Btrfs: add missing free_extent_buffer
[deliverable/linux.git] / fs / btrfs / send.c
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37
38 static int g_verbose = 0;
39
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41
42 /*
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
48 */
49 struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
54
55 char *buf;
56 unsigned short buf_len:15;
57 unsigned short reversed:1;
58 char inline_buf[];
59 };
60 /*
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
64 */
65 char pad[256];
66 };
67 };
68 #define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70
71
72 /* reused for each extent */
73 struct clone_root {
74 struct btrfs_root *root;
75 u64 ino;
76 u64 offset;
77
78 u64 found_refs;
79 };
80
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83
84 struct send_ctx {
85 struct file *send_filp;
86 loff_t send_off;
87 char *send_buf;
88 u32 send_size;
89 u32 send_max_size;
90 u64 total_send_size;
91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
93
94 struct btrfs_root *send_root;
95 struct btrfs_root *parent_root;
96 struct clone_root *clone_roots;
97 int clone_roots_cnt;
98
99 /* current state of the compare_tree call */
100 struct btrfs_path *left_path;
101 struct btrfs_path *right_path;
102 struct btrfs_key *cmp_key;
103
104 /*
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
107 */
108 u64 cur_ino;
109 u64 cur_inode_gen;
110 int cur_inode_new;
111 int cur_inode_new_gen;
112 int cur_inode_deleted;
113 u64 cur_inode_size;
114 u64 cur_inode_mode;
115 u64 cur_inode_rdev;
116 u64 cur_inode_last_extent;
117
118 u64 send_progress;
119
120 struct list_head new_refs;
121 struct list_head deleted_refs;
122
123 struct radix_tree_root name_cache;
124 struct list_head name_cache_list;
125 int name_cache_size;
126
127 struct file_ra_state ra;
128
129 char *read_buf;
130
131 /*
132 * We process inodes by their increasing order, so if before an
133 * incremental send we reverse the parent/child relationship of
134 * directories such that a directory with a lower inode number was
135 * the parent of a directory with a higher inode number, and the one
136 * becoming the new parent got renamed too, we can't rename/move the
137 * directory with lower inode number when we finish processing it - we
138 * must process the directory with higher inode number first, then
139 * rename/move it and then rename/move the directory with lower inode
140 * number. Example follows.
141 *
142 * Tree state when the first send was performed:
143 *
144 * .
145 * |-- a (ino 257)
146 * |-- b (ino 258)
147 * |
148 * |
149 * |-- c (ino 259)
150 * | |-- d (ino 260)
151 * |
152 * |-- c2 (ino 261)
153 *
154 * Tree state when the second (incremental) send is performed:
155 *
156 * .
157 * |-- a (ino 257)
158 * |-- b (ino 258)
159 * |-- c2 (ino 261)
160 * |-- d2 (ino 260)
161 * |-- cc (ino 259)
162 *
163 * The sequence of steps that lead to the second state was:
164 *
165 * mv /a/b/c/d /a/b/c2/d2
166 * mv /a/b/c /a/b/c2/d2/cc
167 *
168 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 * before we move "d", which has higher inode number.
170 *
171 * So we just memorize which move/rename operations must be performed
172 * later when their respective parent is processed and moved/renamed.
173 */
174
175 /* Indexed by parent directory inode number. */
176 struct rb_root pending_dir_moves;
177
178 /*
179 * Reverse index, indexed by the inode number of a directory that
180 * is waiting for the move/rename of its immediate parent before its
181 * own move/rename can be performed.
182 */
183 struct rb_root waiting_dir_moves;
184
185 /*
186 * A directory that is going to be rm'ed might have a child directory
187 * which is in the pending directory moves index above. In this case,
188 * the directory can only be removed after the move/rename of its child
189 * is performed. Example:
190 *
191 * Parent snapshot:
192 *
193 * . (ino 256)
194 * |-- a/ (ino 257)
195 * |-- b/ (ino 258)
196 * |-- c/ (ino 259)
197 * | |-- x/ (ino 260)
198 * |
199 * |-- y/ (ino 261)
200 *
201 * Send snapshot:
202 *
203 * . (ino 256)
204 * |-- a/ (ino 257)
205 * |-- b/ (ino 258)
206 * |-- YY/ (ino 261)
207 * |-- x/ (ino 260)
208 *
209 * Sequence of steps that lead to the send snapshot:
210 * rm -f /a/b/c/foo.txt
211 * mv /a/b/y /a/b/YY
212 * mv /a/b/c/x /a/b/YY
213 * rmdir /a/b/c
214 *
215 * When the child is processed, its move/rename is delayed until its
216 * parent is processed (as explained above), but all other operations
217 * like update utimes, chown, chgrp, etc, are performed and the paths
218 * that it uses for those operations must use the orphanized name of
219 * its parent (the directory we're going to rm later), so we need to
220 * memorize that name.
221 *
222 * Indexed by the inode number of the directory to be deleted.
223 */
224 struct rb_root orphan_dirs;
225 };
226
227 struct pending_dir_move {
228 struct rb_node node;
229 struct list_head list;
230 u64 parent_ino;
231 u64 ino;
232 u64 gen;
233 bool is_orphan;
234 struct list_head update_refs;
235 };
236
237 struct waiting_dir_move {
238 struct rb_node node;
239 u64 ino;
240 /*
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 */
245 u64 rmdir_ino;
246 };
247
248 struct orphan_dir_info {
249 struct rb_node node;
250 u64 ino;
251 u64 gen;
252 };
253
254 struct name_cache_entry {
255 struct list_head list;
256 /*
257 * radix_tree has only 32bit entries but we need to handle 64bit inums.
258 * We use the lower 32bit of the 64bit inum to store it in the tree. If
259 * more then one inum would fall into the same entry, we use radix_list
260 * to store the additional entries. radix_list is also used to store
261 * entries where two entries have the same inum but different
262 * generations.
263 */
264 struct list_head radix_list;
265 u64 ino;
266 u64 gen;
267 u64 parent_ino;
268 u64 parent_gen;
269 int ret;
270 int need_later_update;
271 int name_len;
272 char name[];
273 };
274
275 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
276
277 static struct waiting_dir_move *
278 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
279
280 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
281
282 static int need_send_hole(struct send_ctx *sctx)
283 {
284 return (sctx->parent_root && !sctx->cur_inode_new &&
285 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
286 S_ISREG(sctx->cur_inode_mode));
287 }
288
289 static void fs_path_reset(struct fs_path *p)
290 {
291 if (p->reversed) {
292 p->start = p->buf + p->buf_len - 1;
293 p->end = p->start;
294 *p->start = 0;
295 } else {
296 p->start = p->buf;
297 p->end = p->start;
298 *p->start = 0;
299 }
300 }
301
302 static struct fs_path *fs_path_alloc(void)
303 {
304 struct fs_path *p;
305
306 p = kmalloc(sizeof(*p), GFP_NOFS);
307 if (!p)
308 return NULL;
309 p->reversed = 0;
310 p->buf = p->inline_buf;
311 p->buf_len = FS_PATH_INLINE_SIZE;
312 fs_path_reset(p);
313 return p;
314 }
315
316 static struct fs_path *fs_path_alloc_reversed(void)
317 {
318 struct fs_path *p;
319
320 p = fs_path_alloc();
321 if (!p)
322 return NULL;
323 p->reversed = 1;
324 fs_path_reset(p);
325 return p;
326 }
327
328 static void fs_path_free(struct fs_path *p)
329 {
330 if (!p)
331 return;
332 if (p->buf != p->inline_buf)
333 kfree(p->buf);
334 kfree(p);
335 }
336
337 static int fs_path_len(struct fs_path *p)
338 {
339 return p->end - p->start;
340 }
341
342 static int fs_path_ensure_buf(struct fs_path *p, int len)
343 {
344 char *tmp_buf;
345 int path_len;
346 int old_buf_len;
347
348 len++;
349
350 if (p->buf_len >= len)
351 return 0;
352
353 if (len > PATH_MAX) {
354 WARN_ON(1);
355 return -ENOMEM;
356 }
357
358 path_len = p->end - p->start;
359 old_buf_len = p->buf_len;
360
361 /*
362 * First time the inline_buf does not suffice
363 */
364 if (p->buf == p->inline_buf) {
365 tmp_buf = kmalloc(len, GFP_NOFS);
366 if (tmp_buf)
367 memcpy(tmp_buf, p->buf, old_buf_len);
368 } else {
369 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
370 }
371 if (!tmp_buf)
372 return -ENOMEM;
373 p->buf = tmp_buf;
374 /*
375 * The real size of the buffer is bigger, this will let the fast path
376 * happen most of the time
377 */
378 p->buf_len = ksize(p->buf);
379
380 if (p->reversed) {
381 tmp_buf = p->buf + old_buf_len - path_len - 1;
382 p->end = p->buf + p->buf_len - 1;
383 p->start = p->end - path_len;
384 memmove(p->start, tmp_buf, path_len + 1);
385 } else {
386 p->start = p->buf;
387 p->end = p->start + path_len;
388 }
389 return 0;
390 }
391
392 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
393 char **prepared)
394 {
395 int ret;
396 int new_len;
397
398 new_len = p->end - p->start + name_len;
399 if (p->start != p->end)
400 new_len++;
401 ret = fs_path_ensure_buf(p, new_len);
402 if (ret < 0)
403 goto out;
404
405 if (p->reversed) {
406 if (p->start != p->end)
407 *--p->start = '/';
408 p->start -= name_len;
409 *prepared = p->start;
410 } else {
411 if (p->start != p->end)
412 *p->end++ = '/';
413 *prepared = p->end;
414 p->end += name_len;
415 *p->end = 0;
416 }
417
418 out:
419 return ret;
420 }
421
422 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
423 {
424 int ret;
425 char *prepared;
426
427 ret = fs_path_prepare_for_add(p, name_len, &prepared);
428 if (ret < 0)
429 goto out;
430 memcpy(prepared, name, name_len);
431
432 out:
433 return ret;
434 }
435
436 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
437 {
438 int ret;
439 char *prepared;
440
441 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
442 if (ret < 0)
443 goto out;
444 memcpy(prepared, p2->start, p2->end - p2->start);
445
446 out:
447 return ret;
448 }
449
450 static int fs_path_add_from_extent_buffer(struct fs_path *p,
451 struct extent_buffer *eb,
452 unsigned long off, int len)
453 {
454 int ret;
455 char *prepared;
456
457 ret = fs_path_prepare_for_add(p, len, &prepared);
458 if (ret < 0)
459 goto out;
460
461 read_extent_buffer(eb, prepared, off, len);
462
463 out:
464 return ret;
465 }
466
467 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
468 {
469 int ret;
470
471 p->reversed = from->reversed;
472 fs_path_reset(p);
473
474 ret = fs_path_add_path(p, from);
475
476 return ret;
477 }
478
479
480 static void fs_path_unreverse(struct fs_path *p)
481 {
482 char *tmp;
483 int len;
484
485 if (!p->reversed)
486 return;
487
488 tmp = p->start;
489 len = p->end - p->start;
490 p->start = p->buf;
491 p->end = p->start + len;
492 memmove(p->start, tmp, len + 1);
493 p->reversed = 0;
494 }
495
496 static struct btrfs_path *alloc_path_for_send(void)
497 {
498 struct btrfs_path *path;
499
500 path = btrfs_alloc_path();
501 if (!path)
502 return NULL;
503 path->search_commit_root = 1;
504 path->skip_locking = 1;
505 path->need_commit_sem = 1;
506 return path;
507 }
508
509 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
510 {
511 int ret;
512 mm_segment_t old_fs;
513 u32 pos = 0;
514
515 old_fs = get_fs();
516 set_fs(KERNEL_DS);
517
518 while (pos < len) {
519 ret = vfs_write(filp, (__force const char __user *)buf + pos,
520 len - pos, off);
521 /* TODO handle that correctly */
522 /*if (ret == -ERESTARTSYS) {
523 continue;
524 }*/
525 if (ret < 0)
526 goto out;
527 if (ret == 0) {
528 ret = -EIO;
529 goto out;
530 }
531 pos += ret;
532 }
533
534 ret = 0;
535
536 out:
537 set_fs(old_fs);
538 return ret;
539 }
540
541 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
542 {
543 struct btrfs_tlv_header *hdr;
544 int total_len = sizeof(*hdr) + len;
545 int left = sctx->send_max_size - sctx->send_size;
546
547 if (unlikely(left < total_len))
548 return -EOVERFLOW;
549
550 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
551 hdr->tlv_type = cpu_to_le16(attr);
552 hdr->tlv_len = cpu_to_le16(len);
553 memcpy(hdr + 1, data, len);
554 sctx->send_size += total_len;
555
556 return 0;
557 }
558
559 #define TLV_PUT_DEFINE_INT(bits) \
560 static int tlv_put_u##bits(struct send_ctx *sctx, \
561 u##bits attr, u##bits value) \
562 { \
563 __le##bits __tmp = cpu_to_le##bits(value); \
564 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
565 }
566
567 TLV_PUT_DEFINE_INT(64)
568
569 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
570 const char *str, int len)
571 {
572 if (len == -1)
573 len = strlen(str);
574 return tlv_put(sctx, attr, str, len);
575 }
576
577 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
578 const u8 *uuid)
579 {
580 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
581 }
582
583 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
584 struct extent_buffer *eb,
585 struct btrfs_timespec *ts)
586 {
587 struct btrfs_timespec bts;
588 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
589 return tlv_put(sctx, attr, &bts, sizeof(bts));
590 }
591
592
593 #define TLV_PUT(sctx, attrtype, attrlen, data) \
594 do { \
595 ret = tlv_put(sctx, attrtype, attrlen, data); \
596 if (ret < 0) \
597 goto tlv_put_failure; \
598 } while (0)
599
600 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
601 do { \
602 ret = tlv_put_u##bits(sctx, attrtype, value); \
603 if (ret < 0) \
604 goto tlv_put_failure; \
605 } while (0)
606
607 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
608 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
609 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
610 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
611 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
612 do { \
613 ret = tlv_put_string(sctx, attrtype, str, len); \
614 if (ret < 0) \
615 goto tlv_put_failure; \
616 } while (0)
617 #define TLV_PUT_PATH(sctx, attrtype, p) \
618 do { \
619 ret = tlv_put_string(sctx, attrtype, p->start, \
620 p->end - p->start); \
621 if (ret < 0) \
622 goto tlv_put_failure; \
623 } while(0)
624 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
625 do { \
626 ret = tlv_put_uuid(sctx, attrtype, uuid); \
627 if (ret < 0) \
628 goto tlv_put_failure; \
629 } while (0)
630 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
631 do { \
632 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
633 if (ret < 0) \
634 goto tlv_put_failure; \
635 } while (0)
636
637 static int send_header(struct send_ctx *sctx)
638 {
639 struct btrfs_stream_header hdr;
640
641 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
642 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
643
644 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
645 &sctx->send_off);
646 }
647
648 /*
649 * For each command/item we want to send to userspace, we call this function.
650 */
651 static int begin_cmd(struct send_ctx *sctx, int cmd)
652 {
653 struct btrfs_cmd_header *hdr;
654
655 if (WARN_ON(!sctx->send_buf))
656 return -EINVAL;
657
658 BUG_ON(sctx->send_size);
659
660 sctx->send_size += sizeof(*hdr);
661 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
662 hdr->cmd = cpu_to_le16(cmd);
663
664 return 0;
665 }
666
667 static int send_cmd(struct send_ctx *sctx)
668 {
669 int ret;
670 struct btrfs_cmd_header *hdr;
671 u32 crc;
672
673 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
674 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
675 hdr->crc = 0;
676
677 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
678 hdr->crc = cpu_to_le32(crc);
679
680 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
681 &sctx->send_off);
682
683 sctx->total_send_size += sctx->send_size;
684 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
685 sctx->send_size = 0;
686
687 return ret;
688 }
689
690 /*
691 * Sends a move instruction to user space
692 */
693 static int send_rename(struct send_ctx *sctx,
694 struct fs_path *from, struct fs_path *to)
695 {
696 int ret;
697
698 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
699
700 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
701 if (ret < 0)
702 goto out;
703
704 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
706
707 ret = send_cmd(sctx);
708
709 tlv_put_failure:
710 out:
711 return ret;
712 }
713
714 /*
715 * Sends a link instruction to user space
716 */
717 static int send_link(struct send_ctx *sctx,
718 struct fs_path *path, struct fs_path *lnk)
719 {
720 int ret;
721
722 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
723
724 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
725 if (ret < 0)
726 goto out;
727
728 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
730
731 ret = send_cmd(sctx);
732
733 tlv_put_failure:
734 out:
735 return ret;
736 }
737
738 /*
739 * Sends an unlink instruction to user space
740 */
741 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
742 {
743 int ret;
744
745 verbose_printk("btrfs: send_unlink %s\n", path->start);
746
747 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
748 if (ret < 0)
749 goto out;
750
751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
752
753 ret = send_cmd(sctx);
754
755 tlv_put_failure:
756 out:
757 return ret;
758 }
759
760 /*
761 * Sends a rmdir instruction to user space
762 */
763 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
764 {
765 int ret;
766
767 verbose_printk("btrfs: send_rmdir %s\n", path->start);
768
769 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
770 if (ret < 0)
771 goto out;
772
773 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
774
775 ret = send_cmd(sctx);
776
777 tlv_put_failure:
778 out:
779 return ret;
780 }
781
782 /*
783 * Helper function to retrieve some fields from an inode item.
784 */
785 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
786 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
787 u64 *gid, u64 *rdev)
788 {
789 int ret;
790 struct btrfs_inode_item *ii;
791 struct btrfs_key key;
792
793 key.objectid = ino;
794 key.type = BTRFS_INODE_ITEM_KEY;
795 key.offset = 0;
796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
797 if (ret) {
798 if (ret > 0)
799 ret = -ENOENT;
800 return ret;
801 }
802
803 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
804 struct btrfs_inode_item);
805 if (size)
806 *size = btrfs_inode_size(path->nodes[0], ii);
807 if (gen)
808 *gen = btrfs_inode_generation(path->nodes[0], ii);
809 if (mode)
810 *mode = btrfs_inode_mode(path->nodes[0], ii);
811 if (uid)
812 *uid = btrfs_inode_uid(path->nodes[0], ii);
813 if (gid)
814 *gid = btrfs_inode_gid(path->nodes[0], ii);
815 if (rdev)
816 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
817
818 return ret;
819 }
820
821 static int get_inode_info(struct btrfs_root *root,
822 u64 ino, u64 *size, u64 *gen,
823 u64 *mode, u64 *uid, u64 *gid,
824 u64 *rdev)
825 {
826 struct btrfs_path *path;
827 int ret;
828
829 path = alloc_path_for_send();
830 if (!path)
831 return -ENOMEM;
832 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
833 rdev);
834 btrfs_free_path(path);
835 return ret;
836 }
837
838 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
839 struct fs_path *p,
840 void *ctx);
841
842 /*
843 * Helper function to iterate the entries in ONE btrfs_inode_ref or
844 * btrfs_inode_extref.
845 * The iterate callback may return a non zero value to stop iteration. This can
846 * be a negative value for error codes or 1 to simply stop it.
847 *
848 * path must point to the INODE_REF or INODE_EXTREF when called.
849 */
850 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
851 struct btrfs_key *found_key, int resolve,
852 iterate_inode_ref_t iterate, void *ctx)
853 {
854 struct extent_buffer *eb = path->nodes[0];
855 struct btrfs_item *item;
856 struct btrfs_inode_ref *iref;
857 struct btrfs_inode_extref *extref;
858 struct btrfs_path *tmp_path;
859 struct fs_path *p;
860 u32 cur = 0;
861 u32 total;
862 int slot = path->slots[0];
863 u32 name_len;
864 char *start;
865 int ret = 0;
866 int num = 0;
867 int index;
868 u64 dir;
869 unsigned long name_off;
870 unsigned long elem_size;
871 unsigned long ptr;
872
873 p = fs_path_alloc_reversed();
874 if (!p)
875 return -ENOMEM;
876
877 tmp_path = alloc_path_for_send();
878 if (!tmp_path) {
879 fs_path_free(p);
880 return -ENOMEM;
881 }
882
883
884 if (found_key->type == BTRFS_INODE_REF_KEY) {
885 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
886 struct btrfs_inode_ref);
887 item = btrfs_item_nr(slot);
888 total = btrfs_item_size(eb, item);
889 elem_size = sizeof(*iref);
890 } else {
891 ptr = btrfs_item_ptr_offset(eb, slot);
892 total = btrfs_item_size_nr(eb, slot);
893 elem_size = sizeof(*extref);
894 }
895
896 while (cur < total) {
897 fs_path_reset(p);
898
899 if (found_key->type == BTRFS_INODE_REF_KEY) {
900 iref = (struct btrfs_inode_ref *)(ptr + cur);
901 name_len = btrfs_inode_ref_name_len(eb, iref);
902 name_off = (unsigned long)(iref + 1);
903 index = btrfs_inode_ref_index(eb, iref);
904 dir = found_key->offset;
905 } else {
906 extref = (struct btrfs_inode_extref *)(ptr + cur);
907 name_len = btrfs_inode_extref_name_len(eb, extref);
908 name_off = (unsigned long)&extref->name;
909 index = btrfs_inode_extref_index(eb, extref);
910 dir = btrfs_inode_extref_parent(eb, extref);
911 }
912
913 if (resolve) {
914 start = btrfs_ref_to_path(root, tmp_path, name_len,
915 name_off, eb, dir,
916 p->buf, p->buf_len);
917 if (IS_ERR(start)) {
918 ret = PTR_ERR(start);
919 goto out;
920 }
921 if (start < p->buf) {
922 /* overflow , try again with larger buffer */
923 ret = fs_path_ensure_buf(p,
924 p->buf_len + p->buf - start);
925 if (ret < 0)
926 goto out;
927 start = btrfs_ref_to_path(root, tmp_path,
928 name_len, name_off,
929 eb, dir,
930 p->buf, p->buf_len);
931 if (IS_ERR(start)) {
932 ret = PTR_ERR(start);
933 goto out;
934 }
935 BUG_ON(start < p->buf);
936 }
937 p->start = start;
938 } else {
939 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
940 name_len);
941 if (ret < 0)
942 goto out;
943 }
944
945 cur += elem_size + name_len;
946 ret = iterate(num, dir, index, p, ctx);
947 if (ret)
948 goto out;
949 num++;
950 }
951
952 out:
953 btrfs_free_path(tmp_path);
954 fs_path_free(p);
955 return ret;
956 }
957
958 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
959 const char *name, int name_len,
960 const char *data, int data_len,
961 u8 type, void *ctx);
962
963 /*
964 * Helper function to iterate the entries in ONE btrfs_dir_item.
965 * The iterate callback may return a non zero value to stop iteration. This can
966 * be a negative value for error codes or 1 to simply stop it.
967 *
968 * path must point to the dir item when called.
969 */
970 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
971 struct btrfs_key *found_key,
972 iterate_dir_item_t iterate, void *ctx)
973 {
974 int ret = 0;
975 struct extent_buffer *eb;
976 struct btrfs_item *item;
977 struct btrfs_dir_item *di;
978 struct btrfs_key di_key;
979 char *buf = NULL;
980 int buf_len;
981 u32 name_len;
982 u32 data_len;
983 u32 cur;
984 u32 len;
985 u32 total;
986 int slot;
987 int num;
988 u8 type;
989
990 /*
991 * Start with a small buffer (1 page). If later we end up needing more
992 * space, which can happen for xattrs on a fs with a leaf size greater
993 * then the page size, attempt to increase the buffer. Typically xattr
994 * values are small.
995 */
996 buf_len = PATH_MAX;
997 buf = kmalloc(buf_len, GFP_NOFS);
998 if (!buf) {
999 ret = -ENOMEM;
1000 goto out;
1001 }
1002
1003 eb = path->nodes[0];
1004 slot = path->slots[0];
1005 item = btrfs_item_nr(slot);
1006 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1007 cur = 0;
1008 len = 0;
1009 total = btrfs_item_size(eb, item);
1010
1011 num = 0;
1012 while (cur < total) {
1013 name_len = btrfs_dir_name_len(eb, di);
1014 data_len = btrfs_dir_data_len(eb, di);
1015 type = btrfs_dir_type(eb, di);
1016 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1017
1018 if (type == BTRFS_FT_XATTR) {
1019 if (name_len > XATTR_NAME_MAX) {
1020 ret = -ENAMETOOLONG;
1021 goto out;
1022 }
1023 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1024 ret = -E2BIG;
1025 goto out;
1026 }
1027 } else {
1028 /*
1029 * Path too long
1030 */
1031 if (name_len + data_len > PATH_MAX) {
1032 ret = -ENAMETOOLONG;
1033 goto out;
1034 }
1035 }
1036
1037 if (name_len + data_len > buf_len) {
1038 buf_len = name_len + data_len;
1039 if (is_vmalloc_addr(buf)) {
1040 vfree(buf);
1041 buf = NULL;
1042 } else {
1043 char *tmp = krealloc(buf, buf_len,
1044 GFP_NOFS | __GFP_NOWARN);
1045
1046 if (!tmp)
1047 kfree(buf);
1048 buf = tmp;
1049 }
1050 if (!buf) {
1051 buf = vmalloc(buf_len);
1052 if (!buf) {
1053 ret = -ENOMEM;
1054 goto out;
1055 }
1056 }
1057 }
1058
1059 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1060 name_len + data_len);
1061
1062 len = sizeof(*di) + name_len + data_len;
1063 di = (struct btrfs_dir_item *)((char *)di + len);
1064 cur += len;
1065
1066 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1067 data_len, type, ctx);
1068 if (ret < 0)
1069 goto out;
1070 if (ret) {
1071 ret = 0;
1072 goto out;
1073 }
1074
1075 num++;
1076 }
1077
1078 out:
1079 kvfree(buf);
1080 return ret;
1081 }
1082
1083 static int __copy_first_ref(int num, u64 dir, int index,
1084 struct fs_path *p, void *ctx)
1085 {
1086 int ret;
1087 struct fs_path *pt = ctx;
1088
1089 ret = fs_path_copy(pt, p);
1090 if (ret < 0)
1091 return ret;
1092
1093 /* we want the first only */
1094 return 1;
1095 }
1096
1097 /*
1098 * Retrieve the first path of an inode. If an inode has more then one
1099 * ref/hardlink, this is ignored.
1100 */
1101 static int get_inode_path(struct btrfs_root *root,
1102 u64 ino, struct fs_path *path)
1103 {
1104 int ret;
1105 struct btrfs_key key, found_key;
1106 struct btrfs_path *p;
1107
1108 p = alloc_path_for_send();
1109 if (!p)
1110 return -ENOMEM;
1111
1112 fs_path_reset(path);
1113
1114 key.objectid = ino;
1115 key.type = BTRFS_INODE_REF_KEY;
1116 key.offset = 0;
1117
1118 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1119 if (ret < 0)
1120 goto out;
1121 if (ret) {
1122 ret = 1;
1123 goto out;
1124 }
1125 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1126 if (found_key.objectid != ino ||
1127 (found_key.type != BTRFS_INODE_REF_KEY &&
1128 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1129 ret = -ENOENT;
1130 goto out;
1131 }
1132
1133 ret = iterate_inode_ref(root, p, &found_key, 1,
1134 __copy_first_ref, path);
1135 if (ret < 0)
1136 goto out;
1137 ret = 0;
1138
1139 out:
1140 btrfs_free_path(p);
1141 return ret;
1142 }
1143
1144 struct backref_ctx {
1145 struct send_ctx *sctx;
1146
1147 struct btrfs_path *path;
1148 /* number of total found references */
1149 u64 found;
1150
1151 /*
1152 * used for clones found in send_root. clones found behind cur_objectid
1153 * and cur_offset are not considered as allowed clones.
1154 */
1155 u64 cur_objectid;
1156 u64 cur_offset;
1157
1158 /* may be truncated in case it's the last extent in a file */
1159 u64 extent_len;
1160
1161 /* data offset in the file extent item */
1162 u64 data_offset;
1163
1164 /* Just to check for bugs in backref resolving */
1165 int found_itself;
1166 };
1167
1168 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1169 {
1170 u64 root = (u64)(uintptr_t)key;
1171 struct clone_root *cr = (struct clone_root *)elt;
1172
1173 if (root < cr->root->objectid)
1174 return -1;
1175 if (root > cr->root->objectid)
1176 return 1;
1177 return 0;
1178 }
1179
1180 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1181 {
1182 struct clone_root *cr1 = (struct clone_root *)e1;
1183 struct clone_root *cr2 = (struct clone_root *)e2;
1184
1185 if (cr1->root->objectid < cr2->root->objectid)
1186 return -1;
1187 if (cr1->root->objectid > cr2->root->objectid)
1188 return 1;
1189 return 0;
1190 }
1191
1192 /*
1193 * Called for every backref that is found for the current extent.
1194 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1195 */
1196 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1197 {
1198 struct backref_ctx *bctx = ctx_;
1199 struct clone_root *found;
1200 int ret;
1201 u64 i_size;
1202
1203 /* First check if the root is in the list of accepted clone sources */
1204 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1205 bctx->sctx->clone_roots_cnt,
1206 sizeof(struct clone_root),
1207 __clone_root_cmp_bsearch);
1208 if (!found)
1209 return 0;
1210
1211 if (found->root == bctx->sctx->send_root &&
1212 ino == bctx->cur_objectid &&
1213 offset == bctx->cur_offset) {
1214 bctx->found_itself = 1;
1215 }
1216
1217 /*
1218 * There are inodes that have extents that lie behind its i_size. Don't
1219 * accept clones from these extents.
1220 */
1221 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1222 NULL, NULL, NULL);
1223 btrfs_release_path(bctx->path);
1224 if (ret < 0)
1225 return ret;
1226
1227 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1228 return 0;
1229
1230 /*
1231 * Make sure we don't consider clones from send_root that are
1232 * behind the current inode/offset.
1233 */
1234 if (found->root == bctx->sctx->send_root) {
1235 /*
1236 * TODO for the moment we don't accept clones from the inode
1237 * that is currently send. We may change this when
1238 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1239 * file.
1240 */
1241 if (ino >= bctx->cur_objectid)
1242 return 0;
1243 #if 0
1244 if (ino > bctx->cur_objectid)
1245 return 0;
1246 if (offset + bctx->extent_len > bctx->cur_offset)
1247 return 0;
1248 #endif
1249 }
1250
1251 bctx->found++;
1252 found->found_refs++;
1253 if (ino < found->ino) {
1254 found->ino = ino;
1255 found->offset = offset;
1256 } else if (found->ino == ino) {
1257 /*
1258 * same extent found more then once in the same file.
1259 */
1260 if (found->offset > offset + bctx->extent_len)
1261 found->offset = offset;
1262 }
1263
1264 return 0;
1265 }
1266
1267 /*
1268 * Given an inode, offset and extent item, it finds a good clone for a clone
1269 * instruction. Returns -ENOENT when none could be found. The function makes
1270 * sure that the returned clone is usable at the point where sending is at the
1271 * moment. This means, that no clones are accepted which lie behind the current
1272 * inode+offset.
1273 *
1274 * path must point to the extent item when called.
1275 */
1276 static int find_extent_clone(struct send_ctx *sctx,
1277 struct btrfs_path *path,
1278 u64 ino, u64 data_offset,
1279 u64 ino_size,
1280 struct clone_root **found)
1281 {
1282 int ret;
1283 int extent_type;
1284 u64 logical;
1285 u64 disk_byte;
1286 u64 num_bytes;
1287 u64 extent_item_pos;
1288 u64 flags = 0;
1289 struct btrfs_file_extent_item *fi;
1290 struct extent_buffer *eb = path->nodes[0];
1291 struct backref_ctx *backref_ctx = NULL;
1292 struct clone_root *cur_clone_root;
1293 struct btrfs_key found_key;
1294 struct btrfs_path *tmp_path;
1295 int compressed;
1296 u32 i;
1297
1298 tmp_path = alloc_path_for_send();
1299 if (!tmp_path)
1300 return -ENOMEM;
1301
1302 /* We only use this path under the commit sem */
1303 tmp_path->need_commit_sem = 0;
1304
1305 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1306 if (!backref_ctx) {
1307 ret = -ENOMEM;
1308 goto out;
1309 }
1310
1311 backref_ctx->path = tmp_path;
1312
1313 if (data_offset >= ino_size) {
1314 /*
1315 * There may be extents that lie behind the file's size.
1316 * I at least had this in combination with snapshotting while
1317 * writing large files.
1318 */
1319 ret = 0;
1320 goto out;
1321 }
1322
1323 fi = btrfs_item_ptr(eb, path->slots[0],
1324 struct btrfs_file_extent_item);
1325 extent_type = btrfs_file_extent_type(eb, fi);
1326 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1327 ret = -ENOENT;
1328 goto out;
1329 }
1330 compressed = btrfs_file_extent_compression(eb, fi);
1331
1332 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1333 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1334 if (disk_byte == 0) {
1335 ret = -ENOENT;
1336 goto out;
1337 }
1338 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1339
1340 down_read(&sctx->send_root->fs_info->commit_root_sem);
1341 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1342 &found_key, &flags);
1343 up_read(&sctx->send_root->fs_info->commit_root_sem);
1344 btrfs_release_path(tmp_path);
1345
1346 if (ret < 0)
1347 goto out;
1348 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1349 ret = -EIO;
1350 goto out;
1351 }
1352
1353 /*
1354 * Setup the clone roots.
1355 */
1356 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1357 cur_clone_root = sctx->clone_roots + i;
1358 cur_clone_root->ino = (u64)-1;
1359 cur_clone_root->offset = 0;
1360 cur_clone_root->found_refs = 0;
1361 }
1362
1363 backref_ctx->sctx = sctx;
1364 backref_ctx->found = 0;
1365 backref_ctx->cur_objectid = ino;
1366 backref_ctx->cur_offset = data_offset;
1367 backref_ctx->found_itself = 0;
1368 backref_ctx->extent_len = num_bytes;
1369 /*
1370 * For non-compressed extents iterate_extent_inodes() gives us extent
1371 * offsets that already take into account the data offset, but not for
1372 * compressed extents, since the offset is logical and not relative to
1373 * the physical extent locations. We must take this into account to
1374 * avoid sending clone offsets that go beyond the source file's size,
1375 * which would result in the clone ioctl failing with -EINVAL on the
1376 * receiving end.
1377 */
1378 if (compressed == BTRFS_COMPRESS_NONE)
1379 backref_ctx->data_offset = 0;
1380 else
1381 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1382
1383 /*
1384 * The last extent of a file may be too large due to page alignment.
1385 * We need to adjust extent_len in this case so that the checks in
1386 * __iterate_backrefs work.
1387 */
1388 if (data_offset + num_bytes >= ino_size)
1389 backref_ctx->extent_len = ino_size - data_offset;
1390
1391 /*
1392 * Now collect all backrefs.
1393 */
1394 if (compressed == BTRFS_COMPRESS_NONE)
1395 extent_item_pos = logical - found_key.objectid;
1396 else
1397 extent_item_pos = 0;
1398 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1399 found_key.objectid, extent_item_pos, 1,
1400 __iterate_backrefs, backref_ctx);
1401
1402 if (ret < 0)
1403 goto out;
1404
1405 if (!backref_ctx->found_itself) {
1406 /* found a bug in backref code? */
1407 ret = -EIO;
1408 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1409 "send_root. inode=%llu, offset=%llu, "
1410 "disk_byte=%llu found extent=%llu",
1411 ino, data_offset, disk_byte, found_key.objectid);
1412 goto out;
1413 }
1414
1415 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1416 "ino=%llu, "
1417 "num_bytes=%llu, logical=%llu\n",
1418 data_offset, ino, num_bytes, logical);
1419
1420 if (!backref_ctx->found)
1421 verbose_printk("btrfs: no clones found\n");
1422
1423 cur_clone_root = NULL;
1424 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1425 if (sctx->clone_roots[i].found_refs) {
1426 if (!cur_clone_root)
1427 cur_clone_root = sctx->clone_roots + i;
1428 else if (sctx->clone_roots[i].root == sctx->send_root)
1429 /* prefer clones from send_root over others */
1430 cur_clone_root = sctx->clone_roots + i;
1431 }
1432
1433 }
1434
1435 if (cur_clone_root) {
1436 if (compressed != BTRFS_COMPRESS_NONE) {
1437 /*
1438 * Offsets given by iterate_extent_inodes() are relative
1439 * to the start of the extent, we need to add logical
1440 * offset from the file extent item.
1441 * (See why at backref.c:check_extent_in_eb())
1442 */
1443 cur_clone_root->offset += btrfs_file_extent_offset(eb,
1444 fi);
1445 }
1446 *found = cur_clone_root;
1447 ret = 0;
1448 } else {
1449 ret = -ENOENT;
1450 }
1451
1452 out:
1453 btrfs_free_path(tmp_path);
1454 kfree(backref_ctx);
1455 return ret;
1456 }
1457
1458 static int read_symlink(struct btrfs_root *root,
1459 u64 ino,
1460 struct fs_path *dest)
1461 {
1462 int ret;
1463 struct btrfs_path *path;
1464 struct btrfs_key key;
1465 struct btrfs_file_extent_item *ei;
1466 u8 type;
1467 u8 compression;
1468 unsigned long off;
1469 int len;
1470
1471 path = alloc_path_for_send();
1472 if (!path)
1473 return -ENOMEM;
1474
1475 key.objectid = ino;
1476 key.type = BTRFS_EXTENT_DATA_KEY;
1477 key.offset = 0;
1478 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1479 if (ret < 0)
1480 goto out;
1481 BUG_ON(ret);
1482
1483 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1484 struct btrfs_file_extent_item);
1485 type = btrfs_file_extent_type(path->nodes[0], ei);
1486 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1487 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1488 BUG_ON(compression);
1489
1490 off = btrfs_file_extent_inline_start(ei);
1491 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1492
1493 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1494
1495 out:
1496 btrfs_free_path(path);
1497 return ret;
1498 }
1499
1500 /*
1501 * Helper function to generate a file name that is unique in the root of
1502 * send_root and parent_root. This is used to generate names for orphan inodes.
1503 */
1504 static int gen_unique_name(struct send_ctx *sctx,
1505 u64 ino, u64 gen,
1506 struct fs_path *dest)
1507 {
1508 int ret = 0;
1509 struct btrfs_path *path;
1510 struct btrfs_dir_item *di;
1511 char tmp[64];
1512 int len;
1513 u64 idx = 0;
1514
1515 path = alloc_path_for_send();
1516 if (!path)
1517 return -ENOMEM;
1518
1519 while (1) {
1520 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1521 ino, gen, idx);
1522 ASSERT(len < sizeof(tmp));
1523
1524 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1525 path, BTRFS_FIRST_FREE_OBJECTID,
1526 tmp, strlen(tmp), 0);
1527 btrfs_release_path(path);
1528 if (IS_ERR(di)) {
1529 ret = PTR_ERR(di);
1530 goto out;
1531 }
1532 if (di) {
1533 /* not unique, try again */
1534 idx++;
1535 continue;
1536 }
1537
1538 if (!sctx->parent_root) {
1539 /* unique */
1540 ret = 0;
1541 break;
1542 }
1543
1544 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1545 path, BTRFS_FIRST_FREE_OBJECTID,
1546 tmp, strlen(tmp), 0);
1547 btrfs_release_path(path);
1548 if (IS_ERR(di)) {
1549 ret = PTR_ERR(di);
1550 goto out;
1551 }
1552 if (di) {
1553 /* not unique, try again */
1554 idx++;
1555 continue;
1556 }
1557 /* unique */
1558 break;
1559 }
1560
1561 ret = fs_path_add(dest, tmp, strlen(tmp));
1562
1563 out:
1564 btrfs_free_path(path);
1565 return ret;
1566 }
1567
1568 enum inode_state {
1569 inode_state_no_change,
1570 inode_state_will_create,
1571 inode_state_did_create,
1572 inode_state_will_delete,
1573 inode_state_did_delete,
1574 };
1575
1576 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1577 {
1578 int ret;
1579 int left_ret;
1580 int right_ret;
1581 u64 left_gen;
1582 u64 right_gen;
1583
1584 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1585 NULL, NULL);
1586 if (ret < 0 && ret != -ENOENT)
1587 goto out;
1588 left_ret = ret;
1589
1590 if (!sctx->parent_root) {
1591 right_ret = -ENOENT;
1592 } else {
1593 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1594 NULL, NULL, NULL, NULL);
1595 if (ret < 0 && ret != -ENOENT)
1596 goto out;
1597 right_ret = ret;
1598 }
1599
1600 if (!left_ret && !right_ret) {
1601 if (left_gen == gen && right_gen == gen) {
1602 ret = inode_state_no_change;
1603 } else if (left_gen == gen) {
1604 if (ino < sctx->send_progress)
1605 ret = inode_state_did_create;
1606 else
1607 ret = inode_state_will_create;
1608 } else if (right_gen == gen) {
1609 if (ino < sctx->send_progress)
1610 ret = inode_state_did_delete;
1611 else
1612 ret = inode_state_will_delete;
1613 } else {
1614 ret = -ENOENT;
1615 }
1616 } else if (!left_ret) {
1617 if (left_gen == gen) {
1618 if (ino < sctx->send_progress)
1619 ret = inode_state_did_create;
1620 else
1621 ret = inode_state_will_create;
1622 } else {
1623 ret = -ENOENT;
1624 }
1625 } else if (!right_ret) {
1626 if (right_gen == gen) {
1627 if (ino < sctx->send_progress)
1628 ret = inode_state_did_delete;
1629 else
1630 ret = inode_state_will_delete;
1631 } else {
1632 ret = -ENOENT;
1633 }
1634 } else {
1635 ret = -ENOENT;
1636 }
1637
1638 out:
1639 return ret;
1640 }
1641
1642 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1643 {
1644 int ret;
1645
1646 ret = get_cur_inode_state(sctx, ino, gen);
1647 if (ret < 0)
1648 goto out;
1649
1650 if (ret == inode_state_no_change ||
1651 ret == inode_state_did_create ||
1652 ret == inode_state_will_delete)
1653 ret = 1;
1654 else
1655 ret = 0;
1656
1657 out:
1658 return ret;
1659 }
1660
1661 /*
1662 * Helper function to lookup a dir item in a dir.
1663 */
1664 static int lookup_dir_item_inode(struct btrfs_root *root,
1665 u64 dir, const char *name, int name_len,
1666 u64 *found_inode,
1667 u8 *found_type)
1668 {
1669 int ret = 0;
1670 struct btrfs_dir_item *di;
1671 struct btrfs_key key;
1672 struct btrfs_path *path;
1673
1674 path = alloc_path_for_send();
1675 if (!path)
1676 return -ENOMEM;
1677
1678 di = btrfs_lookup_dir_item(NULL, root, path,
1679 dir, name, name_len, 0);
1680 if (!di) {
1681 ret = -ENOENT;
1682 goto out;
1683 }
1684 if (IS_ERR(di)) {
1685 ret = PTR_ERR(di);
1686 goto out;
1687 }
1688 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1689 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1690 ret = -ENOENT;
1691 goto out;
1692 }
1693 *found_inode = key.objectid;
1694 *found_type = btrfs_dir_type(path->nodes[0], di);
1695
1696 out:
1697 btrfs_free_path(path);
1698 return ret;
1699 }
1700
1701 /*
1702 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1703 * generation of the parent dir and the name of the dir entry.
1704 */
1705 static int get_first_ref(struct btrfs_root *root, u64 ino,
1706 u64 *dir, u64 *dir_gen, struct fs_path *name)
1707 {
1708 int ret;
1709 struct btrfs_key key;
1710 struct btrfs_key found_key;
1711 struct btrfs_path *path;
1712 int len;
1713 u64 parent_dir;
1714
1715 path = alloc_path_for_send();
1716 if (!path)
1717 return -ENOMEM;
1718
1719 key.objectid = ino;
1720 key.type = BTRFS_INODE_REF_KEY;
1721 key.offset = 0;
1722
1723 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1724 if (ret < 0)
1725 goto out;
1726 if (!ret)
1727 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1728 path->slots[0]);
1729 if (ret || found_key.objectid != ino ||
1730 (found_key.type != BTRFS_INODE_REF_KEY &&
1731 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1732 ret = -ENOENT;
1733 goto out;
1734 }
1735
1736 if (found_key.type == BTRFS_INODE_REF_KEY) {
1737 struct btrfs_inode_ref *iref;
1738 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1739 struct btrfs_inode_ref);
1740 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1741 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1742 (unsigned long)(iref + 1),
1743 len);
1744 parent_dir = found_key.offset;
1745 } else {
1746 struct btrfs_inode_extref *extref;
1747 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1748 struct btrfs_inode_extref);
1749 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1750 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1751 (unsigned long)&extref->name, len);
1752 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1753 }
1754 if (ret < 0)
1755 goto out;
1756 btrfs_release_path(path);
1757
1758 if (dir_gen) {
1759 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1760 NULL, NULL, NULL);
1761 if (ret < 0)
1762 goto out;
1763 }
1764
1765 *dir = parent_dir;
1766
1767 out:
1768 btrfs_free_path(path);
1769 return ret;
1770 }
1771
1772 static int is_first_ref(struct btrfs_root *root,
1773 u64 ino, u64 dir,
1774 const char *name, int name_len)
1775 {
1776 int ret;
1777 struct fs_path *tmp_name;
1778 u64 tmp_dir;
1779
1780 tmp_name = fs_path_alloc();
1781 if (!tmp_name)
1782 return -ENOMEM;
1783
1784 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1785 if (ret < 0)
1786 goto out;
1787
1788 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1789 ret = 0;
1790 goto out;
1791 }
1792
1793 ret = !memcmp(tmp_name->start, name, name_len);
1794
1795 out:
1796 fs_path_free(tmp_name);
1797 return ret;
1798 }
1799
1800 /*
1801 * Used by process_recorded_refs to determine if a new ref would overwrite an
1802 * already existing ref. In case it detects an overwrite, it returns the
1803 * inode/gen in who_ino/who_gen.
1804 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1805 * to make sure later references to the overwritten inode are possible.
1806 * Orphanizing is however only required for the first ref of an inode.
1807 * process_recorded_refs does an additional is_first_ref check to see if
1808 * orphanizing is really required.
1809 */
1810 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1811 const char *name, int name_len,
1812 u64 *who_ino, u64 *who_gen)
1813 {
1814 int ret = 0;
1815 u64 gen;
1816 u64 other_inode = 0;
1817 u8 other_type = 0;
1818
1819 if (!sctx->parent_root)
1820 goto out;
1821
1822 ret = is_inode_existent(sctx, dir, dir_gen);
1823 if (ret <= 0)
1824 goto out;
1825
1826 /*
1827 * If we have a parent root we need to verify that the parent dir was
1828 * not delted and then re-created, if it was then we have no overwrite
1829 * and we can just unlink this entry.
1830 */
1831 if (sctx->parent_root) {
1832 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1833 NULL, NULL, NULL);
1834 if (ret < 0 && ret != -ENOENT)
1835 goto out;
1836 if (ret) {
1837 ret = 0;
1838 goto out;
1839 }
1840 if (gen != dir_gen)
1841 goto out;
1842 }
1843
1844 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1845 &other_inode, &other_type);
1846 if (ret < 0 && ret != -ENOENT)
1847 goto out;
1848 if (ret) {
1849 ret = 0;
1850 goto out;
1851 }
1852
1853 /*
1854 * Check if the overwritten ref was already processed. If yes, the ref
1855 * was already unlinked/moved, so we can safely assume that we will not
1856 * overwrite anything at this point in time.
1857 */
1858 if (other_inode > sctx->send_progress) {
1859 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1860 who_gen, NULL, NULL, NULL, NULL);
1861 if (ret < 0)
1862 goto out;
1863
1864 ret = 1;
1865 *who_ino = other_inode;
1866 } else {
1867 ret = 0;
1868 }
1869
1870 out:
1871 return ret;
1872 }
1873
1874 /*
1875 * Checks if the ref was overwritten by an already processed inode. This is
1876 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1877 * thus the orphan name needs be used.
1878 * process_recorded_refs also uses it to avoid unlinking of refs that were
1879 * overwritten.
1880 */
1881 static int did_overwrite_ref(struct send_ctx *sctx,
1882 u64 dir, u64 dir_gen,
1883 u64 ino, u64 ino_gen,
1884 const char *name, int name_len)
1885 {
1886 int ret = 0;
1887 u64 gen;
1888 u64 ow_inode;
1889 u8 other_type;
1890
1891 if (!sctx->parent_root)
1892 goto out;
1893
1894 ret = is_inode_existent(sctx, dir, dir_gen);
1895 if (ret <= 0)
1896 goto out;
1897
1898 /* check if the ref was overwritten by another ref */
1899 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1900 &ow_inode, &other_type);
1901 if (ret < 0 && ret != -ENOENT)
1902 goto out;
1903 if (ret) {
1904 /* was never and will never be overwritten */
1905 ret = 0;
1906 goto out;
1907 }
1908
1909 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1910 NULL, NULL);
1911 if (ret < 0)
1912 goto out;
1913
1914 if (ow_inode == ino && gen == ino_gen) {
1915 ret = 0;
1916 goto out;
1917 }
1918
1919 /* we know that it is or will be overwritten. check this now */
1920 if (ow_inode < sctx->send_progress)
1921 ret = 1;
1922 else
1923 ret = 0;
1924
1925 out:
1926 return ret;
1927 }
1928
1929 /*
1930 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1931 * that got overwritten. This is used by process_recorded_refs to determine
1932 * if it has to use the path as returned by get_cur_path or the orphan name.
1933 */
1934 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1935 {
1936 int ret = 0;
1937 struct fs_path *name = NULL;
1938 u64 dir;
1939 u64 dir_gen;
1940
1941 if (!sctx->parent_root)
1942 goto out;
1943
1944 name = fs_path_alloc();
1945 if (!name)
1946 return -ENOMEM;
1947
1948 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1949 if (ret < 0)
1950 goto out;
1951
1952 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1953 name->start, fs_path_len(name));
1954
1955 out:
1956 fs_path_free(name);
1957 return ret;
1958 }
1959
1960 /*
1961 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1962 * so we need to do some special handling in case we have clashes. This function
1963 * takes care of this with the help of name_cache_entry::radix_list.
1964 * In case of error, nce is kfreed.
1965 */
1966 static int name_cache_insert(struct send_ctx *sctx,
1967 struct name_cache_entry *nce)
1968 {
1969 int ret = 0;
1970 struct list_head *nce_head;
1971
1972 nce_head = radix_tree_lookup(&sctx->name_cache,
1973 (unsigned long)nce->ino);
1974 if (!nce_head) {
1975 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1976 if (!nce_head) {
1977 kfree(nce);
1978 return -ENOMEM;
1979 }
1980 INIT_LIST_HEAD(nce_head);
1981
1982 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1983 if (ret < 0) {
1984 kfree(nce_head);
1985 kfree(nce);
1986 return ret;
1987 }
1988 }
1989 list_add_tail(&nce->radix_list, nce_head);
1990 list_add_tail(&nce->list, &sctx->name_cache_list);
1991 sctx->name_cache_size++;
1992
1993 return ret;
1994 }
1995
1996 static void name_cache_delete(struct send_ctx *sctx,
1997 struct name_cache_entry *nce)
1998 {
1999 struct list_head *nce_head;
2000
2001 nce_head = radix_tree_lookup(&sctx->name_cache,
2002 (unsigned long)nce->ino);
2003 if (!nce_head) {
2004 btrfs_err(sctx->send_root->fs_info,
2005 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2006 nce->ino, sctx->name_cache_size);
2007 }
2008
2009 list_del(&nce->radix_list);
2010 list_del(&nce->list);
2011 sctx->name_cache_size--;
2012
2013 /*
2014 * We may not get to the final release of nce_head if the lookup fails
2015 */
2016 if (nce_head && list_empty(nce_head)) {
2017 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2018 kfree(nce_head);
2019 }
2020 }
2021
2022 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2023 u64 ino, u64 gen)
2024 {
2025 struct list_head *nce_head;
2026 struct name_cache_entry *cur;
2027
2028 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2029 if (!nce_head)
2030 return NULL;
2031
2032 list_for_each_entry(cur, nce_head, radix_list) {
2033 if (cur->ino == ino && cur->gen == gen)
2034 return cur;
2035 }
2036 return NULL;
2037 }
2038
2039 /*
2040 * Removes the entry from the list and adds it back to the end. This marks the
2041 * entry as recently used so that name_cache_clean_unused does not remove it.
2042 */
2043 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2044 {
2045 list_del(&nce->list);
2046 list_add_tail(&nce->list, &sctx->name_cache_list);
2047 }
2048
2049 /*
2050 * Remove some entries from the beginning of name_cache_list.
2051 */
2052 static void name_cache_clean_unused(struct send_ctx *sctx)
2053 {
2054 struct name_cache_entry *nce;
2055
2056 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2057 return;
2058
2059 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2060 nce = list_entry(sctx->name_cache_list.next,
2061 struct name_cache_entry, list);
2062 name_cache_delete(sctx, nce);
2063 kfree(nce);
2064 }
2065 }
2066
2067 static void name_cache_free(struct send_ctx *sctx)
2068 {
2069 struct name_cache_entry *nce;
2070
2071 while (!list_empty(&sctx->name_cache_list)) {
2072 nce = list_entry(sctx->name_cache_list.next,
2073 struct name_cache_entry, list);
2074 name_cache_delete(sctx, nce);
2075 kfree(nce);
2076 }
2077 }
2078
2079 /*
2080 * Used by get_cur_path for each ref up to the root.
2081 * Returns 0 if it succeeded.
2082 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2083 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2084 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2085 * Returns <0 in case of error.
2086 */
2087 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2088 u64 ino, u64 gen,
2089 u64 *parent_ino,
2090 u64 *parent_gen,
2091 struct fs_path *dest)
2092 {
2093 int ret;
2094 int nce_ret;
2095 struct name_cache_entry *nce = NULL;
2096
2097 /*
2098 * First check if we already did a call to this function with the same
2099 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2100 * return the cached result.
2101 */
2102 nce = name_cache_search(sctx, ino, gen);
2103 if (nce) {
2104 if (ino < sctx->send_progress && nce->need_later_update) {
2105 name_cache_delete(sctx, nce);
2106 kfree(nce);
2107 nce = NULL;
2108 } else {
2109 name_cache_used(sctx, nce);
2110 *parent_ino = nce->parent_ino;
2111 *parent_gen = nce->parent_gen;
2112 ret = fs_path_add(dest, nce->name, nce->name_len);
2113 if (ret < 0)
2114 goto out;
2115 ret = nce->ret;
2116 goto out;
2117 }
2118 }
2119
2120 /*
2121 * If the inode is not existent yet, add the orphan name and return 1.
2122 * This should only happen for the parent dir that we determine in
2123 * __record_new_ref
2124 */
2125 ret = is_inode_existent(sctx, ino, gen);
2126 if (ret < 0)
2127 goto out;
2128
2129 if (!ret) {
2130 ret = gen_unique_name(sctx, ino, gen, dest);
2131 if (ret < 0)
2132 goto out;
2133 ret = 1;
2134 goto out_cache;
2135 }
2136
2137 /*
2138 * Depending on whether the inode was already processed or not, use
2139 * send_root or parent_root for ref lookup.
2140 */
2141 if (ino < sctx->send_progress)
2142 ret = get_first_ref(sctx->send_root, ino,
2143 parent_ino, parent_gen, dest);
2144 else
2145 ret = get_first_ref(sctx->parent_root, ino,
2146 parent_ino, parent_gen, dest);
2147 if (ret < 0)
2148 goto out;
2149
2150 /*
2151 * Check if the ref was overwritten by an inode's ref that was processed
2152 * earlier. If yes, treat as orphan and return 1.
2153 */
2154 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2155 dest->start, dest->end - dest->start);
2156 if (ret < 0)
2157 goto out;
2158 if (ret) {
2159 fs_path_reset(dest);
2160 ret = gen_unique_name(sctx, ino, gen, dest);
2161 if (ret < 0)
2162 goto out;
2163 ret = 1;
2164 }
2165
2166 out_cache:
2167 /*
2168 * Store the result of the lookup in the name cache.
2169 */
2170 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2171 if (!nce) {
2172 ret = -ENOMEM;
2173 goto out;
2174 }
2175
2176 nce->ino = ino;
2177 nce->gen = gen;
2178 nce->parent_ino = *parent_ino;
2179 nce->parent_gen = *parent_gen;
2180 nce->name_len = fs_path_len(dest);
2181 nce->ret = ret;
2182 strcpy(nce->name, dest->start);
2183
2184 if (ino < sctx->send_progress)
2185 nce->need_later_update = 0;
2186 else
2187 nce->need_later_update = 1;
2188
2189 nce_ret = name_cache_insert(sctx, nce);
2190 if (nce_ret < 0)
2191 ret = nce_ret;
2192 name_cache_clean_unused(sctx);
2193
2194 out:
2195 return ret;
2196 }
2197
2198 /*
2199 * Magic happens here. This function returns the first ref to an inode as it
2200 * would look like while receiving the stream at this point in time.
2201 * We walk the path up to the root. For every inode in between, we check if it
2202 * was already processed/sent. If yes, we continue with the parent as found
2203 * in send_root. If not, we continue with the parent as found in parent_root.
2204 * If we encounter an inode that was deleted at this point in time, we use the
2205 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2206 * that were not created yet and overwritten inodes/refs.
2207 *
2208 * When do we have have orphan inodes:
2209 * 1. When an inode is freshly created and thus no valid refs are available yet
2210 * 2. When a directory lost all it's refs (deleted) but still has dir items
2211 * inside which were not processed yet (pending for move/delete). If anyone
2212 * tried to get the path to the dir items, it would get a path inside that
2213 * orphan directory.
2214 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2215 * of an unprocessed inode. If in that case the first ref would be
2216 * overwritten, the overwritten inode gets "orphanized". Later when we
2217 * process this overwritten inode, it is restored at a new place by moving
2218 * the orphan inode.
2219 *
2220 * sctx->send_progress tells this function at which point in time receiving
2221 * would be.
2222 */
2223 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2224 struct fs_path *dest)
2225 {
2226 int ret = 0;
2227 struct fs_path *name = NULL;
2228 u64 parent_inode = 0;
2229 u64 parent_gen = 0;
2230 int stop = 0;
2231
2232 name = fs_path_alloc();
2233 if (!name) {
2234 ret = -ENOMEM;
2235 goto out;
2236 }
2237
2238 dest->reversed = 1;
2239 fs_path_reset(dest);
2240
2241 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2242 fs_path_reset(name);
2243
2244 if (is_waiting_for_rm(sctx, ino)) {
2245 ret = gen_unique_name(sctx, ino, gen, name);
2246 if (ret < 0)
2247 goto out;
2248 ret = fs_path_add_path(dest, name);
2249 break;
2250 }
2251
2252 if (is_waiting_for_move(sctx, ino)) {
2253 ret = get_first_ref(sctx->parent_root, ino,
2254 &parent_inode, &parent_gen, name);
2255 } else {
2256 ret = __get_cur_name_and_parent(sctx, ino, gen,
2257 &parent_inode,
2258 &parent_gen, name);
2259 if (ret)
2260 stop = 1;
2261 }
2262
2263 if (ret < 0)
2264 goto out;
2265
2266 ret = fs_path_add_path(dest, name);
2267 if (ret < 0)
2268 goto out;
2269
2270 ino = parent_inode;
2271 gen = parent_gen;
2272 }
2273
2274 out:
2275 fs_path_free(name);
2276 if (!ret)
2277 fs_path_unreverse(dest);
2278 return ret;
2279 }
2280
2281 /*
2282 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2283 */
2284 static int send_subvol_begin(struct send_ctx *sctx)
2285 {
2286 int ret;
2287 struct btrfs_root *send_root = sctx->send_root;
2288 struct btrfs_root *parent_root = sctx->parent_root;
2289 struct btrfs_path *path;
2290 struct btrfs_key key;
2291 struct btrfs_root_ref *ref;
2292 struct extent_buffer *leaf;
2293 char *name = NULL;
2294 int namelen;
2295
2296 path = btrfs_alloc_path();
2297 if (!path)
2298 return -ENOMEM;
2299
2300 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2301 if (!name) {
2302 btrfs_free_path(path);
2303 return -ENOMEM;
2304 }
2305
2306 key.objectid = send_root->objectid;
2307 key.type = BTRFS_ROOT_BACKREF_KEY;
2308 key.offset = 0;
2309
2310 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2311 &key, path, 1, 0);
2312 if (ret < 0)
2313 goto out;
2314 if (ret) {
2315 ret = -ENOENT;
2316 goto out;
2317 }
2318
2319 leaf = path->nodes[0];
2320 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2321 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2322 key.objectid != send_root->objectid) {
2323 ret = -ENOENT;
2324 goto out;
2325 }
2326 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2327 namelen = btrfs_root_ref_name_len(leaf, ref);
2328 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2329 btrfs_release_path(path);
2330
2331 if (parent_root) {
2332 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2333 if (ret < 0)
2334 goto out;
2335 } else {
2336 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2337 if (ret < 0)
2338 goto out;
2339 }
2340
2341 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2342 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2343 sctx->send_root->root_item.uuid);
2344 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2345 le64_to_cpu(sctx->send_root->root_item.ctransid));
2346 if (parent_root) {
2347 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2348 sctx->parent_root->root_item.uuid);
2349 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2350 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2351 }
2352
2353 ret = send_cmd(sctx);
2354
2355 tlv_put_failure:
2356 out:
2357 btrfs_free_path(path);
2358 kfree(name);
2359 return ret;
2360 }
2361
2362 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2363 {
2364 int ret = 0;
2365 struct fs_path *p;
2366
2367 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2368
2369 p = fs_path_alloc();
2370 if (!p)
2371 return -ENOMEM;
2372
2373 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2374 if (ret < 0)
2375 goto out;
2376
2377 ret = get_cur_path(sctx, ino, gen, p);
2378 if (ret < 0)
2379 goto out;
2380 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2381 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2382
2383 ret = send_cmd(sctx);
2384
2385 tlv_put_failure:
2386 out:
2387 fs_path_free(p);
2388 return ret;
2389 }
2390
2391 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2392 {
2393 int ret = 0;
2394 struct fs_path *p;
2395
2396 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2397
2398 p = fs_path_alloc();
2399 if (!p)
2400 return -ENOMEM;
2401
2402 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2403 if (ret < 0)
2404 goto out;
2405
2406 ret = get_cur_path(sctx, ino, gen, p);
2407 if (ret < 0)
2408 goto out;
2409 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2410 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2411
2412 ret = send_cmd(sctx);
2413
2414 tlv_put_failure:
2415 out:
2416 fs_path_free(p);
2417 return ret;
2418 }
2419
2420 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2421 {
2422 int ret = 0;
2423 struct fs_path *p;
2424
2425 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2426
2427 p = fs_path_alloc();
2428 if (!p)
2429 return -ENOMEM;
2430
2431 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2432 if (ret < 0)
2433 goto out;
2434
2435 ret = get_cur_path(sctx, ino, gen, p);
2436 if (ret < 0)
2437 goto out;
2438 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2439 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2440 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2441
2442 ret = send_cmd(sctx);
2443
2444 tlv_put_failure:
2445 out:
2446 fs_path_free(p);
2447 return ret;
2448 }
2449
2450 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2451 {
2452 int ret = 0;
2453 struct fs_path *p = NULL;
2454 struct btrfs_inode_item *ii;
2455 struct btrfs_path *path = NULL;
2456 struct extent_buffer *eb;
2457 struct btrfs_key key;
2458 int slot;
2459
2460 verbose_printk("btrfs: send_utimes %llu\n", ino);
2461
2462 p = fs_path_alloc();
2463 if (!p)
2464 return -ENOMEM;
2465
2466 path = alloc_path_for_send();
2467 if (!path) {
2468 ret = -ENOMEM;
2469 goto out;
2470 }
2471
2472 key.objectid = ino;
2473 key.type = BTRFS_INODE_ITEM_KEY;
2474 key.offset = 0;
2475 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2476 if (ret < 0)
2477 goto out;
2478
2479 eb = path->nodes[0];
2480 slot = path->slots[0];
2481 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2482
2483 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2484 if (ret < 0)
2485 goto out;
2486
2487 ret = get_cur_path(sctx, ino, gen, p);
2488 if (ret < 0)
2489 goto out;
2490 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2491 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2492 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2493 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2494 /* TODO Add otime support when the otime patches get into upstream */
2495
2496 ret = send_cmd(sctx);
2497
2498 tlv_put_failure:
2499 out:
2500 fs_path_free(p);
2501 btrfs_free_path(path);
2502 return ret;
2503 }
2504
2505 /*
2506 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2507 * a valid path yet because we did not process the refs yet. So, the inode
2508 * is created as orphan.
2509 */
2510 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2511 {
2512 int ret = 0;
2513 struct fs_path *p;
2514 int cmd;
2515 u64 gen;
2516 u64 mode;
2517 u64 rdev;
2518
2519 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2520
2521 p = fs_path_alloc();
2522 if (!p)
2523 return -ENOMEM;
2524
2525 if (ino != sctx->cur_ino) {
2526 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2527 NULL, NULL, &rdev);
2528 if (ret < 0)
2529 goto out;
2530 } else {
2531 gen = sctx->cur_inode_gen;
2532 mode = sctx->cur_inode_mode;
2533 rdev = sctx->cur_inode_rdev;
2534 }
2535
2536 if (S_ISREG(mode)) {
2537 cmd = BTRFS_SEND_C_MKFILE;
2538 } else if (S_ISDIR(mode)) {
2539 cmd = BTRFS_SEND_C_MKDIR;
2540 } else if (S_ISLNK(mode)) {
2541 cmd = BTRFS_SEND_C_SYMLINK;
2542 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2543 cmd = BTRFS_SEND_C_MKNOD;
2544 } else if (S_ISFIFO(mode)) {
2545 cmd = BTRFS_SEND_C_MKFIFO;
2546 } else if (S_ISSOCK(mode)) {
2547 cmd = BTRFS_SEND_C_MKSOCK;
2548 } else {
2549 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2550 (int)(mode & S_IFMT));
2551 ret = -ENOTSUPP;
2552 goto out;
2553 }
2554
2555 ret = begin_cmd(sctx, cmd);
2556 if (ret < 0)
2557 goto out;
2558
2559 ret = gen_unique_name(sctx, ino, gen, p);
2560 if (ret < 0)
2561 goto out;
2562
2563 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2564 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2565
2566 if (S_ISLNK(mode)) {
2567 fs_path_reset(p);
2568 ret = read_symlink(sctx->send_root, ino, p);
2569 if (ret < 0)
2570 goto out;
2571 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2572 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2573 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2574 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2575 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2576 }
2577
2578 ret = send_cmd(sctx);
2579 if (ret < 0)
2580 goto out;
2581
2582
2583 tlv_put_failure:
2584 out:
2585 fs_path_free(p);
2586 return ret;
2587 }
2588
2589 /*
2590 * We need some special handling for inodes that get processed before the parent
2591 * directory got created. See process_recorded_refs for details.
2592 * This function does the check if we already created the dir out of order.
2593 */
2594 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2595 {
2596 int ret = 0;
2597 struct btrfs_path *path = NULL;
2598 struct btrfs_key key;
2599 struct btrfs_key found_key;
2600 struct btrfs_key di_key;
2601 struct extent_buffer *eb;
2602 struct btrfs_dir_item *di;
2603 int slot;
2604
2605 path = alloc_path_for_send();
2606 if (!path) {
2607 ret = -ENOMEM;
2608 goto out;
2609 }
2610
2611 key.objectid = dir;
2612 key.type = BTRFS_DIR_INDEX_KEY;
2613 key.offset = 0;
2614 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2615 if (ret < 0)
2616 goto out;
2617
2618 while (1) {
2619 eb = path->nodes[0];
2620 slot = path->slots[0];
2621 if (slot >= btrfs_header_nritems(eb)) {
2622 ret = btrfs_next_leaf(sctx->send_root, path);
2623 if (ret < 0) {
2624 goto out;
2625 } else if (ret > 0) {
2626 ret = 0;
2627 break;
2628 }
2629 continue;
2630 }
2631
2632 btrfs_item_key_to_cpu(eb, &found_key, slot);
2633 if (found_key.objectid != key.objectid ||
2634 found_key.type != key.type) {
2635 ret = 0;
2636 goto out;
2637 }
2638
2639 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2640 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2641
2642 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2643 di_key.objectid < sctx->send_progress) {
2644 ret = 1;
2645 goto out;
2646 }
2647
2648 path->slots[0]++;
2649 }
2650
2651 out:
2652 btrfs_free_path(path);
2653 return ret;
2654 }
2655
2656 /*
2657 * Only creates the inode if it is:
2658 * 1. Not a directory
2659 * 2. Or a directory which was not created already due to out of order
2660 * directories. See did_create_dir and process_recorded_refs for details.
2661 */
2662 static int send_create_inode_if_needed(struct send_ctx *sctx)
2663 {
2664 int ret;
2665
2666 if (S_ISDIR(sctx->cur_inode_mode)) {
2667 ret = did_create_dir(sctx, sctx->cur_ino);
2668 if (ret < 0)
2669 goto out;
2670 if (ret) {
2671 ret = 0;
2672 goto out;
2673 }
2674 }
2675
2676 ret = send_create_inode(sctx, sctx->cur_ino);
2677 if (ret < 0)
2678 goto out;
2679
2680 out:
2681 return ret;
2682 }
2683
2684 struct recorded_ref {
2685 struct list_head list;
2686 char *dir_path;
2687 char *name;
2688 struct fs_path *full_path;
2689 u64 dir;
2690 u64 dir_gen;
2691 int dir_path_len;
2692 int name_len;
2693 };
2694
2695 /*
2696 * We need to process new refs before deleted refs, but compare_tree gives us
2697 * everything mixed. So we first record all refs and later process them.
2698 * This function is a helper to record one ref.
2699 */
2700 static int __record_ref(struct list_head *head, u64 dir,
2701 u64 dir_gen, struct fs_path *path)
2702 {
2703 struct recorded_ref *ref;
2704
2705 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2706 if (!ref)
2707 return -ENOMEM;
2708
2709 ref->dir = dir;
2710 ref->dir_gen = dir_gen;
2711 ref->full_path = path;
2712
2713 ref->name = (char *)kbasename(ref->full_path->start);
2714 ref->name_len = ref->full_path->end - ref->name;
2715 ref->dir_path = ref->full_path->start;
2716 if (ref->name == ref->full_path->start)
2717 ref->dir_path_len = 0;
2718 else
2719 ref->dir_path_len = ref->full_path->end -
2720 ref->full_path->start - 1 - ref->name_len;
2721
2722 list_add_tail(&ref->list, head);
2723 return 0;
2724 }
2725
2726 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2727 {
2728 struct recorded_ref *new;
2729
2730 new = kmalloc(sizeof(*ref), GFP_NOFS);
2731 if (!new)
2732 return -ENOMEM;
2733
2734 new->dir = ref->dir;
2735 new->dir_gen = ref->dir_gen;
2736 new->full_path = NULL;
2737 INIT_LIST_HEAD(&new->list);
2738 list_add_tail(&new->list, list);
2739 return 0;
2740 }
2741
2742 static void __free_recorded_refs(struct list_head *head)
2743 {
2744 struct recorded_ref *cur;
2745
2746 while (!list_empty(head)) {
2747 cur = list_entry(head->next, struct recorded_ref, list);
2748 fs_path_free(cur->full_path);
2749 list_del(&cur->list);
2750 kfree(cur);
2751 }
2752 }
2753
2754 static void free_recorded_refs(struct send_ctx *sctx)
2755 {
2756 __free_recorded_refs(&sctx->new_refs);
2757 __free_recorded_refs(&sctx->deleted_refs);
2758 }
2759
2760 /*
2761 * Renames/moves a file/dir to its orphan name. Used when the first
2762 * ref of an unprocessed inode gets overwritten and for all non empty
2763 * directories.
2764 */
2765 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2766 struct fs_path *path)
2767 {
2768 int ret;
2769 struct fs_path *orphan;
2770
2771 orphan = fs_path_alloc();
2772 if (!orphan)
2773 return -ENOMEM;
2774
2775 ret = gen_unique_name(sctx, ino, gen, orphan);
2776 if (ret < 0)
2777 goto out;
2778
2779 ret = send_rename(sctx, path, orphan);
2780
2781 out:
2782 fs_path_free(orphan);
2783 return ret;
2784 }
2785
2786 static struct orphan_dir_info *
2787 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2788 {
2789 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2790 struct rb_node *parent = NULL;
2791 struct orphan_dir_info *entry, *odi;
2792
2793 odi = kmalloc(sizeof(*odi), GFP_NOFS);
2794 if (!odi)
2795 return ERR_PTR(-ENOMEM);
2796 odi->ino = dir_ino;
2797 odi->gen = 0;
2798
2799 while (*p) {
2800 parent = *p;
2801 entry = rb_entry(parent, struct orphan_dir_info, node);
2802 if (dir_ino < entry->ino) {
2803 p = &(*p)->rb_left;
2804 } else if (dir_ino > entry->ino) {
2805 p = &(*p)->rb_right;
2806 } else {
2807 kfree(odi);
2808 return entry;
2809 }
2810 }
2811
2812 rb_link_node(&odi->node, parent, p);
2813 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2814 return odi;
2815 }
2816
2817 static struct orphan_dir_info *
2818 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2819 {
2820 struct rb_node *n = sctx->orphan_dirs.rb_node;
2821 struct orphan_dir_info *entry;
2822
2823 while (n) {
2824 entry = rb_entry(n, struct orphan_dir_info, node);
2825 if (dir_ino < entry->ino)
2826 n = n->rb_left;
2827 else if (dir_ino > entry->ino)
2828 n = n->rb_right;
2829 else
2830 return entry;
2831 }
2832 return NULL;
2833 }
2834
2835 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2836 {
2837 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2838
2839 return odi != NULL;
2840 }
2841
2842 static void free_orphan_dir_info(struct send_ctx *sctx,
2843 struct orphan_dir_info *odi)
2844 {
2845 if (!odi)
2846 return;
2847 rb_erase(&odi->node, &sctx->orphan_dirs);
2848 kfree(odi);
2849 }
2850
2851 /*
2852 * Returns 1 if a directory can be removed at this point in time.
2853 * We check this by iterating all dir items and checking if the inode behind
2854 * the dir item was already processed.
2855 */
2856 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2857 u64 send_progress)
2858 {
2859 int ret = 0;
2860 struct btrfs_root *root = sctx->parent_root;
2861 struct btrfs_path *path;
2862 struct btrfs_key key;
2863 struct btrfs_key found_key;
2864 struct btrfs_key loc;
2865 struct btrfs_dir_item *di;
2866
2867 /*
2868 * Don't try to rmdir the top/root subvolume dir.
2869 */
2870 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2871 return 0;
2872
2873 path = alloc_path_for_send();
2874 if (!path)
2875 return -ENOMEM;
2876
2877 key.objectid = dir;
2878 key.type = BTRFS_DIR_INDEX_KEY;
2879 key.offset = 0;
2880 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2881 if (ret < 0)
2882 goto out;
2883
2884 while (1) {
2885 struct waiting_dir_move *dm;
2886
2887 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2888 ret = btrfs_next_leaf(root, path);
2889 if (ret < 0)
2890 goto out;
2891 else if (ret > 0)
2892 break;
2893 continue;
2894 }
2895 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2896 path->slots[0]);
2897 if (found_key.objectid != key.objectid ||
2898 found_key.type != key.type)
2899 break;
2900
2901 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2902 struct btrfs_dir_item);
2903 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2904
2905 dm = get_waiting_dir_move(sctx, loc.objectid);
2906 if (dm) {
2907 struct orphan_dir_info *odi;
2908
2909 odi = add_orphan_dir_info(sctx, dir);
2910 if (IS_ERR(odi)) {
2911 ret = PTR_ERR(odi);
2912 goto out;
2913 }
2914 odi->gen = dir_gen;
2915 dm->rmdir_ino = dir;
2916 ret = 0;
2917 goto out;
2918 }
2919
2920 if (loc.objectid > send_progress) {
2921 ret = 0;
2922 goto out;
2923 }
2924
2925 path->slots[0]++;
2926 }
2927
2928 ret = 1;
2929
2930 out:
2931 btrfs_free_path(path);
2932 return ret;
2933 }
2934
2935 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2936 {
2937 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2938
2939 return entry != NULL;
2940 }
2941
2942 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2943 {
2944 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2945 struct rb_node *parent = NULL;
2946 struct waiting_dir_move *entry, *dm;
2947
2948 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2949 if (!dm)
2950 return -ENOMEM;
2951 dm->ino = ino;
2952 dm->rmdir_ino = 0;
2953
2954 while (*p) {
2955 parent = *p;
2956 entry = rb_entry(parent, struct waiting_dir_move, node);
2957 if (ino < entry->ino) {
2958 p = &(*p)->rb_left;
2959 } else if (ino > entry->ino) {
2960 p = &(*p)->rb_right;
2961 } else {
2962 kfree(dm);
2963 return -EEXIST;
2964 }
2965 }
2966
2967 rb_link_node(&dm->node, parent, p);
2968 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2969 return 0;
2970 }
2971
2972 static struct waiting_dir_move *
2973 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2974 {
2975 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2976 struct waiting_dir_move *entry;
2977
2978 while (n) {
2979 entry = rb_entry(n, struct waiting_dir_move, node);
2980 if (ino < entry->ino)
2981 n = n->rb_left;
2982 else if (ino > entry->ino)
2983 n = n->rb_right;
2984 else
2985 return entry;
2986 }
2987 return NULL;
2988 }
2989
2990 static void free_waiting_dir_move(struct send_ctx *sctx,
2991 struct waiting_dir_move *dm)
2992 {
2993 if (!dm)
2994 return;
2995 rb_erase(&dm->node, &sctx->waiting_dir_moves);
2996 kfree(dm);
2997 }
2998
2999 static int add_pending_dir_move(struct send_ctx *sctx,
3000 u64 ino,
3001 u64 ino_gen,
3002 u64 parent_ino,
3003 struct list_head *new_refs,
3004 struct list_head *deleted_refs,
3005 const bool is_orphan)
3006 {
3007 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3008 struct rb_node *parent = NULL;
3009 struct pending_dir_move *entry = NULL, *pm;
3010 struct recorded_ref *cur;
3011 int exists = 0;
3012 int ret;
3013
3014 pm = kmalloc(sizeof(*pm), GFP_NOFS);
3015 if (!pm)
3016 return -ENOMEM;
3017 pm->parent_ino = parent_ino;
3018 pm->ino = ino;
3019 pm->gen = ino_gen;
3020 pm->is_orphan = is_orphan;
3021 INIT_LIST_HEAD(&pm->list);
3022 INIT_LIST_HEAD(&pm->update_refs);
3023 RB_CLEAR_NODE(&pm->node);
3024
3025 while (*p) {
3026 parent = *p;
3027 entry = rb_entry(parent, struct pending_dir_move, node);
3028 if (parent_ino < entry->parent_ino) {
3029 p = &(*p)->rb_left;
3030 } else if (parent_ino > entry->parent_ino) {
3031 p = &(*p)->rb_right;
3032 } else {
3033 exists = 1;
3034 break;
3035 }
3036 }
3037
3038 list_for_each_entry(cur, deleted_refs, list) {
3039 ret = dup_ref(cur, &pm->update_refs);
3040 if (ret < 0)
3041 goto out;
3042 }
3043 list_for_each_entry(cur, new_refs, list) {
3044 ret = dup_ref(cur, &pm->update_refs);
3045 if (ret < 0)
3046 goto out;
3047 }
3048
3049 ret = add_waiting_dir_move(sctx, pm->ino);
3050 if (ret)
3051 goto out;
3052
3053 if (exists) {
3054 list_add_tail(&pm->list, &entry->list);
3055 } else {
3056 rb_link_node(&pm->node, parent, p);
3057 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3058 }
3059 ret = 0;
3060 out:
3061 if (ret) {
3062 __free_recorded_refs(&pm->update_refs);
3063 kfree(pm);
3064 }
3065 return ret;
3066 }
3067
3068 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3069 u64 parent_ino)
3070 {
3071 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3072 struct pending_dir_move *entry;
3073
3074 while (n) {
3075 entry = rb_entry(n, struct pending_dir_move, node);
3076 if (parent_ino < entry->parent_ino)
3077 n = n->rb_left;
3078 else if (parent_ino > entry->parent_ino)
3079 n = n->rb_right;
3080 else
3081 return entry;
3082 }
3083 return NULL;
3084 }
3085
3086 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3087 {
3088 struct fs_path *from_path = NULL;
3089 struct fs_path *to_path = NULL;
3090 struct fs_path *name = NULL;
3091 u64 orig_progress = sctx->send_progress;
3092 struct recorded_ref *cur;
3093 u64 parent_ino, parent_gen;
3094 struct waiting_dir_move *dm = NULL;
3095 u64 rmdir_ino = 0;
3096 int ret;
3097
3098 name = fs_path_alloc();
3099 from_path = fs_path_alloc();
3100 if (!name || !from_path) {
3101 ret = -ENOMEM;
3102 goto out;
3103 }
3104
3105 dm = get_waiting_dir_move(sctx, pm->ino);
3106 ASSERT(dm);
3107 rmdir_ino = dm->rmdir_ino;
3108 free_waiting_dir_move(sctx, dm);
3109
3110 if (pm->is_orphan) {
3111 ret = gen_unique_name(sctx, pm->ino,
3112 pm->gen, from_path);
3113 } else {
3114 ret = get_first_ref(sctx->parent_root, pm->ino,
3115 &parent_ino, &parent_gen, name);
3116 if (ret < 0)
3117 goto out;
3118 ret = get_cur_path(sctx, parent_ino, parent_gen,
3119 from_path);
3120 if (ret < 0)
3121 goto out;
3122 ret = fs_path_add_path(from_path, name);
3123 }
3124 if (ret < 0)
3125 goto out;
3126
3127 sctx->send_progress = sctx->cur_ino + 1;
3128 fs_path_reset(name);
3129 to_path = name;
3130 name = NULL;
3131 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3132 if (ret < 0)
3133 goto out;
3134
3135 ret = send_rename(sctx, from_path, to_path);
3136 if (ret < 0)
3137 goto out;
3138
3139 if (rmdir_ino) {
3140 struct orphan_dir_info *odi;
3141
3142 odi = get_orphan_dir_info(sctx, rmdir_ino);
3143 if (!odi) {
3144 /* already deleted */
3145 goto finish;
3146 }
3147 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3148 if (ret < 0)
3149 goto out;
3150 if (!ret)
3151 goto finish;
3152
3153 name = fs_path_alloc();
3154 if (!name) {
3155 ret = -ENOMEM;
3156 goto out;
3157 }
3158 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3159 if (ret < 0)
3160 goto out;
3161 ret = send_rmdir(sctx, name);
3162 if (ret < 0)
3163 goto out;
3164 free_orphan_dir_info(sctx, odi);
3165 }
3166
3167 finish:
3168 ret = send_utimes(sctx, pm->ino, pm->gen);
3169 if (ret < 0)
3170 goto out;
3171
3172 /*
3173 * After rename/move, need to update the utimes of both new parent(s)
3174 * and old parent(s).
3175 */
3176 list_for_each_entry(cur, &pm->update_refs, list) {
3177 if (cur->dir == rmdir_ino)
3178 continue;
3179 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3180 if (ret < 0)
3181 goto out;
3182 }
3183
3184 out:
3185 fs_path_free(name);
3186 fs_path_free(from_path);
3187 fs_path_free(to_path);
3188 sctx->send_progress = orig_progress;
3189
3190 return ret;
3191 }
3192
3193 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3194 {
3195 if (!list_empty(&m->list))
3196 list_del(&m->list);
3197 if (!RB_EMPTY_NODE(&m->node))
3198 rb_erase(&m->node, &sctx->pending_dir_moves);
3199 __free_recorded_refs(&m->update_refs);
3200 kfree(m);
3201 }
3202
3203 static void tail_append_pending_moves(struct pending_dir_move *moves,
3204 struct list_head *stack)
3205 {
3206 if (list_empty(&moves->list)) {
3207 list_add_tail(&moves->list, stack);
3208 } else {
3209 LIST_HEAD(list);
3210 list_splice_init(&moves->list, &list);
3211 list_add_tail(&moves->list, stack);
3212 list_splice_tail(&list, stack);
3213 }
3214 }
3215
3216 static int apply_children_dir_moves(struct send_ctx *sctx)
3217 {
3218 struct pending_dir_move *pm;
3219 struct list_head stack;
3220 u64 parent_ino = sctx->cur_ino;
3221 int ret = 0;
3222
3223 pm = get_pending_dir_moves(sctx, parent_ino);
3224 if (!pm)
3225 return 0;
3226
3227 INIT_LIST_HEAD(&stack);
3228 tail_append_pending_moves(pm, &stack);
3229
3230 while (!list_empty(&stack)) {
3231 pm = list_first_entry(&stack, struct pending_dir_move, list);
3232 parent_ino = pm->ino;
3233 ret = apply_dir_move(sctx, pm);
3234 free_pending_move(sctx, pm);
3235 if (ret)
3236 goto out;
3237 pm = get_pending_dir_moves(sctx, parent_ino);
3238 if (pm)
3239 tail_append_pending_moves(pm, &stack);
3240 }
3241 return 0;
3242
3243 out:
3244 while (!list_empty(&stack)) {
3245 pm = list_first_entry(&stack, struct pending_dir_move, list);
3246 free_pending_move(sctx, pm);
3247 }
3248 return ret;
3249 }
3250
3251 /*
3252 * We might need to delay a directory rename even when no ancestor directory
3253 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3254 * renamed. This happens when we rename a directory to the old name (the name
3255 * in the parent root) of some other unrelated directory that got its rename
3256 * delayed due to some ancestor with higher number that got renamed.
3257 *
3258 * Example:
3259 *
3260 * Parent snapshot:
3261 * . (ino 256)
3262 * |---- a/ (ino 257)
3263 * | |---- file (ino 260)
3264 * |
3265 * |---- b/ (ino 258)
3266 * |---- c/ (ino 259)
3267 *
3268 * Send snapshot:
3269 * . (ino 256)
3270 * |---- a/ (ino 258)
3271 * |---- x/ (ino 259)
3272 * |---- y/ (ino 257)
3273 * |----- file (ino 260)
3274 *
3275 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3276 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3277 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3278 * must issue is:
3279 *
3280 * 1 - rename 259 from 'c' to 'x'
3281 * 2 - rename 257 from 'a' to 'x/y'
3282 * 3 - rename 258 from 'b' to 'a'
3283 *
3284 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3285 * be done right away and < 0 on error.
3286 */
3287 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3288 struct recorded_ref *parent_ref,
3289 const bool is_orphan)
3290 {
3291 struct btrfs_path *path;
3292 struct btrfs_key key;
3293 struct btrfs_key di_key;
3294 struct btrfs_dir_item *di;
3295 u64 left_gen;
3296 u64 right_gen;
3297 int ret = 0;
3298
3299 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3300 return 0;
3301
3302 path = alloc_path_for_send();
3303 if (!path)
3304 return -ENOMEM;
3305
3306 key.objectid = parent_ref->dir;
3307 key.type = BTRFS_DIR_ITEM_KEY;
3308 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3309
3310 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3311 if (ret < 0) {
3312 goto out;
3313 } else if (ret > 0) {
3314 ret = 0;
3315 goto out;
3316 }
3317
3318 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3319 parent_ref->name, parent_ref->name_len);
3320 if (!di) {
3321 ret = 0;
3322 goto out;
3323 }
3324 /*
3325 * di_key.objectid has the number of the inode that has a dentry in the
3326 * parent directory with the same name that sctx->cur_ino is being
3327 * renamed to. We need to check if that inode is in the send root as
3328 * well and if it is currently marked as an inode with a pending rename,
3329 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3330 * that it happens after that other inode is renamed.
3331 */
3332 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3333 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3334 ret = 0;
3335 goto out;
3336 }
3337
3338 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3339 &left_gen, NULL, NULL, NULL, NULL);
3340 if (ret < 0)
3341 goto out;
3342 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3343 &right_gen, NULL, NULL, NULL, NULL);
3344 if (ret < 0) {
3345 if (ret == -ENOENT)
3346 ret = 0;
3347 goto out;
3348 }
3349
3350 /* Different inode, no need to delay the rename of sctx->cur_ino */
3351 if (right_gen != left_gen) {
3352 ret = 0;
3353 goto out;
3354 }
3355
3356 if (is_waiting_for_move(sctx, di_key.objectid)) {
3357 ret = add_pending_dir_move(sctx,
3358 sctx->cur_ino,
3359 sctx->cur_inode_gen,
3360 di_key.objectid,
3361 &sctx->new_refs,
3362 &sctx->deleted_refs,
3363 is_orphan);
3364 if (!ret)
3365 ret = 1;
3366 }
3367 out:
3368 btrfs_free_path(path);
3369 return ret;
3370 }
3371
3372 static int wait_for_parent_move(struct send_ctx *sctx,
3373 struct recorded_ref *parent_ref)
3374 {
3375 int ret = 0;
3376 u64 ino = parent_ref->dir;
3377 u64 parent_ino_before, parent_ino_after;
3378 struct fs_path *path_before = NULL;
3379 struct fs_path *path_after = NULL;
3380 int len1, len2;
3381
3382 path_after = fs_path_alloc();
3383 path_before = fs_path_alloc();
3384 if (!path_after || !path_before) {
3385 ret = -ENOMEM;
3386 goto out;
3387 }
3388
3389 /*
3390 * Our current directory inode may not yet be renamed/moved because some
3391 * ancestor (immediate or not) has to be renamed/moved first. So find if
3392 * such ancestor exists and make sure our own rename/move happens after
3393 * that ancestor is processed.
3394 */
3395 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3396 if (is_waiting_for_move(sctx, ino)) {
3397 ret = 1;
3398 break;
3399 }
3400
3401 fs_path_reset(path_before);
3402 fs_path_reset(path_after);
3403
3404 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3405 NULL, path_after);
3406 if (ret < 0)
3407 goto out;
3408 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3409 NULL, path_before);
3410 if (ret < 0 && ret != -ENOENT) {
3411 goto out;
3412 } else if (ret == -ENOENT) {
3413 ret = 0;
3414 break;
3415 }
3416
3417 len1 = fs_path_len(path_before);
3418 len2 = fs_path_len(path_after);
3419 if (ino > sctx->cur_ino &&
3420 (parent_ino_before != parent_ino_after || len1 != len2 ||
3421 memcmp(path_before->start, path_after->start, len1))) {
3422 ret = 1;
3423 break;
3424 }
3425 ino = parent_ino_after;
3426 }
3427
3428 out:
3429 fs_path_free(path_before);
3430 fs_path_free(path_after);
3431
3432 if (ret == 1) {
3433 ret = add_pending_dir_move(sctx,
3434 sctx->cur_ino,
3435 sctx->cur_inode_gen,
3436 ino,
3437 &sctx->new_refs,
3438 &sctx->deleted_refs,
3439 false);
3440 if (!ret)
3441 ret = 1;
3442 }
3443
3444 return ret;
3445 }
3446
3447 /*
3448 * This does all the move/link/unlink/rmdir magic.
3449 */
3450 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3451 {
3452 int ret = 0;
3453 struct recorded_ref *cur;
3454 struct recorded_ref *cur2;
3455 struct list_head check_dirs;
3456 struct fs_path *valid_path = NULL;
3457 u64 ow_inode = 0;
3458 u64 ow_gen;
3459 int did_overwrite = 0;
3460 int is_orphan = 0;
3461 u64 last_dir_ino_rm = 0;
3462 bool can_rename = true;
3463
3464 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3465
3466 /*
3467 * This should never happen as the root dir always has the same ref
3468 * which is always '..'
3469 */
3470 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3471 INIT_LIST_HEAD(&check_dirs);
3472
3473 valid_path = fs_path_alloc();
3474 if (!valid_path) {
3475 ret = -ENOMEM;
3476 goto out;
3477 }
3478
3479 /*
3480 * First, check if the first ref of the current inode was overwritten
3481 * before. If yes, we know that the current inode was already orphanized
3482 * and thus use the orphan name. If not, we can use get_cur_path to
3483 * get the path of the first ref as it would like while receiving at
3484 * this point in time.
3485 * New inodes are always orphan at the beginning, so force to use the
3486 * orphan name in this case.
3487 * The first ref is stored in valid_path and will be updated if it
3488 * gets moved around.
3489 */
3490 if (!sctx->cur_inode_new) {
3491 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3492 sctx->cur_inode_gen);
3493 if (ret < 0)
3494 goto out;
3495 if (ret)
3496 did_overwrite = 1;
3497 }
3498 if (sctx->cur_inode_new || did_overwrite) {
3499 ret = gen_unique_name(sctx, sctx->cur_ino,
3500 sctx->cur_inode_gen, valid_path);
3501 if (ret < 0)
3502 goto out;
3503 is_orphan = 1;
3504 } else {
3505 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3506 valid_path);
3507 if (ret < 0)
3508 goto out;
3509 }
3510
3511 list_for_each_entry(cur, &sctx->new_refs, list) {
3512 /*
3513 * We may have refs where the parent directory does not exist
3514 * yet. This happens if the parent directories inum is higher
3515 * the the current inum. To handle this case, we create the
3516 * parent directory out of order. But we need to check if this
3517 * did already happen before due to other refs in the same dir.
3518 */
3519 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3520 if (ret < 0)
3521 goto out;
3522 if (ret == inode_state_will_create) {
3523 ret = 0;
3524 /*
3525 * First check if any of the current inodes refs did
3526 * already create the dir.
3527 */
3528 list_for_each_entry(cur2, &sctx->new_refs, list) {
3529 if (cur == cur2)
3530 break;
3531 if (cur2->dir == cur->dir) {
3532 ret = 1;
3533 break;
3534 }
3535 }
3536
3537 /*
3538 * If that did not happen, check if a previous inode
3539 * did already create the dir.
3540 */
3541 if (!ret)
3542 ret = did_create_dir(sctx, cur->dir);
3543 if (ret < 0)
3544 goto out;
3545 if (!ret) {
3546 ret = send_create_inode(sctx, cur->dir);
3547 if (ret < 0)
3548 goto out;
3549 }
3550 }
3551
3552 /*
3553 * Check if this new ref would overwrite the first ref of
3554 * another unprocessed inode. If yes, orphanize the
3555 * overwritten inode. If we find an overwritten ref that is
3556 * not the first ref, simply unlink it.
3557 */
3558 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3559 cur->name, cur->name_len,
3560 &ow_inode, &ow_gen);
3561 if (ret < 0)
3562 goto out;
3563 if (ret) {
3564 ret = is_first_ref(sctx->parent_root,
3565 ow_inode, cur->dir, cur->name,
3566 cur->name_len);
3567 if (ret < 0)
3568 goto out;
3569 if (ret) {
3570 struct name_cache_entry *nce;
3571
3572 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3573 cur->full_path);
3574 if (ret < 0)
3575 goto out;
3576 /*
3577 * Make sure we clear our orphanized inode's
3578 * name from the name cache. This is because the
3579 * inode ow_inode might be an ancestor of some
3580 * other inode that will be orphanized as well
3581 * later and has an inode number greater than
3582 * sctx->send_progress. We need to prevent
3583 * future name lookups from using the old name
3584 * and get instead the orphan name.
3585 */
3586 nce = name_cache_search(sctx, ow_inode, ow_gen);
3587 if (nce) {
3588 name_cache_delete(sctx, nce);
3589 kfree(nce);
3590 }
3591 } else {
3592 ret = send_unlink(sctx, cur->full_path);
3593 if (ret < 0)
3594 goto out;
3595 }
3596 }
3597
3598 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3599 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3600 if (ret < 0)
3601 goto out;
3602 if (ret == 1) {
3603 can_rename = false;
3604 *pending_move = 1;
3605 }
3606 }
3607
3608 /*
3609 * link/move the ref to the new place. If we have an orphan
3610 * inode, move it and update valid_path. If not, link or move
3611 * it depending on the inode mode.
3612 */
3613 if (is_orphan && can_rename) {
3614 ret = send_rename(sctx, valid_path, cur->full_path);
3615 if (ret < 0)
3616 goto out;
3617 is_orphan = 0;
3618 ret = fs_path_copy(valid_path, cur->full_path);
3619 if (ret < 0)
3620 goto out;
3621 } else if (can_rename) {
3622 if (S_ISDIR(sctx->cur_inode_mode)) {
3623 /*
3624 * Dirs can't be linked, so move it. For moved
3625 * dirs, we always have one new and one deleted
3626 * ref. The deleted ref is ignored later.
3627 */
3628 ret = wait_for_parent_move(sctx, cur);
3629 if (ret < 0)
3630 goto out;
3631 if (ret) {
3632 *pending_move = 1;
3633 } else {
3634 ret = send_rename(sctx, valid_path,
3635 cur->full_path);
3636 if (!ret)
3637 ret = fs_path_copy(valid_path,
3638 cur->full_path);
3639 }
3640 if (ret < 0)
3641 goto out;
3642 } else {
3643 ret = send_link(sctx, cur->full_path,
3644 valid_path);
3645 if (ret < 0)
3646 goto out;
3647 }
3648 }
3649 ret = dup_ref(cur, &check_dirs);
3650 if (ret < 0)
3651 goto out;
3652 }
3653
3654 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3655 /*
3656 * Check if we can already rmdir the directory. If not,
3657 * orphanize it. For every dir item inside that gets deleted
3658 * later, we do this check again and rmdir it then if possible.
3659 * See the use of check_dirs for more details.
3660 */
3661 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3662 sctx->cur_ino);
3663 if (ret < 0)
3664 goto out;
3665 if (ret) {
3666 ret = send_rmdir(sctx, valid_path);
3667 if (ret < 0)
3668 goto out;
3669 } else if (!is_orphan) {
3670 ret = orphanize_inode(sctx, sctx->cur_ino,
3671 sctx->cur_inode_gen, valid_path);
3672 if (ret < 0)
3673 goto out;
3674 is_orphan = 1;
3675 }
3676
3677 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3678 ret = dup_ref(cur, &check_dirs);
3679 if (ret < 0)
3680 goto out;
3681 }
3682 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3683 !list_empty(&sctx->deleted_refs)) {
3684 /*
3685 * We have a moved dir. Add the old parent to check_dirs
3686 */
3687 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3688 list);
3689 ret = dup_ref(cur, &check_dirs);
3690 if (ret < 0)
3691 goto out;
3692 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3693 /*
3694 * We have a non dir inode. Go through all deleted refs and
3695 * unlink them if they were not already overwritten by other
3696 * inodes.
3697 */
3698 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3699 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3700 sctx->cur_ino, sctx->cur_inode_gen,
3701 cur->name, cur->name_len);
3702 if (ret < 0)
3703 goto out;
3704 if (!ret) {
3705 ret = send_unlink(sctx, cur->full_path);
3706 if (ret < 0)
3707 goto out;
3708 }
3709 ret = dup_ref(cur, &check_dirs);
3710 if (ret < 0)
3711 goto out;
3712 }
3713 /*
3714 * If the inode is still orphan, unlink the orphan. This may
3715 * happen when a previous inode did overwrite the first ref
3716 * of this inode and no new refs were added for the current
3717 * inode. Unlinking does not mean that the inode is deleted in
3718 * all cases. There may still be links to this inode in other
3719 * places.
3720 */
3721 if (is_orphan) {
3722 ret = send_unlink(sctx, valid_path);
3723 if (ret < 0)
3724 goto out;
3725 }
3726 }
3727
3728 /*
3729 * We did collect all parent dirs where cur_inode was once located. We
3730 * now go through all these dirs and check if they are pending for
3731 * deletion and if it's finally possible to perform the rmdir now.
3732 * We also update the inode stats of the parent dirs here.
3733 */
3734 list_for_each_entry(cur, &check_dirs, list) {
3735 /*
3736 * In case we had refs into dirs that were not processed yet,
3737 * we don't need to do the utime and rmdir logic for these dirs.
3738 * The dir will be processed later.
3739 */
3740 if (cur->dir > sctx->cur_ino)
3741 continue;
3742
3743 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3744 if (ret < 0)
3745 goto out;
3746
3747 if (ret == inode_state_did_create ||
3748 ret == inode_state_no_change) {
3749 /* TODO delayed utimes */
3750 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3751 if (ret < 0)
3752 goto out;
3753 } else if (ret == inode_state_did_delete &&
3754 cur->dir != last_dir_ino_rm) {
3755 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3756 sctx->cur_ino);
3757 if (ret < 0)
3758 goto out;
3759 if (ret) {
3760 ret = get_cur_path(sctx, cur->dir,
3761 cur->dir_gen, valid_path);
3762 if (ret < 0)
3763 goto out;
3764 ret = send_rmdir(sctx, valid_path);
3765 if (ret < 0)
3766 goto out;
3767 last_dir_ino_rm = cur->dir;
3768 }
3769 }
3770 }
3771
3772 ret = 0;
3773
3774 out:
3775 __free_recorded_refs(&check_dirs);
3776 free_recorded_refs(sctx);
3777 fs_path_free(valid_path);
3778 return ret;
3779 }
3780
3781 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3782 struct fs_path *name, void *ctx, struct list_head *refs)
3783 {
3784 int ret = 0;
3785 struct send_ctx *sctx = ctx;
3786 struct fs_path *p;
3787 u64 gen;
3788
3789 p = fs_path_alloc();
3790 if (!p)
3791 return -ENOMEM;
3792
3793 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3794 NULL, NULL);
3795 if (ret < 0)
3796 goto out;
3797
3798 ret = get_cur_path(sctx, dir, gen, p);
3799 if (ret < 0)
3800 goto out;
3801 ret = fs_path_add_path(p, name);
3802 if (ret < 0)
3803 goto out;
3804
3805 ret = __record_ref(refs, dir, gen, p);
3806
3807 out:
3808 if (ret)
3809 fs_path_free(p);
3810 return ret;
3811 }
3812
3813 static int __record_new_ref(int num, u64 dir, int index,
3814 struct fs_path *name,
3815 void *ctx)
3816 {
3817 struct send_ctx *sctx = ctx;
3818 return record_ref(sctx->send_root, num, dir, index, name,
3819 ctx, &sctx->new_refs);
3820 }
3821
3822
3823 static int __record_deleted_ref(int num, u64 dir, int index,
3824 struct fs_path *name,
3825 void *ctx)
3826 {
3827 struct send_ctx *sctx = ctx;
3828 return record_ref(sctx->parent_root, num, dir, index, name,
3829 ctx, &sctx->deleted_refs);
3830 }
3831
3832 static int record_new_ref(struct send_ctx *sctx)
3833 {
3834 int ret;
3835
3836 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3837 sctx->cmp_key, 0, __record_new_ref, sctx);
3838 if (ret < 0)
3839 goto out;
3840 ret = 0;
3841
3842 out:
3843 return ret;
3844 }
3845
3846 static int record_deleted_ref(struct send_ctx *sctx)
3847 {
3848 int ret;
3849
3850 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3851 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3852 if (ret < 0)
3853 goto out;
3854 ret = 0;
3855
3856 out:
3857 return ret;
3858 }
3859
3860 struct find_ref_ctx {
3861 u64 dir;
3862 u64 dir_gen;
3863 struct btrfs_root *root;
3864 struct fs_path *name;
3865 int found_idx;
3866 };
3867
3868 static int __find_iref(int num, u64 dir, int index,
3869 struct fs_path *name,
3870 void *ctx_)
3871 {
3872 struct find_ref_ctx *ctx = ctx_;
3873 u64 dir_gen;
3874 int ret;
3875
3876 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3877 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3878 /*
3879 * To avoid doing extra lookups we'll only do this if everything
3880 * else matches.
3881 */
3882 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3883 NULL, NULL, NULL);
3884 if (ret)
3885 return ret;
3886 if (dir_gen != ctx->dir_gen)
3887 return 0;
3888 ctx->found_idx = num;
3889 return 1;
3890 }
3891 return 0;
3892 }
3893
3894 static int find_iref(struct btrfs_root *root,
3895 struct btrfs_path *path,
3896 struct btrfs_key *key,
3897 u64 dir, u64 dir_gen, struct fs_path *name)
3898 {
3899 int ret;
3900 struct find_ref_ctx ctx;
3901
3902 ctx.dir = dir;
3903 ctx.name = name;
3904 ctx.dir_gen = dir_gen;
3905 ctx.found_idx = -1;
3906 ctx.root = root;
3907
3908 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3909 if (ret < 0)
3910 return ret;
3911
3912 if (ctx.found_idx == -1)
3913 return -ENOENT;
3914
3915 return ctx.found_idx;
3916 }
3917
3918 static int __record_changed_new_ref(int num, u64 dir, int index,
3919 struct fs_path *name,
3920 void *ctx)
3921 {
3922 u64 dir_gen;
3923 int ret;
3924 struct send_ctx *sctx = ctx;
3925
3926 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3927 NULL, NULL, NULL);
3928 if (ret)
3929 return ret;
3930
3931 ret = find_iref(sctx->parent_root, sctx->right_path,
3932 sctx->cmp_key, dir, dir_gen, name);
3933 if (ret == -ENOENT)
3934 ret = __record_new_ref(num, dir, index, name, sctx);
3935 else if (ret > 0)
3936 ret = 0;
3937
3938 return ret;
3939 }
3940
3941 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3942 struct fs_path *name,
3943 void *ctx)
3944 {
3945 u64 dir_gen;
3946 int ret;
3947 struct send_ctx *sctx = ctx;
3948
3949 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3950 NULL, NULL, NULL);
3951 if (ret)
3952 return ret;
3953
3954 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3955 dir, dir_gen, name);
3956 if (ret == -ENOENT)
3957 ret = __record_deleted_ref(num, dir, index, name, sctx);
3958 else if (ret > 0)
3959 ret = 0;
3960
3961 return ret;
3962 }
3963
3964 static int record_changed_ref(struct send_ctx *sctx)
3965 {
3966 int ret = 0;
3967
3968 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3969 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3970 if (ret < 0)
3971 goto out;
3972 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3973 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3974 if (ret < 0)
3975 goto out;
3976 ret = 0;
3977
3978 out:
3979 return ret;
3980 }
3981
3982 /*
3983 * Record and process all refs at once. Needed when an inode changes the
3984 * generation number, which means that it was deleted and recreated.
3985 */
3986 static int process_all_refs(struct send_ctx *sctx,
3987 enum btrfs_compare_tree_result cmd)
3988 {
3989 int ret;
3990 struct btrfs_root *root;
3991 struct btrfs_path *path;
3992 struct btrfs_key key;
3993 struct btrfs_key found_key;
3994 struct extent_buffer *eb;
3995 int slot;
3996 iterate_inode_ref_t cb;
3997 int pending_move = 0;
3998
3999 path = alloc_path_for_send();
4000 if (!path)
4001 return -ENOMEM;
4002
4003 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4004 root = sctx->send_root;
4005 cb = __record_new_ref;
4006 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4007 root = sctx->parent_root;
4008 cb = __record_deleted_ref;
4009 } else {
4010 btrfs_err(sctx->send_root->fs_info,
4011 "Wrong command %d in process_all_refs", cmd);
4012 ret = -EINVAL;
4013 goto out;
4014 }
4015
4016 key.objectid = sctx->cmp_key->objectid;
4017 key.type = BTRFS_INODE_REF_KEY;
4018 key.offset = 0;
4019 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4020 if (ret < 0)
4021 goto out;
4022
4023 while (1) {
4024 eb = path->nodes[0];
4025 slot = path->slots[0];
4026 if (slot >= btrfs_header_nritems(eb)) {
4027 ret = btrfs_next_leaf(root, path);
4028 if (ret < 0)
4029 goto out;
4030 else if (ret > 0)
4031 break;
4032 continue;
4033 }
4034
4035 btrfs_item_key_to_cpu(eb, &found_key, slot);
4036
4037 if (found_key.objectid != key.objectid ||
4038 (found_key.type != BTRFS_INODE_REF_KEY &&
4039 found_key.type != BTRFS_INODE_EXTREF_KEY))
4040 break;
4041
4042 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4043 if (ret < 0)
4044 goto out;
4045
4046 path->slots[0]++;
4047 }
4048 btrfs_release_path(path);
4049
4050 ret = process_recorded_refs(sctx, &pending_move);
4051 /* Only applicable to an incremental send. */
4052 ASSERT(pending_move == 0);
4053
4054 out:
4055 btrfs_free_path(path);
4056 return ret;
4057 }
4058
4059 static int send_set_xattr(struct send_ctx *sctx,
4060 struct fs_path *path,
4061 const char *name, int name_len,
4062 const char *data, int data_len)
4063 {
4064 int ret = 0;
4065
4066 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4067 if (ret < 0)
4068 goto out;
4069
4070 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4071 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4072 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4073
4074 ret = send_cmd(sctx);
4075
4076 tlv_put_failure:
4077 out:
4078 return ret;
4079 }
4080
4081 static int send_remove_xattr(struct send_ctx *sctx,
4082 struct fs_path *path,
4083 const char *name, int name_len)
4084 {
4085 int ret = 0;
4086
4087 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4088 if (ret < 0)
4089 goto out;
4090
4091 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4092 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4093
4094 ret = send_cmd(sctx);
4095
4096 tlv_put_failure:
4097 out:
4098 return ret;
4099 }
4100
4101 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4102 const char *name, int name_len,
4103 const char *data, int data_len,
4104 u8 type, void *ctx)
4105 {
4106 int ret;
4107 struct send_ctx *sctx = ctx;
4108 struct fs_path *p;
4109 posix_acl_xattr_header dummy_acl;
4110
4111 p = fs_path_alloc();
4112 if (!p)
4113 return -ENOMEM;
4114
4115 /*
4116 * This hack is needed because empty acl's are stored as zero byte
4117 * data in xattrs. Problem with that is, that receiving these zero byte
4118 * acl's will fail later. To fix this, we send a dummy acl list that
4119 * only contains the version number and no entries.
4120 */
4121 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4122 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4123 if (data_len == 0) {
4124 dummy_acl.a_version =
4125 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4126 data = (char *)&dummy_acl;
4127 data_len = sizeof(dummy_acl);
4128 }
4129 }
4130
4131 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4132 if (ret < 0)
4133 goto out;
4134
4135 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4136
4137 out:
4138 fs_path_free(p);
4139 return ret;
4140 }
4141
4142 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4143 const char *name, int name_len,
4144 const char *data, int data_len,
4145 u8 type, void *ctx)
4146 {
4147 int ret;
4148 struct send_ctx *sctx = ctx;
4149 struct fs_path *p;
4150
4151 p = fs_path_alloc();
4152 if (!p)
4153 return -ENOMEM;
4154
4155 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4156 if (ret < 0)
4157 goto out;
4158
4159 ret = send_remove_xattr(sctx, p, name, name_len);
4160
4161 out:
4162 fs_path_free(p);
4163 return ret;
4164 }
4165
4166 static int process_new_xattr(struct send_ctx *sctx)
4167 {
4168 int ret = 0;
4169
4170 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4171 sctx->cmp_key, __process_new_xattr, sctx);
4172
4173 return ret;
4174 }
4175
4176 static int process_deleted_xattr(struct send_ctx *sctx)
4177 {
4178 int ret;
4179
4180 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4181 sctx->cmp_key, __process_deleted_xattr, sctx);
4182
4183 return ret;
4184 }
4185
4186 struct find_xattr_ctx {
4187 const char *name;
4188 int name_len;
4189 int found_idx;
4190 char *found_data;
4191 int found_data_len;
4192 };
4193
4194 static int __find_xattr(int num, struct btrfs_key *di_key,
4195 const char *name, int name_len,
4196 const char *data, int data_len,
4197 u8 type, void *vctx)
4198 {
4199 struct find_xattr_ctx *ctx = vctx;
4200
4201 if (name_len == ctx->name_len &&
4202 strncmp(name, ctx->name, name_len) == 0) {
4203 ctx->found_idx = num;
4204 ctx->found_data_len = data_len;
4205 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4206 if (!ctx->found_data)
4207 return -ENOMEM;
4208 return 1;
4209 }
4210 return 0;
4211 }
4212
4213 static int find_xattr(struct btrfs_root *root,
4214 struct btrfs_path *path,
4215 struct btrfs_key *key,
4216 const char *name, int name_len,
4217 char **data, int *data_len)
4218 {
4219 int ret;
4220 struct find_xattr_ctx ctx;
4221
4222 ctx.name = name;
4223 ctx.name_len = name_len;
4224 ctx.found_idx = -1;
4225 ctx.found_data = NULL;
4226 ctx.found_data_len = 0;
4227
4228 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4229 if (ret < 0)
4230 return ret;
4231
4232 if (ctx.found_idx == -1)
4233 return -ENOENT;
4234 if (data) {
4235 *data = ctx.found_data;
4236 *data_len = ctx.found_data_len;
4237 } else {
4238 kfree(ctx.found_data);
4239 }
4240 return ctx.found_idx;
4241 }
4242
4243
4244 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4245 const char *name, int name_len,
4246 const char *data, int data_len,
4247 u8 type, void *ctx)
4248 {
4249 int ret;
4250 struct send_ctx *sctx = ctx;
4251 char *found_data = NULL;
4252 int found_data_len = 0;
4253
4254 ret = find_xattr(sctx->parent_root, sctx->right_path,
4255 sctx->cmp_key, name, name_len, &found_data,
4256 &found_data_len);
4257 if (ret == -ENOENT) {
4258 ret = __process_new_xattr(num, di_key, name, name_len, data,
4259 data_len, type, ctx);
4260 } else if (ret >= 0) {
4261 if (data_len != found_data_len ||
4262 memcmp(data, found_data, data_len)) {
4263 ret = __process_new_xattr(num, di_key, name, name_len,
4264 data, data_len, type, ctx);
4265 } else {
4266 ret = 0;
4267 }
4268 }
4269
4270 kfree(found_data);
4271 return ret;
4272 }
4273
4274 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4275 const char *name, int name_len,
4276 const char *data, int data_len,
4277 u8 type, void *ctx)
4278 {
4279 int ret;
4280 struct send_ctx *sctx = ctx;
4281
4282 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4283 name, name_len, NULL, NULL);
4284 if (ret == -ENOENT)
4285 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4286 data_len, type, ctx);
4287 else if (ret >= 0)
4288 ret = 0;
4289
4290 return ret;
4291 }
4292
4293 static int process_changed_xattr(struct send_ctx *sctx)
4294 {
4295 int ret = 0;
4296
4297 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4298 sctx->cmp_key, __process_changed_new_xattr, sctx);
4299 if (ret < 0)
4300 goto out;
4301 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4302 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4303
4304 out:
4305 return ret;
4306 }
4307
4308 static int process_all_new_xattrs(struct send_ctx *sctx)
4309 {
4310 int ret;
4311 struct btrfs_root *root;
4312 struct btrfs_path *path;
4313 struct btrfs_key key;
4314 struct btrfs_key found_key;
4315 struct extent_buffer *eb;
4316 int slot;
4317
4318 path = alloc_path_for_send();
4319 if (!path)
4320 return -ENOMEM;
4321
4322 root = sctx->send_root;
4323
4324 key.objectid = sctx->cmp_key->objectid;
4325 key.type = BTRFS_XATTR_ITEM_KEY;
4326 key.offset = 0;
4327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4328 if (ret < 0)
4329 goto out;
4330
4331 while (1) {
4332 eb = path->nodes[0];
4333 slot = path->slots[0];
4334 if (slot >= btrfs_header_nritems(eb)) {
4335 ret = btrfs_next_leaf(root, path);
4336 if (ret < 0) {
4337 goto out;
4338 } else if (ret > 0) {
4339 ret = 0;
4340 break;
4341 }
4342 continue;
4343 }
4344
4345 btrfs_item_key_to_cpu(eb, &found_key, slot);
4346 if (found_key.objectid != key.objectid ||
4347 found_key.type != key.type) {
4348 ret = 0;
4349 goto out;
4350 }
4351
4352 ret = iterate_dir_item(root, path, &found_key,
4353 __process_new_xattr, sctx);
4354 if (ret < 0)
4355 goto out;
4356
4357 path->slots[0]++;
4358 }
4359
4360 out:
4361 btrfs_free_path(path);
4362 return ret;
4363 }
4364
4365 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4366 {
4367 struct btrfs_root *root = sctx->send_root;
4368 struct btrfs_fs_info *fs_info = root->fs_info;
4369 struct inode *inode;
4370 struct page *page;
4371 char *addr;
4372 struct btrfs_key key;
4373 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4374 pgoff_t last_index;
4375 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4376 ssize_t ret = 0;
4377
4378 key.objectid = sctx->cur_ino;
4379 key.type = BTRFS_INODE_ITEM_KEY;
4380 key.offset = 0;
4381
4382 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4383 if (IS_ERR(inode))
4384 return PTR_ERR(inode);
4385
4386 if (offset + len > i_size_read(inode)) {
4387 if (offset > i_size_read(inode))
4388 len = 0;
4389 else
4390 len = offset - i_size_read(inode);
4391 }
4392 if (len == 0)
4393 goto out;
4394
4395 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4396
4397 /* initial readahead */
4398 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4399 file_ra_state_init(&sctx->ra, inode->i_mapping);
4400 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4401 last_index - index + 1);
4402
4403 while (index <= last_index) {
4404 unsigned cur_len = min_t(unsigned, len,
4405 PAGE_CACHE_SIZE - pg_offset);
4406 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4407 if (!page) {
4408 ret = -ENOMEM;
4409 break;
4410 }
4411
4412 if (!PageUptodate(page)) {
4413 btrfs_readpage(NULL, page);
4414 lock_page(page);
4415 if (!PageUptodate(page)) {
4416 unlock_page(page);
4417 page_cache_release(page);
4418 ret = -EIO;
4419 break;
4420 }
4421 }
4422
4423 addr = kmap(page);
4424 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4425 kunmap(page);
4426 unlock_page(page);
4427 page_cache_release(page);
4428 index++;
4429 pg_offset = 0;
4430 len -= cur_len;
4431 ret += cur_len;
4432 }
4433 out:
4434 iput(inode);
4435 return ret;
4436 }
4437
4438 /*
4439 * Read some bytes from the current inode/file and send a write command to
4440 * user space.
4441 */
4442 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4443 {
4444 int ret = 0;
4445 struct fs_path *p;
4446 ssize_t num_read = 0;
4447
4448 p = fs_path_alloc();
4449 if (!p)
4450 return -ENOMEM;
4451
4452 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4453
4454 num_read = fill_read_buf(sctx, offset, len);
4455 if (num_read <= 0) {
4456 if (num_read < 0)
4457 ret = num_read;
4458 goto out;
4459 }
4460
4461 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4462 if (ret < 0)
4463 goto out;
4464
4465 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4466 if (ret < 0)
4467 goto out;
4468
4469 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4470 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4471 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4472
4473 ret = send_cmd(sctx);
4474
4475 tlv_put_failure:
4476 out:
4477 fs_path_free(p);
4478 if (ret < 0)
4479 return ret;
4480 return num_read;
4481 }
4482
4483 /*
4484 * Send a clone command to user space.
4485 */
4486 static int send_clone(struct send_ctx *sctx,
4487 u64 offset, u32 len,
4488 struct clone_root *clone_root)
4489 {
4490 int ret = 0;
4491 struct fs_path *p;
4492 u64 gen;
4493
4494 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4495 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4496 clone_root->root->objectid, clone_root->ino,
4497 clone_root->offset);
4498
4499 p = fs_path_alloc();
4500 if (!p)
4501 return -ENOMEM;
4502
4503 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4504 if (ret < 0)
4505 goto out;
4506
4507 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4508 if (ret < 0)
4509 goto out;
4510
4511 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4512 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4513 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4514
4515 if (clone_root->root == sctx->send_root) {
4516 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4517 &gen, NULL, NULL, NULL, NULL);
4518 if (ret < 0)
4519 goto out;
4520 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4521 } else {
4522 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4523 }
4524 if (ret < 0)
4525 goto out;
4526
4527 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4528 clone_root->root->root_item.uuid);
4529 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4530 le64_to_cpu(clone_root->root->root_item.ctransid));
4531 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4532 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4533 clone_root->offset);
4534
4535 ret = send_cmd(sctx);
4536
4537 tlv_put_failure:
4538 out:
4539 fs_path_free(p);
4540 return ret;
4541 }
4542
4543 /*
4544 * Send an update extent command to user space.
4545 */
4546 static int send_update_extent(struct send_ctx *sctx,
4547 u64 offset, u32 len)
4548 {
4549 int ret = 0;
4550 struct fs_path *p;
4551
4552 p = fs_path_alloc();
4553 if (!p)
4554 return -ENOMEM;
4555
4556 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4557 if (ret < 0)
4558 goto out;
4559
4560 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4561 if (ret < 0)
4562 goto out;
4563
4564 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4565 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4566 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4567
4568 ret = send_cmd(sctx);
4569
4570 tlv_put_failure:
4571 out:
4572 fs_path_free(p);
4573 return ret;
4574 }
4575
4576 static int send_hole(struct send_ctx *sctx, u64 end)
4577 {
4578 struct fs_path *p = NULL;
4579 u64 offset = sctx->cur_inode_last_extent;
4580 u64 len;
4581 int ret = 0;
4582
4583 p = fs_path_alloc();
4584 if (!p)
4585 return -ENOMEM;
4586 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4587 if (ret < 0)
4588 goto tlv_put_failure;
4589 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4590 while (offset < end) {
4591 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4592
4593 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4594 if (ret < 0)
4595 break;
4596 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4597 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4598 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4599 ret = send_cmd(sctx);
4600 if (ret < 0)
4601 break;
4602 offset += len;
4603 }
4604 tlv_put_failure:
4605 fs_path_free(p);
4606 return ret;
4607 }
4608
4609 static int send_write_or_clone(struct send_ctx *sctx,
4610 struct btrfs_path *path,
4611 struct btrfs_key *key,
4612 struct clone_root *clone_root)
4613 {
4614 int ret = 0;
4615 struct btrfs_file_extent_item *ei;
4616 u64 offset = key->offset;
4617 u64 pos = 0;
4618 u64 len;
4619 u32 l;
4620 u8 type;
4621 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4622
4623 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4624 struct btrfs_file_extent_item);
4625 type = btrfs_file_extent_type(path->nodes[0], ei);
4626 if (type == BTRFS_FILE_EXTENT_INLINE) {
4627 len = btrfs_file_extent_inline_len(path->nodes[0],
4628 path->slots[0], ei);
4629 /*
4630 * it is possible the inline item won't cover the whole page,
4631 * but there may be items after this page. Make
4632 * sure to send the whole thing
4633 */
4634 len = PAGE_CACHE_ALIGN(len);
4635 } else {
4636 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4637 }
4638
4639 if (offset + len > sctx->cur_inode_size)
4640 len = sctx->cur_inode_size - offset;
4641 if (len == 0) {
4642 ret = 0;
4643 goto out;
4644 }
4645
4646 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4647 ret = send_clone(sctx, offset, len, clone_root);
4648 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4649 ret = send_update_extent(sctx, offset, len);
4650 } else {
4651 while (pos < len) {
4652 l = len - pos;
4653 if (l > BTRFS_SEND_READ_SIZE)
4654 l = BTRFS_SEND_READ_SIZE;
4655 ret = send_write(sctx, pos + offset, l);
4656 if (ret < 0)
4657 goto out;
4658 if (!ret)
4659 break;
4660 pos += ret;
4661 }
4662 ret = 0;
4663 }
4664 out:
4665 return ret;
4666 }
4667
4668 static int is_extent_unchanged(struct send_ctx *sctx,
4669 struct btrfs_path *left_path,
4670 struct btrfs_key *ekey)
4671 {
4672 int ret = 0;
4673 struct btrfs_key key;
4674 struct btrfs_path *path = NULL;
4675 struct extent_buffer *eb;
4676 int slot;
4677 struct btrfs_key found_key;
4678 struct btrfs_file_extent_item *ei;
4679 u64 left_disknr;
4680 u64 right_disknr;
4681 u64 left_offset;
4682 u64 right_offset;
4683 u64 left_offset_fixed;
4684 u64 left_len;
4685 u64 right_len;
4686 u64 left_gen;
4687 u64 right_gen;
4688 u8 left_type;
4689 u8 right_type;
4690
4691 path = alloc_path_for_send();
4692 if (!path)
4693 return -ENOMEM;
4694
4695 eb = left_path->nodes[0];
4696 slot = left_path->slots[0];
4697 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4698 left_type = btrfs_file_extent_type(eb, ei);
4699
4700 if (left_type != BTRFS_FILE_EXTENT_REG) {
4701 ret = 0;
4702 goto out;
4703 }
4704 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4705 left_len = btrfs_file_extent_num_bytes(eb, ei);
4706 left_offset = btrfs_file_extent_offset(eb, ei);
4707 left_gen = btrfs_file_extent_generation(eb, ei);
4708
4709 /*
4710 * Following comments will refer to these graphics. L is the left
4711 * extents which we are checking at the moment. 1-8 are the right
4712 * extents that we iterate.
4713 *
4714 * |-----L-----|
4715 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4716 *
4717 * |-----L-----|
4718 * |--1--|-2b-|...(same as above)
4719 *
4720 * Alternative situation. Happens on files where extents got split.
4721 * |-----L-----|
4722 * |-----------7-----------|-6-|
4723 *
4724 * Alternative situation. Happens on files which got larger.
4725 * |-----L-----|
4726 * |-8-|
4727 * Nothing follows after 8.
4728 */
4729
4730 key.objectid = ekey->objectid;
4731 key.type = BTRFS_EXTENT_DATA_KEY;
4732 key.offset = ekey->offset;
4733 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4734 if (ret < 0)
4735 goto out;
4736 if (ret) {
4737 ret = 0;
4738 goto out;
4739 }
4740
4741 /*
4742 * Handle special case where the right side has no extents at all.
4743 */
4744 eb = path->nodes[0];
4745 slot = path->slots[0];
4746 btrfs_item_key_to_cpu(eb, &found_key, slot);
4747 if (found_key.objectid != key.objectid ||
4748 found_key.type != key.type) {
4749 /* If we're a hole then just pretend nothing changed */
4750 ret = (left_disknr) ? 0 : 1;
4751 goto out;
4752 }
4753
4754 /*
4755 * We're now on 2a, 2b or 7.
4756 */
4757 key = found_key;
4758 while (key.offset < ekey->offset + left_len) {
4759 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4760 right_type = btrfs_file_extent_type(eb, ei);
4761 if (right_type != BTRFS_FILE_EXTENT_REG) {
4762 ret = 0;
4763 goto out;
4764 }
4765
4766 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4767 right_len = btrfs_file_extent_num_bytes(eb, ei);
4768 right_offset = btrfs_file_extent_offset(eb, ei);
4769 right_gen = btrfs_file_extent_generation(eb, ei);
4770
4771 /*
4772 * Are we at extent 8? If yes, we know the extent is changed.
4773 * This may only happen on the first iteration.
4774 */
4775 if (found_key.offset + right_len <= ekey->offset) {
4776 /* If we're a hole just pretend nothing changed */
4777 ret = (left_disknr) ? 0 : 1;
4778 goto out;
4779 }
4780
4781 left_offset_fixed = left_offset;
4782 if (key.offset < ekey->offset) {
4783 /* Fix the right offset for 2a and 7. */
4784 right_offset += ekey->offset - key.offset;
4785 } else {
4786 /* Fix the left offset for all behind 2a and 2b */
4787 left_offset_fixed += key.offset - ekey->offset;
4788 }
4789
4790 /*
4791 * Check if we have the same extent.
4792 */
4793 if (left_disknr != right_disknr ||
4794 left_offset_fixed != right_offset ||
4795 left_gen != right_gen) {
4796 ret = 0;
4797 goto out;
4798 }
4799
4800 /*
4801 * Go to the next extent.
4802 */
4803 ret = btrfs_next_item(sctx->parent_root, path);
4804 if (ret < 0)
4805 goto out;
4806 if (!ret) {
4807 eb = path->nodes[0];
4808 slot = path->slots[0];
4809 btrfs_item_key_to_cpu(eb, &found_key, slot);
4810 }
4811 if (ret || found_key.objectid != key.objectid ||
4812 found_key.type != key.type) {
4813 key.offset += right_len;
4814 break;
4815 }
4816 if (found_key.offset != key.offset + right_len) {
4817 ret = 0;
4818 goto out;
4819 }
4820 key = found_key;
4821 }
4822
4823 /*
4824 * We're now behind the left extent (treat as unchanged) or at the end
4825 * of the right side (treat as changed).
4826 */
4827 if (key.offset >= ekey->offset + left_len)
4828 ret = 1;
4829 else
4830 ret = 0;
4831
4832
4833 out:
4834 btrfs_free_path(path);
4835 return ret;
4836 }
4837
4838 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4839 {
4840 struct btrfs_path *path;
4841 struct btrfs_root *root = sctx->send_root;
4842 struct btrfs_file_extent_item *fi;
4843 struct btrfs_key key;
4844 u64 extent_end;
4845 u8 type;
4846 int ret;
4847
4848 path = alloc_path_for_send();
4849 if (!path)
4850 return -ENOMEM;
4851
4852 sctx->cur_inode_last_extent = 0;
4853
4854 key.objectid = sctx->cur_ino;
4855 key.type = BTRFS_EXTENT_DATA_KEY;
4856 key.offset = offset;
4857 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4858 if (ret < 0)
4859 goto out;
4860 ret = 0;
4861 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4862 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4863 goto out;
4864
4865 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4866 struct btrfs_file_extent_item);
4867 type = btrfs_file_extent_type(path->nodes[0], fi);
4868 if (type == BTRFS_FILE_EXTENT_INLINE) {
4869 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4870 path->slots[0], fi);
4871 extent_end = ALIGN(key.offset + size,
4872 sctx->send_root->sectorsize);
4873 } else {
4874 extent_end = key.offset +
4875 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4876 }
4877 sctx->cur_inode_last_extent = extent_end;
4878 out:
4879 btrfs_free_path(path);
4880 return ret;
4881 }
4882
4883 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4884 struct btrfs_key *key)
4885 {
4886 struct btrfs_file_extent_item *fi;
4887 u64 extent_end;
4888 u8 type;
4889 int ret = 0;
4890
4891 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4892 return 0;
4893
4894 if (sctx->cur_inode_last_extent == (u64)-1) {
4895 ret = get_last_extent(sctx, key->offset - 1);
4896 if (ret)
4897 return ret;
4898 }
4899
4900 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4901 struct btrfs_file_extent_item);
4902 type = btrfs_file_extent_type(path->nodes[0], fi);
4903 if (type == BTRFS_FILE_EXTENT_INLINE) {
4904 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4905 path->slots[0], fi);
4906 extent_end = ALIGN(key->offset + size,
4907 sctx->send_root->sectorsize);
4908 } else {
4909 extent_end = key->offset +
4910 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4911 }
4912
4913 if (path->slots[0] == 0 &&
4914 sctx->cur_inode_last_extent < key->offset) {
4915 /*
4916 * We might have skipped entire leafs that contained only
4917 * file extent items for our current inode. These leafs have
4918 * a generation number smaller (older) than the one in the
4919 * current leaf and the leaf our last extent came from, and
4920 * are located between these 2 leafs.
4921 */
4922 ret = get_last_extent(sctx, key->offset - 1);
4923 if (ret)
4924 return ret;
4925 }
4926
4927 if (sctx->cur_inode_last_extent < key->offset)
4928 ret = send_hole(sctx, key->offset);
4929 sctx->cur_inode_last_extent = extent_end;
4930 return ret;
4931 }
4932
4933 static int process_extent(struct send_ctx *sctx,
4934 struct btrfs_path *path,
4935 struct btrfs_key *key)
4936 {
4937 struct clone_root *found_clone = NULL;
4938 int ret = 0;
4939
4940 if (S_ISLNK(sctx->cur_inode_mode))
4941 return 0;
4942
4943 if (sctx->parent_root && !sctx->cur_inode_new) {
4944 ret = is_extent_unchanged(sctx, path, key);
4945 if (ret < 0)
4946 goto out;
4947 if (ret) {
4948 ret = 0;
4949 goto out_hole;
4950 }
4951 } else {
4952 struct btrfs_file_extent_item *ei;
4953 u8 type;
4954
4955 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4956 struct btrfs_file_extent_item);
4957 type = btrfs_file_extent_type(path->nodes[0], ei);
4958 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4959 type == BTRFS_FILE_EXTENT_REG) {
4960 /*
4961 * The send spec does not have a prealloc command yet,
4962 * so just leave a hole for prealloc'ed extents until
4963 * we have enough commands queued up to justify rev'ing
4964 * the send spec.
4965 */
4966 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4967 ret = 0;
4968 goto out;
4969 }
4970
4971 /* Have a hole, just skip it. */
4972 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4973 ret = 0;
4974 goto out;
4975 }
4976 }
4977 }
4978
4979 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4980 sctx->cur_inode_size, &found_clone);
4981 if (ret != -ENOENT && ret < 0)
4982 goto out;
4983
4984 ret = send_write_or_clone(sctx, path, key, found_clone);
4985 if (ret)
4986 goto out;
4987 out_hole:
4988 ret = maybe_send_hole(sctx, path, key);
4989 out:
4990 return ret;
4991 }
4992
4993 static int process_all_extents(struct send_ctx *sctx)
4994 {
4995 int ret;
4996 struct btrfs_root *root;
4997 struct btrfs_path *path;
4998 struct btrfs_key key;
4999 struct btrfs_key found_key;
5000 struct extent_buffer *eb;
5001 int slot;
5002
5003 root = sctx->send_root;
5004 path = alloc_path_for_send();
5005 if (!path)
5006 return -ENOMEM;
5007
5008 key.objectid = sctx->cmp_key->objectid;
5009 key.type = BTRFS_EXTENT_DATA_KEY;
5010 key.offset = 0;
5011 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5012 if (ret < 0)
5013 goto out;
5014
5015 while (1) {
5016 eb = path->nodes[0];
5017 slot = path->slots[0];
5018
5019 if (slot >= btrfs_header_nritems(eb)) {
5020 ret = btrfs_next_leaf(root, path);
5021 if (ret < 0) {
5022 goto out;
5023 } else if (ret > 0) {
5024 ret = 0;
5025 break;
5026 }
5027 continue;
5028 }
5029
5030 btrfs_item_key_to_cpu(eb, &found_key, slot);
5031
5032 if (found_key.objectid != key.objectid ||
5033 found_key.type != key.type) {
5034 ret = 0;
5035 goto out;
5036 }
5037
5038 ret = process_extent(sctx, path, &found_key);
5039 if (ret < 0)
5040 goto out;
5041
5042 path->slots[0]++;
5043 }
5044
5045 out:
5046 btrfs_free_path(path);
5047 return ret;
5048 }
5049
5050 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5051 int *pending_move,
5052 int *refs_processed)
5053 {
5054 int ret = 0;
5055
5056 if (sctx->cur_ino == 0)
5057 goto out;
5058 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5059 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5060 goto out;
5061 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5062 goto out;
5063
5064 ret = process_recorded_refs(sctx, pending_move);
5065 if (ret < 0)
5066 goto out;
5067
5068 *refs_processed = 1;
5069 out:
5070 return ret;
5071 }
5072
5073 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5074 {
5075 int ret = 0;
5076 u64 left_mode;
5077 u64 left_uid;
5078 u64 left_gid;
5079 u64 right_mode;
5080 u64 right_uid;
5081 u64 right_gid;
5082 int need_chmod = 0;
5083 int need_chown = 0;
5084 int pending_move = 0;
5085 int refs_processed = 0;
5086
5087 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5088 &refs_processed);
5089 if (ret < 0)
5090 goto out;
5091
5092 /*
5093 * We have processed the refs and thus need to advance send_progress.
5094 * Now, calls to get_cur_xxx will take the updated refs of the current
5095 * inode into account.
5096 *
5097 * On the other hand, if our current inode is a directory and couldn't
5098 * be moved/renamed because its parent was renamed/moved too and it has
5099 * a higher inode number, we can only move/rename our current inode
5100 * after we moved/renamed its parent. Therefore in this case operate on
5101 * the old path (pre move/rename) of our current inode, and the
5102 * move/rename will be performed later.
5103 */
5104 if (refs_processed && !pending_move)
5105 sctx->send_progress = sctx->cur_ino + 1;
5106
5107 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5108 goto out;
5109 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5110 goto out;
5111
5112 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5113 &left_mode, &left_uid, &left_gid, NULL);
5114 if (ret < 0)
5115 goto out;
5116
5117 if (!sctx->parent_root || sctx->cur_inode_new) {
5118 need_chown = 1;
5119 if (!S_ISLNK(sctx->cur_inode_mode))
5120 need_chmod = 1;
5121 } else {
5122 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5123 NULL, NULL, &right_mode, &right_uid,
5124 &right_gid, NULL);
5125 if (ret < 0)
5126 goto out;
5127
5128 if (left_uid != right_uid || left_gid != right_gid)
5129 need_chown = 1;
5130 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5131 need_chmod = 1;
5132 }
5133
5134 if (S_ISREG(sctx->cur_inode_mode)) {
5135 if (need_send_hole(sctx)) {
5136 if (sctx->cur_inode_last_extent == (u64)-1 ||
5137 sctx->cur_inode_last_extent <
5138 sctx->cur_inode_size) {
5139 ret = get_last_extent(sctx, (u64)-1);
5140 if (ret)
5141 goto out;
5142 }
5143 if (sctx->cur_inode_last_extent <
5144 sctx->cur_inode_size) {
5145 ret = send_hole(sctx, sctx->cur_inode_size);
5146 if (ret)
5147 goto out;
5148 }
5149 }
5150 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5151 sctx->cur_inode_size);
5152 if (ret < 0)
5153 goto out;
5154 }
5155
5156 if (need_chown) {
5157 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5158 left_uid, left_gid);
5159 if (ret < 0)
5160 goto out;
5161 }
5162 if (need_chmod) {
5163 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5164 left_mode);
5165 if (ret < 0)
5166 goto out;
5167 }
5168
5169 /*
5170 * If other directory inodes depended on our current directory
5171 * inode's move/rename, now do their move/rename operations.
5172 */
5173 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5174 ret = apply_children_dir_moves(sctx);
5175 if (ret)
5176 goto out;
5177 /*
5178 * Need to send that every time, no matter if it actually
5179 * changed between the two trees as we have done changes to
5180 * the inode before. If our inode is a directory and it's
5181 * waiting to be moved/renamed, we will send its utimes when
5182 * it's moved/renamed, therefore we don't need to do it here.
5183 */
5184 sctx->send_progress = sctx->cur_ino + 1;
5185 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5186 if (ret < 0)
5187 goto out;
5188 }
5189
5190 out:
5191 return ret;
5192 }
5193
5194 static int changed_inode(struct send_ctx *sctx,
5195 enum btrfs_compare_tree_result result)
5196 {
5197 int ret = 0;
5198 struct btrfs_key *key = sctx->cmp_key;
5199 struct btrfs_inode_item *left_ii = NULL;
5200 struct btrfs_inode_item *right_ii = NULL;
5201 u64 left_gen = 0;
5202 u64 right_gen = 0;
5203
5204 sctx->cur_ino = key->objectid;
5205 sctx->cur_inode_new_gen = 0;
5206 sctx->cur_inode_last_extent = (u64)-1;
5207
5208 /*
5209 * Set send_progress to current inode. This will tell all get_cur_xxx
5210 * functions that the current inode's refs are not updated yet. Later,
5211 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5212 */
5213 sctx->send_progress = sctx->cur_ino;
5214
5215 if (result == BTRFS_COMPARE_TREE_NEW ||
5216 result == BTRFS_COMPARE_TREE_CHANGED) {
5217 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5218 sctx->left_path->slots[0],
5219 struct btrfs_inode_item);
5220 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5221 left_ii);
5222 } else {
5223 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5224 sctx->right_path->slots[0],
5225 struct btrfs_inode_item);
5226 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5227 right_ii);
5228 }
5229 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5230 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5231 sctx->right_path->slots[0],
5232 struct btrfs_inode_item);
5233
5234 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5235 right_ii);
5236
5237 /*
5238 * The cur_ino = root dir case is special here. We can't treat
5239 * the inode as deleted+reused because it would generate a
5240 * stream that tries to delete/mkdir the root dir.
5241 */
5242 if (left_gen != right_gen &&
5243 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5244 sctx->cur_inode_new_gen = 1;
5245 }
5246
5247 if (result == BTRFS_COMPARE_TREE_NEW) {
5248 sctx->cur_inode_gen = left_gen;
5249 sctx->cur_inode_new = 1;
5250 sctx->cur_inode_deleted = 0;
5251 sctx->cur_inode_size = btrfs_inode_size(
5252 sctx->left_path->nodes[0], left_ii);
5253 sctx->cur_inode_mode = btrfs_inode_mode(
5254 sctx->left_path->nodes[0], left_ii);
5255 sctx->cur_inode_rdev = btrfs_inode_rdev(
5256 sctx->left_path->nodes[0], left_ii);
5257 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5258 ret = send_create_inode_if_needed(sctx);
5259 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5260 sctx->cur_inode_gen = right_gen;
5261 sctx->cur_inode_new = 0;
5262 sctx->cur_inode_deleted = 1;
5263 sctx->cur_inode_size = btrfs_inode_size(
5264 sctx->right_path->nodes[0], right_ii);
5265 sctx->cur_inode_mode = btrfs_inode_mode(
5266 sctx->right_path->nodes[0], right_ii);
5267 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5268 /*
5269 * We need to do some special handling in case the inode was
5270 * reported as changed with a changed generation number. This
5271 * means that the original inode was deleted and new inode
5272 * reused the same inum. So we have to treat the old inode as
5273 * deleted and the new one as new.
5274 */
5275 if (sctx->cur_inode_new_gen) {
5276 /*
5277 * First, process the inode as if it was deleted.
5278 */
5279 sctx->cur_inode_gen = right_gen;
5280 sctx->cur_inode_new = 0;
5281 sctx->cur_inode_deleted = 1;
5282 sctx->cur_inode_size = btrfs_inode_size(
5283 sctx->right_path->nodes[0], right_ii);
5284 sctx->cur_inode_mode = btrfs_inode_mode(
5285 sctx->right_path->nodes[0], right_ii);
5286 ret = process_all_refs(sctx,
5287 BTRFS_COMPARE_TREE_DELETED);
5288 if (ret < 0)
5289 goto out;
5290
5291 /*
5292 * Now process the inode as if it was new.
5293 */
5294 sctx->cur_inode_gen = left_gen;
5295 sctx->cur_inode_new = 1;
5296 sctx->cur_inode_deleted = 0;
5297 sctx->cur_inode_size = btrfs_inode_size(
5298 sctx->left_path->nodes[0], left_ii);
5299 sctx->cur_inode_mode = btrfs_inode_mode(
5300 sctx->left_path->nodes[0], left_ii);
5301 sctx->cur_inode_rdev = btrfs_inode_rdev(
5302 sctx->left_path->nodes[0], left_ii);
5303 ret = send_create_inode_if_needed(sctx);
5304 if (ret < 0)
5305 goto out;
5306
5307 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5308 if (ret < 0)
5309 goto out;
5310 /*
5311 * Advance send_progress now as we did not get into
5312 * process_recorded_refs_if_needed in the new_gen case.
5313 */
5314 sctx->send_progress = sctx->cur_ino + 1;
5315
5316 /*
5317 * Now process all extents and xattrs of the inode as if
5318 * they were all new.
5319 */
5320 ret = process_all_extents(sctx);
5321 if (ret < 0)
5322 goto out;
5323 ret = process_all_new_xattrs(sctx);
5324 if (ret < 0)
5325 goto out;
5326 } else {
5327 sctx->cur_inode_gen = left_gen;
5328 sctx->cur_inode_new = 0;
5329 sctx->cur_inode_new_gen = 0;
5330 sctx->cur_inode_deleted = 0;
5331 sctx->cur_inode_size = btrfs_inode_size(
5332 sctx->left_path->nodes[0], left_ii);
5333 sctx->cur_inode_mode = btrfs_inode_mode(
5334 sctx->left_path->nodes[0], left_ii);
5335 }
5336 }
5337
5338 out:
5339 return ret;
5340 }
5341
5342 /*
5343 * We have to process new refs before deleted refs, but compare_trees gives us
5344 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5345 * first and later process them in process_recorded_refs.
5346 * For the cur_inode_new_gen case, we skip recording completely because
5347 * changed_inode did already initiate processing of refs. The reason for this is
5348 * that in this case, compare_tree actually compares the refs of 2 different
5349 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5350 * refs of the right tree as deleted and all refs of the left tree as new.
5351 */
5352 static int changed_ref(struct send_ctx *sctx,
5353 enum btrfs_compare_tree_result result)
5354 {
5355 int ret = 0;
5356
5357 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5358
5359 if (!sctx->cur_inode_new_gen &&
5360 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5361 if (result == BTRFS_COMPARE_TREE_NEW)
5362 ret = record_new_ref(sctx);
5363 else if (result == BTRFS_COMPARE_TREE_DELETED)
5364 ret = record_deleted_ref(sctx);
5365 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5366 ret = record_changed_ref(sctx);
5367 }
5368
5369 return ret;
5370 }
5371
5372 /*
5373 * Process new/deleted/changed xattrs. We skip processing in the
5374 * cur_inode_new_gen case because changed_inode did already initiate processing
5375 * of xattrs. The reason is the same as in changed_ref
5376 */
5377 static int changed_xattr(struct send_ctx *sctx,
5378 enum btrfs_compare_tree_result result)
5379 {
5380 int ret = 0;
5381
5382 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5383
5384 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5385 if (result == BTRFS_COMPARE_TREE_NEW)
5386 ret = process_new_xattr(sctx);
5387 else if (result == BTRFS_COMPARE_TREE_DELETED)
5388 ret = process_deleted_xattr(sctx);
5389 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5390 ret = process_changed_xattr(sctx);
5391 }
5392
5393 return ret;
5394 }
5395
5396 /*
5397 * Process new/deleted/changed extents. We skip processing in the
5398 * cur_inode_new_gen case because changed_inode did already initiate processing
5399 * of extents. The reason is the same as in changed_ref
5400 */
5401 static int changed_extent(struct send_ctx *sctx,
5402 enum btrfs_compare_tree_result result)
5403 {
5404 int ret = 0;
5405
5406 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5407
5408 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5409 if (result != BTRFS_COMPARE_TREE_DELETED)
5410 ret = process_extent(sctx, sctx->left_path,
5411 sctx->cmp_key);
5412 }
5413
5414 return ret;
5415 }
5416
5417 static int dir_changed(struct send_ctx *sctx, u64 dir)
5418 {
5419 u64 orig_gen, new_gen;
5420 int ret;
5421
5422 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5423 NULL, NULL);
5424 if (ret)
5425 return ret;
5426
5427 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5428 NULL, NULL, NULL);
5429 if (ret)
5430 return ret;
5431
5432 return (orig_gen != new_gen) ? 1 : 0;
5433 }
5434
5435 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5436 struct btrfs_key *key)
5437 {
5438 struct btrfs_inode_extref *extref;
5439 struct extent_buffer *leaf;
5440 u64 dirid = 0, last_dirid = 0;
5441 unsigned long ptr;
5442 u32 item_size;
5443 u32 cur_offset = 0;
5444 int ref_name_len;
5445 int ret = 0;
5446
5447 /* Easy case, just check this one dirid */
5448 if (key->type == BTRFS_INODE_REF_KEY) {
5449 dirid = key->offset;
5450
5451 ret = dir_changed(sctx, dirid);
5452 goto out;
5453 }
5454
5455 leaf = path->nodes[0];
5456 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5457 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5458 while (cur_offset < item_size) {
5459 extref = (struct btrfs_inode_extref *)(ptr +
5460 cur_offset);
5461 dirid = btrfs_inode_extref_parent(leaf, extref);
5462 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5463 cur_offset += ref_name_len + sizeof(*extref);
5464 if (dirid == last_dirid)
5465 continue;
5466 ret = dir_changed(sctx, dirid);
5467 if (ret)
5468 break;
5469 last_dirid = dirid;
5470 }
5471 out:
5472 return ret;
5473 }
5474
5475 /*
5476 * Updates compare related fields in sctx and simply forwards to the actual
5477 * changed_xxx functions.
5478 */
5479 static int changed_cb(struct btrfs_root *left_root,
5480 struct btrfs_root *right_root,
5481 struct btrfs_path *left_path,
5482 struct btrfs_path *right_path,
5483 struct btrfs_key *key,
5484 enum btrfs_compare_tree_result result,
5485 void *ctx)
5486 {
5487 int ret = 0;
5488 struct send_ctx *sctx = ctx;
5489
5490 if (result == BTRFS_COMPARE_TREE_SAME) {
5491 if (key->type == BTRFS_INODE_REF_KEY ||
5492 key->type == BTRFS_INODE_EXTREF_KEY) {
5493 ret = compare_refs(sctx, left_path, key);
5494 if (!ret)
5495 return 0;
5496 if (ret < 0)
5497 return ret;
5498 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5499 return maybe_send_hole(sctx, left_path, key);
5500 } else {
5501 return 0;
5502 }
5503 result = BTRFS_COMPARE_TREE_CHANGED;
5504 ret = 0;
5505 }
5506
5507 sctx->left_path = left_path;
5508 sctx->right_path = right_path;
5509 sctx->cmp_key = key;
5510
5511 ret = finish_inode_if_needed(sctx, 0);
5512 if (ret < 0)
5513 goto out;
5514
5515 /* Ignore non-FS objects */
5516 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5517 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5518 goto out;
5519
5520 if (key->type == BTRFS_INODE_ITEM_KEY)
5521 ret = changed_inode(sctx, result);
5522 else if (key->type == BTRFS_INODE_REF_KEY ||
5523 key->type == BTRFS_INODE_EXTREF_KEY)
5524 ret = changed_ref(sctx, result);
5525 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5526 ret = changed_xattr(sctx, result);
5527 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5528 ret = changed_extent(sctx, result);
5529
5530 out:
5531 return ret;
5532 }
5533
5534 static int full_send_tree(struct send_ctx *sctx)
5535 {
5536 int ret;
5537 struct btrfs_root *send_root = sctx->send_root;
5538 struct btrfs_key key;
5539 struct btrfs_key found_key;
5540 struct btrfs_path *path;
5541 struct extent_buffer *eb;
5542 int slot;
5543
5544 path = alloc_path_for_send();
5545 if (!path)
5546 return -ENOMEM;
5547
5548 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5549 key.type = BTRFS_INODE_ITEM_KEY;
5550 key.offset = 0;
5551
5552 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5553 if (ret < 0)
5554 goto out;
5555 if (ret)
5556 goto out_finish;
5557
5558 while (1) {
5559 eb = path->nodes[0];
5560 slot = path->slots[0];
5561 btrfs_item_key_to_cpu(eb, &found_key, slot);
5562
5563 ret = changed_cb(send_root, NULL, path, NULL,
5564 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5565 if (ret < 0)
5566 goto out;
5567
5568 key.objectid = found_key.objectid;
5569 key.type = found_key.type;
5570 key.offset = found_key.offset + 1;
5571
5572 ret = btrfs_next_item(send_root, path);
5573 if (ret < 0)
5574 goto out;
5575 if (ret) {
5576 ret = 0;
5577 break;
5578 }
5579 }
5580
5581 out_finish:
5582 ret = finish_inode_if_needed(sctx, 1);
5583
5584 out:
5585 btrfs_free_path(path);
5586 return ret;
5587 }
5588
5589 static int send_subvol(struct send_ctx *sctx)
5590 {
5591 int ret;
5592
5593 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5594 ret = send_header(sctx);
5595 if (ret < 0)
5596 goto out;
5597 }
5598
5599 ret = send_subvol_begin(sctx);
5600 if (ret < 0)
5601 goto out;
5602
5603 if (sctx->parent_root) {
5604 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5605 changed_cb, sctx);
5606 if (ret < 0)
5607 goto out;
5608 ret = finish_inode_if_needed(sctx, 1);
5609 if (ret < 0)
5610 goto out;
5611 } else {
5612 ret = full_send_tree(sctx);
5613 if (ret < 0)
5614 goto out;
5615 }
5616
5617 out:
5618 free_recorded_refs(sctx);
5619 return ret;
5620 }
5621
5622 /*
5623 * If orphan cleanup did remove any orphans from a root, it means the tree
5624 * was modified and therefore the commit root is not the same as the current
5625 * root anymore. This is a problem, because send uses the commit root and
5626 * therefore can see inode items that don't exist in the current root anymore,
5627 * and for example make calls to btrfs_iget, which will do tree lookups based
5628 * on the current root and not on the commit root. Those lookups will fail,
5629 * returning a -ESTALE error, and making send fail with that error. So make
5630 * sure a send does not see any orphans we have just removed, and that it will
5631 * see the same inodes regardless of whether a transaction commit happened
5632 * before it started (meaning that the commit root will be the same as the
5633 * current root) or not.
5634 */
5635 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5636 {
5637 int i;
5638 struct btrfs_trans_handle *trans = NULL;
5639
5640 again:
5641 if (sctx->parent_root &&
5642 sctx->parent_root->node != sctx->parent_root->commit_root)
5643 goto commit_trans;
5644
5645 for (i = 0; i < sctx->clone_roots_cnt; i++)
5646 if (sctx->clone_roots[i].root->node !=
5647 sctx->clone_roots[i].root->commit_root)
5648 goto commit_trans;
5649
5650 if (trans)
5651 return btrfs_end_transaction(trans, sctx->send_root);
5652
5653 return 0;
5654
5655 commit_trans:
5656 /* Use any root, all fs roots will get their commit roots updated. */
5657 if (!trans) {
5658 trans = btrfs_join_transaction(sctx->send_root);
5659 if (IS_ERR(trans))
5660 return PTR_ERR(trans);
5661 goto again;
5662 }
5663
5664 return btrfs_commit_transaction(trans, sctx->send_root);
5665 }
5666
5667 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5668 {
5669 spin_lock(&root->root_item_lock);
5670 root->send_in_progress--;
5671 /*
5672 * Not much left to do, we don't know why it's unbalanced and
5673 * can't blindly reset it to 0.
5674 */
5675 if (root->send_in_progress < 0)
5676 btrfs_err(root->fs_info,
5677 "send_in_progres unbalanced %d root %llu",
5678 root->send_in_progress, root->root_key.objectid);
5679 spin_unlock(&root->root_item_lock);
5680 }
5681
5682 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5683 {
5684 int ret = 0;
5685 struct btrfs_root *send_root;
5686 struct btrfs_root *clone_root;
5687 struct btrfs_fs_info *fs_info;
5688 struct btrfs_ioctl_send_args *arg = NULL;
5689 struct btrfs_key key;
5690 struct send_ctx *sctx = NULL;
5691 u32 i;
5692 u64 *clone_sources_tmp = NULL;
5693 int clone_sources_to_rollback = 0;
5694 int sort_clone_roots = 0;
5695 int index;
5696
5697 if (!capable(CAP_SYS_ADMIN))
5698 return -EPERM;
5699
5700 send_root = BTRFS_I(file_inode(mnt_file))->root;
5701 fs_info = send_root->fs_info;
5702
5703 /*
5704 * The subvolume must remain read-only during send, protect against
5705 * making it RW. This also protects against deletion.
5706 */
5707 spin_lock(&send_root->root_item_lock);
5708 send_root->send_in_progress++;
5709 spin_unlock(&send_root->root_item_lock);
5710
5711 /*
5712 * This is done when we lookup the root, it should already be complete
5713 * by the time we get here.
5714 */
5715 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5716
5717 /*
5718 * Userspace tools do the checks and warn the user if it's
5719 * not RO.
5720 */
5721 if (!btrfs_root_readonly(send_root)) {
5722 ret = -EPERM;
5723 goto out;
5724 }
5725
5726 arg = memdup_user(arg_, sizeof(*arg));
5727 if (IS_ERR(arg)) {
5728 ret = PTR_ERR(arg);
5729 arg = NULL;
5730 goto out;
5731 }
5732
5733 if (!access_ok(VERIFY_READ, arg->clone_sources,
5734 sizeof(*arg->clone_sources) *
5735 arg->clone_sources_count)) {
5736 ret = -EFAULT;
5737 goto out;
5738 }
5739
5740 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5741 ret = -EINVAL;
5742 goto out;
5743 }
5744
5745 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5746 if (!sctx) {
5747 ret = -ENOMEM;
5748 goto out;
5749 }
5750
5751 INIT_LIST_HEAD(&sctx->new_refs);
5752 INIT_LIST_HEAD(&sctx->deleted_refs);
5753 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5754 INIT_LIST_HEAD(&sctx->name_cache_list);
5755
5756 sctx->flags = arg->flags;
5757
5758 sctx->send_filp = fget(arg->send_fd);
5759 if (!sctx->send_filp) {
5760 ret = -EBADF;
5761 goto out;
5762 }
5763
5764 sctx->send_root = send_root;
5765 /*
5766 * Unlikely but possible, if the subvolume is marked for deletion but
5767 * is slow to remove the directory entry, send can still be started
5768 */
5769 if (btrfs_root_dead(sctx->send_root)) {
5770 ret = -EPERM;
5771 goto out;
5772 }
5773
5774 sctx->clone_roots_cnt = arg->clone_sources_count;
5775
5776 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5777 sctx->send_buf = vmalloc(sctx->send_max_size);
5778 if (!sctx->send_buf) {
5779 ret = -ENOMEM;
5780 goto out;
5781 }
5782
5783 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5784 if (!sctx->read_buf) {
5785 ret = -ENOMEM;
5786 goto out;
5787 }
5788
5789 sctx->pending_dir_moves = RB_ROOT;
5790 sctx->waiting_dir_moves = RB_ROOT;
5791 sctx->orphan_dirs = RB_ROOT;
5792
5793 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5794 (arg->clone_sources_count + 1));
5795 if (!sctx->clone_roots) {
5796 ret = -ENOMEM;
5797 goto out;
5798 }
5799
5800 if (arg->clone_sources_count) {
5801 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5802 sizeof(*arg->clone_sources));
5803 if (!clone_sources_tmp) {
5804 ret = -ENOMEM;
5805 goto out;
5806 }
5807
5808 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5809 arg->clone_sources_count *
5810 sizeof(*arg->clone_sources));
5811 if (ret) {
5812 ret = -EFAULT;
5813 goto out;
5814 }
5815
5816 for (i = 0; i < arg->clone_sources_count; i++) {
5817 key.objectid = clone_sources_tmp[i];
5818 key.type = BTRFS_ROOT_ITEM_KEY;
5819 key.offset = (u64)-1;
5820
5821 index = srcu_read_lock(&fs_info->subvol_srcu);
5822
5823 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5824 if (IS_ERR(clone_root)) {
5825 srcu_read_unlock(&fs_info->subvol_srcu, index);
5826 ret = PTR_ERR(clone_root);
5827 goto out;
5828 }
5829 spin_lock(&clone_root->root_item_lock);
5830 if (!btrfs_root_readonly(clone_root) ||
5831 btrfs_root_dead(clone_root)) {
5832 spin_unlock(&clone_root->root_item_lock);
5833 srcu_read_unlock(&fs_info->subvol_srcu, index);
5834 ret = -EPERM;
5835 goto out;
5836 }
5837 clone_root->send_in_progress++;
5838 spin_unlock(&clone_root->root_item_lock);
5839 srcu_read_unlock(&fs_info->subvol_srcu, index);
5840
5841 sctx->clone_roots[i].root = clone_root;
5842 clone_sources_to_rollback = i + 1;
5843 }
5844 vfree(clone_sources_tmp);
5845 clone_sources_tmp = NULL;
5846 }
5847
5848 if (arg->parent_root) {
5849 key.objectid = arg->parent_root;
5850 key.type = BTRFS_ROOT_ITEM_KEY;
5851 key.offset = (u64)-1;
5852
5853 index = srcu_read_lock(&fs_info->subvol_srcu);
5854
5855 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5856 if (IS_ERR(sctx->parent_root)) {
5857 srcu_read_unlock(&fs_info->subvol_srcu, index);
5858 ret = PTR_ERR(sctx->parent_root);
5859 goto out;
5860 }
5861
5862 spin_lock(&sctx->parent_root->root_item_lock);
5863 sctx->parent_root->send_in_progress++;
5864 if (!btrfs_root_readonly(sctx->parent_root) ||
5865 btrfs_root_dead(sctx->parent_root)) {
5866 spin_unlock(&sctx->parent_root->root_item_lock);
5867 srcu_read_unlock(&fs_info->subvol_srcu, index);
5868 ret = -EPERM;
5869 goto out;
5870 }
5871 spin_unlock(&sctx->parent_root->root_item_lock);
5872
5873 srcu_read_unlock(&fs_info->subvol_srcu, index);
5874 }
5875
5876 /*
5877 * Clones from send_root are allowed, but only if the clone source
5878 * is behind the current send position. This is checked while searching
5879 * for possible clone sources.
5880 */
5881 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5882
5883 /* We do a bsearch later */
5884 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5885 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5886 NULL);
5887 sort_clone_roots = 1;
5888
5889 ret = ensure_commit_roots_uptodate(sctx);
5890 if (ret)
5891 goto out;
5892
5893 current->journal_info = BTRFS_SEND_TRANS_STUB;
5894 ret = send_subvol(sctx);
5895 current->journal_info = NULL;
5896 if (ret < 0)
5897 goto out;
5898
5899 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5900 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5901 if (ret < 0)
5902 goto out;
5903 ret = send_cmd(sctx);
5904 if (ret < 0)
5905 goto out;
5906 }
5907
5908 out:
5909 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5910 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5911 struct rb_node *n;
5912 struct pending_dir_move *pm;
5913
5914 n = rb_first(&sctx->pending_dir_moves);
5915 pm = rb_entry(n, struct pending_dir_move, node);
5916 while (!list_empty(&pm->list)) {
5917 struct pending_dir_move *pm2;
5918
5919 pm2 = list_first_entry(&pm->list,
5920 struct pending_dir_move, list);
5921 free_pending_move(sctx, pm2);
5922 }
5923 free_pending_move(sctx, pm);
5924 }
5925
5926 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5927 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5928 struct rb_node *n;
5929 struct waiting_dir_move *dm;
5930
5931 n = rb_first(&sctx->waiting_dir_moves);
5932 dm = rb_entry(n, struct waiting_dir_move, node);
5933 rb_erase(&dm->node, &sctx->waiting_dir_moves);
5934 kfree(dm);
5935 }
5936
5937 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5938 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5939 struct rb_node *n;
5940 struct orphan_dir_info *odi;
5941
5942 n = rb_first(&sctx->orphan_dirs);
5943 odi = rb_entry(n, struct orphan_dir_info, node);
5944 free_orphan_dir_info(sctx, odi);
5945 }
5946
5947 if (sort_clone_roots) {
5948 for (i = 0; i < sctx->clone_roots_cnt; i++)
5949 btrfs_root_dec_send_in_progress(
5950 sctx->clone_roots[i].root);
5951 } else {
5952 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5953 btrfs_root_dec_send_in_progress(
5954 sctx->clone_roots[i].root);
5955
5956 btrfs_root_dec_send_in_progress(send_root);
5957 }
5958 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5959 btrfs_root_dec_send_in_progress(sctx->parent_root);
5960
5961 kfree(arg);
5962 vfree(clone_sources_tmp);
5963
5964 if (sctx) {
5965 if (sctx->send_filp)
5966 fput(sctx->send_filp);
5967
5968 vfree(sctx->clone_roots);
5969 vfree(sctx->send_buf);
5970 vfree(sctx->read_buf);
5971
5972 name_cache_free(sctx);
5973
5974 kfree(sctx);
5975 }
5976
5977 return ret;
5978 }
This page took 0.172981 seconds and 5 git commands to generate.