Btrfs: incremental send, fix invalid path after dir rename
[deliverable/linux.git] / fs / btrfs / send.c
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37
38 static int g_verbose = 0;
39
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41
42 /*
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
48 */
49 struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
54
55 char *buf;
56 unsigned short buf_len:15;
57 unsigned short reversed:1;
58 char inline_buf[];
59 };
60 /*
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
64 */
65 char pad[256];
66 };
67 };
68 #define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70
71
72 /* reused for each extent */
73 struct clone_root {
74 struct btrfs_root *root;
75 u64 ino;
76 u64 offset;
77
78 u64 found_refs;
79 };
80
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83
84 struct send_ctx {
85 struct file *send_filp;
86 loff_t send_off;
87 char *send_buf;
88 u32 send_size;
89 u32 send_max_size;
90 u64 total_send_size;
91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
93
94 struct btrfs_root *send_root;
95 struct btrfs_root *parent_root;
96 struct clone_root *clone_roots;
97 int clone_roots_cnt;
98
99 /* current state of the compare_tree call */
100 struct btrfs_path *left_path;
101 struct btrfs_path *right_path;
102 struct btrfs_key *cmp_key;
103
104 /*
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
107 */
108 u64 cur_ino;
109 u64 cur_inode_gen;
110 int cur_inode_new;
111 int cur_inode_new_gen;
112 int cur_inode_deleted;
113 u64 cur_inode_size;
114 u64 cur_inode_mode;
115 u64 cur_inode_last_extent;
116
117 u64 send_progress;
118
119 struct list_head new_refs;
120 struct list_head deleted_refs;
121
122 struct radix_tree_root name_cache;
123 struct list_head name_cache_list;
124 int name_cache_size;
125
126 char *read_buf;
127
128 /*
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
138 *
139 * Tree state when the first send was performed:
140 *
141 * .
142 * |-- a (ino 257)
143 * |-- b (ino 258)
144 * |
145 * |
146 * |-- c (ino 259)
147 * | |-- d (ino 260)
148 * |
149 * |-- c2 (ino 261)
150 *
151 * Tree state when the second (incremental) send is performed:
152 *
153 * .
154 * |-- a (ino 257)
155 * |-- b (ino 258)
156 * |-- c2 (ino 261)
157 * |-- d2 (ino 260)
158 * |-- cc (ino 259)
159 *
160 * The sequence of steps that lead to the second state was:
161 *
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
164 *
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
167 *
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
170 */
171
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves;
174
175 /*
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
179 */
180 struct rb_root waiting_dir_moves;
181 };
182
183 struct pending_dir_move {
184 struct rb_node node;
185 struct list_head list;
186 u64 parent_ino;
187 u64 ino;
188 u64 gen;
189 struct list_head update_refs;
190 };
191
192 struct waiting_dir_move {
193 struct rb_node node;
194 u64 ino;
195 };
196
197 struct name_cache_entry {
198 struct list_head list;
199 /*
200 * radix_tree has only 32bit entries but we need to handle 64bit inums.
201 * We use the lower 32bit of the 64bit inum to store it in the tree. If
202 * more then one inum would fall into the same entry, we use radix_list
203 * to store the additional entries. radix_list is also used to store
204 * entries where two entries have the same inum but different
205 * generations.
206 */
207 struct list_head radix_list;
208 u64 ino;
209 u64 gen;
210 u64 parent_ino;
211 u64 parent_gen;
212 int ret;
213 int need_later_update;
214 int name_len;
215 char name[];
216 };
217
218 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
219
220 static int need_send_hole(struct send_ctx *sctx)
221 {
222 return (sctx->parent_root && !sctx->cur_inode_new &&
223 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
224 S_ISREG(sctx->cur_inode_mode));
225 }
226
227 static void fs_path_reset(struct fs_path *p)
228 {
229 if (p->reversed) {
230 p->start = p->buf + p->buf_len - 1;
231 p->end = p->start;
232 *p->start = 0;
233 } else {
234 p->start = p->buf;
235 p->end = p->start;
236 *p->start = 0;
237 }
238 }
239
240 static struct fs_path *fs_path_alloc(void)
241 {
242 struct fs_path *p;
243
244 p = kmalloc(sizeof(*p), GFP_NOFS);
245 if (!p)
246 return NULL;
247 p->reversed = 0;
248 p->buf = p->inline_buf;
249 p->buf_len = FS_PATH_INLINE_SIZE;
250 fs_path_reset(p);
251 return p;
252 }
253
254 static struct fs_path *fs_path_alloc_reversed(void)
255 {
256 struct fs_path *p;
257
258 p = fs_path_alloc();
259 if (!p)
260 return NULL;
261 p->reversed = 1;
262 fs_path_reset(p);
263 return p;
264 }
265
266 static void fs_path_free(struct fs_path *p)
267 {
268 if (!p)
269 return;
270 if (p->buf != p->inline_buf)
271 kfree(p->buf);
272 kfree(p);
273 }
274
275 static int fs_path_len(struct fs_path *p)
276 {
277 return p->end - p->start;
278 }
279
280 static int fs_path_ensure_buf(struct fs_path *p, int len)
281 {
282 char *tmp_buf;
283 int path_len;
284 int old_buf_len;
285
286 len++;
287
288 if (p->buf_len >= len)
289 return 0;
290
291 /*
292 * First time the inline_buf does not suffice
293 */
294 if (p->buf == p->inline_buf) {
295 p->buf = kmalloc(len, GFP_NOFS);
296 if (!p->buf)
297 return -ENOMEM;
298 /*
299 * The real size of the buffer is bigger, this will let the
300 * fast path happen most of the time
301 */
302 p->buf_len = ksize(p->buf);
303 } else {
304 char *tmp;
305
306 tmp = krealloc(p->buf, len, GFP_NOFS);
307 if (!tmp)
308 return -ENOMEM;
309 p->buf = tmp;
310 p->buf_len = ksize(p->buf);
311 }
312
313 path_len = p->end - p->start;
314 old_buf_len = p->buf_len;
315
316 if (p->reversed) {
317 tmp_buf = p->buf + old_buf_len - path_len - 1;
318 p->end = p->buf + p->buf_len - 1;
319 p->start = p->end - path_len;
320 memmove(p->start, tmp_buf, path_len + 1);
321 } else {
322 p->start = p->buf;
323 p->end = p->start + path_len;
324 }
325 return 0;
326 }
327
328 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
329 char **prepared)
330 {
331 int ret;
332 int new_len;
333
334 new_len = p->end - p->start + name_len;
335 if (p->start != p->end)
336 new_len++;
337 ret = fs_path_ensure_buf(p, new_len);
338 if (ret < 0)
339 goto out;
340
341 if (p->reversed) {
342 if (p->start != p->end)
343 *--p->start = '/';
344 p->start -= name_len;
345 *prepared = p->start;
346 } else {
347 if (p->start != p->end)
348 *p->end++ = '/';
349 *prepared = p->end;
350 p->end += name_len;
351 *p->end = 0;
352 }
353
354 out:
355 return ret;
356 }
357
358 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
359 {
360 int ret;
361 char *prepared;
362
363 ret = fs_path_prepare_for_add(p, name_len, &prepared);
364 if (ret < 0)
365 goto out;
366 memcpy(prepared, name, name_len);
367
368 out:
369 return ret;
370 }
371
372 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
373 {
374 int ret;
375 char *prepared;
376
377 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
378 if (ret < 0)
379 goto out;
380 memcpy(prepared, p2->start, p2->end - p2->start);
381
382 out:
383 return ret;
384 }
385
386 static int fs_path_add_from_extent_buffer(struct fs_path *p,
387 struct extent_buffer *eb,
388 unsigned long off, int len)
389 {
390 int ret;
391 char *prepared;
392
393 ret = fs_path_prepare_for_add(p, len, &prepared);
394 if (ret < 0)
395 goto out;
396
397 read_extent_buffer(eb, prepared, off, len);
398
399 out:
400 return ret;
401 }
402
403 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
404 {
405 int ret;
406
407 p->reversed = from->reversed;
408 fs_path_reset(p);
409
410 ret = fs_path_add_path(p, from);
411
412 return ret;
413 }
414
415
416 static void fs_path_unreverse(struct fs_path *p)
417 {
418 char *tmp;
419 int len;
420
421 if (!p->reversed)
422 return;
423
424 tmp = p->start;
425 len = p->end - p->start;
426 p->start = p->buf;
427 p->end = p->start + len;
428 memmove(p->start, tmp, len + 1);
429 p->reversed = 0;
430 }
431
432 static struct btrfs_path *alloc_path_for_send(void)
433 {
434 struct btrfs_path *path;
435
436 path = btrfs_alloc_path();
437 if (!path)
438 return NULL;
439 path->search_commit_root = 1;
440 path->skip_locking = 1;
441 return path;
442 }
443
444 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
445 {
446 int ret;
447 mm_segment_t old_fs;
448 u32 pos = 0;
449
450 old_fs = get_fs();
451 set_fs(KERNEL_DS);
452
453 while (pos < len) {
454 ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
455 /* TODO handle that correctly */
456 /*if (ret == -ERESTARTSYS) {
457 continue;
458 }*/
459 if (ret < 0)
460 goto out;
461 if (ret == 0) {
462 ret = -EIO;
463 goto out;
464 }
465 pos += ret;
466 }
467
468 ret = 0;
469
470 out:
471 set_fs(old_fs);
472 return ret;
473 }
474
475 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
476 {
477 struct btrfs_tlv_header *hdr;
478 int total_len = sizeof(*hdr) + len;
479 int left = sctx->send_max_size - sctx->send_size;
480
481 if (unlikely(left < total_len))
482 return -EOVERFLOW;
483
484 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
485 hdr->tlv_type = cpu_to_le16(attr);
486 hdr->tlv_len = cpu_to_le16(len);
487 memcpy(hdr + 1, data, len);
488 sctx->send_size += total_len;
489
490 return 0;
491 }
492
493 #define TLV_PUT_DEFINE_INT(bits) \
494 static int tlv_put_u##bits(struct send_ctx *sctx, \
495 u##bits attr, u##bits value) \
496 { \
497 __le##bits __tmp = cpu_to_le##bits(value); \
498 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
499 }
500
501 TLV_PUT_DEFINE_INT(64)
502
503 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
504 const char *str, int len)
505 {
506 if (len == -1)
507 len = strlen(str);
508 return tlv_put(sctx, attr, str, len);
509 }
510
511 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
512 const u8 *uuid)
513 {
514 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
515 }
516
517 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
518 struct extent_buffer *eb,
519 struct btrfs_timespec *ts)
520 {
521 struct btrfs_timespec bts;
522 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
523 return tlv_put(sctx, attr, &bts, sizeof(bts));
524 }
525
526
527 #define TLV_PUT(sctx, attrtype, attrlen, data) \
528 do { \
529 ret = tlv_put(sctx, attrtype, attrlen, data); \
530 if (ret < 0) \
531 goto tlv_put_failure; \
532 } while (0)
533
534 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
535 do { \
536 ret = tlv_put_u##bits(sctx, attrtype, value); \
537 if (ret < 0) \
538 goto tlv_put_failure; \
539 } while (0)
540
541 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
542 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
543 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
544 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
545 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
546 do { \
547 ret = tlv_put_string(sctx, attrtype, str, len); \
548 if (ret < 0) \
549 goto tlv_put_failure; \
550 } while (0)
551 #define TLV_PUT_PATH(sctx, attrtype, p) \
552 do { \
553 ret = tlv_put_string(sctx, attrtype, p->start, \
554 p->end - p->start); \
555 if (ret < 0) \
556 goto tlv_put_failure; \
557 } while(0)
558 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
559 do { \
560 ret = tlv_put_uuid(sctx, attrtype, uuid); \
561 if (ret < 0) \
562 goto tlv_put_failure; \
563 } while (0)
564 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
565 do { \
566 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
567 if (ret < 0) \
568 goto tlv_put_failure; \
569 } while (0)
570
571 static int send_header(struct send_ctx *sctx)
572 {
573 struct btrfs_stream_header hdr;
574
575 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
576 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
577
578 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
579 &sctx->send_off);
580 }
581
582 /*
583 * For each command/item we want to send to userspace, we call this function.
584 */
585 static int begin_cmd(struct send_ctx *sctx, int cmd)
586 {
587 struct btrfs_cmd_header *hdr;
588
589 if (WARN_ON(!sctx->send_buf))
590 return -EINVAL;
591
592 BUG_ON(sctx->send_size);
593
594 sctx->send_size += sizeof(*hdr);
595 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
596 hdr->cmd = cpu_to_le16(cmd);
597
598 return 0;
599 }
600
601 static int send_cmd(struct send_ctx *sctx)
602 {
603 int ret;
604 struct btrfs_cmd_header *hdr;
605 u32 crc;
606
607 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
608 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
609 hdr->crc = 0;
610
611 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
612 hdr->crc = cpu_to_le32(crc);
613
614 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
615 &sctx->send_off);
616
617 sctx->total_send_size += sctx->send_size;
618 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
619 sctx->send_size = 0;
620
621 return ret;
622 }
623
624 /*
625 * Sends a move instruction to user space
626 */
627 static int send_rename(struct send_ctx *sctx,
628 struct fs_path *from, struct fs_path *to)
629 {
630 int ret;
631
632 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
633
634 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
635 if (ret < 0)
636 goto out;
637
638 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
639 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
640
641 ret = send_cmd(sctx);
642
643 tlv_put_failure:
644 out:
645 return ret;
646 }
647
648 /*
649 * Sends a link instruction to user space
650 */
651 static int send_link(struct send_ctx *sctx,
652 struct fs_path *path, struct fs_path *lnk)
653 {
654 int ret;
655
656 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
657
658 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
659 if (ret < 0)
660 goto out;
661
662 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
663 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
664
665 ret = send_cmd(sctx);
666
667 tlv_put_failure:
668 out:
669 return ret;
670 }
671
672 /*
673 * Sends an unlink instruction to user space
674 */
675 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
676 {
677 int ret;
678
679 verbose_printk("btrfs: send_unlink %s\n", path->start);
680
681 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
682 if (ret < 0)
683 goto out;
684
685 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
686
687 ret = send_cmd(sctx);
688
689 tlv_put_failure:
690 out:
691 return ret;
692 }
693
694 /*
695 * Sends a rmdir instruction to user space
696 */
697 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
698 {
699 int ret;
700
701 verbose_printk("btrfs: send_rmdir %s\n", path->start);
702
703 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
704 if (ret < 0)
705 goto out;
706
707 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
708
709 ret = send_cmd(sctx);
710
711 tlv_put_failure:
712 out:
713 return ret;
714 }
715
716 /*
717 * Helper function to retrieve some fields from an inode item.
718 */
719 static int get_inode_info(struct btrfs_root *root,
720 u64 ino, u64 *size, u64 *gen,
721 u64 *mode, u64 *uid, u64 *gid,
722 u64 *rdev)
723 {
724 int ret;
725 struct btrfs_inode_item *ii;
726 struct btrfs_key key;
727 struct btrfs_path *path;
728
729 path = alloc_path_for_send();
730 if (!path)
731 return -ENOMEM;
732
733 key.objectid = ino;
734 key.type = BTRFS_INODE_ITEM_KEY;
735 key.offset = 0;
736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
737 if (ret < 0)
738 goto out;
739 if (ret) {
740 ret = -ENOENT;
741 goto out;
742 }
743
744 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
745 struct btrfs_inode_item);
746 if (size)
747 *size = btrfs_inode_size(path->nodes[0], ii);
748 if (gen)
749 *gen = btrfs_inode_generation(path->nodes[0], ii);
750 if (mode)
751 *mode = btrfs_inode_mode(path->nodes[0], ii);
752 if (uid)
753 *uid = btrfs_inode_uid(path->nodes[0], ii);
754 if (gid)
755 *gid = btrfs_inode_gid(path->nodes[0], ii);
756 if (rdev)
757 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
758
759 out:
760 btrfs_free_path(path);
761 return ret;
762 }
763
764 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
765 struct fs_path *p,
766 void *ctx);
767
768 /*
769 * Helper function to iterate the entries in ONE btrfs_inode_ref or
770 * btrfs_inode_extref.
771 * The iterate callback may return a non zero value to stop iteration. This can
772 * be a negative value for error codes or 1 to simply stop it.
773 *
774 * path must point to the INODE_REF or INODE_EXTREF when called.
775 */
776 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
777 struct btrfs_key *found_key, int resolve,
778 iterate_inode_ref_t iterate, void *ctx)
779 {
780 struct extent_buffer *eb = path->nodes[0];
781 struct btrfs_item *item;
782 struct btrfs_inode_ref *iref;
783 struct btrfs_inode_extref *extref;
784 struct btrfs_path *tmp_path;
785 struct fs_path *p;
786 u32 cur = 0;
787 u32 total;
788 int slot = path->slots[0];
789 u32 name_len;
790 char *start;
791 int ret = 0;
792 int num = 0;
793 int index;
794 u64 dir;
795 unsigned long name_off;
796 unsigned long elem_size;
797 unsigned long ptr;
798
799 p = fs_path_alloc_reversed();
800 if (!p)
801 return -ENOMEM;
802
803 tmp_path = alloc_path_for_send();
804 if (!tmp_path) {
805 fs_path_free(p);
806 return -ENOMEM;
807 }
808
809
810 if (found_key->type == BTRFS_INODE_REF_KEY) {
811 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
812 struct btrfs_inode_ref);
813 item = btrfs_item_nr(slot);
814 total = btrfs_item_size(eb, item);
815 elem_size = sizeof(*iref);
816 } else {
817 ptr = btrfs_item_ptr_offset(eb, slot);
818 total = btrfs_item_size_nr(eb, slot);
819 elem_size = sizeof(*extref);
820 }
821
822 while (cur < total) {
823 fs_path_reset(p);
824
825 if (found_key->type == BTRFS_INODE_REF_KEY) {
826 iref = (struct btrfs_inode_ref *)(ptr + cur);
827 name_len = btrfs_inode_ref_name_len(eb, iref);
828 name_off = (unsigned long)(iref + 1);
829 index = btrfs_inode_ref_index(eb, iref);
830 dir = found_key->offset;
831 } else {
832 extref = (struct btrfs_inode_extref *)(ptr + cur);
833 name_len = btrfs_inode_extref_name_len(eb, extref);
834 name_off = (unsigned long)&extref->name;
835 index = btrfs_inode_extref_index(eb, extref);
836 dir = btrfs_inode_extref_parent(eb, extref);
837 }
838
839 if (resolve) {
840 start = btrfs_ref_to_path(root, tmp_path, name_len,
841 name_off, eb, dir,
842 p->buf, p->buf_len);
843 if (IS_ERR(start)) {
844 ret = PTR_ERR(start);
845 goto out;
846 }
847 if (start < p->buf) {
848 /* overflow , try again with larger buffer */
849 ret = fs_path_ensure_buf(p,
850 p->buf_len + p->buf - start);
851 if (ret < 0)
852 goto out;
853 start = btrfs_ref_to_path(root, tmp_path,
854 name_len, name_off,
855 eb, dir,
856 p->buf, p->buf_len);
857 if (IS_ERR(start)) {
858 ret = PTR_ERR(start);
859 goto out;
860 }
861 BUG_ON(start < p->buf);
862 }
863 p->start = start;
864 } else {
865 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
866 name_len);
867 if (ret < 0)
868 goto out;
869 }
870
871 cur += elem_size + name_len;
872 ret = iterate(num, dir, index, p, ctx);
873 if (ret)
874 goto out;
875 num++;
876 }
877
878 out:
879 btrfs_free_path(tmp_path);
880 fs_path_free(p);
881 return ret;
882 }
883
884 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
885 const char *name, int name_len,
886 const char *data, int data_len,
887 u8 type, void *ctx);
888
889 /*
890 * Helper function to iterate the entries in ONE btrfs_dir_item.
891 * The iterate callback may return a non zero value to stop iteration. This can
892 * be a negative value for error codes or 1 to simply stop it.
893 *
894 * path must point to the dir item when called.
895 */
896 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
897 struct btrfs_key *found_key,
898 iterate_dir_item_t iterate, void *ctx)
899 {
900 int ret = 0;
901 struct extent_buffer *eb;
902 struct btrfs_item *item;
903 struct btrfs_dir_item *di;
904 struct btrfs_key di_key;
905 char *buf = NULL;
906 const int buf_len = PATH_MAX;
907 u32 name_len;
908 u32 data_len;
909 u32 cur;
910 u32 len;
911 u32 total;
912 int slot;
913 int num;
914 u8 type;
915
916 buf = kmalloc(buf_len, GFP_NOFS);
917 if (!buf) {
918 ret = -ENOMEM;
919 goto out;
920 }
921
922 eb = path->nodes[0];
923 slot = path->slots[0];
924 item = btrfs_item_nr(slot);
925 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
926 cur = 0;
927 len = 0;
928 total = btrfs_item_size(eb, item);
929
930 num = 0;
931 while (cur < total) {
932 name_len = btrfs_dir_name_len(eb, di);
933 data_len = btrfs_dir_data_len(eb, di);
934 type = btrfs_dir_type(eb, di);
935 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
936
937 /*
938 * Path too long
939 */
940 if (name_len + data_len > buf_len) {
941 ret = -ENAMETOOLONG;
942 goto out;
943 }
944
945 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
946 name_len + data_len);
947
948 len = sizeof(*di) + name_len + data_len;
949 di = (struct btrfs_dir_item *)((char *)di + len);
950 cur += len;
951
952 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
953 data_len, type, ctx);
954 if (ret < 0)
955 goto out;
956 if (ret) {
957 ret = 0;
958 goto out;
959 }
960
961 num++;
962 }
963
964 out:
965 kfree(buf);
966 return ret;
967 }
968
969 static int __copy_first_ref(int num, u64 dir, int index,
970 struct fs_path *p, void *ctx)
971 {
972 int ret;
973 struct fs_path *pt = ctx;
974
975 ret = fs_path_copy(pt, p);
976 if (ret < 0)
977 return ret;
978
979 /* we want the first only */
980 return 1;
981 }
982
983 /*
984 * Retrieve the first path of an inode. If an inode has more then one
985 * ref/hardlink, this is ignored.
986 */
987 static int get_inode_path(struct btrfs_root *root,
988 u64 ino, struct fs_path *path)
989 {
990 int ret;
991 struct btrfs_key key, found_key;
992 struct btrfs_path *p;
993
994 p = alloc_path_for_send();
995 if (!p)
996 return -ENOMEM;
997
998 fs_path_reset(path);
999
1000 key.objectid = ino;
1001 key.type = BTRFS_INODE_REF_KEY;
1002 key.offset = 0;
1003
1004 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1005 if (ret < 0)
1006 goto out;
1007 if (ret) {
1008 ret = 1;
1009 goto out;
1010 }
1011 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1012 if (found_key.objectid != ino ||
1013 (found_key.type != BTRFS_INODE_REF_KEY &&
1014 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1015 ret = -ENOENT;
1016 goto out;
1017 }
1018
1019 ret = iterate_inode_ref(root, p, &found_key, 1,
1020 __copy_first_ref, path);
1021 if (ret < 0)
1022 goto out;
1023 ret = 0;
1024
1025 out:
1026 btrfs_free_path(p);
1027 return ret;
1028 }
1029
1030 struct backref_ctx {
1031 struct send_ctx *sctx;
1032
1033 /* number of total found references */
1034 u64 found;
1035
1036 /*
1037 * used for clones found in send_root. clones found behind cur_objectid
1038 * and cur_offset are not considered as allowed clones.
1039 */
1040 u64 cur_objectid;
1041 u64 cur_offset;
1042
1043 /* may be truncated in case it's the last extent in a file */
1044 u64 extent_len;
1045
1046 /* Just to check for bugs in backref resolving */
1047 int found_itself;
1048 };
1049
1050 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1051 {
1052 u64 root = (u64)(uintptr_t)key;
1053 struct clone_root *cr = (struct clone_root *)elt;
1054
1055 if (root < cr->root->objectid)
1056 return -1;
1057 if (root > cr->root->objectid)
1058 return 1;
1059 return 0;
1060 }
1061
1062 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1063 {
1064 struct clone_root *cr1 = (struct clone_root *)e1;
1065 struct clone_root *cr2 = (struct clone_root *)e2;
1066
1067 if (cr1->root->objectid < cr2->root->objectid)
1068 return -1;
1069 if (cr1->root->objectid > cr2->root->objectid)
1070 return 1;
1071 return 0;
1072 }
1073
1074 /*
1075 * Called for every backref that is found for the current extent.
1076 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1077 */
1078 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1079 {
1080 struct backref_ctx *bctx = ctx_;
1081 struct clone_root *found;
1082 int ret;
1083 u64 i_size;
1084
1085 /* First check if the root is in the list of accepted clone sources */
1086 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1087 bctx->sctx->clone_roots_cnt,
1088 sizeof(struct clone_root),
1089 __clone_root_cmp_bsearch);
1090 if (!found)
1091 return 0;
1092
1093 if (found->root == bctx->sctx->send_root &&
1094 ino == bctx->cur_objectid &&
1095 offset == bctx->cur_offset) {
1096 bctx->found_itself = 1;
1097 }
1098
1099 /*
1100 * There are inodes that have extents that lie behind its i_size. Don't
1101 * accept clones from these extents.
1102 */
1103 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1104 NULL);
1105 if (ret < 0)
1106 return ret;
1107
1108 if (offset + bctx->extent_len > i_size)
1109 return 0;
1110
1111 /*
1112 * Make sure we don't consider clones from send_root that are
1113 * behind the current inode/offset.
1114 */
1115 if (found->root == bctx->sctx->send_root) {
1116 /*
1117 * TODO for the moment we don't accept clones from the inode
1118 * that is currently send. We may change this when
1119 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1120 * file.
1121 */
1122 if (ino >= bctx->cur_objectid)
1123 return 0;
1124 #if 0
1125 if (ino > bctx->cur_objectid)
1126 return 0;
1127 if (offset + bctx->extent_len > bctx->cur_offset)
1128 return 0;
1129 #endif
1130 }
1131
1132 bctx->found++;
1133 found->found_refs++;
1134 if (ino < found->ino) {
1135 found->ino = ino;
1136 found->offset = offset;
1137 } else if (found->ino == ino) {
1138 /*
1139 * same extent found more then once in the same file.
1140 */
1141 if (found->offset > offset + bctx->extent_len)
1142 found->offset = offset;
1143 }
1144
1145 return 0;
1146 }
1147
1148 /*
1149 * Given an inode, offset and extent item, it finds a good clone for a clone
1150 * instruction. Returns -ENOENT when none could be found. The function makes
1151 * sure that the returned clone is usable at the point where sending is at the
1152 * moment. This means, that no clones are accepted which lie behind the current
1153 * inode+offset.
1154 *
1155 * path must point to the extent item when called.
1156 */
1157 static int find_extent_clone(struct send_ctx *sctx,
1158 struct btrfs_path *path,
1159 u64 ino, u64 data_offset,
1160 u64 ino_size,
1161 struct clone_root **found)
1162 {
1163 int ret;
1164 int extent_type;
1165 u64 logical;
1166 u64 disk_byte;
1167 u64 num_bytes;
1168 u64 extent_item_pos;
1169 u64 flags = 0;
1170 struct btrfs_file_extent_item *fi;
1171 struct extent_buffer *eb = path->nodes[0];
1172 struct backref_ctx *backref_ctx = NULL;
1173 struct clone_root *cur_clone_root;
1174 struct btrfs_key found_key;
1175 struct btrfs_path *tmp_path;
1176 int compressed;
1177 u32 i;
1178
1179 tmp_path = alloc_path_for_send();
1180 if (!tmp_path)
1181 return -ENOMEM;
1182
1183 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1184 if (!backref_ctx) {
1185 ret = -ENOMEM;
1186 goto out;
1187 }
1188
1189 if (data_offset >= ino_size) {
1190 /*
1191 * There may be extents that lie behind the file's size.
1192 * I at least had this in combination with snapshotting while
1193 * writing large files.
1194 */
1195 ret = 0;
1196 goto out;
1197 }
1198
1199 fi = btrfs_item_ptr(eb, path->slots[0],
1200 struct btrfs_file_extent_item);
1201 extent_type = btrfs_file_extent_type(eb, fi);
1202 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1203 ret = -ENOENT;
1204 goto out;
1205 }
1206 compressed = btrfs_file_extent_compression(eb, fi);
1207
1208 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1209 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1210 if (disk_byte == 0) {
1211 ret = -ENOENT;
1212 goto out;
1213 }
1214 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1215
1216 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1217 &found_key, &flags);
1218 btrfs_release_path(tmp_path);
1219
1220 if (ret < 0)
1221 goto out;
1222 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1223 ret = -EIO;
1224 goto out;
1225 }
1226
1227 /*
1228 * Setup the clone roots.
1229 */
1230 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1231 cur_clone_root = sctx->clone_roots + i;
1232 cur_clone_root->ino = (u64)-1;
1233 cur_clone_root->offset = 0;
1234 cur_clone_root->found_refs = 0;
1235 }
1236
1237 backref_ctx->sctx = sctx;
1238 backref_ctx->found = 0;
1239 backref_ctx->cur_objectid = ino;
1240 backref_ctx->cur_offset = data_offset;
1241 backref_ctx->found_itself = 0;
1242 backref_ctx->extent_len = num_bytes;
1243
1244 /*
1245 * The last extent of a file may be too large due to page alignment.
1246 * We need to adjust extent_len in this case so that the checks in
1247 * __iterate_backrefs work.
1248 */
1249 if (data_offset + num_bytes >= ino_size)
1250 backref_ctx->extent_len = ino_size - data_offset;
1251
1252 /*
1253 * Now collect all backrefs.
1254 */
1255 if (compressed == BTRFS_COMPRESS_NONE)
1256 extent_item_pos = logical - found_key.objectid;
1257 else
1258 extent_item_pos = 0;
1259 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1260 found_key.objectid, extent_item_pos, 1,
1261 __iterate_backrefs, backref_ctx);
1262
1263 if (ret < 0)
1264 goto out;
1265
1266 if (!backref_ctx->found_itself) {
1267 /* found a bug in backref code? */
1268 ret = -EIO;
1269 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1270 "send_root. inode=%llu, offset=%llu, "
1271 "disk_byte=%llu found extent=%llu\n",
1272 ino, data_offset, disk_byte, found_key.objectid);
1273 goto out;
1274 }
1275
1276 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1277 "ino=%llu, "
1278 "num_bytes=%llu, logical=%llu\n",
1279 data_offset, ino, num_bytes, logical);
1280
1281 if (!backref_ctx->found)
1282 verbose_printk("btrfs: no clones found\n");
1283
1284 cur_clone_root = NULL;
1285 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1286 if (sctx->clone_roots[i].found_refs) {
1287 if (!cur_clone_root)
1288 cur_clone_root = sctx->clone_roots + i;
1289 else if (sctx->clone_roots[i].root == sctx->send_root)
1290 /* prefer clones from send_root over others */
1291 cur_clone_root = sctx->clone_roots + i;
1292 }
1293
1294 }
1295
1296 if (cur_clone_root) {
1297 if (compressed != BTRFS_COMPRESS_NONE) {
1298 /*
1299 * Offsets given by iterate_extent_inodes() are relative
1300 * to the start of the extent, we need to add logical
1301 * offset from the file extent item.
1302 * (See why at backref.c:check_extent_in_eb())
1303 */
1304 cur_clone_root->offset += btrfs_file_extent_offset(eb,
1305 fi);
1306 }
1307 *found = cur_clone_root;
1308 ret = 0;
1309 } else {
1310 ret = -ENOENT;
1311 }
1312
1313 out:
1314 btrfs_free_path(tmp_path);
1315 kfree(backref_ctx);
1316 return ret;
1317 }
1318
1319 static int read_symlink(struct btrfs_root *root,
1320 u64 ino,
1321 struct fs_path *dest)
1322 {
1323 int ret;
1324 struct btrfs_path *path;
1325 struct btrfs_key key;
1326 struct btrfs_file_extent_item *ei;
1327 u8 type;
1328 u8 compression;
1329 unsigned long off;
1330 int len;
1331
1332 path = alloc_path_for_send();
1333 if (!path)
1334 return -ENOMEM;
1335
1336 key.objectid = ino;
1337 key.type = BTRFS_EXTENT_DATA_KEY;
1338 key.offset = 0;
1339 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1340 if (ret < 0)
1341 goto out;
1342 BUG_ON(ret);
1343
1344 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1345 struct btrfs_file_extent_item);
1346 type = btrfs_file_extent_type(path->nodes[0], ei);
1347 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1348 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1349 BUG_ON(compression);
1350
1351 off = btrfs_file_extent_inline_start(ei);
1352 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1353
1354 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1355
1356 out:
1357 btrfs_free_path(path);
1358 return ret;
1359 }
1360
1361 /*
1362 * Helper function to generate a file name that is unique in the root of
1363 * send_root and parent_root. This is used to generate names for orphan inodes.
1364 */
1365 static int gen_unique_name(struct send_ctx *sctx,
1366 u64 ino, u64 gen,
1367 struct fs_path *dest)
1368 {
1369 int ret = 0;
1370 struct btrfs_path *path;
1371 struct btrfs_dir_item *di;
1372 char tmp[64];
1373 int len;
1374 u64 idx = 0;
1375
1376 path = alloc_path_for_send();
1377 if (!path)
1378 return -ENOMEM;
1379
1380 while (1) {
1381 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1382 ino, gen, idx);
1383 ASSERT(len < sizeof(tmp));
1384
1385 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1386 path, BTRFS_FIRST_FREE_OBJECTID,
1387 tmp, strlen(tmp), 0);
1388 btrfs_release_path(path);
1389 if (IS_ERR(di)) {
1390 ret = PTR_ERR(di);
1391 goto out;
1392 }
1393 if (di) {
1394 /* not unique, try again */
1395 idx++;
1396 continue;
1397 }
1398
1399 if (!sctx->parent_root) {
1400 /* unique */
1401 ret = 0;
1402 break;
1403 }
1404
1405 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1406 path, BTRFS_FIRST_FREE_OBJECTID,
1407 tmp, strlen(tmp), 0);
1408 btrfs_release_path(path);
1409 if (IS_ERR(di)) {
1410 ret = PTR_ERR(di);
1411 goto out;
1412 }
1413 if (di) {
1414 /* not unique, try again */
1415 idx++;
1416 continue;
1417 }
1418 /* unique */
1419 break;
1420 }
1421
1422 ret = fs_path_add(dest, tmp, strlen(tmp));
1423
1424 out:
1425 btrfs_free_path(path);
1426 return ret;
1427 }
1428
1429 enum inode_state {
1430 inode_state_no_change,
1431 inode_state_will_create,
1432 inode_state_did_create,
1433 inode_state_will_delete,
1434 inode_state_did_delete,
1435 };
1436
1437 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1438 {
1439 int ret;
1440 int left_ret;
1441 int right_ret;
1442 u64 left_gen;
1443 u64 right_gen;
1444
1445 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1446 NULL, NULL);
1447 if (ret < 0 && ret != -ENOENT)
1448 goto out;
1449 left_ret = ret;
1450
1451 if (!sctx->parent_root) {
1452 right_ret = -ENOENT;
1453 } else {
1454 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1455 NULL, NULL, NULL, NULL);
1456 if (ret < 0 && ret != -ENOENT)
1457 goto out;
1458 right_ret = ret;
1459 }
1460
1461 if (!left_ret && !right_ret) {
1462 if (left_gen == gen && right_gen == gen) {
1463 ret = inode_state_no_change;
1464 } else if (left_gen == gen) {
1465 if (ino < sctx->send_progress)
1466 ret = inode_state_did_create;
1467 else
1468 ret = inode_state_will_create;
1469 } else if (right_gen == gen) {
1470 if (ino < sctx->send_progress)
1471 ret = inode_state_did_delete;
1472 else
1473 ret = inode_state_will_delete;
1474 } else {
1475 ret = -ENOENT;
1476 }
1477 } else if (!left_ret) {
1478 if (left_gen == gen) {
1479 if (ino < sctx->send_progress)
1480 ret = inode_state_did_create;
1481 else
1482 ret = inode_state_will_create;
1483 } else {
1484 ret = -ENOENT;
1485 }
1486 } else if (!right_ret) {
1487 if (right_gen == gen) {
1488 if (ino < sctx->send_progress)
1489 ret = inode_state_did_delete;
1490 else
1491 ret = inode_state_will_delete;
1492 } else {
1493 ret = -ENOENT;
1494 }
1495 } else {
1496 ret = -ENOENT;
1497 }
1498
1499 out:
1500 return ret;
1501 }
1502
1503 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1504 {
1505 int ret;
1506
1507 ret = get_cur_inode_state(sctx, ino, gen);
1508 if (ret < 0)
1509 goto out;
1510
1511 if (ret == inode_state_no_change ||
1512 ret == inode_state_did_create ||
1513 ret == inode_state_will_delete)
1514 ret = 1;
1515 else
1516 ret = 0;
1517
1518 out:
1519 return ret;
1520 }
1521
1522 /*
1523 * Helper function to lookup a dir item in a dir.
1524 */
1525 static int lookup_dir_item_inode(struct btrfs_root *root,
1526 u64 dir, const char *name, int name_len,
1527 u64 *found_inode,
1528 u8 *found_type)
1529 {
1530 int ret = 0;
1531 struct btrfs_dir_item *di;
1532 struct btrfs_key key;
1533 struct btrfs_path *path;
1534
1535 path = alloc_path_for_send();
1536 if (!path)
1537 return -ENOMEM;
1538
1539 di = btrfs_lookup_dir_item(NULL, root, path,
1540 dir, name, name_len, 0);
1541 if (!di) {
1542 ret = -ENOENT;
1543 goto out;
1544 }
1545 if (IS_ERR(di)) {
1546 ret = PTR_ERR(di);
1547 goto out;
1548 }
1549 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1550 *found_inode = key.objectid;
1551 *found_type = btrfs_dir_type(path->nodes[0], di);
1552
1553 out:
1554 btrfs_free_path(path);
1555 return ret;
1556 }
1557
1558 /*
1559 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1560 * generation of the parent dir and the name of the dir entry.
1561 */
1562 static int get_first_ref(struct btrfs_root *root, u64 ino,
1563 u64 *dir, u64 *dir_gen, struct fs_path *name)
1564 {
1565 int ret;
1566 struct btrfs_key key;
1567 struct btrfs_key found_key;
1568 struct btrfs_path *path;
1569 int len;
1570 u64 parent_dir;
1571
1572 path = alloc_path_for_send();
1573 if (!path)
1574 return -ENOMEM;
1575
1576 key.objectid = ino;
1577 key.type = BTRFS_INODE_REF_KEY;
1578 key.offset = 0;
1579
1580 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1581 if (ret < 0)
1582 goto out;
1583 if (!ret)
1584 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1585 path->slots[0]);
1586 if (ret || found_key.objectid != ino ||
1587 (found_key.type != BTRFS_INODE_REF_KEY &&
1588 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1589 ret = -ENOENT;
1590 goto out;
1591 }
1592
1593 if (key.type == BTRFS_INODE_REF_KEY) {
1594 struct btrfs_inode_ref *iref;
1595 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1596 struct btrfs_inode_ref);
1597 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1598 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1599 (unsigned long)(iref + 1),
1600 len);
1601 parent_dir = found_key.offset;
1602 } else {
1603 struct btrfs_inode_extref *extref;
1604 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1605 struct btrfs_inode_extref);
1606 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1607 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1608 (unsigned long)&extref->name, len);
1609 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1610 }
1611 if (ret < 0)
1612 goto out;
1613 btrfs_release_path(path);
1614
1615 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1616 NULL, NULL);
1617 if (ret < 0)
1618 goto out;
1619
1620 *dir = parent_dir;
1621
1622 out:
1623 btrfs_free_path(path);
1624 return ret;
1625 }
1626
1627 static int is_first_ref(struct btrfs_root *root,
1628 u64 ino, u64 dir,
1629 const char *name, int name_len)
1630 {
1631 int ret;
1632 struct fs_path *tmp_name;
1633 u64 tmp_dir;
1634 u64 tmp_dir_gen;
1635
1636 tmp_name = fs_path_alloc();
1637 if (!tmp_name)
1638 return -ENOMEM;
1639
1640 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1641 if (ret < 0)
1642 goto out;
1643
1644 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1645 ret = 0;
1646 goto out;
1647 }
1648
1649 ret = !memcmp(tmp_name->start, name, name_len);
1650
1651 out:
1652 fs_path_free(tmp_name);
1653 return ret;
1654 }
1655
1656 /*
1657 * Used by process_recorded_refs to determine if a new ref would overwrite an
1658 * already existing ref. In case it detects an overwrite, it returns the
1659 * inode/gen in who_ino/who_gen.
1660 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1661 * to make sure later references to the overwritten inode are possible.
1662 * Orphanizing is however only required for the first ref of an inode.
1663 * process_recorded_refs does an additional is_first_ref check to see if
1664 * orphanizing is really required.
1665 */
1666 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1667 const char *name, int name_len,
1668 u64 *who_ino, u64 *who_gen)
1669 {
1670 int ret = 0;
1671 u64 gen;
1672 u64 other_inode = 0;
1673 u8 other_type = 0;
1674
1675 if (!sctx->parent_root)
1676 goto out;
1677
1678 ret = is_inode_existent(sctx, dir, dir_gen);
1679 if (ret <= 0)
1680 goto out;
1681
1682 /*
1683 * If we have a parent root we need to verify that the parent dir was
1684 * not delted and then re-created, if it was then we have no overwrite
1685 * and we can just unlink this entry.
1686 */
1687 if (sctx->parent_root) {
1688 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1689 NULL, NULL, NULL);
1690 if (ret < 0 && ret != -ENOENT)
1691 goto out;
1692 if (ret) {
1693 ret = 0;
1694 goto out;
1695 }
1696 if (gen != dir_gen)
1697 goto out;
1698 }
1699
1700 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1701 &other_inode, &other_type);
1702 if (ret < 0 && ret != -ENOENT)
1703 goto out;
1704 if (ret) {
1705 ret = 0;
1706 goto out;
1707 }
1708
1709 /*
1710 * Check if the overwritten ref was already processed. If yes, the ref
1711 * was already unlinked/moved, so we can safely assume that we will not
1712 * overwrite anything at this point in time.
1713 */
1714 if (other_inode > sctx->send_progress) {
1715 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1716 who_gen, NULL, NULL, NULL, NULL);
1717 if (ret < 0)
1718 goto out;
1719
1720 ret = 1;
1721 *who_ino = other_inode;
1722 } else {
1723 ret = 0;
1724 }
1725
1726 out:
1727 return ret;
1728 }
1729
1730 /*
1731 * Checks if the ref was overwritten by an already processed inode. This is
1732 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1733 * thus the orphan name needs be used.
1734 * process_recorded_refs also uses it to avoid unlinking of refs that were
1735 * overwritten.
1736 */
1737 static int did_overwrite_ref(struct send_ctx *sctx,
1738 u64 dir, u64 dir_gen,
1739 u64 ino, u64 ino_gen,
1740 const char *name, int name_len)
1741 {
1742 int ret = 0;
1743 u64 gen;
1744 u64 ow_inode;
1745 u8 other_type;
1746
1747 if (!sctx->parent_root)
1748 goto out;
1749
1750 ret = is_inode_existent(sctx, dir, dir_gen);
1751 if (ret <= 0)
1752 goto out;
1753
1754 /* check if the ref was overwritten by another ref */
1755 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1756 &ow_inode, &other_type);
1757 if (ret < 0 && ret != -ENOENT)
1758 goto out;
1759 if (ret) {
1760 /* was never and will never be overwritten */
1761 ret = 0;
1762 goto out;
1763 }
1764
1765 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1766 NULL, NULL);
1767 if (ret < 0)
1768 goto out;
1769
1770 if (ow_inode == ino && gen == ino_gen) {
1771 ret = 0;
1772 goto out;
1773 }
1774
1775 /* we know that it is or will be overwritten. check this now */
1776 if (ow_inode < sctx->send_progress)
1777 ret = 1;
1778 else
1779 ret = 0;
1780
1781 out:
1782 return ret;
1783 }
1784
1785 /*
1786 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1787 * that got overwritten. This is used by process_recorded_refs to determine
1788 * if it has to use the path as returned by get_cur_path or the orphan name.
1789 */
1790 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1791 {
1792 int ret = 0;
1793 struct fs_path *name = NULL;
1794 u64 dir;
1795 u64 dir_gen;
1796
1797 if (!sctx->parent_root)
1798 goto out;
1799
1800 name = fs_path_alloc();
1801 if (!name)
1802 return -ENOMEM;
1803
1804 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1805 if (ret < 0)
1806 goto out;
1807
1808 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1809 name->start, fs_path_len(name));
1810
1811 out:
1812 fs_path_free(name);
1813 return ret;
1814 }
1815
1816 /*
1817 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1818 * so we need to do some special handling in case we have clashes. This function
1819 * takes care of this with the help of name_cache_entry::radix_list.
1820 * In case of error, nce is kfreed.
1821 */
1822 static int name_cache_insert(struct send_ctx *sctx,
1823 struct name_cache_entry *nce)
1824 {
1825 int ret = 0;
1826 struct list_head *nce_head;
1827
1828 nce_head = radix_tree_lookup(&sctx->name_cache,
1829 (unsigned long)nce->ino);
1830 if (!nce_head) {
1831 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1832 if (!nce_head) {
1833 kfree(nce);
1834 return -ENOMEM;
1835 }
1836 INIT_LIST_HEAD(nce_head);
1837
1838 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1839 if (ret < 0) {
1840 kfree(nce_head);
1841 kfree(nce);
1842 return ret;
1843 }
1844 }
1845 list_add_tail(&nce->radix_list, nce_head);
1846 list_add_tail(&nce->list, &sctx->name_cache_list);
1847 sctx->name_cache_size++;
1848
1849 return ret;
1850 }
1851
1852 static void name_cache_delete(struct send_ctx *sctx,
1853 struct name_cache_entry *nce)
1854 {
1855 struct list_head *nce_head;
1856
1857 nce_head = radix_tree_lookup(&sctx->name_cache,
1858 (unsigned long)nce->ino);
1859 if (!nce_head) {
1860 btrfs_err(sctx->send_root->fs_info,
1861 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
1862 nce->ino, sctx->name_cache_size);
1863 }
1864
1865 list_del(&nce->radix_list);
1866 list_del(&nce->list);
1867 sctx->name_cache_size--;
1868
1869 /*
1870 * We may not get to the final release of nce_head if the lookup fails
1871 */
1872 if (nce_head && list_empty(nce_head)) {
1873 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1874 kfree(nce_head);
1875 }
1876 }
1877
1878 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1879 u64 ino, u64 gen)
1880 {
1881 struct list_head *nce_head;
1882 struct name_cache_entry *cur;
1883
1884 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1885 if (!nce_head)
1886 return NULL;
1887
1888 list_for_each_entry(cur, nce_head, radix_list) {
1889 if (cur->ino == ino && cur->gen == gen)
1890 return cur;
1891 }
1892 return NULL;
1893 }
1894
1895 /*
1896 * Removes the entry from the list and adds it back to the end. This marks the
1897 * entry as recently used so that name_cache_clean_unused does not remove it.
1898 */
1899 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1900 {
1901 list_del(&nce->list);
1902 list_add_tail(&nce->list, &sctx->name_cache_list);
1903 }
1904
1905 /*
1906 * Remove some entries from the beginning of name_cache_list.
1907 */
1908 static void name_cache_clean_unused(struct send_ctx *sctx)
1909 {
1910 struct name_cache_entry *nce;
1911
1912 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1913 return;
1914
1915 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1916 nce = list_entry(sctx->name_cache_list.next,
1917 struct name_cache_entry, list);
1918 name_cache_delete(sctx, nce);
1919 kfree(nce);
1920 }
1921 }
1922
1923 static void name_cache_free(struct send_ctx *sctx)
1924 {
1925 struct name_cache_entry *nce;
1926
1927 while (!list_empty(&sctx->name_cache_list)) {
1928 nce = list_entry(sctx->name_cache_list.next,
1929 struct name_cache_entry, list);
1930 name_cache_delete(sctx, nce);
1931 kfree(nce);
1932 }
1933 }
1934
1935 /*
1936 * Used by get_cur_path for each ref up to the root.
1937 * Returns 0 if it succeeded.
1938 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1939 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1940 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1941 * Returns <0 in case of error.
1942 */
1943 static int __get_cur_name_and_parent(struct send_ctx *sctx,
1944 u64 ino, u64 gen,
1945 int skip_name_cache,
1946 u64 *parent_ino,
1947 u64 *parent_gen,
1948 struct fs_path *dest)
1949 {
1950 int ret;
1951 int nce_ret;
1952 struct btrfs_path *path = NULL;
1953 struct name_cache_entry *nce = NULL;
1954
1955 if (skip_name_cache)
1956 goto get_ref;
1957 /*
1958 * First check if we already did a call to this function with the same
1959 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1960 * return the cached result.
1961 */
1962 nce = name_cache_search(sctx, ino, gen);
1963 if (nce) {
1964 if (ino < sctx->send_progress && nce->need_later_update) {
1965 name_cache_delete(sctx, nce);
1966 kfree(nce);
1967 nce = NULL;
1968 } else {
1969 name_cache_used(sctx, nce);
1970 *parent_ino = nce->parent_ino;
1971 *parent_gen = nce->parent_gen;
1972 ret = fs_path_add(dest, nce->name, nce->name_len);
1973 if (ret < 0)
1974 goto out;
1975 ret = nce->ret;
1976 goto out;
1977 }
1978 }
1979
1980 path = alloc_path_for_send();
1981 if (!path)
1982 return -ENOMEM;
1983
1984 /*
1985 * If the inode is not existent yet, add the orphan name and return 1.
1986 * This should only happen for the parent dir that we determine in
1987 * __record_new_ref
1988 */
1989 ret = is_inode_existent(sctx, ino, gen);
1990 if (ret < 0)
1991 goto out;
1992
1993 if (!ret) {
1994 ret = gen_unique_name(sctx, ino, gen, dest);
1995 if (ret < 0)
1996 goto out;
1997 ret = 1;
1998 goto out_cache;
1999 }
2000
2001 get_ref:
2002 /*
2003 * Depending on whether the inode was already processed or not, use
2004 * send_root or parent_root for ref lookup.
2005 */
2006 if (ino < sctx->send_progress && !skip_name_cache)
2007 ret = get_first_ref(sctx->send_root, ino,
2008 parent_ino, parent_gen, dest);
2009 else
2010 ret = get_first_ref(sctx->parent_root, ino,
2011 parent_ino, parent_gen, dest);
2012 if (ret < 0)
2013 goto out;
2014
2015 /*
2016 * Check if the ref was overwritten by an inode's ref that was processed
2017 * earlier. If yes, treat as orphan and return 1.
2018 */
2019 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2020 dest->start, dest->end - dest->start);
2021 if (ret < 0)
2022 goto out;
2023 if (ret) {
2024 fs_path_reset(dest);
2025 ret = gen_unique_name(sctx, ino, gen, dest);
2026 if (ret < 0)
2027 goto out;
2028 ret = 1;
2029 }
2030 if (skip_name_cache)
2031 goto out;
2032
2033 out_cache:
2034 /*
2035 * Store the result of the lookup in the name cache.
2036 */
2037 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2038 if (!nce) {
2039 ret = -ENOMEM;
2040 goto out;
2041 }
2042
2043 nce->ino = ino;
2044 nce->gen = gen;
2045 nce->parent_ino = *parent_ino;
2046 nce->parent_gen = *parent_gen;
2047 nce->name_len = fs_path_len(dest);
2048 nce->ret = ret;
2049 strcpy(nce->name, dest->start);
2050
2051 if (ino < sctx->send_progress)
2052 nce->need_later_update = 0;
2053 else
2054 nce->need_later_update = 1;
2055
2056 nce_ret = name_cache_insert(sctx, nce);
2057 if (nce_ret < 0)
2058 ret = nce_ret;
2059 name_cache_clean_unused(sctx);
2060
2061 out:
2062 btrfs_free_path(path);
2063 return ret;
2064 }
2065
2066 /*
2067 * Magic happens here. This function returns the first ref to an inode as it
2068 * would look like while receiving the stream at this point in time.
2069 * We walk the path up to the root. For every inode in between, we check if it
2070 * was already processed/sent. If yes, we continue with the parent as found
2071 * in send_root. If not, we continue with the parent as found in parent_root.
2072 * If we encounter an inode that was deleted at this point in time, we use the
2073 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2074 * that were not created yet and overwritten inodes/refs.
2075 *
2076 * When do we have have orphan inodes:
2077 * 1. When an inode is freshly created and thus no valid refs are available yet
2078 * 2. When a directory lost all it's refs (deleted) but still has dir items
2079 * inside which were not processed yet (pending for move/delete). If anyone
2080 * tried to get the path to the dir items, it would get a path inside that
2081 * orphan directory.
2082 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2083 * of an unprocessed inode. If in that case the first ref would be
2084 * overwritten, the overwritten inode gets "orphanized". Later when we
2085 * process this overwritten inode, it is restored at a new place by moving
2086 * the orphan inode.
2087 *
2088 * sctx->send_progress tells this function at which point in time receiving
2089 * would be.
2090 */
2091 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2092 struct fs_path *dest)
2093 {
2094 int ret = 0;
2095 struct fs_path *name = NULL;
2096 u64 parent_inode = 0;
2097 u64 parent_gen = 0;
2098 int stop = 0;
2099 int skip_name_cache = 0;
2100
2101 name = fs_path_alloc();
2102 if (!name) {
2103 ret = -ENOMEM;
2104 goto out;
2105 }
2106
2107 if (is_waiting_for_move(sctx, ino))
2108 skip_name_cache = 1;
2109
2110 dest->reversed = 1;
2111 fs_path_reset(dest);
2112
2113 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2114 fs_path_reset(name);
2115
2116 ret = __get_cur_name_and_parent(sctx, ino, gen, skip_name_cache,
2117 &parent_inode, &parent_gen, name);
2118 if (ret < 0)
2119 goto out;
2120 if (ret)
2121 stop = 1;
2122
2123 if (!skip_name_cache &&
2124 is_waiting_for_move(sctx, parent_inode))
2125 skip_name_cache = 1;
2126
2127 ret = fs_path_add_path(dest, name);
2128 if (ret < 0)
2129 goto out;
2130
2131 ino = parent_inode;
2132 gen = parent_gen;
2133 }
2134
2135 out:
2136 fs_path_free(name);
2137 if (!ret)
2138 fs_path_unreverse(dest);
2139 return ret;
2140 }
2141
2142 /*
2143 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2144 */
2145 static int send_subvol_begin(struct send_ctx *sctx)
2146 {
2147 int ret;
2148 struct btrfs_root *send_root = sctx->send_root;
2149 struct btrfs_root *parent_root = sctx->parent_root;
2150 struct btrfs_path *path;
2151 struct btrfs_key key;
2152 struct btrfs_root_ref *ref;
2153 struct extent_buffer *leaf;
2154 char *name = NULL;
2155 int namelen;
2156
2157 path = btrfs_alloc_path();
2158 if (!path)
2159 return -ENOMEM;
2160
2161 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2162 if (!name) {
2163 btrfs_free_path(path);
2164 return -ENOMEM;
2165 }
2166
2167 key.objectid = send_root->objectid;
2168 key.type = BTRFS_ROOT_BACKREF_KEY;
2169 key.offset = 0;
2170
2171 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2172 &key, path, 1, 0);
2173 if (ret < 0)
2174 goto out;
2175 if (ret) {
2176 ret = -ENOENT;
2177 goto out;
2178 }
2179
2180 leaf = path->nodes[0];
2181 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2182 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2183 key.objectid != send_root->objectid) {
2184 ret = -ENOENT;
2185 goto out;
2186 }
2187 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2188 namelen = btrfs_root_ref_name_len(leaf, ref);
2189 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2190 btrfs_release_path(path);
2191
2192 if (parent_root) {
2193 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2194 if (ret < 0)
2195 goto out;
2196 } else {
2197 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2198 if (ret < 0)
2199 goto out;
2200 }
2201
2202 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2203 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2204 sctx->send_root->root_item.uuid);
2205 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2206 le64_to_cpu(sctx->send_root->root_item.ctransid));
2207 if (parent_root) {
2208 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2209 sctx->parent_root->root_item.uuid);
2210 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2211 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2212 }
2213
2214 ret = send_cmd(sctx);
2215
2216 tlv_put_failure:
2217 out:
2218 btrfs_free_path(path);
2219 kfree(name);
2220 return ret;
2221 }
2222
2223 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2224 {
2225 int ret = 0;
2226 struct fs_path *p;
2227
2228 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2229
2230 p = fs_path_alloc();
2231 if (!p)
2232 return -ENOMEM;
2233
2234 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2235 if (ret < 0)
2236 goto out;
2237
2238 ret = get_cur_path(sctx, ino, gen, p);
2239 if (ret < 0)
2240 goto out;
2241 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2242 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2243
2244 ret = send_cmd(sctx);
2245
2246 tlv_put_failure:
2247 out:
2248 fs_path_free(p);
2249 return ret;
2250 }
2251
2252 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2253 {
2254 int ret = 0;
2255 struct fs_path *p;
2256
2257 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2258
2259 p = fs_path_alloc();
2260 if (!p)
2261 return -ENOMEM;
2262
2263 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2264 if (ret < 0)
2265 goto out;
2266
2267 ret = get_cur_path(sctx, ino, gen, p);
2268 if (ret < 0)
2269 goto out;
2270 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2271 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2272
2273 ret = send_cmd(sctx);
2274
2275 tlv_put_failure:
2276 out:
2277 fs_path_free(p);
2278 return ret;
2279 }
2280
2281 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2282 {
2283 int ret = 0;
2284 struct fs_path *p;
2285
2286 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2287
2288 p = fs_path_alloc();
2289 if (!p)
2290 return -ENOMEM;
2291
2292 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2293 if (ret < 0)
2294 goto out;
2295
2296 ret = get_cur_path(sctx, ino, gen, p);
2297 if (ret < 0)
2298 goto out;
2299 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2300 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2301 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2302
2303 ret = send_cmd(sctx);
2304
2305 tlv_put_failure:
2306 out:
2307 fs_path_free(p);
2308 return ret;
2309 }
2310
2311 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2312 {
2313 int ret = 0;
2314 struct fs_path *p = NULL;
2315 struct btrfs_inode_item *ii;
2316 struct btrfs_path *path = NULL;
2317 struct extent_buffer *eb;
2318 struct btrfs_key key;
2319 int slot;
2320
2321 verbose_printk("btrfs: send_utimes %llu\n", ino);
2322
2323 p = fs_path_alloc();
2324 if (!p)
2325 return -ENOMEM;
2326
2327 path = alloc_path_for_send();
2328 if (!path) {
2329 ret = -ENOMEM;
2330 goto out;
2331 }
2332
2333 key.objectid = ino;
2334 key.type = BTRFS_INODE_ITEM_KEY;
2335 key.offset = 0;
2336 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2337 if (ret < 0)
2338 goto out;
2339
2340 eb = path->nodes[0];
2341 slot = path->slots[0];
2342 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2343
2344 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2345 if (ret < 0)
2346 goto out;
2347
2348 ret = get_cur_path(sctx, ino, gen, p);
2349 if (ret < 0)
2350 goto out;
2351 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2352 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2353 btrfs_inode_atime(ii));
2354 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2355 btrfs_inode_mtime(ii));
2356 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2357 btrfs_inode_ctime(ii));
2358 /* TODO Add otime support when the otime patches get into upstream */
2359
2360 ret = send_cmd(sctx);
2361
2362 tlv_put_failure:
2363 out:
2364 fs_path_free(p);
2365 btrfs_free_path(path);
2366 return ret;
2367 }
2368
2369 /*
2370 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2371 * a valid path yet because we did not process the refs yet. So, the inode
2372 * is created as orphan.
2373 */
2374 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2375 {
2376 int ret = 0;
2377 struct fs_path *p;
2378 int cmd;
2379 u64 gen;
2380 u64 mode;
2381 u64 rdev;
2382
2383 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2384
2385 p = fs_path_alloc();
2386 if (!p)
2387 return -ENOMEM;
2388
2389 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2390 NULL, &rdev);
2391 if (ret < 0)
2392 goto out;
2393
2394 if (S_ISREG(mode)) {
2395 cmd = BTRFS_SEND_C_MKFILE;
2396 } else if (S_ISDIR(mode)) {
2397 cmd = BTRFS_SEND_C_MKDIR;
2398 } else if (S_ISLNK(mode)) {
2399 cmd = BTRFS_SEND_C_SYMLINK;
2400 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2401 cmd = BTRFS_SEND_C_MKNOD;
2402 } else if (S_ISFIFO(mode)) {
2403 cmd = BTRFS_SEND_C_MKFIFO;
2404 } else if (S_ISSOCK(mode)) {
2405 cmd = BTRFS_SEND_C_MKSOCK;
2406 } else {
2407 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2408 (int)(mode & S_IFMT));
2409 ret = -ENOTSUPP;
2410 goto out;
2411 }
2412
2413 ret = begin_cmd(sctx, cmd);
2414 if (ret < 0)
2415 goto out;
2416
2417 ret = gen_unique_name(sctx, ino, gen, p);
2418 if (ret < 0)
2419 goto out;
2420
2421 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2422 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2423
2424 if (S_ISLNK(mode)) {
2425 fs_path_reset(p);
2426 ret = read_symlink(sctx->send_root, ino, p);
2427 if (ret < 0)
2428 goto out;
2429 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2430 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2431 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2432 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2433 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2434 }
2435
2436 ret = send_cmd(sctx);
2437 if (ret < 0)
2438 goto out;
2439
2440
2441 tlv_put_failure:
2442 out:
2443 fs_path_free(p);
2444 return ret;
2445 }
2446
2447 /*
2448 * We need some special handling for inodes that get processed before the parent
2449 * directory got created. See process_recorded_refs for details.
2450 * This function does the check if we already created the dir out of order.
2451 */
2452 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2453 {
2454 int ret = 0;
2455 struct btrfs_path *path = NULL;
2456 struct btrfs_key key;
2457 struct btrfs_key found_key;
2458 struct btrfs_key di_key;
2459 struct extent_buffer *eb;
2460 struct btrfs_dir_item *di;
2461 int slot;
2462
2463 path = alloc_path_for_send();
2464 if (!path) {
2465 ret = -ENOMEM;
2466 goto out;
2467 }
2468
2469 key.objectid = dir;
2470 key.type = BTRFS_DIR_INDEX_KEY;
2471 key.offset = 0;
2472 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2473 if (ret < 0)
2474 goto out;
2475
2476 while (1) {
2477 eb = path->nodes[0];
2478 slot = path->slots[0];
2479 if (slot >= btrfs_header_nritems(eb)) {
2480 ret = btrfs_next_leaf(sctx->send_root, path);
2481 if (ret < 0) {
2482 goto out;
2483 } else if (ret > 0) {
2484 ret = 0;
2485 break;
2486 }
2487 continue;
2488 }
2489
2490 btrfs_item_key_to_cpu(eb, &found_key, slot);
2491 if (found_key.objectid != key.objectid ||
2492 found_key.type != key.type) {
2493 ret = 0;
2494 goto out;
2495 }
2496
2497 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2498 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2499
2500 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2501 di_key.objectid < sctx->send_progress) {
2502 ret = 1;
2503 goto out;
2504 }
2505
2506 path->slots[0]++;
2507 }
2508
2509 out:
2510 btrfs_free_path(path);
2511 return ret;
2512 }
2513
2514 /*
2515 * Only creates the inode if it is:
2516 * 1. Not a directory
2517 * 2. Or a directory which was not created already due to out of order
2518 * directories. See did_create_dir and process_recorded_refs for details.
2519 */
2520 static int send_create_inode_if_needed(struct send_ctx *sctx)
2521 {
2522 int ret;
2523
2524 if (S_ISDIR(sctx->cur_inode_mode)) {
2525 ret = did_create_dir(sctx, sctx->cur_ino);
2526 if (ret < 0)
2527 goto out;
2528 if (ret) {
2529 ret = 0;
2530 goto out;
2531 }
2532 }
2533
2534 ret = send_create_inode(sctx, sctx->cur_ino);
2535 if (ret < 0)
2536 goto out;
2537
2538 out:
2539 return ret;
2540 }
2541
2542 struct recorded_ref {
2543 struct list_head list;
2544 char *dir_path;
2545 char *name;
2546 struct fs_path *full_path;
2547 u64 dir;
2548 u64 dir_gen;
2549 int dir_path_len;
2550 int name_len;
2551 };
2552
2553 /*
2554 * We need to process new refs before deleted refs, but compare_tree gives us
2555 * everything mixed. So we first record all refs and later process them.
2556 * This function is a helper to record one ref.
2557 */
2558 static int record_ref(struct list_head *head, u64 dir,
2559 u64 dir_gen, struct fs_path *path)
2560 {
2561 struct recorded_ref *ref;
2562
2563 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2564 if (!ref)
2565 return -ENOMEM;
2566
2567 ref->dir = dir;
2568 ref->dir_gen = dir_gen;
2569 ref->full_path = path;
2570
2571 ref->name = (char *)kbasename(ref->full_path->start);
2572 ref->name_len = ref->full_path->end - ref->name;
2573 ref->dir_path = ref->full_path->start;
2574 if (ref->name == ref->full_path->start)
2575 ref->dir_path_len = 0;
2576 else
2577 ref->dir_path_len = ref->full_path->end -
2578 ref->full_path->start - 1 - ref->name_len;
2579
2580 list_add_tail(&ref->list, head);
2581 return 0;
2582 }
2583
2584 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2585 {
2586 struct recorded_ref *new;
2587
2588 new = kmalloc(sizeof(*ref), GFP_NOFS);
2589 if (!new)
2590 return -ENOMEM;
2591
2592 new->dir = ref->dir;
2593 new->dir_gen = ref->dir_gen;
2594 new->full_path = NULL;
2595 INIT_LIST_HEAD(&new->list);
2596 list_add_tail(&new->list, list);
2597 return 0;
2598 }
2599
2600 static void __free_recorded_refs(struct list_head *head)
2601 {
2602 struct recorded_ref *cur;
2603
2604 while (!list_empty(head)) {
2605 cur = list_entry(head->next, struct recorded_ref, list);
2606 fs_path_free(cur->full_path);
2607 list_del(&cur->list);
2608 kfree(cur);
2609 }
2610 }
2611
2612 static void free_recorded_refs(struct send_ctx *sctx)
2613 {
2614 __free_recorded_refs(&sctx->new_refs);
2615 __free_recorded_refs(&sctx->deleted_refs);
2616 }
2617
2618 /*
2619 * Renames/moves a file/dir to its orphan name. Used when the first
2620 * ref of an unprocessed inode gets overwritten and for all non empty
2621 * directories.
2622 */
2623 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2624 struct fs_path *path)
2625 {
2626 int ret;
2627 struct fs_path *orphan;
2628
2629 orphan = fs_path_alloc();
2630 if (!orphan)
2631 return -ENOMEM;
2632
2633 ret = gen_unique_name(sctx, ino, gen, orphan);
2634 if (ret < 0)
2635 goto out;
2636
2637 ret = send_rename(sctx, path, orphan);
2638
2639 out:
2640 fs_path_free(orphan);
2641 return ret;
2642 }
2643
2644 /*
2645 * Returns 1 if a directory can be removed at this point in time.
2646 * We check this by iterating all dir items and checking if the inode behind
2647 * the dir item was already processed.
2648 */
2649 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2650 {
2651 int ret = 0;
2652 struct btrfs_root *root = sctx->parent_root;
2653 struct btrfs_path *path;
2654 struct btrfs_key key;
2655 struct btrfs_key found_key;
2656 struct btrfs_key loc;
2657 struct btrfs_dir_item *di;
2658
2659 /*
2660 * Don't try to rmdir the top/root subvolume dir.
2661 */
2662 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2663 return 0;
2664
2665 path = alloc_path_for_send();
2666 if (!path)
2667 return -ENOMEM;
2668
2669 key.objectid = dir;
2670 key.type = BTRFS_DIR_INDEX_KEY;
2671 key.offset = 0;
2672 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2673 if (ret < 0)
2674 goto out;
2675
2676 while (1) {
2677 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2678 ret = btrfs_next_leaf(root, path);
2679 if (ret < 0)
2680 goto out;
2681 else if (ret > 0)
2682 break;
2683 continue;
2684 }
2685 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2686 path->slots[0]);
2687 if (found_key.objectid != key.objectid ||
2688 found_key.type != key.type)
2689 break;
2690
2691 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2692 struct btrfs_dir_item);
2693 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2694
2695 if (loc.objectid > send_progress) {
2696 ret = 0;
2697 goto out;
2698 }
2699
2700 path->slots[0]++;
2701 }
2702
2703 ret = 1;
2704
2705 out:
2706 btrfs_free_path(path);
2707 return ret;
2708 }
2709
2710 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2711 {
2712 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2713 struct waiting_dir_move *entry;
2714
2715 while (n) {
2716 entry = rb_entry(n, struct waiting_dir_move, node);
2717 if (ino < entry->ino)
2718 n = n->rb_left;
2719 else if (ino > entry->ino)
2720 n = n->rb_right;
2721 else
2722 return 1;
2723 }
2724 return 0;
2725 }
2726
2727 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2728 {
2729 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2730 struct rb_node *parent = NULL;
2731 struct waiting_dir_move *entry, *dm;
2732
2733 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2734 if (!dm)
2735 return -ENOMEM;
2736 dm->ino = ino;
2737
2738 while (*p) {
2739 parent = *p;
2740 entry = rb_entry(parent, struct waiting_dir_move, node);
2741 if (ino < entry->ino) {
2742 p = &(*p)->rb_left;
2743 } else if (ino > entry->ino) {
2744 p = &(*p)->rb_right;
2745 } else {
2746 kfree(dm);
2747 return -EEXIST;
2748 }
2749 }
2750
2751 rb_link_node(&dm->node, parent, p);
2752 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2753 return 0;
2754 }
2755
2756 static int del_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2757 {
2758 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2759 struct waiting_dir_move *entry;
2760
2761 while (n) {
2762 entry = rb_entry(n, struct waiting_dir_move, node);
2763 if (ino < entry->ino) {
2764 n = n->rb_left;
2765 } else if (ino > entry->ino) {
2766 n = n->rb_right;
2767 } else {
2768 rb_erase(&entry->node, &sctx->waiting_dir_moves);
2769 kfree(entry);
2770 return 0;
2771 }
2772 }
2773 return -ENOENT;
2774 }
2775
2776 static int add_pending_dir_move(struct send_ctx *sctx, u64 parent_ino)
2777 {
2778 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2779 struct rb_node *parent = NULL;
2780 struct pending_dir_move *entry, *pm;
2781 struct recorded_ref *cur;
2782 int exists = 0;
2783 int ret;
2784
2785 pm = kmalloc(sizeof(*pm), GFP_NOFS);
2786 if (!pm)
2787 return -ENOMEM;
2788 pm->parent_ino = parent_ino;
2789 pm->ino = sctx->cur_ino;
2790 pm->gen = sctx->cur_inode_gen;
2791 INIT_LIST_HEAD(&pm->list);
2792 INIT_LIST_HEAD(&pm->update_refs);
2793 RB_CLEAR_NODE(&pm->node);
2794
2795 while (*p) {
2796 parent = *p;
2797 entry = rb_entry(parent, struct pending_dir_move, node);
2798 if (parent_ino < entry->parent_ino) {
2799 p = &(*p)->rb_left;
2800 } else if (parent_ino > entry->parent_ino) {
2801 p = &(*p)->rb_right;
2802 } else {
2803 exists = 1;
2804 break;
2805 }
2806 }
2807
2808 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2809 ret = dup_ref(cur, &pm->update_refs);
2810 if (ret < 0)
2811 goto out;
2812 }
2813 list_for_each_entry(cur, &sctx->new_refs, list) {
2814 ret = dup_ref(cur, &pm->update_refs);
2815 if (ret < 0)
2816 goto out;
2817 }
2818
2819 ret = add_waiting_dir_move(sctx, pm->ino);
2820 if (ret)
2821 goto out;
2822
2823 if (exists) {
2824 list_add_tail(&pm->list, &entry->list);
2825 } else {
2826 rb_link_node(&pm->node, parent, p);
2827 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
2828 }
2829 ret = 0;
2830 out:
2831 if (ret) {
2832 __free_recorded_refs(&pm->update_refs);
2833 kfree(pm);
2834 }
2835 return ret;
2836 }
2837
2838 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
2839 u64 parent_ino)
2840 {
2841 struct rb_node *n = sctx->pending_dir_moves.rb_node;
2842 struct pending_dir_move *entry;
2843
2844 while (n) {
2845 entry = rb_entry(n, struct pending_dir_move, node);
2846 if (parent_ino < entry->parent_ino)
2847 n = n->rb_left;
2848 else if (parent_ino > entry->parent_ino)
2849 n = n->rb_right;
2850 else
2851 return entry;
2852 }
2853 return NULL;
2854 }
2855
2856 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
2857 {
2858 struct fs_path *from_path = NULL;
2859 struct fs_path *to_path = NULL;
2860 struct fs_path *name = NULL;
2861 u64 orig_progress = sctx->send_progress;
2862 struct recorded_ref *cur;
2863 u64 parent_ino, parent_gen;
2864 int ret;
2865
2866 name = fs_path_alloc();
2867 from_path = fs_path_alloc();
2868 if (!name || !from_path) {
2869 ret = -ENOMEM;
2870 goto out;
2871 }
2872
2873 ret = del_waiting_dir_move(sctx, pm->ino);
2874 ASSERT(ret == 0);
2875
2876 ret = get_first_ref(sctx->parent_root, pm->ino,
2877 &parent_ino, &parent_gen, name);
2878 if (ret < 0)
2879 goto out;
2880
2881 if (parent_ino == sctx->cur_ino) {
2882 /* child only renamed, not moved */
2883 ASSERT(parent_gen == sctx->cur_inode_gen);
2884 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2885 from_path);
2886 if (ret < 0)
2887 goto out;
2888 ret = fs_path_add_path(from_path, name);
2889 if (ret < 0)
2890 goto out;
2891 } else {
2892 /* child moved and maybe renamed too */
2893 sctx->send_progress = pm->ino;
2894 ret = get_cur_path(sctx, pm->ino, pm->gen, from_path);
2895 if (ret < 0)
2896 goto out;
2897 }
2898
2899 fs_path_free(name);
2900 name = NULL;
2901
2902 to_path = fs_path_alloc();
2903 if (!to_path) {
2904 ret = -ENOMEM;
2905 goto out;
2906 }
2907
2908 sctx->send_progress = sctx->cur_ino + 1;
2909 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
2910 if (ret < 0)
2911 goto out;
2912
2913 ret = send_rename(sctx, from_path, to_path);
2914 if (ret < 0)
2915 goto out;
2916
2917 ret = send_utimes(sctx, pm->ino, pm->gen);
2918 if (ret < 0)
2919 goto out;
2920
2921 /*
2922 * After rename/move, need to update the utimes of both new parent(s)
2923 * and old parent(s).
2924 */
2925 list_for_each_entry(cur, &pm->update_refs, list) {
2926 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
2927 if (ret < 0)
2928 goto out;
2929 }
2930
2931 out:
2932 fs_path_free(name);
2933 fs_path_free(from_path);
2934 fs_path_free(to_path);
2935 sctx->send_progress = orig_progress;
2936
2937 return ret;
2938 }
2939
2940 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
2941 {
2942 if (!list_empty(&m->list))
2943 list_del(&m->list);
2944 if (!RB_EMPTY_NODE(&m->node))
2945 rb_erase(&m->node, &sctx->pending_dir_moves);
2946 __free_recorded_refs(&m->update_refs);
2947 kfree(m);
2948 }
2949
2950 static void tail_append_pending_moves(struct pending_dir_move *moves,
2951 struct list_head *stack)
2952 {
2953 if (list_empty(&moves->list)) {
2954 list_add_tail(&moves->list, stack);
2955 } else {
2956 LIST_HEAD(list);
2957 list_splice_init(&moves->list, &list);
2958 list_add_tail(&moves->list, stack);
2959 list_splice_tail(&list, stack);
2960 }
2961 }
2962
2963 static int apply_children_dir_moves(struct send_ctx *sctx)
2964 {
2965 struct pending_dir_move *pm;
2966 struct list_head stack;
2967 u64 parent_ino = sctx->cur_ino;
2968 int ret = 0;
2969
2970 pm = get_pending_dir_moves(sctx, parent_ino);
2971 if (!pm)
2972 return 0;
2973
2974 INIT_LIST_HEAD(&stack);
2975 tail_append_pending_moves(pm, &stack);
2976
2977 while (!list_empty(&stack)) {
2978 pm = list_first_entry(&stack, struct pending_dir_move, list);
2979 parent_ino = pm->ino;
2980 ret = apply_dir_move(sctx, pm);
2981 free_pending_move(sctx, pm);
2982 if (ret)
2983 goto out;
2984 pm = get_pending_dir_moves(sctx, parent_ino);
2985 if (pm)
2986 tail_append_pending_moves(pm, &stack);
2987 }
2988 return 0;
2989
2990 out:
2991 while (!list_empty(&stack)) {
2992 pm = list_first_entry(&stack, struct pending_dir_move, list);
2993 free_pending_move(sctx, pm);
2994 }
2995 return ret;
2996 }
2997
2998 static int wait_for_parent_move(struct send_ctx *sctx,
2999 struct recorded_ref *parent_ref)
3000 {
3001 int ret;
3002 u64 ino = parent_ref->dir;
3003 u64 parent_ino_before, parent_ino_after;
3004 u64 new_gen, old_gen;
3005 struct fs_path *path_before = NULL;
3006 struct fs_path *path_after = NULL;
3007 int len1, len2;
3008
3009 if (parent_ref->dir <= sctx->cur_ino)
3010 return 0;
3011
3012 if (is_waiting_for_move(sctx, ino))
3013 return 1;
3014
3015 ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen,
3016 NULL, NULL, NULL, NULL);
3017 if (ret == -ENOENT)
3018 return 0;
3019 else if (ret < 0)
3020 return ret;
3021
3022 ret = get_inode_info(sctx->send_root, ino, NULL, &new_gen,
3023 NULL, NULL, NULL, NULL);
3024 if (ret < 0)
3025 return ret;
3026
3027 if (new_gen != old_gen)
3028 return 0;
3029
3030 path_before = fs_path_alloc();
3031 if (!path_before)
3032 return -ENOMEM;
3033
3034 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3035 NULL, path_before);
3036 if (ret == -ENOENT) {
3037 ret = 0;
3038 goto out;
3039 } else if (ret < 0) {
3040 goto out;
3041 }
3042
3043 path_after = fs_path_alloc();
3044 if (!path_after) {
3045 ret = -ENOMEM;
3046 goto out;
3047 }
3048
3049 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3050 NULL, path_after);
3051 if (ret == -ENOENT) {
3052 ret = 0;
3053 goto out;
3054 } else if (ret < 0) {
3055 goto out;
3056 }
3057
3058 len1 = fs_path_len(path_before);
3059 len2 = fs_path_len(path_after);
3060 if (parent_ino_before != parent_ino_after || len1 != len2 ||
3061 memcmp(path_before->start, path_after->start, len1)) {
3062 ret = 1;
3063 goto out;
3064 }
3065 ret = 0;
3066
3067 out:
3068 fs_path_free(path_before);
3069 fs_path_free(path_after);
3070
3071 return ret;
3072 }
3073
3074 /*
3075 * This does all the move/link/unlink/rmdir magic.
3076 */
3077 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3078 {
3079 int ret = 0;
3080 struct recorded_ref *cur;
3081 struct recorded_ref *cur2;
3082 struct list_head check_dirs;
3083 struct fs_path *valid_path = NULL;
3084 u64 ow_inode = 0;
3085 u64 ow_gen;
3086 int did_overwrite = 0;
3087 int is_orphan = 0;
3088
3089 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3090
3091 /*
3092 * This should never happen as the root dir always has the same ref
3093 * which is always '..'
3094 */
3095 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3096 INIT_LIST_HEAD(&check_dirs);
3097
3098 valid_path = fs_path_alloc();
3099 if (!valid_path) {
3100 ret = -ENOMEM;
3101 goto out;
3102 }
3103
3104 /*
3105 * First, check if the first ref of the current inode was overwritten
3106 * before. If yes, we know that the current inode was already orphanized
3107 * and thus use the orphan name. If not, we can use get_cur_path to
3108 * get the path of the first ref as it would like while receiving at
3109 * this point in time.
3110 * New inodes are always orphan at the beginning, so force to use the
3111 * orphan name in this case.
3112 * The first ref is stored in valid_path and will be updated if it
3113 * gets moved around.
3114 */
3115 if (!sctx->cur_inode_new) {
3116 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3117 sctx->cur_inode_gen);
3118 if (ret < 0)
3119 goto out;
3120 if (ret)
3121 did_overwrite = 1;
3122 }
3123 if (sctx->cur_inode_new || did_overwrite) {
3124 ret = gen_unique_name(sctx, sctx->cur_ino,
3125 sctx->cur_inode_gen, valid_path);
3126 if (ret < 0)
3127 goto out;
3128 is_orphan = 1;
3129 } else {
3130 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3131 valid_path);
3132 if (ret < 0)
3133 goto out;
3134 }
3135
3136 list_for_each_entry(cur, &sctx->new_refs, list) {
3137 /*
3138 * We may have refs where the parent directory does not exist
3139 * yet. This happens if the parent directories inum is higher
3140 * the the current inum. To handle this case, we create the
3141 * parent directory out of order. But we need to check if this
3142 * did already happen before due to other refs in the same dir.
3143 */
3144 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3145 if (ret < 0)
3146 goto out;
3147 if (ret == inode_state_will_create) {
3148 ret = 0;
3149 /*
3150 * First check if any of the current inodes refs did
3151 * already create the dir.
3152 */
3153 list_for_each_entry(cur2, &sctx->new_refs, list) {
3154 if (cur == cur2)
3155 break;
3156 if (cur2->dir == cur->dir) {
3157 ret = 1;
3158 break;
3159 }
3160 }
3161
3162 /*
3163 * If that did not happen, check if a previous inode
3164 * did already create the dir.
3165 */
3166 if (!ret)
3167 ret = did_create_dir(sctx, cur->dir);
3168 if (ret < 0)
3169 goto out;
3170 if (!ret) {
3171 ret = send_create_inode(sctx, cur->dir);
3172 if (ret < 0)
3173 goto out;
3174 }
3175 }
3176
3177 /*
3178 * Check if this new ref would overwrite the first ref of
3179 * another unprocessed inode. If yes, orphanize the
3180 * overwritten inode. If we find an overwritten ref that is
3181 * not the first ref, simply unlink it.
3182 */
3183 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3184 cur->name, cur->name_len,
3185 &ow_inode, &ow_gen);
3186 if (ret < 0)
3187 goto out;
3188 if (ret) {
3189 ret = is_first_ref(sctx->parent_root,
3190 ow_inode, cur->dir, cur->name,
3191 cur->name_len);
3192 if (ret < 0)
3193 goto out;
3194 if (ret) {
3195 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3196 cur->full_path);
3197 if (ret < 0)
3198 goto out;
3199 } else {
3200 ret = send_unlink(sctx, cur->full_path);
3201 if (ret < 0)
3202 goto out;
3203 }
3204 }
3205
3206 /*
3207 * link/move the ref to the new place. If we have an orphan
3208 * inode, move it and update valid_path. If not, link or move
3209 * it depending on the inode mode.
3210 */
3211 if (is_orphan) {
3212 ret = send_rename(sctx, valid_path, cur->full_path);
3213 if (ret < 0)
3214 goto out;
3215 is_orphan = 0;
3216 ret = fs_path_copy(valid_path, cur->full_path);
3217 if (ret < 0)
3218 goto out;
3219 } else {
3220 if (S_ISDIR(sctx->cur_inode_mode)) {
3221 /*
3222 * Dirs can't be linked, so move it. For moved
3223 * dirs, we always have one new and one deleted
3224 * ref. The deleted ref is ignored later.
3225 */
3226 ret = wait_for_parent_move(sctx, cur);
3227 if (ret < 0)
3228 goto out;
3229 if (ret) {
3230 ret = add_pending_dir_move(sctx,
3231 cur->dir);
3232 *pending_move = 1;
3233 } else {
3234 ret = send_rename(sctx, valid_path,
3235 cur->full_path);
3236 if (!ret)
3237 ret = fs_path_copy(valid_path,
3238 cur->full_path);
3239 }
3240 if (ret < 0)
3241 goto out;
3242 } else {
3243 ret = send_link(sctx, cur->full_path,
3244 valid_path);
3245 if (ret < 0)
3246 goto out;
3247 }
3248 }
3249 ret = dup_ref(cur, &check_dirs);
3250 if (ret < 0)
3251 goto out;
3252 }
3253
3254 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3255 /*
3256 * Check if we can already rmdir the directory. If not,
3257 * orphanize it. For every dir item inside that gets deleted
3258 * later, we do this check again and rmdir it then if possible.
3259 * See the use of check_dirs for more details.
3260 */
3261 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
3262 if (ret < 0)
3263 goto out;
3264 if (ret) {
3265 ret = send_rmdir(sctx, valid_path);
3266 if (ret < 0)
3267 goto out;
3268 } else if (!is_orphan) {
3269 ret = orphanize_inode(sctx, sctx->cur_ino,
3270 sctx->cur_inode_gen, valid_path);
3271 if (ret < 0)
3272 goto out;
3273 is_orphan = 1;
3274 }
3275
3276 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3277 ret = dup_ref(cur, &check_dirs);
3278 if (ret < 0)
3279 goto out;
3280 }
3281 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3282 !list_empty(&sctx->deleted_refs)) {
3283 /*
3284 * We have a moved dir. Add the old parent to check_dirs
3285 */
3286 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3287 list);
3288 ret = dup_ref(cur, &check_dirs);
3289 if (ret < 0)
3290 goto out;
3291 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3292 /*
3293 * We have a non dir inode. Go through all deleted refs and
3294 * unlink them if they were not already overwritten by other
3295 * inodes.
3296 */
3297 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3298 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3299 sctx->cur_ino, sctx->cur_inode_gen,
3300 cur->name, cur->name_len);
3301 if (ret < 0)
3302 goto out;
3303 if (!ret) {
3304 ret = send_unlink(sctx, cur->full_path);
3305 if (ret < 0)
3306 goto out;
3307 }
3308 ret = dup_ref(cur, &check_dirs);
3309 if (ret < 0)
3310 goto out;
3311 }
3312 /*
3313 * If the inode is still orphan, unlink the orphan. This may
3314 * happen when a previous inode did overwrite the first ref
3315 * of this inode and no new refs were added for the current
3316 * inode. Unlinking does not mean that the inode is deleted in
3317 * all cases. There may still be links to this inode in other
3318 * places.
3319 */
3320 if (is_orphan) {
3321 ret = send_unlink(sctx, valid_path);
3322 if (ret < 0)
3323 goto out;
3324 }
3325 }
3326
3327 /*
3328 * We did collect all parent dirs where cur_inode was once located. We
3329 * now go through all these dirs and check if they are pending for
3330 * deletion and if it's finally possible to perform the rmdir now.
3331 * We also update the inode stats of the parent dirs here.
3332 */
3333 list_for_each_entry(cur, &check_dirs, list) {
3334 /*
3335 * In case we had refs into dirs that were not processed yet,
3336 * we don't need to do the utime and rmdir logic for these dirs.
3337 * The dir will be processed later.
3338 */
3339 if (cur->dir > sctx->cur_ino)
3340 continue;
3341
3342 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3343 if (ret < 0)
3344 goto out;
3345
3346 if (ret == inode_state_did_create ||
3347 ret == inode_state_no_change) {
3348 /* TODO delayed utimes */
3349 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3350 if (ret < 0)
3351 goto out;
3352 } else if (ret == inode_state_did_delete) {
3353 ret = can_rmdir(sctx, cur->dir, sctx->cur_ino);
3354 if (ret < 0)
3355 goto out;
3356 if (ret) {
3357 ret = get_cur_path(sctx, cur->dir,
3358 cur->dir_gen, valid_path);
3359 if (ret < 0)
3360 goto out;
3361 ret = send_rmdir(sctx, valid_path);
3362 if (ret < 0)
3363 goto out;
3364 }
3365 }
3366 }
3367
3368 ret = 0;
3369
3370 out:
3371 __free_recorded_refs(&check_dirs);
3372 free_recorded_refs(sctx);
3373 fs_path_free(valid_path);
3374 return ret;
3375 }
3376
3377 static int __record_new_ref(int num, u64 dir, int index,
3378 struct fs_path *name,
3379 void *ctx)
3380 {
3381 int ret = 0;
3382 struct send_ctx *sctx = ctx;
3383 struct fs_path *p;
3384 u64 gen;
3385
3386 p = fs_path_alloc();
3387 if (!p)
3388 return -ENOMEM;
3389
3390 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3391 NULL, NULL);
3392 if (ret < 0)
3393 goto out;
3394
3395 ret = get_cur_path(sctx, dir, gen, p);
3396 if (ret < 0)
3397 goto out;
3398 ret = fs_path_add_path(p, name);
3399 if (ret < 0)
3400 goto out;
3401
3402 ret = record_ref(&sctx->new_refs, dir, gen, p);
3403
3404 out:
3405 if (ret)
3406 fs_path_free(p);
3407 return ret;
3408 }
3409
3410 static int __record_deleted_ref(int num, u64 dir, int index,
3411 struct fs_path *name,
3412 void *ctx)
3413 {
3414 int ret = 0;
3415 struct send_ctx *sctx = ctx;
3416 struct fs_path *p;
3417 u64 gen;
3418
3419 p = fs_path_alloc();
3420 if (!p)
3421 return -ENOMEM;
3422
3423 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3424 NULL, NULL);
3425 if (ret < 0)
3426 goto out;
3427
3428 ret = get_cur_path(sctx, dir, gen, p);
3429 if (ret < 0)
3430 goto out;
3431 ret = fs_path_add_path(p, name);
3432 if (ret < 0)
3433 goto out;
3434
3435 ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3436
3437 out:
3438 if (ret)
3439 fs_path_free(p);
3440 return ret;
3441 }
3442
3443 static int record_new_ref(struct send_ctx *sctx)
3444 {
3445 int ret;
3446
3447 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3448 sctx->cmp_key, 0, __record_new_ref, sctx);
3449 if (ret < 0)
3450 goto out;
3451 ret = 0;
3452
3453 out:
3454 return ret;
3455 }
3456
3457 static int record_deleted_ref(struct send_ctx *sctx)
3458 {
3459 int ret;
3460
3461 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3462 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3463 if (ret < 0)
3464 goto out;
3465 ret = 0;
3466
3467 out:
3468 return ret;
3469 }
3470
3471 struct find_ref_ctx {
3472 u64 dir;
3473 u64 dir_gen;
3474 struct btrfs_root *root;
3475 struct fs_path *name;
3476 int found_idx;
3477 };
3478
3479 static int __find_iref(int num, u64 dir, int index,
3480 struct fs_path *name,
3481 void *ctx_)
3482 {
3483 struct find_ref_ctx *ctx = ctx_;
3484 u64 dir_gen;
3485 int ret;
3486
3487 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3488 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3489 /*
3490 * To avoid doing extra lookups we'll only do this if everything
3491 * else matches.
3492 */
3493 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3494 NULL, NULL, NULL);
3495 if (ret)
3496 return ret;
3497 if (dir_gen != ctx->dir_gen)
3498 return 0;
3499 ctx->found_idx = num;
3500 return 1;
3501 }
3502 return 0;
3503 }
3504
3505 static int find_iref(struct btrfs_root *root,
3506 struct btrfs_path *path,
3507 struct btrfs_key *key,
3508 u64 dir, u64 dir_gen, struct fs_path *name)
3509 {
3510 int ret;
3511 struct find_ref_ctx ctx;
3512
3513 ctx.dir = dir;
3514 ctx.name = name;
3515 ctx.dir_gen = dir_gen;
3516 ctx.found_idx = -1;
3517 ctx.root = root;
3518
3519 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3520 if (ret < 0)
3521 return ret;
3522
3523 if (ctx.found_idx == -1)
3524 return -ENOENT;
3525
3526 return ctx.found_idx;
3527 }
3528
3529 static int __record_changed_new_ref(int num, u64 dir, int index,
3530 struct fs_path *name,
3531 void *ctx)
3532 {
3533 u64 dir_gen;
3534 int ret;
3535 struct send_ctx *sctx = ctx;
3536
3537 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3538 NULL, NULL, NULL);
3539 if (ret)
3540 return ret;
3541
3542 ret = find_iref(sctx->parent_root, sctx->right_path,
3543 sctx->cmp_key, dir, dir_gen, name);
3544 if (ret == -ENOENT)
3545 ret = __record_new_ref(num, dir, index, name, sctx);
3546 else if (ret > 0)
3547 ret = 0;
3548
3549 return ret;
3550 }
3551
3552 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3553 struct fs_path *name,
3554 void *ctx)
3555 {
3556 u64 dir_gen;
3557 int ret;
3558 struct send_ctx *sctx = ctx;
3559
3560 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3561 NULL, NULL, NULL);
3562 if (ret)
3563 return ret;
3564
3565 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3566 dir, dir_gen, name);
3567 if (ret == -ENOENT)
3568 ret = __record_deleted_ref(num, dir, index, name, sctx);
3569 else if (ret > 0)
3570 ret = 0;
3571
3572 return ret;
3573 }
3574
3575 static int record_changed_ref(struct send_ctx *sctx)
3576 {
3577 int ret = 0;
3578
3579 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3580 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3581 if (ret < 0)
3582 goto out;
3583 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3584 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3585 if (ret < 0)
3586 goto out;
3587 ret = 0;
3588
3589 out:
3590 return ret;
3591 }
3592
3593 /*
3594 * Record and process all refs at once. Needed when an inode changes the
3595 * generation number, which means that it was deleted and recreated.
3596 */
3597 static int process_all_refs(struct send_ctx *sctx,
3598 enum btrfs_compare_tree_result cmd)
3599 {
3600 int ret;
3601 struct btrfs_root *root;
3602 struct btrfs_path *path;
3603 struct btrfs_key key;
3604 struct btrfs_key found_key;
3605 struct extent_buffer *eb;
3606 int slot;
3607 iterate_inode_ref_t cb;
3608 int pending_move = 0;
3609
3610 path = alloc_path_for_send();
3611 if (!path)
3612 return -ENOMEM;
3613
3614 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3615 root = sctx->send_root;
3616 cb = __record_new_ref;
3617 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3618 root = sctx->parent_root;
3619 cb = __record_deleted_ref;
3620 } else {
3621 btrfs_err(sctx->send_root->fs_info,
3622 "Wrong command %d in process_all_refs", cmd);
3623 ret = -EINVAL;
3624 goto out;
3625 }
3626
3627 key.objectid = sctx->cmp_key->objectid;
3628 key.type = BTRFS_INODE_REF_KEY;
3629 key.offset = 0;
3630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3631 if (ret < 0)
3632 goto out;
3633
3634 while (1) {
3635 eb = path->nodes[0];
3636 slot = path->slots[0];
3637 if (slot >= btrfs_header_nritems(eb)) {
3638 ret = btrfs_next_leaf(root, path);
3639 if (ret < 0)
3640 goto out;
3641 else if (ret > 0)
3642 break;
3643 continue;
3644 }
3645
3646 btrfs_item_key_to_cpu(eb, &found_key, slot);
3647
3648 if (found_key.objectid != key.objectid ||
3649 (found_key.type != BTRFS_INODE_REF_KEY &&
3650 found_key.type != BTRFS_INODE_EXTREF_KEY))
3651 break;
3652
3653 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
3654 if (ret < 0)
3655 goto out;
3656
3657 path->slots[0]++;
3658 }
3659 btrfs_release_path(path);
3660
3661 ret = process_recorded_refs(sctx, &pending_move);
3662 /* Only applicable to an incremental send. */
3663 ASSERT(pending_move == 0);
3664
3665 out:
3666 btrfs_free_path(path);
3667 return ret;
3668 }
3669
3670 static int send_set_xattr(struct send_ctx *sctx,
3671 struct fs_path *path,
3672 const char *name, int name_len,
3673 const char *data, int data_len)
3674 {
3675 int ret = 0;
3676
3677 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3678 if (ret < 0)
3679 goto out;
3680
3681 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3682 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3683 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3684
3685 ret = send_cmd(sctx);
3686
3687 tlv_put_failure:
3688 out:
3689 return ret;
3690 }
3691
3692 static int send_remove_xattr(struct send_ctx *sctx,
3693 struct fs_path *path,
3694 const char *name, int name_len)
3695 {
3696 int ret = 0;
3697
3698 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3699 if (ret < 0)
3700 goto out;
3701
3702 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3703 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3704
3705 ret = send_cmd(sctx);
3706
3707 tlv_put_failure:
3708 out:
3709 return ret;
3710 }
3711
3712 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3713 const char *name, int name_len,
3714 const char *data, int data_len,
3715 u8 type, void *ctx)
3716 {
3717 int ret;
3718 struct send_ctx *sctx = ctx;
3719 struct fs_path *p;
3720 posix_acl_xattr_header dummy_acl;
3721
3722 p = fs_path_alloc();
3723 if (!p)
3724 return -ENOMEM;
3725
3726 /*
3727 * This hack is needed because empty acl's are stored as zero byte
3728 * data in xattrs. Problem with that is, that receiving these zero byte
3729 * acl's will fail later. To fix this, we send a dummy acl list that
3730 * only contains the version number and no entries.
3731 */
3732 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3733 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3734 if (data_len == 0) {
3735 dummy_acl.a_version =
3736 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3737 data = (char *)&dummy_acl;
3738 data_len = sizeof(dummy_acl);
3739 }
3740 }
3741
3742 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3743 if (ret < 0)
3744 goto out;
3745
3746 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3747
3748 out:
3749 fs_path_free(p);
3750 return ret;
3751 }
3752
3753 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3754 const char *name, int name_len,
3755 const char *data, int data_len,
3756 u8 type, void *ctx)
3757 {
3758 int ret;
3759 struct send_ctx *sctx = ctx;
3760 struct fs_path *p;
3761
3762 p = fs_path_alloc();
3763 if (!p)
3764 return -ENOMEM;
3765
3766 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3767 if (ret < 0)
3768 goto out;
3769
3770 ret = send_remove_xattr(sctx, p, name, name_len);
3771
3772 out:
3773 fs_path_free(p);
3774 return ret;
3775 }
3776
3777 static int process_new_xattr(struct send_ctx *sctx)
3778 {
3779 int ret = 0;
3780
3781 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3782 sctx->cmp_key, __process_new_xattr, sctx);
3783
3784 return ret;
3785 }
3786
3787 static int process_deleted_xattr(struct send_ctx *sctx)
3788 {
3789 int ret;
3790
3791 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3792 sctx->cmp_key, __process_deleted_xattr, sctx);
3793
3794 return ret;
3795 }
3796
3797 struct find_xattr_ctx {
3798 const char *name;
3799 int name_len;
3800 int found_idx;
3801 char *found_data;
3802 int found_data_len;
3803 };
3804
3805 static int __find_xattr(int num, struct btrfs_key *di_key,
3806 const char *name, int name_len,
3807 const char *data, int data_len,
3808 u8 type, void *vctx)
3809 {
3810 struct find_xattr_ctx *ctx = vctx;
3811
3812 if (name_len == ctx->name_len &&
3813 strncmp(name, ctx->name, name_len) == 0) {
3814 ctx->found_idx = num;
3815 ctx->found_data_len = data_len;
3816 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
3817 if (!ctx->found_data)
3818 return -ENOMEM;
3819 return 1;
3820 }
3821 return 0;
3822 }
3823
3824 static int find_xattr(struct btrfs_root *root,
3825 struct btrfs_path *path,
3826 struct btrfs_key *key,
3827 const char *name, int name_len,
3828 char **data, int *data_len)
3829 {
3830 int ret;
3831 struct find_xattr_ctx ctx;
3832
3833 ctx.name = name;
3834 ctx.name_len = name_len;
3835 ctx.found_idx = -1;
3836 ctx.found_data = NULL;
3837 ctx.found_data_len = 0;
3838
3839 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
3840 if (ret < 0)
3841 return ret;
3842
3843 if (ctx.found_idx == -1)
3844 return -ENOENT;
3845 if (data) {
3846 *data = ctx.found_data;
3847 *data_len = ctx.found_data_len;
3848 } else {
3849 kfree(ctx.found_data);
3850 }
3851 return ctx.found_idx;
3852 }
3853
3854
3855 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3856 const char *name, int name_len,
3857 const char *data, int data_len,
3858 u8 type, void *ctx)
3859 {
3860 int ret;
3861 struct send_ctx *sctx = ctx;
3862 char *found_data = NULL;
3863 int found_data_len = 0;
3864
3865 ret = find_xattr(sctx->parent_root, sctx->right_path,
3866 sctx->cmp_key, name, name_len, &found_data,
3867 &found_data_len);
3868 if (ret == -ENOENT) {
3869 ret = __process_new_xattr(num, di_key, name, name_len, data,
3870 data_len, type, ctx);
3871 } else if (ret >= 0) {
3872 if (data_len != found_data_len ||
3873 memcmp(data, found_data, data_len)) {
3874 ret = __process_new_xattr(num, di_key, name, name_len,
3875 data, data_len, type, ctx);
3876 } else {
3877 ret = 0;
3878 }
3879 }
3880
3881 kfree(found_data);
3882 return ret;
3883 }
3884
3885 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3886 const char *name, int name_len,
3887 const char *data, int data_len,
3888 u8 type, void *ctx)
3889 {
3890 int ret;
3891 struct send_ctx *sctx = ctx;
3892
3893 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
3894 name, name_len, NULL, NULL);
3895 if (ret == -ENOENT)
3896 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3897 data_len, type, ctx);
3898 else if (ret >= 0)
3899 ret = 0;
3900
3901 return ret;
3902 }
3903
3904 static int process_changed_xattr(struct send_ctx *sctx)
3905 {
3906 int ret = 0;
3907
3908 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3909 sctx->cmp_key, __process_changed_new_xattr, sctx);
3910 if (ret < 0)
3911 goto out;
3912 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3913 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3914
3915 out:
3916 return ret;
3917 }
3918
3919 static int process_all_new_xattrs(struct send_ctx *sctx)
3920 {
3921 int ret;
3922 struct btrfs_root *root;
3923 struct btrfs_path *path;
3924 struct btrfs_key key;
3925 struct btrfs_key found_key;
3926 struct extent_buffer *eb;
3927 int slot;
3928
3929 path = alloc_path_for_send();
3930 if (!path)
3931 return -ENOMEM;
3932
3933 root = sctx->send_root;
3934
3935 key.objectid = sctx->cmp_key->objectid;
3936 key.type = BTRFS_XATTR_ITEM_KEY;
3937 key.offset = 0;
3938 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3939 if (ret < 0)
3940 goto out;
3941
3942 while (1) {
3943 eb = path->nodes[0];
3944 slot = path->slots[0];
3945 if (slot >= btrfs_header_nritems(eb)) {
3946 ret = btrfs_next_leaf(root, path);
3947 if (ret < 0) {
3948 goto out;
3949 } else if (ret > 0) {
3950 ret = 0;
3951 break;
3952 }
3953 continue;
3954 }
3955
3956 btrfs_item_key_to_cpu(eb, &found_key, slot);
3957 if (found_key.objectid != key.objectid ||
3958 found_key.type != key.type) {
3959 ret = 0;
3960 goto out;
3961 }
3962
3963 ret = iterate_dir_item(root, path, &found_key,
3964 __process_new_xattr, sctx);
3965 if (ret < 0)
3966 goto out;
3967
3968 path->slots[0]++;
3969 }
3970
3971 out:
3972 btrfs_free_path(path);
3973 return ret;
3974 }
3975
3976 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
3977 {
3978 struct btrfs_root *root = sctx->send_root;
3979 struct btrfs_fs_info *fs_info = root->fs_info;
3980 struct inode *inode;
3981 struct page *page;
3982 char *addr;
3983 struct btrfs_key key;
3984 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
3985 pgoff_t last_index;
3986 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
3987 ssize_t ret = 0;
3988
3989 key.objectid = sctx->cur_ino;
3990 key.type = BTRFS_INODE_ITEM_KEY;
3991 key.offset = 0;
3992
3993 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3994 if (IS_ERR(inode))
3995 return PTR_ERR(inode);
3996
3997 if (offset + len > i_size_read(inode)) {
3998 if (offset > i_size_read(inode))
3999 len = 0;
4000 else
4001 len = offset - i_size_read(inode);
4002 }
4003 if (len == 0)
4004 goto out;
4005
4006 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4007 while (index <= last_index) {
4008 unsigned cur_len = min_t(unsigned, len,
4009 PAGE_CACHE_SIZE - pg_offset);
4010 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4011 if (!page) {
4012 ret = -ENOMEM;
4013 break;
4014 }
4015
4016 if (!PageUptodate(page)) {
4017 btrfs_readpage(NULL, page);
4018 lock_page(page);
4019 if (!PageUptodate(page)) {
4020 unlock_page(page);
4021 page_cache_release(page);
4022 ret = -EIO;
4023 break;
4024 }
4025 }
4026
4027 addr = kmap(page);
4028 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4029 kunmap(page);
4030 unlock_page(page);
4031 page_cache_release(page);
4032 index++;
4033 pg_offset = 0;
4034 len -= cur_len;
4035 ret += cur_len;
4036 }
4037 out:
4038 iput(inode);
4039 return ret;
4040 }
4041
4042 /*
4043 * Read some bytes from the current inode/file and send a write command to
4044 * user space.
4045 */
4046 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4047 {
4048 int ret = 0;
4049 struct fs_path *p;
4050 ssize_t num_read = 0;
4051
4052 p = fs_path_alloc();
4053 if (!p)
4054 return -ENOMEM;
4055
4056 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4057
4058 num_read = fill_read_buf(sctx, offset, len);
4059 if (num_read <= 0) {
4060 if (num_read < 0)
4061 ret = num_read;
4062 goto out;
4063 }
4064
4065 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4066 if (ret < 0)
4067 goto out;
4068
4069 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4070 if (ret < 0)
4071 goto out;
4072
4073 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4074 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4075 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4076
4077 ret = send_cmd(sctx);
4078
4079 tlv_put_failure:
4080 out:
4081 fs_path_free(p);
4082 if (ret < 0)
4083 return ret;
4084 return num_read;
4085 }
4086
4087 /*
4088 * Send a clone command to user space.
4089 */
4090 static int send_clone(struct send_ctx *sctx,
4091 u64 offset, u32 len,
4092 struct clone_root *clone_root)
4093 {
4094 int ret = 0;
4095 struct fs_path *p;
4096 u64 gen;
4097
4098 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4099 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4100 clone_root->root->objectid, clone_root->ino,
4101 clone_root->offset);
4102
4103 p = fs_path_alloc();
4104 if (!p)
4105 return -ENOMEM;
4106
4107 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4108 if (ret < 0)
4109 goto out;
4110
4111 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4112 if (ret < 0)
4113 goto out;
4114
4115 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4116 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4117 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4118
4119 if (clone_root->root == sctx->send_root) {
4120 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4121 &gen, NULL, NULL, NULL, NULL);
4122 if (ret < 0)
4123 goto out;
4124 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4125 } else {
4126 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4127 }
4128 if (ret < 0)
4129 goto out;
4130
4131 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4132 clone_root->root->root_item.uuid);
4133 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4134 le64_to_cpu(clone_root->root->root_item.ctransid));
4135 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4136 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4137 clone_root->offset);
4138
4139 ret = send_cmd(sctx);
4140
4141 tlv_put_failure:
4142 out:
4143 fs_path_free(p);
4144 return ret;
4145 }
4146
4147 /*
4148 * Send an update extent command to user space.
4149 */
4150 static int send_update_extent(struct send_ctx *sctx,
4151 u64 offset, u32 len)
4152 {
4153 int ret = 0;
4154 struct fs_path *p;
4155
4156 p = fs_path_alloc();
4157 if (!p)
4158 return -ENOMEM;
4159
4160 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4161 if (ret < 0)
4162 goto out;
4163
4164 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4165 if (ret < 0)
4166 goto out;
4167
4168 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4169 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4170 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4171
4172 ret = send_cmd(sctx);
4173
4174 tlv_put_failure:
4175 out:
4176 fs_path_free(p);
4177 return ret;
4178 }
4179
4180 static int send_hole(struct send_ctx *sctx, u64 end)
4181 {
4182 struct fs_path *p = NULL;
4183 u64 offset = sctx->cur_inode_last_extent;
4184 u64 len;
4185 int ret = 0;
4186
4187 p = fs_path_alloc();
4188 if (!p)
4189 return -ENOMEM;
4190 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4191 while (offset < end) {
4192 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4193
4194 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4195 if (ret < 0)
4196 break;
4197 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4198 if (ret < 0)
4199 break;
4200 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4201 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4202 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4203 ret = send_cmd(sctx);
4204 if (ret < 0)
4205 break;
4206 offset += len;
4207 }
4208 tlv_put_failure:
4209 fs_path_free(p);
4210 return ret;
4211 }
4212
4213 static int send_write_or_clone(struct send_ctx *sctx,
4214 struct btrfs_path *path,
4215 struct btrfs_key *key,
4216 struct clone_root *clone_root)
4217 {
4218 int ret = 0;
4219 struct btrfs_file_extent_item *ei;
4220 u64 offset = key->offset;
4221 u64 pos = 0;
4222 u64 len;
4223 u32 l;
4224 u8 type;
4225 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4226
4227 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4228 struct btrfs_file_extent_item);
4229 type = btrfs_file_extent_type(path->nodes[0], ei);
4230 if (type == BTRFS_FILE_EXTENT_INLINE) {
4231 len = btrfs_file_extent_inline_len(path->nodes[0],
4232 path->slots[0], ei);
4233 /*
4234 * it is possible the inline item won't cover the whole page,
4235 * but there may be items after this page. Make
4236 * sure to send the whole thing
4237 */
4238 len = PAGE_CACHE_ALIGN(len);
4239 } else {
4240 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4241 }
4242
4243 if (offset + len > sctx->cur_inode_size)
4244 len = sctx->cur_inode_size - offset;
4245 if (len == 0) {
4246 ret = 0;
4247 goto out;
4248 }
4249
4250 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4251 ret = send_clone(sctx, offset, len, clone_root);
4252 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4253 ret = send_update_extent(sctx, offset, len);
4254 } else {
4255 while (pos < len) {
4256 l = len - pos;
4257 if (l > BTRFS_SEND_READ_SIZE)
4258 l = BTRFS_SEND_READ_SIZE;
4259 ret = send_write(sctx, pos + offset, l);
4260 if (ret < 0)
4261 goto out;
4262 if (!ret)
4263 break;
4264 pos += ret;
4265 }
4266 ret = 0;
4267 }
4268 out:
4269 return ret;
4270 }
4271
4272 static int is_extent_unchanged(struct send_ctx *sctx,
4273 struct btrfs_path *left_path,
4274 struct btrfs_key *ekey)
4275 {
4276 int ret = 0;
4277 struct btrfs_key key;
4278 struct btrfs_path *path = NULL;
4279 struct extent_buffer *eb;
4280 int slot;
4281 struct btrfs_key found_key;
4282 struct btrfs_file_extent_item *ei;
4283 u64 left_disknr;
4284 u64 right_disknr;
4285 u64 left_offset;
4286 u64 right_offset;
4287 u64 left_offset_fixed;
4288 u64 left_len;
4289 u64 right_len;
4290 u64 left_gen;
4291 u64 right_gen;
4292 u8 left_type;
4293 u8 right_type;
4294
4295 path = alloc_path_for_send();
4296 if (!path)
4297 return -ENOMEM;
4298
4299 eb = left_path->nodes[0];
4300 slot = left_path->slots[0];
4301 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4302 left_type = btrfs_file_extent_type(eb, ei);
4303
4304 if (left_type != BTRFS_FILE_EXTENT_REG) {
4305 ret = 0;
4306 goto out;
4307 }
4308 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4309 left_len = btrfs_file_extent_num_bytes(eb, ei);
4310 left_offset = btrfs_file_extent_offset(eb, ei);
4311 left_gen = btrfs_file_extent_generation(eb, ei);
4312
4313 /*
4314 * Following comments will refer to these graphics. L is the left
4315 * extents which we are checking at the moment. 1-8 are the right
4316 * extents that we iterate.
4317 *
4318 * |-----L-----|
4319 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4320 *
4321 * |-----L-----|
4322 * |--1--|-2b-|...(same as above)
4323 *
4324 * Alternative situation. Happens on files where extents got split.
4325 * |-----L-----|
4326 * |-----------7-----------|-6-|
4327 *
4328 * Alternative situation. Happens on files which got larger.
4329 * |-----L-----|
4330 * |-8-|
4331 * Nothing follows after 8.
4332 */
4333
4334 key.objectid = ekey->objectid;
4335 key.type = BTRFS_EXTENT_DATA_KEY;
4336 key.offset = ekey->offset;
4337 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4338 if (ret < 0)
4339 goto out;
4340 if (ret) {
4341 ret = 0;
4342 goto out;
4343 }
4344
4345 /*
4346 * Handle special case where the right side has no extents at all.
4347 */
4348 eb = path->nodes[0];
4349 slot = path->slots[0];
4350 btrfs_item_key_to_cpu(eb, &found_key, slot);
4351 if (found_key.objectid != key.objectid ||
4352 found_key.type != key.type) {
4353 /* If we're a hole then just pretend nothing changed */
4354 ret = (left_disknr) ? 0 : 1;
4355 goto out;
4356 }
4357
4358 /*
4359 * We're now on 2a, 2b or 7.
4360 */
4361 key = found_key;
4362 while (key.offset < ekey->offset + left_len) {
4363 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4364 right_type = btrfs_file_extent_type(eb, ei);
4365 if (right_type != BTRFS_FILE_EXTENT_REG) {
4366 ret = 0;
4367 goto out;
4368 }
4369
4370 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4371 right_len = btrfs_file_extent_num_bytes(eb, ei);
4372 right_offset = btrfs_file_extent_offset(eb, ei);
4373 right_gen = btrfs_file_extent_generation(eb, ei);
4374
4375 /*
4376 * Are we at extent 8? If yes, we know the extent is changed.
4377 * This may only happen on the first iteration.
4378 */
4379 if (found_key.offset + right_len <= ekey->offset) {
4380 /* If we're a hole just pretend nothing changed */
4381 ret = (left_disknr) ? 0 : 1;
4382 goto out;
4383 }
4384
4385 left_offset_fixed = left_offset;
4386 if (key.offset < ekey->offset) {
4387 /* Fix the right offset for 2a and 7. */
4388 right_offset += ekey->offset - key.offset;
4389 } else {
4390 /* Fix the left offset for all behind 2a and 2b */
4391 left_offset_fixed += key.offset - ekey->offset;
4392 }
4393
4394 /*
4395 * Check if we have the same extent.
4396 */
4397 if (left_disknr != right_disknr ||
4398 left_offset_fixed != right_offset ||
4399 left_gen != right_gen) {
4400 ret = 0;
4401 goto out;
4402 }
4403
4404 /*
4405 * Go to the next extent.
4406 */
4407 ret = btrfs_next_item(sctx->parent_root, path);
4408 if (ret < 0)
4409 goto out;
4410 if (!ret) {
4411 eb = path->nodes[0];
4412 slot = path->slots[0];
4413 btrfs_item_key_to_cpu(eb, &found_key, slot);
4414 }
4415 if (ret || found_key.objectid != key.objectid ||
4416 found_key.type != key.type) {
4417 key.offset += right_len;
4418 break;
4419 }
4420 if (found_key.offset != key.offset + right_len) {
4421 ret = 0;
4422 goto out;
4423 }
4424 key = found_key;
4425 }
4426
4427 /*
4428 * We're now behind the left extent (treat as unchanged) or at the end
4429 * of the right side (treat as changed).
4430 */
4431 if (key.offset >= ekey->offset + left_len)
4432 ret = 1;
4433 else
4434 ret = 0;
4435
4436
4437 out:
4438 btrfs_free_path(path);
4439 return ret;
4440 }
4441
4442 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4443 {
4444 struct btrfs_path *path;
4445 struct btrfs_root *root = sctx->send_root;
4446 struct btrfs_file_extent_item *fi;
4447 struct btrfs_key key;
4448 u64 extent_end;
4449 u8 type;
4450 int ret;
4451
4452 path = alloc_path_for_send();
4453 if (!path)
4454 return -ENOMEM;
4455
4456 sctx->cur_inode_last_extent = 0;
4457
4458 key.objectid = sctx->cur_ino;
4459 key.type = BTRFS_EXTENT_DATA_KEY;
4460 key.offset = offset;
4461 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4462 if (ret < 0)
4463 goto out;
4464 ret = 0;
4465 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4466 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4467 goto out;
4468
4469 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4470 struct btrfs_file_extent_item);
4471 type = btrfs_file_extent_type(path->nodes[0], fi);
4472 if (type == BTRFS_FILE_EXTENT_INLINE) {
4473 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4474 path->slots[0], fi);
4475 extent_end = ALIGN(key.offset + size,
4476 sctx->send_root->sectorsize);
4477 } else {
4478 extent_end = key.offset +
4479 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4480 }
4481 sctx->cur_inode_last_extent = extent_end;
4482 out:
4483 btrfs_free_path(path);
4484 return ret;
4485 }
4486
4487 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4488 struct btrfs_key *key)
4489 {
4490 struct btrfs_file_extent_item *fi;
4491 u64 extent_end;
4492 u8 type;
4493 int ret = 0;
4494
4495 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4496 return 0;
4497
4498 if (sctx->cur_inode_last_extent == (u64)-1) {
4499 ret = get_last_extent(sctx, key->offset - 1);
4500 if (ret)
4501 return ret;
4502 }
4503
4504 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4505 struct btrfs_file_extent_item);
4506 type = btrfs_file_extent_type(path->nodes[0], fi);
4507 if (type == BTRFS_FILE_EXTENT_INLINE) {
4508 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4509 path->slots[0], fi);
4510 extent_end = ALIGN(key->offset + size,
4511 sctx->send_root->sectorsize);
4512 } else {
4513 extent_end = key->offset +
4514 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4515 }
4516
4517 if (path->slots[0] == 0 &&
4518 sctx->cur_inode_last_extent < key->offset) {
4519 /*
4520 * We might have skipped entire leafs that contained only
4521 * file extent items for our current inode. These leafs have
4522 * a generation number smaller (older) than the one in the
4523 * current leaf and the leaf our last extent came from, and
4524 * are located between these 2 leafs.
4525 */
4526 ret = get_last_extent(sctx, key->offset - 1);
4527 if (ret)
4528 return ret;
4529 }
4530
4531 if (sctx->cur_inode_last_extent < key->offset)
4532 ret = send_hole(sctx, key->offset);
4533 sctx->cur_inode_last_extent = extent_end;
4534 return ret;
4535 }
4536
4537 static int process_extent(struct send_ctx *sctx,
4538 struct btrfs_path *path,
4539 struct btrfs_key *key)
4540 {
4541 struct clone_root *found_clone = NULL;
4542 int ret = 0;
4543
4544 if (S_ISLNK(sctx->cur_inode_mode))
4545 return 0;
4546
4547 if (sctx->parent_root && !sctx->cur_inode_new) {
4548 ret = is_extent_unchanged(sctx, path, key);
4549 if (ret < 0)
4550 goto out;
4551 if (ret) {
4552 ret = 0;
4553 goto out_hole;
4554 }
4555 } else {
4556 struct btrfs_file_extent_item *ei;
4557 u8 type;
4558
4559 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4560 struct btrfs_file_extent_item);
4561 type = btrfs_file_extent_type(path->nodes[0], ei);
4562 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4563 type == BTRFS_FILE_EXTENT_REG) {
4564 /*
4565 * The send spec does not have a prealloc command yet,
4566 * so just leave a hole for prealloc'ed extents until
4567 * we have enough commands queued up to justify rev'ing
4568 * the send spec.
4569 */
4570 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4571 ret = 0;
4572 goto out;
4573 }
4574
4575 /* Have a hole, just skip it. */
4576 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4577 ret = 0;
4578 goto out;
4579 }
4580 }
4581 }
4582
4583 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4584 sctx->cur_inode_size, &found_clone);
4585 if (ret != -ENOENT && ret < 0)
4586 goto out;
4587
4588 ret = send_write_or_clone(sctx, path, key, found_clone);
4589 if (ret)
4590 goto out;
4591 out_hole:
4592 ret = maybe_send_hole(sctx, path, key);
4593 out:
4594 return ret;
4595 }
4596
4597 static int process_all_extents(struct send_ctx *sctx)
4598 {
4599 int ret;
4600 struct btrfs_root *root;
4601 struct btrfs_path *path;
4602 struct btrfs_key key;
4603 struct btrfs_key found_key;
4604 struct extent_buffer *eb;
4605 int slot;
4606
4607 root = sctx->send_root;
4608 path = alloc_path_for_send();
4609 if (!path)
4610 return -ENOMEM;
4611
4612 key.objectid = sctx->cmp_key->objectid;
4613 key.type = BTRFS_EXTENT_DATA_KEY;
4614 key.offset = 0;
4615 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4616 if (ret < 0)
4617 goto out;
4618
4619 while (1) {
4620 eb = path->nodes[0];
4621 slot = path->slots[0];
4622
4623 if (slot >= btrfs_header_nritems(eb)) {
4624 ret = btrfs_next_leaf(root, path);
4625 if (ret < 0) {
4626 goto out;
4627 } else if (ret > 0) {
4628 ret = 0;
4629 break;
4630 }
4631 continue;
4632 }
4633
4634 btrfs_item_key_to_cpu(eb, &found_key, slot);
4635
4636 if (found_key.objectid != key.objectid ||
4637 found_key.type != key.type) {
4638 ret = 0;
4639 goto out;
4640 }
4641
4642 ret = process_extent(sctx, path, &found_key);
4643 if (ret < 0)
4644 goto out;
4645
4646 path->slots[0]++;
4647 }
4648
4649 out:
4650 btrfs_free_path(path);
4651 return ret;
4652 }
4653
4654 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4655 int *pending_move,
4656 int *refs_processed)
4657 {
4658 int ret = 0;
4659
4660 if (sctx->cur_ino == 0)
4661 goto out;
4662 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4663 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4664 goto out;
4665 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4666 goto out;
4667
4668 ret = process_recorded_refs(sctx, pending_move);
4669 if (ret < 0)
4670 goto out;
4671
4672 *refs_processed = 1;
4673 out:
4674 return ret;
4675 }
4676
4677 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4678 {
4679 int ret = 0;
4680 u64 left_mode;
4681 u64 left_uid;
4682 u64 left_gid;
4683 u64 right_mode;
4684 u64 right_uid;
4685 u64 right_gid;
4686 int need_chmod = 0;
4687 int need_chown = 0;
4688 int pending_move = 0;
4689 int refs_processed = 0;
4690
4691 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4692 &refs_processed);
4693 if (ret < 0)
4694 goto out;
4695
4696 /*
4697 * We have processed the refs and thus need to advance send_progress.
4698 * Now, calls to get_cur_xxx will take the updated refs of the current
4699 * inode into account.
4700 *
4701 * On the other hand, if our current inode is a directory and couldn't
4702 * be moved/renamed because its parent was renamed/moved too and it has
4703 * a higher inode number, we can only move/rename our current inode
4704 * after we moved/renamed its parent. Therefore in this case operate on
4705 * the old path (pre move/rename) of our current inode, and the
4706 * move/rename will be performed later.
4707 */
4708 if (refs_processed && !pending_move)
4709 sctx->send_progress = sctx->cur_ino + 1;
4710
4711 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4712 goto out;
4713 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4714 goto out;
4715
4716 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4717 &left_mode, &left_uid, &left_gid, NULL);
4718 if (ret < 0)
4719 goto out;
4720
4721 if (!sctx->parent_root || sctx->cur_inode_new) {
4722 need_chown = 1;
4723 if (!S_ISLNK(sctx->cur_inode_mode))
4724 need_chmod = 1;
4725 } else {
4726 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4727 NULL, NULL, &right_mode, &right_uid,
4728 &right_gid, NULL);
4729 if (ret < 0)
4730 goto out;
4731
4732 if (left_uid != right_uid || left_gid != right_gid)
4733 need_chown = 1;
4734 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4735 need_chmod = 1;
4736 }
4737
4738 if (S_ISREG(sctx->cur_inode_mode)) {
4739 if (need_send_hole(sctx)) {
4740 if (sctx->cur_inode_last_extent == (u64)-1) {
4741 ret = get_last_extent(sctx, (u64)-1);
4742 if (ret)
4743 goto out;
4744 }
4745 if (sctx->cur_inode_last_extent <
4746 sctx->cur_inode_size) {
4747 ret = send_hole(sctx, sctx->cur_inode_size);
4748 if (ret)
4749 goto out;
4750 }
4751 }
4752 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4753 sctx->cur_inode_size);
4754 if (ret < 0)
4755 goto out;
4756 }
4757
4758 if (need_chown) {
4759 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4760 left_uid, left_gid);
4761 if (ret < 0)
4762 goto out;
4763 }
4764 if (need_chmod) {
4765 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4766 left_mode);
4767 if (ret < 0)
4768 goto out;
4769 }
4770
4771 /*
4772 * If other directory inodes depended on our current directory
4773 * inode's move/rename, now do their move/rename operations.
4774 */
4775 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
4776 ret = apply_children_dir_moves(sctx);
4777 if (ret)
4778 goto out;
4779 }
4780
4781 /*
4782 * Need to send that every time, no matter if it actually
4783 * changed between the two trees as we have done changes to
4784 * the inode before.
4785 */
4786 sctx->send_progress = sctx->cur_ino + 1;
4787 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4788 if (ret < 0)
4789 goto out;
4790
4791 out:
4792 return ret;
4793 }
4794
4795 static int changed_inode(struct send_ctx *sctx,
4796 enum btrfs_compare_tree_result result)
4797 {
4798 int ret = 0;
4799 struct btrfs_key *key = sctx->cmp_key;
4800 struct btrfs_inode_item *left_ii = NULL;
4801 struct btrfs_inode_item *right_ii = NULL;
4802 u64 left_gen = 0;
4803 u64 right_gen = 0;
4804
4805 sctx->cur_ino = key->objectid;
4806 sctx->cur_inode_new_gen = 0;
4807 sctx->cur_inode_last_extent = (u64)-1;
4808
4809 /*
4810 * Set send_progress to current inode. This will tell all get_cur_xxx
4811 * functions that the current inode's refs are not updated yet. Later,
4812 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4813 */
4814 sctx->send_progress = sctx->cur_ino;
4815
4816 if (result == BTRFS_COMPARE_TREE_NEW ||
4817 result == BTRFS_COMPARE_TREE_CHANGED) {
4818 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4819 sctx->left_path->slots[0],
4820 struct btrfs_inode_item);
4821 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4822 left_ii);
4823 } else {
4824 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4825 sctx->right_path->slots[0],
4826 struct btrfs_inode_item);
4827 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4828 right_ii);
4829 }
4830 if (result == BTRFS_COMPARE_TREE_CHANGED) {
4831 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4832 sctx->right_path->slots[0],
4833 struct btrfs_inode_item);
4834
4835 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4836 right_ii);
4837
4838 /*
4839 * The cur_ino = root dir case is special here. We can't treat
4840 * the inode as deleted+reused because it would generate a
4841 * stream that tries to delete/mkdir the root dir.
4842 */
4843 if (left_gen != right_gen &&
4844 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4845 sctx->cur_inode_new_gen = 1;
4846 }
4847
4848 if (result == BTRFS_COMPARE_TREE_NEW) {
4849 sctx->cur_inode_gen = left_gen;
4850 sctx->cur_inode_new = 1;
4851 sctx->cur_inode_deleted = 0;
4852 sctx->cur_inode_size = btrfs_inode_size(
4853 sctx->left_path->nodes[0], left_ii);
4854 sctx->cur_inode_mode = btrfs_inode_mode(
4855 sctx->left_path->nodes[0], left_ii);
4856 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4857 ret = send_create_inode_if_needed(sctx);
4858 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4859 sctx->cur_inode_gen = right_gen;
4860 sctx->cur_inode_new = 0;
4861 sctx->cur_inode_deleted = 1;
4862 sctx->cur_inode_size = btrfs_inode_size(
4863 sctx->right_path->nodes[0], right_ii);
4864 sctx->cur_inode_mode = btrfs_inode_mode(
4865 sctx->right_path->nodes[0], right_ii);
4866 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4867 /*
4868 * We need to do some special handling in case the inode was
4869 * reported as changed with a changed generation number. This
4870 * means that the original inode was deleted and new inode
4871 * reused the same inum. So we have to treat the old inode as
4872 * deleted and the new one as new.
4873 */
4874 if (sctx->cur_inode_new_gen) {
4875 /*
4876 * First, process the inode as if it was deleted.
4877 */
4878 sctx->cur_inode_gen = right_gen;
4879 sctx->cur_inode_new = 0;
4880 sctx->cur_inode_deleted = 1;
4881 sctx->cur_inode_size = btrfs_inode_size(
4882 sctx->right_path->nodes[0], right_ii);
4883 sctx->cur_inode_mode = btrfs_inode_mode(
4884 sctx->right_path->nodes[0], right_ii);
4885 ret = process_all_refs(sctx,
4886 BTRFS_COMPARE_TREE_DELETED);
4887 if (ret < 0)
4888 goto out;
4889
4890 /*
4891 * Now process the inode as if it was new.
4892 */
4893 sctx->cur_inode_gen = left_gen;
4894 sctx->cur_inode_new = 1;
4895 sctx->cur_inode_deleted = 0;
4896 sctx->cur_inode_size = btrfs_inode_size(
4897 sctx->left_path->nodes[0], left_ii);
4898 sctx->cur_inode_mode = btrfs_inode_mode(
4899 sctx->left_path->nodes[0], left_ii);
4900 ret = send_create_inode_if_needed(sctx);
4901 if (ret < 0)
4902 goto out;
4903
4904 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4905 if (ret < 0)
4906 goto out;
4907 /*
4908 * Advance send_progress now as we did not get into
4909 * process_recorded_refs_if_needed in the new_gen case.
4910 */
4911 sctx->send_progress = sctx->cur_ino + 1;
4912
4913 /*
4914 * Now process all extents and xattrs of the inode as if
4915 * they were all new.
4916 */
4917 ret = process_all_extents(sctx);
4918 if (ret < 0)
4919 goto out;
4920 ret = process_all_new_xattrs(sctx);
4921 if (ret < 0)
4922 goto out;
4923 } else {
4924 sctx->cur_inode_gen = left_gen;
4925 sctx->cur_inode_new = 0;
4926 sctx->cur_inode_new_gen = 0;
4927 sctx->cur_inode_deleted = 0;
4928 sctx->cur_inode_size = btrfs_inode_size(
4929 sctx->left_path->nodes[0], left_ii);
4930 sctx->cur_inode_mode = btrfs_inode_mode(
4931 sctx->left_path->nodes[0], left_ii);
4932 }
4933 }
4934
4935 out:
4936 return ret;
4937 }
4938
4939 /*
4940 * We have to process new refs before deleted refs, but compare_trees gives us
4941 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4942 * first and later process them in process_recorded_refs.
4943 * For the cur_inode_new_gen case, we skip recording completely because
4944 * changed_inode did already initiate processing of refs. The reason for this is
4945 * that in this case, compare_tree actually compares the refs of 2 different
4946 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4947 * refs of the right tree as deleted and all refs of the left tree as new.
4948 */
4949 static int changed_ref(struct send_ctx *sctx,
4950 enum btrfs_compare_tree_result result)
4951 {
4952 int ret = 0;
4953
4954 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4955
4956 if (!sctx->cur_inode_new_gen &&
4957 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4958 if (result == BTRFS_COMPARE_TREE_NEW)
4959 ret = record_new_ref(sctx);
4960 else if (result == BTRFS_COMPARE_TREE_DELETED)
4961 ret = record_deleted_ref(sctx);
4962 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4963 ret = record_changed_ref(sctx);
4964 }
4965
4966 return ret;
4967 }
4968
4969 /*
4970 * Process new/deleted/changed xattrs. We skip processing in the
4971 * cur_inode_new_gen case because changed_inode did already initiate processing
4972 * of xattrs. The reason is the same as in changed_ref
4973 */
4974 static int changed_xattr(struct send_ctx *sctx,
4975 enum btrfs_compare_tree_result result)
4976 {
4977 int ret = 0;
4978
4979 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4980
4981 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4982 if (result == BTRFS_COMPARE_TREE_NEW)
4983 ret = process_new_xattr(sctx);
4984 else if (result == BTRFS_COMPARE_TREE_DELETED)
4985 ret = process_deleted_xattr(sctx);
4986 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4987 ret = process_changed_xattr(sctx);
4988 }
4989
4990 return ret;
4991 }
4992
4993 /*
4994 * Process new/deleted/changed extents. We skip processing in the
4995 * cur_inode_new_gen case because changed_inode did already initiate processing
4996 * of extents. The reason is the same as in changed_ref
4997 */
4998 static int changed_extent(struct send_ctx *sctx,
4999 enum btrfs_compare_tree_result result)
5000 {
5001 int ret = 0;
5002
5003 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5004
5005 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5006 if (result != BTRFS_COMPARE_TREE_DELETED)
5007 ret = process_extent(sctx, sctx->left_path,
5008 sctx->cmp_key);
5009 }
5010
5011 return ret;
5012 }
5013
5014 static int dir_changed(struct send_ctx *sctx, u64 dir)
5015 {
5016 u64 orig_gen, new_gen;
5017 int ret;
5018
5019 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5020 NULL, NULL);
5021 if (ret)
5022 return ret;
5023
5024 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5025 NULL, NULL, NULL);
5026 if (ret)
5027 return ret;
5028
5029 return (orig_gen != new_gen) ? 1 : 0;
5030 }
5031
5032 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5033 struct btrfs_key *key)
5034 {
5035 struct btrfs_inode_extref *extref;
5036 struct extent_buffer *leaf;
5037 u64 dirid = 0, last_dirid = 0;
5038 unsigned long ptr;
5039 u32 item_size;
5040 u32 cur_offset = 0;
5041 int ref_name_len;
5042 int ret = 0;
5043
5044 /* Easy case, just check this one dirid */
5045 if (key->type == BTRFS_INODE_REF_KEY) {
5046 dirid = key->offset;
5047
5048 ret = dir_changed(sctx, dirid);
5049 goto out;
5050 }
5051
5052 leaf = path->nodes[0];
5053 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5054 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5055 while (cur_offset < item_size) {
5056 extref = (struct btrfs_inode_extref *)(ptr +
5057 cur_offset);
5058 dirid = btrfs_inode_extref_parent(leaf, extref);
5059 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5060 cur_offset += ref_name_len + sizeof(*extref);
5061 if (dirid == last_dirid)
5062 continue;
5063 ret = dir_changed(sctx, dirid);
5064 if (ret)
5065 break;
5066 last_dirid = dirid;
5067 }
5068 out:
5069 return ret;
5070 }
5071
5072 /*
5073 * Updates compare related fields in sctx and simply forwards to the actual
5074 * changed_xxx functions.
5075 */
5076 static int changed_cb(struct btrfs_root *left_root,
5077 struct btrfs_root *right_root,
5078 struct btrfs_path *left_path,
5079 struct btrfs_path *right_path,
5080 struct btrfs_key *key,
5081 enum btrfs_compare_tree_result result,
5082 void *ctx)
5083 {
5084 int ret = 0;
5085 struct send_ctx *sctx = ctx;
5086
5087 if (result == BTRFS_COMPARE_TREE_SAME) {
5088 if (key->type == BTRFS_INODE_REF_KEY ||
5089 key->type == BTRFS_INODE_EXTREF_KEY) {
5090 ret = compare_refs(sctx, left_path, key);
5091 if (!ret)
5092 return 0;
5093 if (ret < 0)
5094 return ret;
5095 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5096 return maybe_send_hole(sctx, left_path, key);
5097 } else {
5098 return 0;
5099 }
5100 result = BTRFS_COMPARE_TREE_CHANGED;
5101 ret = 0;
5102 }
5103
5104 sctx->left_path = left_path;
5105 sctx->right_path = right_path;
5106 sctx->cmp_key = key;
5107
5108 ret = finish_inode_if_needed(sctx, 0);
5109 if (ret < 0)
5110 goto out;
5111
5112 /* Ignore non-FS objects */
5113 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5114 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5115 goto out;
5116
5117 if (key->type == BTRFS_INODE_ITEM_KEY)
5118 ret = changed_inode(sctx, result);
5119 else if (key->type == BTRFS_INODE_REF_KEY ||
5120 key->type == BTRFS_INODE_EXTREF_KEY)
5121 ret = changed_ref(sctx, result);
5122 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5123 ret = changed_xattr(sctx, result);
5124 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5125 ret = changed_extent(sctx, result);
5126
5127 out:
5128 return ret;
5129 }
5130
5131 static int full_send_tree(struct send_ctx *sctx)
5132 {
5133 int ret;
5134 struct btrfs_trans_handle *trans = NULL;
5135 struct btrfs_root *send_root = sctx->send_root;
5136 struct btrfs_key key;
5137 struct btrfs_key found_key;
5138 struct btrfs_path *path;
5139 struct extent_buffer *eb;
5140 int slot;
5141 u64 start_ctransid;
5142 u64 ctransid;
5143
5144 path = alloc_path_for_send();
5145 if (!path)
5146 return -ENOMEM;
5147
5148 spin_lock(&send_root->root_item_lock);
5149 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
5150 spin_unlock(&send_root->root_item_lock);
5151
5152 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5153 key.type = BTRFS_INODE_ITEM_KEY;
5154 key.offset = 0;
5155
5156 join_trans:
5157 /*
5158 * We need to make sure the transaction does not get committed
5159 * while we do anything on commit roots. Join a transaction to prevent
5160 * this.
5161 */
5162 trans = btrfs_join_transaction(send_root);
5163 if (IS_ERR(trans)) {
5164 ret = PTR_ERR(trans);
5165 trans = NULL;
5166 goto out;
5167 }
5168
5169 /*
5170 * Make sure the tree has not changed after re-joining. We detect this
5171 * by comparing start_ctransid and ctransid. They should always match.
5172 */
5173 spin_lock(&send_root->root_item_lock);
5174 ctransid = btrfs_root_ctransid(&send_root->root_item);
5175 spin_unlock(&send_root->root_item_lock);
5176
5177 if (ctransid != start_ctransid) {
5178 WARN(1, KERN_WARNING "BTRFS: the root that you're trying to "
5179 "send was modified in between. This is "
5180 "probably a bug.\n");
5181 ret = -EIO;
5182 goto out;
5183 }
5184
5185 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5186 if (ret < 0)
5187 goto out;
5188 if (ret)
5189 goto out_finish;
5190
5191 while (1) {
5192 /*
5193 * When someone want to commit while we iterate, end the
5194 * joined transaction and rejoin.
5195 */
5196 if (btrfs_should_end_transaction(trans, send_root)) {
5197 ret = btrfs_end_transaction(trans, send_root);
5198 trans = NULL;
5199 if (ret < 0)
5200 goto out;
5201 btrfs_release_path(path);
5202 goto join_trans;
5203 }
5204
5205 eb = path->nodes[0];
5206 slot = path->slots[0];
5207 btrfs_item_key_to_cpu(eb, &found_key, slot);
5208
5209 ret = changed_cb(send_root, NULL, path, NULL,
5210 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5211 if (ret < 0)
5212 goto out;
5213
5214 key.objectid = found_key.objectid;
5215 key.type = found_key.type;
5216 key.offset = found_key.offset + 1;
5217
5218 ret = btrfs_next_item(send_root, path);
5219 if (ret < 0)
5220 goto out;
5221 if (ret) {
5222 ret = 0;
5223 break;
5224 }
5225 }
5226
5227 out_finish:
5228 ret = finish_inode_if_needed(sctx, 1);
5229
5230 out:
5231 btrfs_free_path(path);
5232 if (trans) {
5233 if (!ret)
5234 ret = btrfs_end_transaction(trans, send_root);
5235 else
5236 btrfs_end_transaction(trans, send_root);
5237 }
5238 return ret;
5239 }
5240
5241 static int send_subvol(struct send_ctx *sctx)
5242 {
5243 int ret;
5244
5245 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5246 ret = send_header(sctx);
5247 if (ret < 0)
5248 goto out;
5249 }
5250
5251 ret = send_subvol_begin(sctx);
5252 if (ret < 0)
5253 goto out;
5254
5255 if (sctx->parent_root) {
5256 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5257 changed_cb, sctx);
5258 if (ret < 0)
5259 goto out;
5260 ret = finish_inode_if_needed(sctx, 1);
5261 if (ret < 0)
5262 goto out;
5263 } else {
5264 ret = full_send_tree(sctx);
5265 if (ret < 0)
5266 goto out;
5267 }
5268
5269 out:
5270 free_recorded_refs(sctx);
5271 return ret;
5272 }
5273
5274 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5275 {
5276 spin_lock(&root->root_item_lock);
5277 root->send_in_progress--;
5278 /*
5279 * Not much left to do, we don't know why it's unbalanced and
5280 * can't blindly reset it to 0.
5281 */
5282 if (root->send_in_progress < 0)
5283 btrfs_err(root->fs_info,
5284 "send_in_progres unbalanced %d root %llu\n",
5285 root->send_in_progress, root->root_key.objectid);
5286 spin_unlock(&root->root_item_lock);
5287 }
5288
5289 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5290 {
5291 int ret = 0;
5292 struct btrfs_root *send_root;
5293 struct btrfs_root *clone_root;
5294 struct btrfs_fs_info *fs_info;
5295 struct btrfs_ioctl_send_args *arg = NULL;
5296 struct btrfs_key key;
5297 struct send_ctx *sctx = NULL;
5298 u32 i;
5299 u64 *clone_sources_tmp = NULL;
5300 int clone_sources_to_rollback = 0;
5301 int sort_clone_roots = 0;
5302 int index;
5303
5304 if (!capable(CAP_SYS_ADMIN))
5305 return -EPERM;
5306
5307 send_root = BTRFS_I(file_inode(mnt_file))->root;
5308 fs_info = send_root->fs_info;
5309
5310 /*
5311 * The subvolume must remain read-only during send, protect against
5312 * making it RW.
5313 */
5314 spin_lock(&send_root->root_item_lock);
5315 send_root->send_in_progress++;
5316 spin_unlock(&send_root->root_item_lock);
5317
5318 /*
5319 * This is done when we lookup the root, it should already be complete
5320 * by the time we get here.
5321 */
5322 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5323
5324 /*
5325 * Userspace tools do the checks and warn the user if it's
5326 * not RO.
5327 */
5328 if (!btrfs_root_readonly(send_root)) {
5329 ret = -EPERM;
5330 goto out;
5331 }
5332
5333 arg = memdup_user(arg_, sizeof(*arg));
5334 if (IS_ERR(arg)) {
5335 ret = PTR_ERR(arg);
5336 arg = NULL;
5337 goto out;
5338 }
5339
5340 if (!access_ok(VERIFY_READ, arg->clone_sources,
5341 sizeof(*arg->clone_sources) *
5342 arg->clone_sources_count)) {
5343 ret = -EFAULT;
5344 goto out;
5345 }
5346
5347 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5348 ret = -EINVAL;
5349 goto out;
5350 }
5351
5352 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5353 if (!sctx) {
5354 ret = -ENOMEM;
5355 goto out;
5356 }
5357
5358 INIT_LIST_HEAD(&sctx->new_refs);
5359 INIT_LIST_HEAD(&sctx->deleted_refs);
5360 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5361 INIT_LIST_HEAD(&sctx->name_cache_list);
5362
5363 sctx->flags = arg->flags;
5364
5365 sctx->send_filp = fget(arg->send_fd);
5366 if (!sctx->send_filp) {
5367 ret = -EBADF;
5368 goto out;
5369 }
5370
5371 sctx->send_root = send_root;
5372 sctx->clone_roots_cnt = arg->clone_sources_count;
5373
5374 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5375 sctx->send_buf = vmalloc(sctx->send_max_size);
5376 if (!sctx->send_buf) {
5377 ret = -ENOMEM;
5378 goto out;
5379 }
5380
5381 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5382 if (!sctx->read_buf) {
5383 ret = -ENOMEM;
5384 goto out;
5385 }
5386
5387 sctx->pending_dir_moves = RB_ROOT;
5388 sctx->waiting_dir_moves = RB_ROOT;
5389
5390 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5391 (arg->clone_sources_count + 1));
5392 if (!sctx->clone_roots) {
5393 ret = -ENOMEM;
5394 goto out;
5395 }
5396
5397 if (arg->clone_sources_count) {
5398 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5399 sizeof(*arg->clone_sources));
5400 if (!clone_sources_tmp) {
5401 ret = -ENOMEM;
5402 goto out;
5403 }
5404
5405 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5406 arg->clone_sources_count *
5407 sizeof(*arg->clone_sources));
5408 if (ret) {
5409 ret = -EFAULT;
5410 goto out;
5411 }
5412
5413 for (i = 0; i < arg->clone_sources_count; i++) {
5414 key.objectid = clone_sources_tmp[i];
5415 key.type = BTRFS_ROOT_ITEM_KEY;
5416 key.offset = (u64)-1;
5417
5418 index = srcu_read_lock(&fs_info->subvol_srcu);
5419
5420 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5421 if (IS_ERR(clone_root)) {
5422 srcu_read_unlock(&fs_info->subvol_srcu, index);
5423 ret = PTR_ERR(clone_root);
5424 goto out;
5425 }
5426 clone_sources_to_rollback = i + 1;
5427 spin_lock(&clone_root->root_item_lock);
5428 clone_root->send_in_progress++;
5429 if (!btrfs_root_readonly(clone_root)) {
5430 spin_unlock(&clone_root->root_item_lock);
5431 srcu_read_unlock(&fs_info->subvol_srcu, index);
5432 ret = -EPERM;
5433 goto out;
5434 }
5435 spin_unlock(&clone_root->root_item_lock);
5436 srcu_read_unlock(&fs_info->subvol_srcu, index);
5437
5438 sctx->clone_roots[i].root = clone_root;
5439 }
5440 vfree(clone_sources_tmp);
5441 clone_sources_tmp = NULL;
5442 }
5443
5444 if (arg->parent_root) {
5445 key.objectid = arg->parent_root;
5446 key.type = BTRFS_ROOT_ITEM_KEY;
5447 key.offset = (u64)-1;
5448
5449 index = srcu_read_lock(&fs_info->subvol_srcu);
5450
5451 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5452 if (IS_ERR(sctx->parent_root)) {
5453 srcu_read_unlock(&fs_info->subvol_srcu, index);
5454 ret = PTR_ERR(sctx->parent_root);
5455 goto out;
5456 }
5457
5458 spin_lock(&sctx->parent_root->root_item_lock);
5459 sctx->parent_root->send_in_progress++;
5460 if (!btrfs_root_readonly(sctx->parent_root)) {
5461 spin_unlock(&sctx->parent_root->root_item_lock);
5462 srcu_read_unlock(&fs_info->subvol_srcu, index);
5463 ret = -EPERM;
5464 goto out;
5465 }
5466 spin_unlock(&sctx->parent_root->root_item_lock);
5467
5468 srcu_read_unlock(&fs_info->subvol_srcu, index);
5469 }
5470
5471 /*
5472 * Clones from send_root are allowed, but only if the clone source
5473 * is behind the current send position. This is checked while searching
5474 * for possible clone sources.
5475 */
5476 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5477
5478 /* We do a bsearch later */
5479 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5480 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5481 NULL);
5482 sort_clone_roots = 1;
5483
5484 ret = send_subvol(sctx);
5485 if (ret < 0)
5486 goto out;
5487
5488 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5489 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5490 if (ret < 0)
5491 goto out;
5492 ret = send_cmd(sctx);
5493 if (ret < 0)
5494 goto out;
5495 }
5496
5497 out:
5498 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5499 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5500 struct rb_node *n;
5501 struct pending_dir_move *pm;
5502
5503 n = rb_first(&sctx->pending_dir_moves);
5504 pm = rb_entry(n, struct pending_dir_move, node);
5505 while (!list_empty(&pm->list)) {
5506 struct pending_dir_move *pm2;
5507
5508 pm2 = list_first_entry(&pm->list,
5509 struct pending_dir_move, list);
5510 free_pending_move(sctx, pm2);
5511 }
5512 free_pending_move(sctx, pm);
5513 }
5514
5515 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5516 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5517 struct rb_node *n;
5518 struct waiting_dir_move *dm;
5519
5520 n = rb_first(&sctx->waiting_dir_moves);
5521 dm = rb_entry(n, struct waiting_dir_move, node);
5522 rb_erase(&dm->node, &sctx->waiting_dir_moves);
5523 kfree(dm);
5524 }
5525
5526 if (sort_clone_roots) {
5527 for (i = 0; i < sctx->clone_roots_cnt; i++)
5528 btrfs_root_dec_send_in_progress(
5529 sctx->clone_roots[i].root);
5530 } else {
5531 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5532 btrfs_root_dec_send_in_progress(
5533 sctx->clone_roots[i].root);
5534
5535 btrfs_root_dec_send_in_progress(send_root);
5536 }
5537 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5538 btrfs_root_dec_send_in_progress(sctx->parent_root);
5539
5540 kfree(arg);
5541 vfree(clone_sources_tmp);
5542
5543 if (sctx) {
5544 if (sctx->send_filp)
5545 fput(sctx->send_filp);
5546
5547 vfree(sctx->clone_roots);
5548 vfree(sctx->send_buf);
5549 vfree(sctx->read_buf);
5550
5551 name_cache_free(sctx);
5552
5553 kfree(sctx);
5554 }
5555
5556 return ret;
5557 }
This page took 0.176218 seconds and 5 git commands to generate.