup->root);
718 if (IS_ERR(trans)) {
719 uncorrectable = 1;
720 goto out;
721 }
722
723 /*
724 * the idea is to trigger a regular read through the standard path. we
725 * read a page from the (failed) logical address by specifying the
726 * corresponding copynum of the failed sector. thus, that readpage is
727 * expected to fail.
728 * that is the point where on-the-fly error correction will kick in
729 * (once it's finished) and rewrite the failed sector if a good copy
730 * can be found.
731 */
732 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
733 path, scrub_fixup_readpage,
734 fixup);
735 if (ret < 0) {
736 uncorrectable = 1;
737 goto out;
738 }
739 WARN_ON(ret != 1);
740
741 spin_lock(&sctx->stat_lock);
742 ++sctx->stat.corrected_errors;
743 spin_unlock(&sctx->stat_lock);
744
745 out:
746 if (trans && !IS_ERR(trans))
747 btrfs_end_transaction(trans, fixup->root);
748 if (uncorrectable) {
749 spin_lock(&sctx->stat_lock);
750 ++sctx->stat.uncorrectable_errors;
751 spin_unlock(&sctx->stat_lock);
752 btrfs_dev_replace_stats_inc(
753 &sctx->dev_root->fs_info->dev_replace.
754 num_uncorrectable_read_errors);
755 printk_ratelimited_in_rcu(KERN_ERR
756 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
757 (unsigned long long)fixup->logical,
758 rcu_str_deref(fixup->dev->name));
759 }
760
761 btrfs_free_path(path);
762 kfree(fixup);
763
764 scrub_pending_trans_workers_dec(sctx);
765 }
766
767 /*
768 * scrub_handle_errored_block gets called when either verification of the
769 * pages failed or the bio failed to read, e.g. with EIO. In the latter
770 * case, this function handles all pages in the bio, even though only one
771 * may be bad.
772 * The goal of this function is to repair the errored block by using the
773 * contents of one of the mirrors.
774 */
775 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
776 {
777 struct scrub_ctx *sctx = sblock_to_check->sctx;
778 struct btrfs_device *dev;
779 struct btrfs_fs_info *fs_info;
780 u64 length;
781 u64 logical;
782 u64 generation;
783 unsigned int failed_mirror_index;
784 unsigned int is_metadata;
785 unsigned int have_csum;
786 u8 *csum;
787 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
788 struct scrub_block *sblock_bad;
789 int ret;
790 int mirror_index;
791 int page_num;
792 int success;
793 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
794 DEFAULT_RATELIMIT_BURST);
795
796 BUG_ON(sblock_to_check->page_count < 1);
797 fs_info = sctx->dev_root->fs_info;
798 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
799 /*
800 * if we find an error in a super block, we just report it.
801 * They will get written with the next transaction commit
802 * anyway
803 */
804 spin_lock(&sctx->stat_lock);
805 ++sctx->stat.super_errors;
806 spin_unlock(&sctx->stat_lock);
807 return 0;
808 }
809 length = sblock_to_check->page_count * PAGE_SIZE;
810 logical = sblock_to_check->pagev[0]->logical;
811 generation = sblock_to_check->pagev[0]->generation;
812 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
813 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
814 is_metadata = !(sblock_to_check->pagev[0]->flags &
815 BTRFS_EXTENT_FLAG_DATA);
816 have_csum = sblock_to_check->pagev[0]->have_csum;
817 csum = sblock_to_check->pagev[0]->csum;
818 dev = sblock_to_check->pagev[0]->dev;
819
820 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
821 sblocks_for_recheck = NULL;
822 goto nodatasum_case;
823 }
824
825 /*
826 * read all mirrors one after the other. This includes to
827 * re-read the extent or metadata block that failed (that was
828 * the cause that this fixup code is called) another time,
829 * page by page this time in order to know which pages
830 * caused I/O errors and which ones are good (for all mirrors).
831 * It is the goal to handle the situation when more than one
832 * mirror contains I/O errors, but the errors do not
833 * overlap, i.e. the data can be repaired by selecting the
834 * pages from those mirrors without I/O error on the
835 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
836 * would be that mirror #1 has an I/O error on the first page,
837 * the second page is good, and mirror #2 has an I/O error on
838 * the second page, but the first page is good.
839 * Then the first page of the first mirror can be repaired by
840 * taking the first page of the second mirror, and the
841 * second page of the second mirror can be repaired by
842 * copying the contents of the 2nd page of the 1st mirror.
843 * One more note: if the pages of one mirror contain I/O
844 * errors, the checksum cannot be verified. In order to get
845 * the best data for repairing, the first attempt is to find
846 * a mirror without I/O errors and with a validated checksum.
847 * Only if this is not possible, the pages are picked from
848 * mirrors with I/O errors without considering the checksum.
849 * If the latter is the case, at the end, the checksum of the
850 * repaired area is verified in order to correctly maintain
851 * the statistics.
852 */
853
854 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
855 sizeof(*sblocks_for_recheck),
856 GFP_NOFS);
857 if (!sblocks_for_recheck) {
858 spin_lock(&sctx->stat_lock);
859 sctx->stat.malloc_errors++;
860 sctx->stat.read_errors++;
861 sctx->stat.uncorrectable_errors++;
862 spin_unlock(&sctx->stat_lock);
863 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
864 goto out;
865 }
866
867 /* setup the context, map the logical blocks and alloc the pages */
868 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
869 logical, sblocks_for_recheck);
870 if (ret) {
871 spin_lock(&sctx->stat_lock);
872 sctx->stat.read_errors++;
873 sctx->stat.uncorrectable_errors++;
874 spin_unlock(&sctx->stat_lock);
875 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
876 goto out;
877 }
878 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
879 sblock_bad = sblocks_for_recheck + failed_mirror_index;
880
881 /* build and submit the bios for the failed mirror, check checksums */
882 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
883 csum, generation, sctx->csum_size);
884
885 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
886 sblock_bad->no_io_error_seen) {
887 /*
888 * the error disappeared after reading page by page, or
889 * the area was part of a huge bio and other parts of the
890 * bio caused I/O errors, or the block layer merged several
891 * read requests into one and the error is caused by a
892 * different bio (usually one of the two latter cases is
893 * the cause)
894 */
895 spin_lock(&sctx->stat_lock);
896 sctx->stat.unverified_errors++;
897 spin_unlock(&sctx->stat_lock);
898
899 if (sctx->is_dev_replace)
900 scrub_write_block_to_dev_replace(sblock_bad);
901 goto out;
902 }
903
904 if (!sblock_bad->no_io_error_seen) {
905 spin_lock(&sctx->stat_lock);
906 sctx->stat.read_errors++;
907 spin_unlock(&sctx->stat_lock);
908 if (__ratelimit(&_rs))
909 scrub_print_warning("i/o error", sblock_to_check);
910 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
911 } else if (sblock_bad->checksum_error) {
912 spin_lock(&sctx->stat_lock);
913 sctx->stat.csum_errors++;
914 spin_unlock(&sctx->stat_lock);
915 if (__ratelimit(&_rs))
916 scrub_print_warning("checksum error", sblock_to_check);
917 btrfs_dev_stat_inc_and_print(dev,
918 BTRFS_DEV_STAT_CORRUPTION_ERRS);
919 } else if (sblock_bad->header_error) {
920 spin_lock(&sctx->stat_lock);
921 sctx->stat.verify_errors++;
922 spin_unlock(&sctx->stat_lock);
923 if (__ratelimit(&_rs))
924 scrub_print_warning("checksum/header error",
925 sblock_to_check);
926 if (sblock_bad->generation_error)
927 btrfs_dev_stat_inc_and_print(dev,
928 BTRFS_DEV_STAT_GENERATION_ERRS);
929 else
930 btrfs_dev_stat_inc_and_print(dev,
931 BTRFS_DEV_STAT_CORRUPTION_ERRS);
932 }
933
934 if (sctx->readonly && !sctx->is_dev_replace)
935 goto did_not_correct_error;
936
937 if (!is_metadata && !have_csum) {
938 struct scrub_fixup_nodatasum *fixup_nodatasum;
939
940 nodatasum_case:
941 WARN_ON(sctx->is_dev_replace);
942
943 /*
944 * !is_metadata and !have_csum, this means that the data
945 * might not be COW'ed, that it might be modified
946 * concurrently. The general strategy to work on the
947 * commit root does not help in the case when COW is not
948 * used.
949 */
950 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
951 if (!fixup_nodatasum)
952 goto did_not_correct_error;
953 fixup_nodatasum->sctx = sctx;
954 fixup_nodatasum->dev = dev;
955 fixup_nodatasum->logical = logical;
956 fixup_nodatasum->root = fs_info->extent_root;
957 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
958 scrub_pending_trans_workers_inc(sctx);
959 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
960 btrfs_queue_worker(&fs_info->scrub_workers,
961 &fixup_nodatasum->work);
962 goto out;
963 }
964
965 /*
966 * now build and submit the bios for the other mirrors, check
967 * checksums.
968 * First try to pick the mirror which is completely without I/O
969 * errors and also does not have a checksum error.
970 * If one is found, and if a checksum is present, the full block
971 * that is known to contain an error is rewritten. Afterwards
972 * the block is known to be corrected.
973 * If a mirror is found which is completely correct, and no
974 * checksum is present, only those pages are rewritten that had
975 * an I/O error in the block to be repaired, since it cannot be
976 * determined, which copy of the other pages is better (and it
977 * could happen otherwise that a correct page would be
978 * overwritten by a bad one).
979 */
980 for (mirror_index = 0;
981 mirror_index < BTRFS_MAX_MIRRORS &&
982 sblocks_for_recheck[mirror_index].page_count > 0;
983 mirror_index++) {
984 struct scrub_block *sblock_other;
985
986 if (mirror_index == failed_mirror_index)
987 continue;
988 sblock_other = sblocks_for_recheck + mirror_index;
989
990 /* build and submit the bios, check checksums */
991 scrub_recheck_block(fs_info, sblock_other, is_metadata,
992 have_csum, csum, generation,
993 sctx->csum_size);
994
995 if (!sblock_other->header_error &&
996 !sblock_other->checksum_error &&
997 sblock_other->no_io_error_seen) {
998 if (sctx->is_dev_replace) {
999 scrub_write_block_to_dev_replace(sblock_other);
1000 } else {
1001 int force_write = is_metadata || have_csum;
1002
1003 ret = scrub_repair_block_from_good_copy(
1004 sblock_bad, sblock_other,
1005 force_write);
1006 }
1007 if (0 == ret)
1008 goto corrected_error;
1009 }
1010 }
1011
1012 /*
1013 * for dev_replace, pick good pages and write to the target device.
1014 */
1015 if (sctx->is_dev_replace) {
1016 success = 1;
1017 for (page_num = 0; page_num < sblock_bad->page_count;
1018 page_num++) {
1019 int sub_success;
1020
1021 sub_success = 0;
1022 for (mirror_index = 0;
1023 mirror_index < BTRFS_MAX_MIRRORS &&
1024 sblocks_for_recheck[mirror_index].page_count > 0;
1025 mirror_index++) {
1026 struct scrub_block *sblock_other =
1027 sblocks_for_recheck + mirror_index;
1028 struct scrub_page *page_other =
1029 sblock_other->pagev[page_num];
1030
1031 if (!page_other->io_error) {
1032 ret = scrub_write_page_to_dev_replace(
1033 sblock_other, page_num);
1034 if (ret == 0) {
1035 /* succeeded for this page */
1036 sub_success = 1;
1037 break;
1038 } else {
1039 btrfs_dev_replace_stats_inc(
1040 &sctx->dev_root->
1041 fs_info->dev_replace.
1042 num_write_errors);
1043 }
1044 }
1045 }
1046
1047 if (!sub_success) {
1048 /*
1049 * did not find a mirror to fetch the page
1050 * from. scrub_write_page_to_dev_replace()
1051 * handles this case (page->io_error), by
1052 * filling the block with zeros before
1053 * submitting the write request
1054 */
1055 success = 0;
1056 ret = scrub_write_page_to_dev_replace(
1057 sblock_bad, page_num);
1058 if (ret)
1059 btrfs_dev_replace_stats_inc(
1060 &sctx->dev_root->fs_info->
1061 dev_replace.num_write_errors);
1062 }
1063 }
1064
1065 goto out;
1066 }
1067
1068 /*
1069 * for regular scrub, repair those pages that are errored.
1070 * In case of I/O errors in the area that is supposed to be
1071 * repaired, continue by picking good copies of those pages.
1072 * Select the good pages from mirrors to rewrite bad pages from
1073 * the area to fix. Afterwards verify the checksum of the block
1074 * that is supposed to be repaired. This verification step is
1075 * only done for the purpose of statistic counting and for the
1076 * final scrub report, whether errors remain.
1077 * A perfect algorithm could make use of the checksum and try
1078 * all possible combinations of pages from the different mirrors
1079 * until the checksum verification succeeds. For example, when
1080 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081 * of mirror #2 is readable but the final checksum test fails,
1082 * then the 2nd page of mirror #3 could be tried, whether now
1083 * the final checksum succeedes. But this would be a rare
1084 * exception and is therefore not implemented. At least it is
1085 * avoided that the good copy is overwritten.
1086 * A more useful improvement would be to pick the sectors
1087 * without I/O error based on sector sizes (512 bytes on legacy
1088 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089 * mirror could be repaired by taking 512 byte of a different
1090 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091 * area are unreadable.
1092 */
1093
1094 /* can only fix I/O errors from here on */
1095 if (sblock_bad->no_io_error_seen)
1096 goto did_not_correct_error;
1097
1098 success = 1;
1099 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1100 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1101
1102 if (!page_bad->io_error)
1103 continue;
1104
1105 for (mirror_index = 0;
1106 mirror_index < BTRFS_MAX_MIRRORS &&
1107 sblocks_for_recheck[mirror_index].page_count > 0;
1108 mirror_index++) {
1109 struct scrub_block *sblock_other = sblocks_for_recheck +
1110 mirror_index;
1111 struct scrub_page *page_other = sblock_other->pagev[
1112 page_num];
1113
1114 if (!page_other->io_error) {
1115 ret = scrub_repair_page_from_good_copy(
1116 sblock_bad, sblock_other, page_num, 0);
1117 if (0 == ret) {
1118 page_bad->io_error = 0;
1119 break; /* succeeded for this page */
1120 }
1121 }
1122 }
1123
1124 if (page_bad->io_error) {
1125 /* did not find a mirror to copy the page from */
1126 success = 0;
1127 }
1128 }
1129
1130 if (success) {
1131 if (is_metadata || have_csum) {
1132 /*
1133 * need to verify the checksum now that all
1134 * sectors on disk are repaired (the write
1135 * request for data to be repaired is on its way).
1136 * Just be lazy and use scrub_recheck_block()
1137 * which re-reads the data before the checksum
1138 * is verified, but most likely the data comes out
1139 * of the page cache.
1140 */
1141 scrub_recheck_block(fs_info, sblock_bad,
1142 is_metadata, have_csum, csum,
1143 generation, sctx->csum_size);
1144 if (!sblock_bad->header_error &&
1145 !sblock_bad->checksum_error &&
1146 sblock_bad->no_io_error_seen)
1147 goto corrected_error;
1148 else
1149 goto did_not_correct_error;
1150 } else {
1151 corrected_error:
1152 spin_lock(&sctx->stat_lock);
1153 sctx->stat.corrected_errors++;
1154 spin_unlock(&sctx->stat_lock);
1155 printk_ratelimited_in_rcu(KERN_ERR
1156 "btrfs: fixed up error at logical %llu on dev %s\n",
1157 (unsigned long long)logical,
1158 rcu_str_deref(dev->name));
1159 }
1160 } else {
1161 did_not_correct_error:
1162 spin_lock(&sctx->stat_lock);
1163 sctx->stat.uncorrectable_errors++;
1164 spin_unlock(&sctx->stat_lock);
1165 printk_ratelimited_in_rcu(KERN_ERR
1166 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1167 (unsigned long long)logical,
1168 rcu_str_deref(dev->name));
1169 }
1170
1171 out:
1172 if (sblocks_for_recheck) {
1173 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1174 mirror_index++) {
1175 struct scrub_block *sblock = sblocks_for_recheck +
1176 mirror_index;
1177 int page_index;
1178
1179 for (page_index = 0; page_index < sblock->page_count;
1180 page_index++) {
1181 sblock->pagev[page_index]->sblock = NULL;
1182 scrub_page_put(sblock->pagev[page_index]);
1183 }
1184 }
1185 kfree(sblocks_for_recheck);
1186 }
1187
1188 return 0;
1189 }
1190
1191 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1192 struct btrfs_fs_info *fs_info,
1193 struct scrub_block *original_sblock,
1194 u64 length, u64 logical,
1195 struct scrub_block *sblocks_for_recheck)
1196 {
1197 int page_index;
1198 int mirror_index;
1199 int ret;
1200
1201 /*
1202 * note: the two members ref_count and outstanding_pages
1203 * are not used (and not set) in the blocks that are used for
1204 * the recheck procedure
1205 */
1206
1207 page_index = 0;
1208 while (length > 0) {
1209 u64 sublen = min_t(u64, length, PAGE_SIZE);
1210 u64 mapped_length = sublen;
1211 struct btrfs_bio *bbio = NULL;
1212
1213 /*
1214 * with a length of PAGE_SIZE, each returned stripe
1215 * represents one mirror
1216 */
1217 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1218 &mapped_length, &bbio, 0);
1219 if (ret || !bbio || mapped_length < sublen) {
1220 kfree(bbio);
1221 return -EIO;
1222 }
1223
1224 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1225 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1226 mirror_index++) {
1227 struct scrub_block *sblock;
1228 struct scrub_page *page;
1229
1230 if (mirror_index >= BTRFS_MAX_MIRRORS)
1231 continue;
1232
1233 sblock = sblocks_for_recheck + mirror_index;
1234 sblock->sctx = sctx;
1235 page = kzalloc(sizeof(*page), GFP_NOFS);
1236 if (!page) {
1237 leave_nomem:
1238 spin_lock(&sctx->stat_lock);
1239 sctx->stat.malloc_errors++;
1240 spin_unlock(&sctx->stat_lock);
1241 kfree(bbio);
1242 return -ENOMEM;
1243 }
1244 scrub_page_get(page);
1245 sblock->pagev[page_index] = page;
1246 page->logical = logical;
1247 page->physical = bbio->stripes[mirror_index].physical;
1248 BUG_ON(page_index >= original_sblock->page_count);
1249 page->physical_for_dev_replace =
1250 original_sblock->pagev[page_index]->
1251 physical_for_dev_replace;
1252 /* for missing devices, dev->bdev is NULL */
1253 page->dev = bbio->stripes[mirror_index].dev;
1254 page->mirror_num = mirror_index + 1;
1255 sblock->page_count++;
1256 page->page = alloc_page(GFP_NOFS);
1257 if (!page->page)
1258 goto leave_nomem;
1259 }
1260 kfree(bbio);
1261 length -= sublen;
1262 logical += sublen;
1263 page_index++;
1264 }
1265
1266 return 0;
1267 }
1268
1269 /*
1270 * this function will check the on disk data for checksum errors, header
1271 * errors and read I/O errors. If any I/O errors happen, the exact pages
1272 * which are errored are marked as being bad. The goal is to enable scrub
1273 * to take those pages that are not errored from all the mirrors so that
1274 * the pages that are errored in the just handled mirror can be repaired.
1275 */
1276 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1277 struct scrub_block *sblock, int is_metadata,
1278 int have_csum, u8 *csum, u64 generation,
1279 u16 csum_size)
1280 {
1281 int page_num;
1282
1283 sblock->no_io_error_seen = 1;
1284 sblock->header_error = 0;
1285 sblock->checksum_error = 0;
1286
1287 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1288 struct bio *bio;
1289 struct scrub_page *page = sblock->pagev[page_num];
1290 DECLARE_COMPLETION_ONSTACK(complete);
1291
1292 if (page->dev->bdev == NULL) {
1293 page->io_error = 1;
1294 sblock->no_io_error_seen = 0;
1295 continue;
1296 }
1297
1298 WARN_ON(!page->page);
1299 bio = bio_alloc(GFP_NOFS, 1);
1300 if (!bio) {
1301 page->io_error = 1;
1302 sblock->no_io_error_seen = 0;
1303 continue;
1304 }
1305 bio->bi_bdev = page->dev->bdev;
1306 bio->bi_sector = page->physical >> 9;
1307 bio->bi_end_io = scrub_complete_bio_end_io;
1308 bio->bi_private = &complete;
1309
1310 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1311 btrfsic_submit_bio(READ, bio);
1312
1313 /* this will also unplug the queue */
1314 wait_for_completion(&complete);
1315
1316 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1317 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1318 sblock->no_io_error_seen = 0;
1319 bio_put(bio);
1320 }
1321
1322 if (sblock->no_io_error_seen)
1323 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1324 have_csum, csum, generation,
1325 csum_size);
1326
1327 return;
1328 }
1329
1330 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1331 struct scrub_block *sblock,
1332 int is_metadata, int have_csum,
1333 const u8 *csum, u64 generation,
1334 u16 csum_size)
1335 {
1336 int page_num;
1337 u8 calculated_csum[BTRFS_CSUM_SIZE];
1338 u32 crc = ~(u32)0;
1339 struct btrfs_root *root = fs_info->extent_root;
1340 void *mapped_buffer;
1341
1342 WARN_ON(!sblock->pagev[0]->page);
1343 if (is_metadata) {
1344 struct btrfs_header *h;
1345
1346 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1347 h = (struct btrfs_header *)mapped_buffer;
1348
1349 if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) ||
1350 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1351 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1352 BTRFS_UUID_SIZE)) {
1353 sblock->header_error = 1;
1354 } else if (generation != le64_to_cpu(h->generation)) {
1355 sblock->header_error = 1;
1356 sblock->generation_error = 1;
1357 }
1358 csum = h->csum;
1359 } else {
1360 if (!have_csum)
1361 return;
1362
1363 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1364 }
1365
1366 for (page_num = 0;;) {
1367 if (page_num == 0 && is_metadata)
1368 crc = btrfs_csum_data(root,
1369 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1370 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1371 else
1372 crc = btrfs_csum_data(root, mapped_buffer, crc,
1373 PAGE_SIZE);
1374
1375 kunmap_atomic(mapped_buffer);
1376 page_num++;
1377 if (page_num >= sblock->page_count)
1378 break;
1379 WARN_ON(!sblock->pagev[page_num]->page);
1380
1381 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1382 }
1383
1384 btrfs_csum_final(crc, calculated_csum);
1385 if (memcmp(calculated_csum, csum, csum_size))
1386 sblock->checksum_error = 1;
1387 }
1388
1389 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1390 {
1391 complete((struct completion *)bio->bi_private);
1392 }
1393
1394 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1395 struct scrub_block *sblock_good,
1396 int force_write)
1397 {
1398 int page_num;
1399 int ret = 0;
1400
1401 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1402 int ret_sub;
1403
1404 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1405 sblock_good,
1406 page_num,
1407 force_write);
1408 if (ret_sub)
1409 ret = ret_sub;
1410 }
1411
1412 return ret;
1413 }
1414
1415 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1416 struct scrub_block *sblock_good,
1417 int page_num, int force_write)
1418 {
1419 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1420 struct scrub_page *page_good = sblock_good->pagev[page_num];
1421
1422 BUG_ON(page_bad->page == NULL);
1423 BUG_ON(page_good->page == NULL);
1424 if (force_write || sblock_bad->header_error ||
1425 sblock_bad->checksum_error || page_bad->io_error) {
1426 struct bio *bio;
1427 int ret;
1428 DECLARE_COMPLETION_ONSTACK(complete);
1429
1430 if (!page_bad->dev->bdev) {
1431 printk_ratelimited(KERN_WARNING
1432 "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1433 return -EIO;
1434 }
1435
1436 bio = bio_alloc(GFP_NOFS, 1);
1437 if (!bio)
1438 return -EIO;
1439 bio->bi_bdev = page_bad->dev->bdev;
1440 bio->bi_sector = page_bad->physical >> 9;
1441 bio->bi_end_io = scrub_complete_bio_end_io;
1442 bio->bi_private = &complete;
1443
1444 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1445 if (PAGE_SIZE != ret) {
1446 bio_put(bio);
1447 return -EIO;
1448 }
1449 btrfsic_submit_bio(WRITE, bio);
1450
1451 /* this will also unplug the queue */
1452 wait_for_completion(&complete);
1453 if (!bio_flagged(bio, BIO_UPTODATE)) {
1454 btrfs_dev_stat_inc_and_print(page_bad->dev,
1455 BTRFS_DEV_STAT_WRITE_ERRS);
1456 btrfs_dev_replace_stats_inc(
1457 &sblock_bad->sctx->dev_root->fs_info->
1458 dev_replace.num_write_errors);
1459 bio_put(bio);
1460 return -EIO;
1461 }
1462 bio_put(bio);
1463 }
1464
1465 return 0;
1466 }
1467
1468 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1469 {
1470 int page_num;
1471
1472 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1473 int ret;
1474
1475 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1476 if (ret)
1477 btrfs_dev_replace_stats_inc(
1478 &sblock->sctx->dev_root->fs_info->dev_replace.
1479 num_write_errors);
1480 }
1481 }
1482
1483 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1484 int page_num)
1485 {
1486 struct scrub_page *spage = sblock->pagev[page_num];
1487
1488 BUG_ON(spage->page == NULL);
1489 if (spage->io_error) {
1490 void *mapped_buffer = kmap_atomic(spage->page);
1491
1492 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1493 flush_dcache_page(spage->page);
1494 kunmap_atomic(mapped_buffer);
1495 }
1496 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1497 }
1498
1499 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1500 struct scrub_page *spage)
1501 {
1502 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1503 struct scrub_bio *sbio;
1504 int ret;
1505
1506 mutex_lock(&wr_ctx->wr_lock);
1507 again:
1508 if (!wr_ctx->wr_curr_bio) {
1509 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1510 GFP_NOFS);
1511 if (!wr_ctx->wr_curr_bio) {
1512 mutex_unlock(&wr_ctx->wr_lock);
1513 return -ENOMEM;
1514 }
1515 wr_ctx->wr_curr_bio->sctx = sctx;
1516 wr_ctx->wr_curr_bio->page_count = 0;
1517 }
1518 sbio = wr_ctx->wr_curr_bio;
1519 if (sbio->page_count == 0) {
1520 struct bio *bio;
1521
1522 sbio->physical = spage->physical_for_dev_replace;
1523 sbio->logical = spage->logical;
1524 sbio->dev = wr_ctx->tgtdev;
1525 bio = sbio->bio;
1526 if (!bio) {
1527 bio = bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1528 if (!bio) {
1529 mutex_unlock(&wr_ctx->wr_lock);
1530 return -ENOMEM;
1531 }
1532 sbio->bio = bio;
1533 }
1534
1535 bio->bi_private = sbio;
1536 bio->bi_end_io = scrub_wr_bio_end_io;
1537 bio->bi_bdev = sbio->dev->bdev;
1538 bio->bi_sector = sbio->physical >> 9;
1539 sbio->err = 0;
1540 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1541 spage->physical_for_dev_replace ||
1542 sbio->logical + sbio->page_count * PAGE_SIZE !=
1543 spage->logical) {
1544 scrub_wr_submit(sctx);
1545 goto again;
1546 }
1547
1548 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1549 if (ret != PAGE_SIZE) {
1550 if (sbio->page_count < 1) {
1551 bio_put(sbio->bio);
1552 sbio->bio = NULL;
1553 mutex_unlock(&wr_ctx->wr_lock);
1554 return -EIO;
1555 }
1556 scrub_wr_submit(sctx);
1557 goto again;
1558 }
1559
1560 sbio->pagev[sbio->page_count] = spage;
1561 scrub_page_get(spage);
1562 sbio->page_count++;
1563 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1564 scrub_wr_submit(sctx);
1565 mutex_unlock(&wr_ctx->wr_lock);
1566
1567 return 0;
1568 }
1569
1570 static void scrub_wr_submit(struct scrub_ctx *sctx)
1571 {
1572 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1573 struct scrub_bio *sbio;
1574
1575 if (!wr_ctx->wr_curr_bio)
1576 return;
1577
1578 sbio = wr_ctx->wr_curr_bio;
1579 wr_ctx->wr_curr_bio = NULL;
1580 WARN_ON(!sbio->bio->bi_bdev);
1581 scrub_pending_bio_inc(sctx);
1582 /* process all writes in a single worker thread. Then the block layer
1583 * orders the requests before sending them to the driver which
1584 * doubled the write performance on spinning disks when measured
1585 * with Linux 3.5 */
1586 btrfsic_submit_bio(WRITE, sbio->bio);
1587 }
1588
1589 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1590 {
1591 struct scrub_bio *sbio = bio->bi_private;
1592 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1593
1594 sbio->err = err;
1595 sbio->bio = bio;
1596
1597 sbio->work.func = scrub_wr_bio_end_io_worker;
1598 btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1599 }
1600
1601 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1602 {
1603 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1604 struct scrub_ctx *sctx = sbio->sctx;
1605 int i;
1606
1607 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1608 if (sbio->err) {
1609 struct btrfs_dev_replace *dev_replace =
1610 &sbio->sctx->dev_root->fs_info->dev_replace;
1611
1612 for (i = 0; i < sbio->page_count; i++) {
1613 struct scrub_page *spage = sbio->pagev[i];
1614
1615 spage->io_error = 1;
1616 btrfs_dev_replace_stats_inc(&dev_replace->
1617 num_write_errors);
1618 }
1619 }
1620
1621 for (i = 0; i < sbio->page_count; i++)
1622 scrub_page_put(sbio->pagev[i]);
1623
1624 bio_put(sbio->bio);
1625 kfree(sbio);
1626 scrub_pending_bio_dec(sctx);
1627 }
1628
1629 static int scrub_checksum(struct scrub_block *sblock)
1630 {
1631 u64 flags;
1632 int ret;
1633
1634 WARN_ON(sblock->page_count < 1);
1635 flags = sblock->pagev[0]->flags;
1636 ret = 0;
1637 if (flags & BTRFS_EXTENT_FLAG_DATA)
1638 ret = scrub_checksum_data(sblock);
1639 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1640 ret = scrub_checksum_tree_block(sblock);
1641 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1642 (void)scrub_checksum_super(sblock);
1643 else
1644 WARN_ON(1);
1645 if (ret)
1646 scrub_handle_errored_block(sblock);
1647
1648 return ret;
1649 }
1650
1651 static int scrub_checksum_data(struct scrub_block *sblock)
1652 {
1653 struct scrub_ctx *sctx = sblock->sctx;
1654 u8 csum[BTRFS_CSUM_SIZE];
1655 u8 *on_disk_csum;
1656 struct page *page;
1657 void *buffer;
1658 u32 crc = ~(u32)0;
1659 int fail = 0;
1660 struct btrfs_root *root = sctx->dev_root;
1661 u64 len;
1662 int index;
1663
1664 BUG_ON(sblock->page_count < 1);
1665 if (!sblock->pagev[0]->have_csum)
1666 return 0;
1667
1668 on_disk_csum = sblock->pagev[0]->csum;
1669 page = sblock->pagev[0]->page;
1670 buffer = kmap_atomic(page);
1671
1672 len = sctx->sectorsize;
1673 index = 0;
1674 for (;;) {
1675 u64 l = min_t(u64, len, PAGE_SIZE);
1676
1677 crc = btrfs_csum_data(root, buffer, crc, l);
1678 kunmap_atomic(buffer);
1679 len -= l;
1680 if (len == 0)
1681 break;
1682 index++;
1683 BUG_ON(index >= sblock->page_count);
1684 BUG_ON(!sblock->pagev[index]->page);
1685 page = sblock->pagev[index]->page;
1686 buffer = kmap_atomic(page);
1687 }
1688
1689 btrfs_csum_final(crc, csum);
1690 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1691 fail = 1;
1692
1693 return fail;
1694 }
1695
1696 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1697 {
1698 struct scrub_ctx *sctx = sblock->sctx;
1699 struct btrfs_header *h;
1700 struct btrfs_root *root = sctx->dev_root;
1701 struct btrfs_fs_info *fs_info = root->fs_info;
1702 u8 calculated_csum[BTRFS_CSUM_SIZE];
1703 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1704 struct page *page;
1705 void *mapped_buffer;
1706 u64 mapped_size;
1707 void *p;
1708 u32 crc = ~(u32)0;
1709 int fail = 0;
1710 int crc_fail = 0;
1711 u64 len;
1712 int index;
1713
1714 BUG_ON(sblock->page_count < 1);
1715 page = sblock->pagev[0]->page;
1716 mapped_buffer = kmap_atomic(page);
1717 h = (struct btrfs_header *)mapped_buffer;
1718 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1719
1720 /*
1721 * we don't use the getter functions here, as we
1722 * a) don't have an extent buffer and
1723 * b) the page is already kmapped
1724 */
1725
1726 if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr))
1727 ++fail;
1728
1729 if (sblock->pagev[0]->generation != le64_to_cpu(h->generation))
1730 ++fail;
1731
1732 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1733 ++fail;
1734
1735 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1736 BTRFS_UUID_SIZE))
1737 ++fail;
1738
1739 WARN_ON(sctx->nodesize != sctx->leafsize);
1740 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1741 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1742 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1743 index = 0;
1744 for (;;) {
1745 u64 l = min_t(u64, len, mapped_size);
1746
1747 crc = btrfs_csum_data(root, p, crc, l);
1748 kunmap_atomic(mapped_buffer);
1749 len -= l;
1750 if (len == 0)
1751 break;
1752 index++;
1753 BUG_ON(index >= sblock->page_count);
1754 BUG_ON(!sblock->pagev[index]->page);
1755 page = sblock->pagev[index]->page;
1756 mapped_buffer = kmap_atomic(page);
1757 mapped_size = PAGE_SIZE;
1758 p = mapped_buffer;
1759 }
1760
1761 btrfs_csum_final(crc, calculated_csum);
1762 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1763 ++crc_fail;
1764
1765 return fail || crc_fail;
1766 }
1767
1768 static int scrub_checksum_super(struct scrub_block *sblock)
1769 {
1770 struct btrfs_super_block *s;
1771 struct scrub_ctx *sctx = sblock->sctx;
1772 struct btrfs_root *root = sctx->dev_root;
1773 struct btrfs_fs_info *fs_info = root->fs_info;
1774 u8 calculated_csum[BTRFS_CSUM_SIZE];
1775 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1776 struct page *page;
1777 void *mapped_buffer;
1778 u64 mapped_size;
1779 void *p;
1780 u32 crc = ~(u32)0;
1781 int fail_gen = 0;
1782 int fail_cor = 0;
1783 u64 len;
1784 int index;
1785
1786 BUG_ON(sblock->page_count < 1);
1787 page = sblock->pagev[0]->page;
1788 mapped_buffer = kmap_atomic(page);
1789 s = (struct btrfs_super_block *)mapped_buffer;
1790 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1791
1792 if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr))
1793 ++fail_cor;
1794
1795 if (sblock->pagev[0]->generation != le64_to_cpu(s->generation))
1796 ++fail_gen;
1797
1798 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1799 ++fail_cor;
1800
1801 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1802 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1803 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1804 index = 0;
1805 for (;;) {
1806 u64 l = min_t(u64, len, mapped_size);
1807
1808 crc = btrfs_csum_data(root, p, crc, l);
1809 kunmap_atomic(mapped_buffer);
1810 len -= l;
1811 if (len == 0)
1812 break;
1813 index++;
1814 BUG_ON(index >= sblock->page_count);
1815 BUG_ON(!sblock->pagev[index]->page);
1816 page = sblock->pagev[index]->page;
1817 mapped_buffer = kmap_atomic(page);
1818 mapped_size = PAGE_SIZE;
1819 p = mapped_buffer;
1820 }
1821
1822 btrfs_csum_final(crc, calculated_csum);
1823 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1824 ++fail_cor;
1825
1826 if (fail_cor + fail_gen) {
1827 /*
1828 * if we find an error in a super block, we just report it.
1829 * They will get written with the next transaction commit
1830 * anyway
1831 */
1832 spin_lock(&sctx->stat_lock);
1833 ++sctx->stat.super_errors;
1834 spin_unlock(&sctx->stat_lock);
1835 if (fail_cor)
1836 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1837 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1838 else
1839 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1840 BTRFS_DEV_STAT_GENERATION_ERRS);
1841 }
1842
1843 return fail_cor + fail_gen;
1844 }
1845
1846 static void scrub_block_get(struct scrub_block *sblock)
1847 {
1848 atomic_inc(&sblock->ref_count);
1849 }
1850
1851 static void scrub_block_put(struct scrub_block *sblock)
1852 {
1853 if (atomic_dec_and_test(&sblock->ref_count)) {
1854 int i;
1855
1856 for (i = 0; i < sblock->page_count; i++)
1857 scrub_page_put(sblock->pagev[i]);
1858 kfree(sblock);
1859 }
1860 }
1861
1862 static void scrub_page_get(struct scrub_page *spage)
1863 {
1864 atomic_inc(&spage->ref_count);
1865 }
1866
1867 static void scrub_page_put(struct scrub_page *spage)
1868 {
1869 if (atomic_dec_and_test(&spage->ref_count)) {
1870 if (spage->page)
1871 __free_page(spage->page);
1872 kfree(spage);
1873 }
1874 }
1875
1876 static void scrub_submit(struct scrub_ctx *sctx)
1877 {
1878 struct scrub_bio *sbio;
1879
1880 if (sctx->curr == -1)
1881 return;
1882
1883 sbio = sctx->bios[sctx->curr];
1884 sctx->curr = -1;
1885 scrub_pending_bio_inc(sctx);
1886
1887 if (!sbio->bio->bi_bdev) {
1888 /*
1889 * this case should not happen. If btrfs_map_block() is
1890 * wrong, it could happen for dev-replace operations on
1891 * missing devices when no mirrors are available, but in
1892 * this case it should already fail the mount.
1893 * This case is handled correctly (but _very_ slowly).
1894 */
1895 printk_ratelimited(KERN_WARNING
1896 "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1897 bio_endio(sbio->bio, -EIO);
1898 } else {
1899 btrfsic_submit_bio(READ, sbio->bio);
1900 }
1901 }
1902
1903 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1904 struct scrub_page *spage)
1905 {
1906 struct scrub_block *sblock = spage->sblock;
1907 struct scrub_bio *sbio;
1908 int ret;
1909
1910 again:
1911 /*
1912 * grab a fresh bio or wait for one to become available
1913 */
1914 while (sctx->curr == -1) {
1915 spin_lock(&sctx->list_lock);
1916 sctx->curr = sctx->first_free;
1917 if (sctx->curr != -1) {
1918 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1919 sctx->bios[sctx->curr]->next_free = -1;
1920 sctx->bios[sctx->curr]->page_count = 0;
1921 spin_unlock(&sctx->list_lock);
1922 } else {
1923 spin_unlock(&sctx->list_lock);
1924 wait_event(sctx->list_wait, sctx->first_free != -1);
1925 }
1926 }
1927 sbio = sctx->bios[sctx->curr];
1928 if (sbio->page_count == 0) {
1929 struct bio *bio;
1930
1931 sbio->physical = spage->physical;
1932 sbio->logical = spage->logical;
1933 sbio->dev = spage->dev;
1934 bio = sbio->bio;
1935 if (!bio) {
1936 bio = bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1937 if (!bio)
1938 return -ENOMEM;
1939 sbio->bio = bio;
1940 }
1941
1942 bio->bi_private = sbio;
1943 bio->bi_end_io = scrub_bio_end_io;
1944 bio->bi_bdev = sbio->dev->bdev;
1945 bio->bi_sector = sbio->physical >> 9;
1946 sbio->err = 0;
1947 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1948 spage->physical ||
1949 sbio->logical + sbio->page_count * PAGE_SIZE !=
1950 spage->logical ||
1951 sbio->dev != spage->dev) {
1952 scrub_submit(sctx);
1953 goto again;
1954 }
1955
1956 sbio->pagev[sbio->page_count] = spage;
1957 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1958 if (ret != PAGE_SIZE) {
1959 if (sbio->page_count < 1) {
1960 bio_put(sbio->bio);
1961 sbio->bio = NULL;
1962 return -EIO;
1963 }
1964 scrub_submit(sctx);
1965 goto again;
1966 }
1967
1968 scrub_block_get(sblock); /* one for the page added to the bio */
1969 atomic_inc(&sblock->outstanding_pages);
1970 sbio->page_count++;
1971 if (sbio->page_count == sctx->pages_per_rd_bio)
1972 scrub_submit(sctx);
1973
1974 return 0;
1975 }
1976
1977 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1978 u64 physical, struct btrfs_device *dev, u64 flags,
1979 u64 gen, int mirror_num, u8 *csum, int force,
1980 u64 physical_for_dev_replace)
1981 {
1982 struct scrub_block *sblock;
1983 int index;
1984
1985 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1986 if (!sblock) {
1987 spin_lock(&sctx->stat_lock);
1988 sctx->stat.malloc_errors++;
1989 spin_unlock(&sctx->stat_lock);
1990 return -ENOMEM;
1991 }
1992
1993 /* one ref inside this function, plus one for each page added to
1994 * a bio later on */
1995 atomic_set(&sblock->ref_count, 1);
1996 sblock->sctx = sctx;
1997 sblock->no_io_error_seen = 1;
1998
1999 for (index = 0; len > 0; index++) {
2000 struct scrub_page *spage;
2001 u64 l = min_t(u64, len, PAGE_SIZE);
2002
2003 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2004 if (!spage) {
2005 leave_nomem:
2006 spin_lock(&sctx->stat_lock);
2007 sctx->stat.malloc_errors++;
2008 spin_unlock(&sctx->stat_lock);
2009 scrub_block_put(sblock);
2010 return -ENOMEM;
2011 }
2012 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2013 scrub_page_get(spage);
2014 sblock->pagev[index] = spage;
2015 spage->sblock = sblock;
2016 spage->dev = dev;
2017 spage->flags = flags;
2018 spage->generation = gen;
2019 spage->logical = logical;
2020 spage->physical = physical;
2021 spage->physical_for_dev_replace = physical_for_dev_replace;
2022 spage->mirror_num = mirror_num;
2023 if (csum) {
2024 spage->have_csum = 1;
2025 memcpy(spage->csum, csum, sctx->csum_size);
2026 } else {
2027 spage->have_csum = 0;
2028 }
2029 sblock->page_count++;
2030 spage->page = alloc_page(GFP_NOFS);
2031 if (!spage->page)
2032 goto leave_nomem;
2033 len -= l;
2034 logical += l;
2035 physical += l;
2036 physical_for_dev_replace += l;
2037 }
2038
2039 WARN_ON(sblock->page_count == 0);
2040 for (index = 0; index < sblock->page_count; index++) {
2041 struct scrub_page *spage = sblock->pagev[index];
2042 int ret;
2043
2044 ret = scrub_add_page_to_rd_bio(sctx, spage);
2045 if (ret) {
2046 scrub_block_put(sblock);
2047 return ret;
2048 }
2049 }
2050
2051 if (force)
2052 scrub_submit(sctx);
2053
2054 /* last one frees, either here or in bio completion for last page */
2055 scrub_block_put(sblock);
2056 return 0;
2057 }
2058
2059 static void scrub_bio_end_io(struct bio *bio, int err)
2060 {
2061 struct scrub_bio *sbio = bio->bi_private;
2062 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2063
2064 sbio->err = err;
2065 sbio->bio = bio;
2066
2067 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2068 }
2069
2070 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2071 {
2072 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2073 struct scrub_ctx *sctx = sbio->sctx;
2074 int i;
2075
2076 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2077 if (sbio->err) {
2078 for (i = 0; i < sbio->page_count; i++) {
2079 struct scrub_page *spage = sbio->pagev[i];
2080
2081 spage->io_error = 1;
2082 spage->sblock->no_io_error_seen = 0;
2083 }
2084 }
2085
2086 /* now complete the scrub_block items that have all pages completed */
2087 for (i = 0; i < sbio->page_count; i++) {
2088 struct scrub_page *spage = sbio->pagev[i];
2089 struct scrub_block *sblock = spage->sblock;
2090
2091 if (atomic_dec_and_test(&sblock->outstanding_pages))
2092 scrub_block_complete(sblock);
2093 scrub_block_put(sblock);
2094 }
2095
2096 bio_put(sbio->bio);
2097 sbio->bio = NULL;
2098 spin_lock(&sctx->list_lock);
2099 sbio->next_free = sctx->first_free;
2100 sctx->first_free = sbio->index;
2101 spin_unlock(&sctx->list_lock);
2102
2103 if (sctx->is_dev_replace &&
2104 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2105 mutex_lock(&sctx->wr_ctx.wr_lock);
2106 scrub_wr_submit(sctx);
2107 mutex_unlock(&sctx->wr_ctx.wr_lock);
2108 }
2109
2110 scrub_pending_bio_dec(sctx);
2111 }
2112
2113 static void scrub_block_complete(struct scrub_block *sblock)
2114 {
2115 if (!sblock->no_io_error_seen) {
2116 scrub_handle_errored_block(sblock);
2117 } else {
2118 /*
2119 * if has checksum error, write via repair mechanism in
2120 * dev replace case, otherwise write here in dev replace
2121 * case.
2122 */
2123 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2124 scrub_write_block_to_dev_replace(sblock);
2125 }
2126 }
2127
2128 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2129 u8 *csum)
2130 {
2131 struct btrfs_ordered_sum *sum = NULL;
2132 int ret = 0;
2133 unsigned long i;
2134 unsigned long num_sectors;
2135
2136 while (!list_empty(&sctx->csum_list)) {
2137 sum = list_first_entry(&sctx->csum_list,
2138 struct btrfs_ordered_sum, list);
2139 if (sum->bytenr > logical)
2140 return 0;
2141 if (sum->bytenr + sum->len > logical)
2142 break;
2143
2144 ++sctx->stat.csum_discards;
2145 list_del(&sum->list);
2146 kfree(sum);
2147 sum = NULL;
2148 }
2149 if (!sum)
2150 return 0;
2151
2152 num_sectors = sum->len / sctx->sectorsize;
2153 for (i = 0; i < num_sectors; ++i) {
2154 if (sum->sums[i].bytenr == logical) {
2155 memcpy(csum, &sum->sums[i].sum, sctx->csum_size);
2156 ret = 1;
2157 break;
2158 }
2159 }
2160 if (ret && i == num_sectors - 1) {
2161 list_del(&sum->list);
2162 kfree(sum);
2163 }
2164 return ret;
2165 }
2166
2167 /* scrub extent tries to collect up to 64 kB for each bio */
2168 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2169 u64 physical, struct btrfs_device *dev, u64 flags,
2170 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2171 {
2172 int ret;
2173 u8 csum[BTRFS_CSUM_SIZE];
2174 u32 blocksize;
2175
2176 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2177 blocksize = sctx->sectorsize;
2178 spin_lock(&sctx->stat_lock);
2179 sctx->stat.data_extents_scrubbed++;
2180 sctx->stat.data_bytes_scrubbed += len;
2181 spin_unlock(&sctx->stat_lock);
2182 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2183 WARN_ON(sctx->nodesize != sctx->leafsize);
2184 blocksize = sctx->nodesize;
2185 spin_lock(&sctx->stat_lock);
2186 sctx->stat.tree_extents_scrubbed++;
2187 sctx->stat.tree_bytes_scrubbed += len;
2188 spin_unlock(&sctx->stat_lock);
2189 } else {
2190 blocksize = sctx->sectorsize;
2191 WARN_ON(1);
2192 }
2193
2194 while (len) {
2195 u64 l = min_t(u64, len, blocksize);
2196 int have_csum = 0;
2197
2198 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2199 /* push csums to sbio */
2200 have_csum = scrub_find_csum(sctx, logical, l, csum);
2201 if (have_csum == 0)
2202 ++sctx->stat.no_csum;
2203 if (sctx->is_dev_replace && !have_csum) {
2204 ret = copy_nocow_pages(sctx, logical, l,
2205 mirror_num,
2206 physical_for_dev_replace);
2207 goto behind_scrub_pages;
2208 }
2209 }
2210 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2211 mirror_num, have_csum ? csum : NULL, 0,
2212 physical_for_dev_replace);
2213 behind_scrub_pages:
2214 if (ret)
2215 return ret;
2216 len -= l;
2217 logical += l;
2218 physical += l;
2219 physical_for_dev_replace += l;
2220 }
2221 return 0;
2222 }
2223
2224 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2225 struct map_lookup *map,
2226 struct btrfs_device *scrub_dev,
2227 int num, u64 base, u64 length,
2228 int is_dev_replace)
2229 {
2230 struct btrfs_path *path;
2231 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2232 struct btrfs_root *root = fs_info->extent_root;
2233 struct btrfs_root *csum_root = fs_info->csum_root;
2234 struct btrfs_extent_item *extent;
2235 struct blk_plug plug;
2236 u64 flags;
2237 int ret;
2238 int slot;
2239 int i;
2240 u64 nstripes;
2241 struct extent_buffer *l;
2242 struct btrfs_key key;
2243 u64 physical;
2244 u64 logical;
2245 u64 generation;
2246 int mirror_num;
2247 struct reada_control *reada1;
2248 struct reada_control *reada2;
2249 struct btrfs_key key_start;
2250 struct btrfs_key key_end;
2251 u64 increment = map->stripe_len;
2252 u64 offset;
2253 u64 extent_logical;
2254 u64 extent_physical;
2255 u64 extent_len;
2256 struct btrfs_device *extent_dev;
2257 int extent_mirror_num;
2258
2259 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2260 BTRFS_BLOCK_GROUP_RAID6)) {
2261 if (num >= nr_data_stripes(map)) {
2262 return 0;
2263 }
2264 }
2265
2266 nstripes = length;
2267 offset = 0;
2268 do_div(nstripes, map->stripe_len);
2269 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2270 offset = map->stripe_len * num;
2271 increment = map->stripe_len * map->num_stripes;
2272 mirror_num = 1;
2273 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2274 int factor = map->num_stripes / map->sub_stripes;
2275 offset = map->stripe_len * (num / map->sub_stripes);
2276 increment = map->stripe_len * factor;
2277 mirror_num = num % map->sub_stripes + 1;
2278 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2279 increment = map->stripe_len;
2280 mirror_num = num % map->num_stripes + 1;
2281 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2282 increment = map->stripe_len;
2283 mirror_num = num % map->num_stripes + 1;
2284 } else {
2285 increment = map->stripe_len;
2286 mirror_num = 1;
2287 }
2288
2289 path = btrfs_alloc_path();
2290 if (!path)
2291 return -ENOMEM;
2292
2293 /*
2294 * work on commit root. The related disk blocks are static as
2295 * long as COW is applied. This means, it is save to rewrite
2296 * them to repair disk errors without any race conditions
2297 */
2298 path->search_commit_root = 1;
2299 path->skip_locking = 1;
2300
2301 /*
2302 * trigger the readahead for extent tree csum tree and wait for
2303 * completion. During readahead, the scrub is officially paused
2304 * to not hold off transaction commits
2305 */
2306 logical = base + offset;
2307
2308 wait_event(sctx->list_wait,
2309 atomic_read(&sctx->bios_in_flight) == 0);
2310 atomic_inc(&fs_info->scrubs_paused);
2311 wake_up(&fs_info->scrub_pause_wait);
2312
2313 /* FIXME it might be better to start readahead at commit root */
2314 key_start.objectid = logical;
2315 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2316 key_start.offset = (u64)0;
2317 key_end.objectid = base + offset + nstripes * increment;
2318 key_end.type = BTRFS_EXTENT_ITEM_KEY;
2319 key_end.offset = (u64)0;
2320 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2321
2322 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2323 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2324 key_start.offset = logical;
2325 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2326 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2327 key_end.offset = base + offset + nstripes * increment;
2328 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2329
2330 if (!IS_ERR(reada1))
2331 btrfs_reada_wait(reada1);
2332 if (!IS_ERR(reada2))
2333 btrfs_reada_wait(reada2);
2334
2335 mutex_lock(&fs_info->scrub_lock);
2336 while (atomic_read(&fs_info->scrub_pause_req)) {
2337 mutex_unlock(&fs_info->scrub_lock);
2338 wait_event(fs_info->scrub_pause_wait,
2339 atomic_read(&fs_info->scrub_pause_req) == 0);
2340 mutex_lock(&fs_info->scrub_lock);
2341 }
2342 atomic_dec(&fs_info->scrubs_paused);
2343 mutex_unlock(&fs_info->scrub_lock);
2344 wake_up(&fs_info->scrub_pause_wait);
2345
2346 /*
2347 * collect all data csums for the stripe to avoid seeking during
2348 * the scrub. This might currently (crc32) end up to be about 1MB
2349 */
2350 blk_start_plug(&plug);
2351
2352 /*
2353 * now find all extents for each stripe and scrub them
2354 */
2355 logical = base + offset;
2356 physical = map->stripes[num].physical;
2357 ret = 0;
2358 for (i = 0; i < nstripes; ++i) {
2359 /*
2360 * canceled?
2361 */
2362 if (atomic_read(&fs_info->scrub_cancel_req) ||
2363 atomic_read(&sctx->cancel_req)) {
2364 ret = -ECANCELED;
2365 goto out;
2366 }
2367 /*
2368 * check to see if we have to pause
2369 */
2370 if (atomic_read(&fs_info->scrub_pause_req)) {
2371 /* push queued extents */
2372 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2373 scrub_submit(sctx);
2374 mutex_lock(&sctx->wr_ctx.wr_lock);
2375 scrub_wr_submit(sctx);
2376 mutex_unlock(&sctx->wr_ctx.wr_lock);
2377 wait_event(sctx->list_wait,
2378 atomic_read(&sctx->bios_in_flight) == 0);
2379 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2380 atomic_inc(&fs_info->scrubs_paused);
2381 wake_up(&fs_info->scrub_pause_wait);
2382 mutex_lock(&fs_info->scrub_lock);
2383 while (atomic_read(&fs_info->scrub_pause_req)) {
2384 mutex_unlock(&fs_info->scrub_lock);
2385 wait_event(fs_info->scrub_pause_wait,
2386 atomic_read(&fs_info->scrub_pause_req) == 0);
2387 mutex_lock(&fs_info->scrub_lock);
2388 }
2389 atomic_dec(&fs_info->scrubs_paused);
2390 mutex_unlock(&fs_info->scrub_lock);
2391 wake_up(&fs_info->scrub_pause_wait);
2392 }
2393
2394 ret = btrfs_lookup_csums_range(csum_root, logical,
2395 logical + map->stripe_len - 1,
2396 &sctx->csum_list, 1);
2397 if (ret)
2398 goto out;
2399
2400 key.objectid = logical;
2401 key.type = BTRFS_EXTENT_ITEM_KEY;
2402 key.offset = (u64)0;
2403
2404 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2405 if (ret < 0)
2406 goto out;
2407 if (ret > 0) {
2408 ret = btrfs_previous_item(root, path, 0,
2409 BTRFS_EXTENT_ITEM_KEY);
2410 if (ret < 0)
2411 goto out;
2412 if (ret > 0) {
2413 /* there's no smaller item, so stick with the
2414 * larger one */
2415 btrfs_release_path(path);
2416 ret = btrfs_search_slot(NULL, root, &key,
2417 path, 0, 0);
2418 if (ret < 0)
2419 goto out;
2420 }
2421 }
2422
2423 while (1) {
2424 l = path->nodes[0];
2425 slot = path->slots[0];
2426 if (slot >= btrfs_header_nritems(l)) {
2427 ret = btrfs_next_leaf(root, path);
2428 if (ret == 0)
2429 continue;
2430 if (ret < 0)
2431 goto out;
2432
2433 break;
2434 }
2435 btrfs_item_key_to_cpu(l, &key, slot);
2436
2437 if (key.objectid + key.offset <= logical)
2438 goto next;
2439
2440 if (key.objectid >= logical + map->stripe_len)
2441 break;
2442
2443 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
2444 goto next;
2445
2446 extent = btrfs_item_ptr(l, slot,
2447 struct btrfs_extent_item);
2448 flags = btrfs_extent_flags(l, extent);
2449 generation = btrfs_extent_generation(l, extent);
2450
2451 if (key.objectid < logical &&
2452 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2453 printk(KERN_ERR
2454 "btrfs scrub: tree block %llu spanning "
2455 "stripes, ignored. logical=%llu\n",
2456 (unsigned long long)key.objectid,
2457 (unsigned long long)logical);
2458 goto next;
2459 }
2460
2461 /*
2462 * trim extent to this stripe
2463 */
2464 if (key.objectid < logical) {
2465 key.offset -= logical - key.objectid;
2466 key.objectid = logical;
2467 }
2468 if (key.objectid + key.offset >
2469 logical + map->stripe_len) {
2470 key.offset = logical + map->stripe_len -
2471 key.objectid;
2472 }
2473
2474 extent_logical = key.objectid;
2475 extent_physical = key.objectid - logical + physical;
2476 extent_len = key.offset;
2477 extent_dev = scrub_dev;
2478 extent_mirror_num = mirror_num;
2479 if (is_dev_replace)
2480 scrub_remap_extent(fs_info, extent_logical,
2481 extent_len, &extent_physical,
2482 &extent_dev,
2483 &extent_mirror_num);
2484 ret = scrub_extent(sctx, extent_logical, extent_len,
2485 extent_physical, extent_dev, flags,
2486 generation, extent_mirror_num,
2487 key.objectid - logical + physical);
2488 if (ret)
2489 goto out;
2490
2491 next:
2492 path->slots[0]++;
2493 }
2494 btrfs_release_path(path);
2495 logical += increment;
2496 physical += map->stripe_len;
2497 spin_lock(&sctx->stat_lock);
2498 sctx->stat.last_physical = physical;
2499 spin_unlock(&sctx->stat_lock);
2500 }
2501 out:
2502 /* push queued extents */
2503 scrub_submit(sctx);
2504 mutex_lock(&sctx->wr_ctx.wr_lock);
2505 scrub_wr_submit(sctx);
2506 mutex_unlock(&sctx->wr_ctx.wr_lock);
2507
2508 blk_finish_plug(&plug);
2509 btrfs_free_path(path);
2510 return ret < 0 ? ret : 0;
2511 }
2512
2513 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2514 struct btrfs_device *scrub_dev,
2515 u64 chunk_tree, u64 chunk_objectid,
2516 u64 chunk_offset, u64 length,
2517 u64 dev_offset, int is_dev_replace)
2518 {
2519 struct btrfs_mapping_tree *map_tree =
2520 &sctx->dev_root->fs_info->mapping_tree;
2521 struct map_lookup *map;
2522 struct extent_map *em;
2523 int i;
2524 int ret = 0;
2525
2526 read_lock(&map_tree->map_tree.lock);
2527 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2528 read_unlock(&map_tree->map_tree.lock);
2529
2530 if (!em)
2531 return -EINVAL;
2532
2533 map = (struct map_lookup *)em->bdev;
2534 if (em->start != chunk_offset)
2535 goto out;
2536
2537 if (em->len < length)
2538 goto out;
2539
2540 for (i = 0; i < map->num_stripes; ++i) {
2541 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2542 map->stripes[i].physical == dev_offset) {
2543 ret = scrub_stripe(sctx, map, scrub_dev, i,
2544 chunk_offset, length,
2545 is_dev_replace);
2546 if (ret)
2547 goto out;
2548 }
2549 }
2550 out:
2551 free_extent_map(em);
2552
2553 return ret;
2554 }
2555
2556 static noinline_for_stack
2557 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2558 struct btrfs_device *scrub_dev, u64 start, u64 end,
2559 int is_dev_replace)
2560 {
2561 struct btrfs_dev_extent *dev_extent = NULL;
2562 struct btrfs_path *path;
2563 struct btrfs_root *root = sctx->dev_root;
2564 struct btrfs_fs_info *fs_info = root->fs_info;
2565 u64 length;
2566 u64 chunk_tree;
2567 u64 chunk_objectid;
2568 u64 chunk_offset;
2569 int ret;
2570 int slot;
2571 struct extent_buffer *l;
2572 struct btrfs_key key;
2573 struct btrfs_key found_key;
2574 struct btrfs_block_group_cache *cache;
2575 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2576
2577 path = btrfs_alloc_path();
2578 if (!path)
2579 return -ENOMEM;
2580
2581 path->reada = 2;
2582 path->search_commit_root = 1;
2583 path->skip_locking = 1;
2584
2585 key.objectid = scrub_dev->devid;
2586 key.offset = 0ull;
2587 key.type = BTRFS_DEV_EXTENT_KEY;
2588
2589 while (1) {
2590 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2591 if (ret < 0)
2592 break;
2593 if (ret > 0) {
2594 if (path->slots[0] >=
2595 btrfs_header_nritems(path->nodes[0])) {
2596 ret = btrfs_next_leaf(root, path);
2597 if (ret)
2598 break;
2599 }
2600 }
2601
2602 l = path->nodes[0];
2603 slot = path->slots[0];
2604
2605 btrfs_item_key_to_cpu(l, &found_key, slot);
2606
2607 if (found_key.objectid != scrub_dev->devid)
2608 break;
2609
2610 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2611 break;
2612
2613 if (found_key.offset >= end)
2614 break;
2615
2616 if (found_key.offset < key.offset)
2617 break;
2618
2619 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2620 length = btrfs_dev_extent_length(l, dev_extent);
2621
2622 if (found_key.offset + length <= start) {
2623 key.offset = found_key.offset + length;
2624 btrfs_release_path(path);
2625 continue;
2626 }
2627
2628 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2629 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2630 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2631
2632 /*
2633 * get a reference on the corresponding block group to prevent
2634 * the chunk from going away while we scrub it
2635 */
2636 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2637 if (!cache) {
2638 ret = -ENOENT;
2639 break;
2640 }
2641 dev_replace->cursor_right = found_key.offset + length;
2642 dev_replace->cursor_left = found_key.offset;
2643 dev_replace->item_needs_writeback = 1;
2644 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2645 chunk_offset, length, found_key.offset,
2646 is_dev_replace);
2647
2648 /*
2649 * flush, submit all pending read and write bios, afterwards
2650 * wait for them.
2651 * Note that in the dev replace case, a read request causes
2652 * write requests that are submitted in the read completion
2653 * worker. Therefore in the current situation, it is required
2654 * that all write requests are flushed, so that all read and
2655 * write requests are really completed when bios_in_flight
2656 * changes to 0.
2657 */
2658 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2659 scrub_submit(sctx);
2660 mutex_lock(&sctx->wr_ctx.wr_lock);
2661 scrub_wr_submit(sctx);
2662 mutex_unlock(&sctx->wr_ctx.wr_lock);
2663
2664 wait_event(sctx->list_wait,
2665 atomic_read(&sctx->bios_in_flight) == 0);
2666 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2667 atomic_inc(&fs_info->scrubs_paused);
2668 wake_up(&fs_info->scrub_pause_wait);
2669 wait_event(sctx->list_wait,
2670 atomic_read(&sctx->workers_pending) == 0);
2671
2672 mutex_lock(&fs_info->scrub_lock);
2673 while (atomic_read(&fs_info->scrub_pause_req)) {
2674 mutex_unlock(&fs_info->scrub_lock);
2675 wait_event(fs_info->scrub_pause_wait,
2676 atomic_read(&fs_info->scrub_pause_req) == 0);
2677 mutex_lock(&fs_info->scrub_lock);
2678 }
2679 atomic_dec(&fs_info->scrubs_paused);
2680 mutex_unlock(&fs_info->scrub_lock);
2681 wake_up(&fs_info->scrub_pause_wait);
2682
2683 dev_replace->cursor_left = dev_replace->cursor_right;
2684 dev_replace->item_needs_writeback = 1;
2685 btrfs_put_block_group(cache);
2686 if (ret)
2687 break;
2688 if (is_dev_replace &&
2689 atomic64_read(&dev_replace->num_write_errors) > 0) {
2690 ret = -EIO;
2691 break;
2692 }
2693 if (sctx->stat.malloc_errors > 0) {
2694 ret = -ENOMEM;
2695 break;
2696 }
2697
2698 key.offset = found_key.offset + length;
2699 btrfs_release_path(path);
2700 }
2701
2702 btrfs_free_path(path);
2703
2704 /*
2705 * ret can still be 1 from search_slot or next_leaf,
2706 * that's not an error
2707 */
2708 return ret < 0 ? ret : 0;
2709 }
2710
2711 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2712 struct btrfs_device *scrub_dev)
2713 {
2714 int i;
2715 u64 bytenr;
2716 u64 gen;
2717 int ret;
2718 struct btrfs_root *root = sctx->dev_root;
2719
2720 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2721 return -EIO;
2722
2723 gen = root->fs_info->last_trans_committed;
2724
2725 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2726 bytenr = btrfs_sb_offset(i);
2727 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2728 break;
2729
2730 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2731 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2732 NULL, 1, bytenr);
2733 if (ret)
2734 return ret;
2735 }
2736 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2737
2738 return 0;
2739 }
2740
2741 /*
2742 * get a reference count on fs_info->scrub_workers. start worker if necessary
2743 */
2744 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2745 int is_dev_replace)
2746 {
2747 int ret = 0;
2748
2749 mutex_lock(&fs_info->scrub_lock);
2750 if (fs_info->scrub_workers_refcnt == 0) {
2751 if (is_dev_replace)
2752 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2753 &fs_info->generic_worker);
2754 else
2755 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2756 fs_info->thread_pool_size,
2757 &fs_info->generic_worker);
2758 fs_info->scrub_workers.idle_thresh = 4;
2759 ret = btrfs_start_workers(&fs_info->scrub_workers);
2760 if (ret)
2761 goto out;
2762 btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2763 "scrubwrc",
2764 fs_info->thread_pool_size,
2765 &fs_info->generic_worker);
2766 fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2767 ret = btrfs_start_workers(
2768 &fs_info->scrub_wr_completion_workers);
2769 if (ret)
2770 goto out;
2771 btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2772 &fs_info->generic_worker);
2773 ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2774 if (ret)
2775 goto out;
2776 }
2777 ++fs_info->scrub_workers_refcnt;
2778 out:
2779 mutex_unlock(&fs_info->scrub_lock);
2780
2781 return ret;
2782 }
2783
2784 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2785 {
2786 mutex_lock(&fs_info->scrub_lock);
2787 if (--fs_info->scrub_workers_refcnt == 0) {
2788 btrfs_stop_workers(&fs_info->scrub_workers);
2789 btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2790 btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2791 }
2792 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2793 mutex_unlock(&fs_info->scrub_lock);
2794 }
2795
2796 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2797 u64 end, struct btrfs_scrub_progress *progress,
2798 int readonly, int is_dev_replace)
2799 {
2800 struct scrub_ctx *sctx;
2801 int ret;
2802 struct btrfs_device *dev;
2803
2804 if (btrfs_fs_closing(fs_info))
2805 return -EINVAL;
2806
2807 /*
2808 * check some assumptions
2809 */
2810 if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2811 printk(KERN_ERR
2812 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2813 fs_info->chunk_root->nodesize,
2814 fs_info->chunk_root->leafsize);
2815 return -EINVAL;
2816 }
2817
2818 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2819 /*
2820 * in this case scrub is unable to calculate the checksum
2821 * the way scrub is implemented. Do not handle this
2822 * situation at all because it won't ever happen.
2823 */
2824 printk(KERN_ERR
2825 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2826 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2827 return -EINVAL;
2828 }
2829
2830 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2831 /* not supported for data w/o checksums */
2832 printk(KERN_ERR
2833 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2834 fs_info->chunk_root->sectorsize,
2835 (unsigned long long)PAGE_SIZE);
2836 return -EINVAL;
2837 }
2838
2839 if (fs_info->chunk_root->nodesize >
2840 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2841 fs_info->chunk_root->sectorsize >
2842 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2843 /*
2844 * would exhaust the array bounds of pagev member in
2845 * struct scrub_block
2846 */
2847 pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2848 fs_info->chunk_root->nodesize,
2849 SCRUB_MAX_PAGES_PER_BLOCK,
2850 fs_info->chunk_root->sectorsize,
2851 SCRUB_MAX_PAGES_PER_BLOCK);
2852 return -EINVAL;
2853 }
2854
2855 ret = scrub_workers_get(fs_info, is_dev_replace);
2856 if (ret)
2857 return ret;
2858
2859 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2860 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2861 if (!dev || (dev->missing && !is_dev_replace)) {
2862 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2863 scrub_workers_put(fs_info);
2864 return -ENODEV;
2865 }
2866 mutex_lock(&fs_info->scrub_lock);
2867
2868 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2869 mutex_unlock(&fs_info->scrub_lock);
2870 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2871 scrub_workers_put(fs_info);
2872 return -EIO;
2873 }
2874
2875 btrfs_dev_replace_lock(&fs_info->dev_replace);
2876 if (dev->scrub_device ||
2877 (!is_dev_replace &&
2878 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2879 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2880 mutex_unlock(&fs_info->scrub_lock);
2881 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2882 scrub_workers_put(fs_info);
2883 return -EINPROGRESS;
2884 }
2885 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2886 sctx = scrub_setup_ctx(dev, is_dev_replace);
2887 if (IS_ERR(sctx)) {
2888 mutex_unlock(&fs_info->scrub_lock);
2889 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2890 scrub_workers_put(fs_info);
2891 return PTR_ERR(sctx);
2892 }
2893 sctx->readonly = readonly;
2894 dev->scrub_device = sctx;
2895
2896 atomic_inc(&fs_info->scrubs_running);
2897 mutex_unlock(&fs_info->scrub_lock);
2898 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2899
2900 if (!is_dev_replace) {
2901 down_read(&fs_info->scrub_super_lock);
2902 ret = scrub_supers(sctx, dev);
2903 up_read(&fs_info->scrub_super_lock);
2904 }
2905
2906 if (!ret)
2907 ret = scrub_enumerate_chunks(sctx, dev, start, end,
2908 is_dev_replace);
2909
2910 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2911 atomic_dec(&fs_info->scrubs_running);
2912 wake_up(&fs_info->scrub_pause_wait);
2913
2914 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2915
2916 if (progress)
2917 memcpy(progress, &sctx->stat, sizeof(*progress));
2918
2919 mutex_lock(&fs_info->scrub_lock);
2920 dev->scrub_device = NULL;
2921 mutex_unlock(&fs_info->scrub_lock);
2922
2923 scrub_free_ctx(sctx);
2924 scrub_workers_put(fs_info);
2925
2926 return ret;
2927 }
2928
2929 void btrfs_scrub_pause(struct btrfs_root *root)
2930 {
2931 struct btrfs_fs_info *fs_info = root->fs_info;
2932
2933 mutex_lock(&fs_info->scrub_lock);
2934 atomic_inc(&fs_info->scrub_pause_req);
2935 while (atomic_read(&fs_info->scrubs_paused) !=
2936 atomic_read(&fs_info->scrubs_running)) {
2937 mutex_unlock(&fs_info->scrub_lock);
2938 wait_event(fs_info->scrub_pause_wait,
2939 atomic_read(&fs_info->scrubs_paused) ==
2940 atomic_read(&fs_info->scrubs_running));
2941 mutex_lock(&fs_info->scrub_lock);
2942 }
2943 mutex_unlock(&fs_info->scrub_lock);
2944 }
2945
2946 void btrfs_scrub_continue(struct btrfs_root *root)
2947 {
2948 struct btrfs_fs_info *fs_info = root->fs_info;
2949
2950 atomic_dec(&fs_info->scrub_pause_req);
2951 wake_up(&fs_info->scrub_pause_wait);
2952 }
2953
2954 void btrfs_scrub_pause_super(struct btrfs_root *root)
2955 {
2956 down_write(&root->fs_info->scrub_super_lock);
2957 }
2958
2959 void btrfs_scrub_continue_super(struct btrfs_root *root)
2960 {
2961 up_write(&root->fs_info->scrub_super_lock);
2962 }
2963
2964 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2965 {
2966 mutex_lock(&fs_info->scrub_lock);
2967 if (!atomic_read(&fs_info->scrubs_running)) {
2968 mutex_unlock(&fs_info->scrub_lock);
2969 return -ENOTCONN;
2970 }
2971
2972 atomic_inc(&fs_info->scrub_cancel_req);
2973 while (atomic_read(&fs_info->scrubs_running)) {
2974 mutex_unlock(&fs_info->scrub_lock);
2975 wait_event(fs_info->scrub_pause_wait,
2976 atomic_read(&fs_info->scrubs_running) == 0);
2977 mutex_lock(&fs_info->scrub_lock);
2978 }
2979 atomic_dec(&fs_info->scrub_cancel_req);
2980 mutex_unlock(&fs_info->scrub_lock);
2981
2982 return 0;
2983 }
2984
2985 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
2986 struct btrfs_device *dev)
2987 {
2988 struct scrub_ctx *sctx;
2989
2990 mutex_lock(&fs_info->scrub_lock);
2991 sctx = dev->scrub_device;
2992 if (!sctx) {
2993 mutex_unlock(&fs_info->scrub_lock);
2994 return -ENOTCONN;
2995 }
2996 atomic_inc(&sctx->cancel_req);
2997 while (dev->scrub_device) {
2998 mutex_unlock(&fs_info->scrub_lock);
2999 wait_event(fs_info->scrub_pause_wait,
3000 dev->scrub_device == NULL);
3001 mutex_lock(&fs_info->scrub_lock);
3002 }
3003 mutex_unlock(&fs_info->scrub_lock);
3004
3005 return 0;
3006 }
3007
3008 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
3009 {
3010 struct btrfs_fs_info *fs_info = root->fs_info;
3011 struct btrfs_device *dev;
3012 int ret;
3013
3014 /*
3015 * we have to hold the device_list_mutex here so the device
3016 * does not go away in cancel_dev. FIXME: find a better solution
3017 */
3018 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3019 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3020 if (!dev) {
3021 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3022 return -ENODEV;
3023 }
3024 ret = btrfs_scrub_cancel_dev(fs_info, dev);
3025 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3026
3027 return ret;
3028 }
3029
3030 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3031 struct btrfs_scrub_progress *progress)
3032 {
3033 struct btrfs_device *dev;
3034 struct scrub_ctx *sctx = NULL;
3035
3036 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3037 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3038 if (dev)
3039 sctx = dev->scrub_device;
3040 if (sctx)
3041 memcpy(progress, &sctx->stat, sizeof(*progress));
3042 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3043
3044 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3045 }
3046
3047 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3048 u64 extent_logical, u64 extent_len,
3049 u64 *extent_physical,
3050 struct btrfs_device **extent_dev,
3051 int *extent_mirror_num)
3052 {
3053 u64 mapped_length;
3054 struct btrfs_bio *bbio = NULL;
3055 int ret;
3056
3057 mapped_length = extent_len;
3058 ret = btrfs_map_block(fs_info, READ, extent_logical,
3059 &mapped_length, &bbio, 0);
3060 if (ret || !bbio || mapped_length < extent_len ||
3061 !bbio->stripes[0].dev->bdev) {
3062 kfree(bbio);
3063 return;
3064 }
3065
3066 *extent_physical = bbio->stripes[0].physical;
3067 *extent_mirror_num = bbio->mirror_num;
3068 *extent_dev = bbio->stripes[0].dev;
3069 kfree(bbio);
3070 }
3071
3072 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3073 struct scrub_wr_ctx *wr_ctx,
3074 struct btrfs_fs_info *fs_info,
3075 struct btrfs_device *dev,
3076 int is_dev_replace)
3077 {
3078 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3079
3080 mutex_init(&wr_ctx->wr_lock);
3081 wr_ctx->wr_curr_bio = NULL;
3082 if (!is_dev_replace)
3083 return 0;
3084
3085 WARN_ON(!dev->bdev);
3086 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3087 bio_get_nr_vecs(dev->bdev));
3088 wr_ctx->tgtdev = dev;
3089 atomic_set(&wr_ctx->flush_all_writes, 0);
3090 return 0;
3091 }
3092
3093 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3094 {
3095 mutex_lock(&wr_ctx->wr_lock);
3096 kfree(wr_ctx->wr_curr_bio);
3097 wr_ctx->wr_curr_bio = NULL;
3098 mutex_unlock(&wr_ctx->wr_lock);
3099 }
3100
3101 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3102 int mirror_num, u64 physical_for_dev_replace)
3103 {
3104 struct scrub_copy_nocow_ctx *nocow_ctx;
3105 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3106
3107 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3108 if (!nocow_ctx) {
3109 spin_lock(&sctx->stat_lock);
3110 sctx->stat.malloc_errors++;
3111 spin_unlock(&sctx->stat_lock);
3112 return -ENOMEM;
3113 }
3114
3115 scrub_pending_trans_workers_inc(sctx);
3116
3117 nocow_ctx->sctx = sctx;
3118 nocow_ctx->logical = logical;
3119 nocow_ctx->len = len;
3120 nocow_ctx->mirror_num = mirror_num;
3121 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3122 nocow_ctx->work.func = copy_nocow_pages_worker;
3123 btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3124 &nocow_ctx->work);
3125
3126 return 0;
3127 }
3128
3129 static void copy_nocow_pages_worker(struct btrfs_work *work)
3130 {
3131 struct scrub_copy_nocow_ctx *nocow_ctx =
3132 container_of(work, struct scrub_copy_nocow_ctx, work);
3133 struct scrub_ctx *sctx = nocow_ctx->sctx;
3134 u64 logical = nocow_ctx->logical;
3135 u64 len = nocow_ctx->len;
3136 int mirror_num = nocow_ctx->mirror_num;
3137 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3138 int ret;
3139 struct btrfs_trans_handle *trans = NULL;
3140 struct btrfs_fs_info *fs_info;
3141 struct btrfs_path *path;
3142 struct btrfs_root *root;
3143 int not_written = 0;
3144
3145 fs_info = sctx->dev_root->fs_info;
3146 root = fs_info->extent_root;
3147
3148 path = btrfs_alloc_path();
3149 if (!path) {
3150 spin_lock(&sctx->stat_lock);
3151 sctx->stat.malloc_errors++;
3152 spin_unlock(&sctx->stat_lock);
3153 not_written = 1;
3154 goto out;
3155 }
3156
3157 trans = btrfs_join_transaction(root);
3158 if (IS_ERR(trans)) {
3159 not_written = 1;
3160 goto out;
3161 }
3162
3163 ret = iterate_inodes_from_logical(logical, fs_info, path,
3164 copy_nocow_pages_for_inode,
3165 nocow_ctx);
3166 if (ret != 0 && ret != -ENOENT) {
3167 pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
3168 (unsigned long long)logical,
3169 (unsigned long long)physical_for_dev_replace,
3170 (unsigned long long)len,
3171 (unsigned long long)mirror_num, ret);
3172 not_written = 1;
3173 goto out;
3174 }
3175
3176 out:
3177 if (trans && !IS_ERR(trans))
3178 btrfs_end_transaction(trans, root);
3179 if (not_written)
3180 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3181 num_uncorrectable_read_errors);
3182
3183 btrfs_free_path(path);
3184 kfree(nocow_ctx);
3185
3186 scrub_pending_trans_workers_dec(sctx);
3187 }
3188
3189 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3190 {
3191 unsigned long index;
3192 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3193 int ret = 0;
3194 struct btrfs_key key;
3195 struct inode *inode = NULL;
3196 struct btrfs_root *local_root;
3197 u64 physical_for_dev_replace;
3198 u64 len;
3199 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3200 int srcu_index;
3201
3202 key.objectid = root;
3203 key.type = BTRFS_ROOT_ITEM_KEY;
3204 key.offset = (u64)-1;
3205
3206 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3207
3208 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3209 if (IS_ERR(local_root)) {
3210 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3211 return PTR_ERR(local_root);
3212 }
3213
3214 key.type = BTRFS_INODE_ITEM_KEY;
3215 key.objectid = inum;
3216 key.offset = 0;
3217 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3218 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3219 if (IS_ERR(inode))
3220 return PTR_ERR(inode);
3221
3222 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3223 len = nocow_ctx->len;
3224 while (len >= PAGE_CACHE_SIZE) {
3225 struct page *page = NULL;
3226 int ret_sub;
3227
3228 index = offset >> PAGE_CACHE_SHIFT;
3229
3230 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3231 if (!page) {
3232 pr_err("find_or_create_page() failed\n");
3233 ret = -ENOMEM;
3234 goto next_page;
3235 }
3236
3237 if (PageUptodate(page)) {
3238 if (PageDirty(page))
3239 goto next_page;
3240 } else {
3241 ClearPageError(page);
3242 ret_sub = extent_read_full_page(&BTRFS_I(inode)->
3243 io_tree,
3244 page, btrfs_get_extent,
3245 nocow_ctx->mirror_num);
3246 if (ret_sub) {
3247 ret = ret_sub;
3248 goto next_page;
3249 }
3250 wait_on_page_locked(page);
3251 if (!PageUptodate(page)) {
3252 ret = -EIO;
3253 goto next_page;
3254 }
3255 }
3256 ret_sub = write_page_nocow(nocow_ctx->sctx,
3257 physical_for_dev_replace, page);
3258 if (ret_sub) {
3259 ret = ret_sub;
3260 goto next_page;
3261 }
3262
3263 next_page:
3264 if (page) {
3265 unlock_page(page);
3266 put_page(page);
3267 }
3268 offset += PAGE_CACHE_SIZE;
3269 physical_for_dev_replace += PAGE_CACHE_SIZE;
3270 len -= PAGE_CACHE_SIZE;
3271 }
3272
3273 if (inode)
3274 iput(inode);
3275 return ret;
3276 }
3277
3278 static int write_page_nocow(struct scrub_ctx *sctx,
3279 u64 physical_for_dev_replace, struct page *page)
3280 {
3281 struct bio *bio;
3282 struct btrfs_device *dev;
3283 int ret;
3284 DECLARE_COMPLETION_ONSTACK(compl);
3285
3286 dev = sctx->wr_ctx.tgtdev;
3287 if (!dev)
3288 return -EIO;
3289 if (!dev->bdev) {
3290 printk_ratelimited(KERN_WARNING
3291 "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3292 return -EIO;
3293 }
3294 bio = bio_alloc(GFP_NOFS, 1);
3295 if (!bio) {
3296 spin_lock(&sctx->stat_lock);
3297 sctx->stat.malloc_errors++;
3298 spin_unlock(&sctx->stat_lock);
3299 return -ENOMEM;
3300 }
3301 bio->bi_private = &compl;
3302 bio->bi_end_io = scrub_complete_bio_end_io;
3303 bio->bi_size = 0;
3304 bio->bi_sector = physical_for_dev_replace >> 9;
3305 bio->bi_bdev = dev->bdev;
3306 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3307 if (ret != PAGE_CACHE_SIZE) {
3308 leave_with_eio:
3309 bio_put(bio);
3310 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3311 return -EIO;
3312 }
3313 btrfsic_submit_bio(WRITE_SYNC, bio);
3314 wait_for_completion(&compl);
3315
3316 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3317 goto leave_with_eio;
3318
3319 bio_put(bio);
3320 return 0;
3321 }
This page took 0.097416 seconds and 6 git commands to generate.