Btrfs: send, add missing error check for calls to path_loop()
[deliverable/linux.git] / fs / btrfs / send.c
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
38
39 static int g_verbose = 0;
40
41 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
42
43 /*
44 * A fs_path is a helper to dynamically build path names with unknown size.
45 * It reallocates the internal buffer on demand.
46 * It allows fast adding of path elements on the right side (normal path) and
47 * fast adding to the left side (reversed path). A reversed path can also be
48 * unreversed if needed.
49 */
50 struct fs_path {
51 union {
52 struct {
53 char *start;
54 char *end;
55
56 char *buf;
57 unsigned short buf_len:15;
58 unsigned short reversed:1;
59 char inline_buf[];
60 };
61 /*
62 * Average path length does not exceed 200 bytes, we'll have
63 * better packing in the slab and higher chance to satisfy
64 * a allocation later during send.
65 */
66 char pad[256];
67 };
68 };
69 #define FS_PATH_INLINE_SIZE \
70 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
71
72
73 /* reused for each extent */
74 struct clone_root {
75 struct btrfs_root *root;
76 u64 ino;
77 u64 offset;
78
79 u64 found_refs;
80 };
81
82 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
83 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
84
85 struct send_ctx {
86 struct file *send_filp;
87 loff_t send_off;
88 char *send_buf;
89 u32 send_size;
90 u32 send_max_size;
91 u64 total_send_size;
92 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
93 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
94
95 struct btrfs_root *send_root;
96 struct btrfs_root *parent_root;
97 struct clone_root *clone_roots;
98 int clone_roots_cnt;
99
100 /* current state of the compare_tree call */
101 struct btrfs_path *left_path;
102 struct btrfs_path *right_path;
103 struct btrfs_key *cmp_key;
104
105 /*
106 * infos of the currently processed inode. In case of deleted inodes,
107 * these are the values from the deleted inode.
108 */
109 u64 cur_ino;
110 u64 cur_inode_gen;
111 int cur_inode_new;
112 int cur_inode_new_gen;
113 int cur_inode_deleted;
114 u64 cur_inode_size;
115 u64 cur_inode_mode;
116 u64 cur_inode_rdev;
117 u64 cur_inode_last_extent;
118
119 u64 send_progress;
120
121 struct list_head new_refs;
122 struct list_head deleted_refs;
123
124 struct radix_tree_root name_cache;
125 struct list_head name_cache_list;
126 int name_cache_size;
127
128 struct file_ra_state ra;
129
130 char *read_buf;
131
132 /*
133 * We process inodes by their increasing order, so if before an
134 * incremental send we reverse the parent/child relationship of
135 * directories such that a directory with a lower inode number was
136 * the parent of a directory with a higher inode number, and the one
137 * becoming the new parent got renamed too, we can't rename/move the
138 * directory with lower inode number when we finish processing it - we
139 * must process the directory with higher inode number first, then
140 * rename/move it and then rename/move the directory with lower inode
141 * number. Example follows.
142 *
143 * Tree state when the first send was performed:
144 *
145 * .
146 * |-- a (ino 257)
147 * |-- b (ino 258)
148 * |
149 * |
150 * |-- c (ino 259)
151 * | |-- d (ino 260)
152 * |
153 * |-- c2 (ino 261)
154 *
155 * Tree state when the second (incremental) send is performed:
156 *
157 * .
158 * |-- a (ino 257)
159 * |-- b (ino 258)
160 * |-- c2 (ino 261)
161 * |-- d2 (ino 260)
162 * |-- cc (ino 259)
163 *
164 * The sequence of steps that lead to the second state was:
165 *
166 * mv /a/b/c/d /a/b/c2/d2
167 * mv /a/b/c /a/b/c2/d2/cc
168 *
169 * "c" has lower inode number, but we can't move it (2nd mv operation)
170 * before we move "d", which has higher inode number.
171 *
172 * So we just memorize which move/rename operations must be performed
173 * later when their respective parent is processed and moved/renamed.
174 */
175
176 /* Indexed by parent directory inode number. */
177 struct rb_root pending_dir_moves;
178
179 /*
180 * Reverse index, indexed by the inode number of a directory that
181 * is waiting for the move/rename of its immediate parent before its
182 * own move/rename can be performed.
183 */
184 struct rb_root waiting_dir_moves;
185
186 /*
187 * A directory that is going to be rm'ed might have a child directory
188 * which is in the pending directory moves index above. In this case,
189 * the directory can only be removed after the move/rename of its child
190 * is performed. Example:
191 *
192 * Parent snapshot:
193 *
194 * . (ino 256)
195 * |-- a/ (ino 257)
196 * |-- b/ (ino 258)
197 * |-- c/ (ino 259)
198 * | |-- x/ (ino 260)
199 * |
200 * |-- y/ (ino 261)
201 *
202 * Send snapshot:
203 *
204 * . (ino 256)
205 * |-- a/ (ino 257)
206 * |-- b/ (ino 258)
207 * |-- YY/ (ino 261)
208 * |-- x/ (ino 260)
209 *
210 * Sequence of steps that lead to the send snapshot:
211 * rm -f /a/b/c/foo.txt
212 * mv /a/b/y /a/b/YY
213 * mv /a/b/c/x /a/b/YY
214 * rmdir /a/b/c
215 *
216 * When the child is processed, its move/rename is delayed until its
217 * parent is processed (as explained above), but all other operations
218 * like update utimes, chown, chgrp, etc, are performed and the paths
219 * that it uses for those operations must use the orphanized name of
220 * its parent (the directory we're going to rm later), so we need to
221 * memorize that name.
222 *
223 * Indexed by the inode number of the directory to be deleted.
224 */
225 struct rb_root orphan_dirs;
226 };
227
228 struct pending_dir_move {
229 struct rb_node node;
230 struct list_head list;
231 u64 parent_ino;
232 u64 ino;
233 u64 gen;
234 struct list_head update_refs;
235 };
236
237 struct waiting_dir_move {
238 struct rb_node node;
239 u64 ino;
240 /*
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 */
245 u64 rmdir_ino;
246 bool orphanized;
247 };
248
249 struct orphan_dir_info {
250 struct rb_node node;
251 u64 ino;
252 u64 gen;
253 };
254
255 struct name_cache_entry {
256 struct list_head list;
257 /*
258 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 * more then one inum would fall into the same entry, we use radix_list
261 * to store the additional entries. radix_list is also used to store
262 * entries where two entries have the same inum but different
263 * generations.
264 */
265 struct list_head radix_list;
266 u64 ino;
267 u64 gen;
268 u64 parent_ino;
269 u64 parent_gen;
270 int ret;
271 int need_later_update;
272 int name_len;
273 char name[];
274 };
275
276 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
277
278 static struct waiting_dir_move *
279 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
280
281 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
282
283 static int need_send_hole(struct send_ctx *sctx)
284 {
285 return (sctx->parent_root && !sctx->cur_inode_new &&
286 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 S_ISREG(sctx->cur_inode_mode));
288 }
289
290 static void fs_path_reset(struct fs_path *p)
291 {
292 if (p->reversed) {
293 p->start = p->buf + p->buf_len - 1;
294 p->end = p->start;
295 *p->start = 0;
296 } else {
297 p->start = p->buf;
298 p->end = p->start;
299 *p->start = 0;
300 }
301 }
302
303 static struct fs_path *fs_path_alloc(void)
304 {
305 struct fs_path *p;
306
307 p = kmalloc(sizeof(*p), GFP_KERNEL);
308 if (!p)
309 return NULL;
310 p->reversed = 0;
311 p->buf = p->inline_buf;
312 p->buf_len = FS_PATH_INLINE_SIZE;
313 fs_path_reset(p);
314 return p;
315 }
316
317 static struct fs_path *fs_path_alloc_reversed(void)
318 {
319 struct fs_path *p;
320
321 p = fs_path_alloc();
322 if (!p)
323 return NULL;
324 p->reversed = 1;
325 fs_path_reset(p);
326 return p;
327 }
328
329 static void fs_path_free(struct fs_path *p)
330 {
331 if (!p)
332 return;
333 if (p->buf != p->inline_buf)
334 kfree(p->buf);
335 kfree(p);
336 }
337
338 static int fs_path_len(struct fs_path *p)
339 {
340 return p->end - p->start;
341 }
342
343 static int fs_path_ensure_buf(struct fs_path *p, int len)
344 {
345 char *tmp_buf;
346 int path_len;
347 int old_buf_len;
348
349 len++;
350
351 if (p->buf_len >= len)
352 return 0;
353
354 if (len > PATH_MAX) {
355 WARN_ON(1);
356 return -ENOMEM;
357 }
358
359 path_len = p->end - p->start;
360 old_buf_len = p->buf_len;
361
362 /*
363 * First time the inline_buf does not suffice
364 */
365 if (p->buf == p->inline_buf) {
366 tmp_buf = kmalloc(len, GFP_KERNEL);
367 if (tmp_buf)
368 memcpy(tmp_buf, p->buf, old_buf_len);
369 } else {
370 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
371 }
372 if (!tmp_buf)
373 return -ENOMEM;
374 p->buf = tmp_buf;
375 /*
376 * The real size of the buffer is bigger, this will let the fast path
377 * happen most of the time
378 */
379 p->buf_len = ksize(p->buf);
380
381 if (p->reversed) {
382 tmp_buf = p->buf + old_buf_len - path_len - 1;
383 p->end = p->buf + p->buf_len - 1;
384 p->start = p->end - path_len;
385 memmove(p->start, tmp_buf, path_len + 1);
386 } else {
387 p->start = p->buf;
388 p->end = p->start + path_len;
389 }
390 return 0;
391 }
392
393 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
394 char **prepared)
395 {
396 int ret;
397 int new_len;
398
399 new_len = p->end - p->start + name_len;
400 if (p->start != p->end)
401 new_len++;
402 ret = fs_path_ensure_buf(p, new_len);
403 if (ret < 0)
404 goto out;
405
406 if (p->reversed) {
407 if (p->start != p->end)
408 *--p->start = '/';
409 p->start -= name_len;
410 *prepared = p->start;
411 } else {
412 if (p->start != p->end)
413 *p->end++ = '/';
414 *prepared = p->end;
415 p->end += name_len;
416 *p->end = 0;
417 }
418
419 out:
420 return ret;
421 }
422
423 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
424 {
425 int ret;
426 char *prepared;
427
428 ret = fs_path_prepare_for_add(p, name_len, &prepared);
429 if (ret < 0)
430 goto out;
431 memcpy(prepared, name, name_len);
432
433 out:
434 return ret;
435 }
436
437 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
438 {
439 int ret;
440 char *prepared;
441
442 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
443 if (ret < 0)
444 goto out;
445 memcpy(prepared, p2->start, p2->end - p2->start);
446
447 out:
448 return ret;
449 }
450
451 static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 struct extent_buffer *eb,
453 unsigned long off, int len)
454 {
455 int ret;
456 char *prepared;
457
458 ret = fs_path_prepare_for_add(p, len, &prepared);
459 if (ret < 0)
460 goto out;
461
462 read_extent_buffer(eb, prepared, off, len);
463
464 out:
465 return ret;
466 }
467
468 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
469 {
470 int ret;
471
472 p->reversed = from->reversed;
473 fs_path_reset(p);
474
475 ret = fs_path_add_path(p, from);
476
477 return ret;
478 }
479
480
481 static void fs_path_unreverse(struct fs_path *p)
482 {
483 char *tmp;
484 int len;
485
486 if (!p->reversed)
487 return;
488
489 tmp = p->start;
490 len = p->end - p->start;
491 p->start = p->buf;
492 p->end = p->start + len;
493 memmove(p->start, tmp, len + 1);
494 p->reversed = 0;
495 }
496
497 static struct btrfs_path *alloc_path_for_send(void)
498 {
499 struct btrfs_path *path;
500
501 path = btrfs_alloc_path();
502 if (!path)
503 return NULL;
504 path->search_commit_root = 1;
505 path->skip_locking = 1;
506 path->need_commit_sem = 1;
507 return path;
508 }
509
510 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
511 {
512 int ret;
513 mm_segment_t old_fs;
514 u32 pos = 0;
515
516 old_fs = get_fs();
517 set_fs(KERNEL_DS);
518
519 while (pos < len) {
520 ret = vfs_write(filp, (__force const char __user *)buf + pos,
521 len - pos, off);
522 /* TODO handle that correctly */
523 /*if (ret == -ERESTARTSYS) {
524 continue;
525 }*/
526 if (ret < 0)
527 goto out;
528 if (ret == 0) {
529 ret = -EIO;
530 goto out;
531 }
532 pos += ret;
533 }
534
535 ret = 0;
536
537 out:
538 set_fs(old_fs);
539 return ret;
540 }
541
542 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
543 {
544 struct btrfs_tlv_header *hdr;
545 int total_len = sizeof(*hdr) + len;
546 int left = sctx->send_max_size - sctx->send_size;
547
548 if (unlikely(left < total_len))
549 return -EOVERFLOW;
550
551 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 hdr->tlv_type = cpu_to_le16(attr);
553 hdr->tlv_len = cpu_to_le16(len);
554 memcpy(hdr + 1, data, len);
555 sctx->send_size += total_len;
556
557 return 0;
558 }
559
560 #define TLV_PUT_DEFINE_INT(bits) \
561 static int tlv_put_u##bits(struct send_ctx *sctx, \
562 u##bits attr, u##bits value) \
563 { \
564 __le##bits __tmp = cpu_to_le##bits(value); \
565 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
566 }
567
568 TLV_PUT_DEFINE_INT(64)
569
570 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 const char *str, int len)
572 {
573 if (len == -1)
574 len = strlen(str);
575 return tlv_put(sctx, attr, str, len);
576 }
577
578 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
579 const u8 *uuid)
580 {
581 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
582 }
583
584 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 struct extent_buffer *eb,
586 struct btrfs_timespec *ts)
587 {
588 struct btrfs_timespec bts;
589 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 return tlv_put(sctx, attr, &bts, sizeof(bts));
591 }
592
593
594 #define TLV_PUT(sctx, attrtype, attrlen, data) \
595 do { \
596 ret = tlv_put(sctx, attrtype, attrlen, data); \
597 if (ret < 0) \
598 goto tlv_put_failure; \
599 } while (0)
600
601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
602 do { \
603 ret = tlv_put_u##bits(sctx, attrtype, value); \
604 if (ret < 0) \
605 goto tlv_put_failure; \
606 } while (0)
607
608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
613 do { \
614 ret = tlv_put_string(sctx, attrtype, str, len); \
615 if (ret < 0) \
616 goto tlv_put_failure; \
617 } while (0)
618 #define TLV_PUT_PATH(sctx, attrtype, p) \
619 do { \
620 ret = tlv_put_string(sctx, attrtype, p->start, \
621 p->end - p->start); \
622 if (ret < 0) \
623 goto tlv_put_failure; \
624 } while(0)
625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
626 do { \
627 ret = tlv_put_uuid(sctx, attrtype, uuid); \
628 if (ret < 0) \
629 goto tlv_put_failure; \
630 } while (0)
631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
632 do { \
633 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
634 if (ret < 0) \
635 goto tlv_put_failure; \
636 } while (0)
637
638 static int send_header(struct send_ctx *sctx)
639 {
640 struct btrfs_stream_header hdr;
641
642 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
644
645 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
646 &sctx->send_off);
647 }
648
649 /*
650 * For each command/item we want to send to userspace, we call this function.
651 */
652 static int begin_cmd(struct send_ctx *sctx, int cmd)
653 {
654 struct btrfs_cmd_header *hdr;
655
656 if (WARN_ON(!sctx->send_buf))
657 return -EINVAL;
658
659 BUG_ON(sctx->send_size);
660
661 sctx->send_size += sizeof(*hdr);
662 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 hdr->cmd = cpu_to_le16(cmd);
664
665 return 0;
666 }
667
668 static int send_cmd(struct send_ctx *sctx)
669 {
670 int ret;
671 struct btrfs_cmd_header *hdr;
672 u32 crc;
673
674 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
676 hdr->crc = 0;
677
678 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
679 hdr->crc = cpu_to_le32(crc);
680
681 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
682 &sctx->send_off);
683
684 sctx->total_send_size += sctx->send_size;
685 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
686 sctx->send_size = 0;
687
688 return ret;
689 }
690
691 /*
692 * Sends a move instruction to user space
693 */
694 static int send_rename(struct send_ctx *sctx,
695 struct fs_path *from, struct fs_path *to)
696 {
697 int ret;
698
699 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
700
701 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
702 if (ret < 0)
703 goto out;
704
705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
707
708 ret = send_cmd(sctx);
709
710 tlv_put_failure:
711 out:
712 return ret;
713 }
714
715 /*
716 * Sends a link instruction to user space
717 */
718 static int send_link(struct send_ctx *sctx,
719 struct fs_path *path, struct fs_path *lnk)
720 {
721 int ret;
722
723 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
724
725 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
726 if (ret < 0)
727 goto out;
728
729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
731
732 ret = send_cmd(sctx);
733
734 tlv_put_failure:
735 out:
736 return ret;
737 }
738
739 /*
740 * Sends an unlink instruction to user space
741 */
742 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
743 {
744 int ret;
745
746 verbose_printk("btrfs: send_unlink %s\n", path->start);
747
748 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
749 if (ret < 0)
750 goto out;
751
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
753
754 ret = send_cmd(sctx);
755
756 tlv_put_failure:
757 out:
758 return ret;
759 }
760
761 /*
762 * Sends a rmdir instruction to user space
763 */
764 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
765 {
766 int ret;
767
768 verbose_printk("btrfs: send_rmdir %s\n", path->start);
769
770 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
771 if (ret < 0)
772 goto out;
773
774 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775
776 ret = send_cmd(sctx);
777
778 tlv_put_failure:
779 out:
780 return ret;
781 }
782
783 /*
784 * Helper function to retrieve some fields from an inode item.
785 */
786 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
788 u64 *gid, u64 *rdev)
789 {
790 int ret;
791 struct btrfs_inode_item *ii;
792 struct btrfs_key key;
793
794 key.objectid = ino;
795 key.type = BTRFS_INODE_ITEM_KEY;
796 key.offset = 0;
797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
798 if (ret) {
799 if (ret > 0)
800 ret = -ENOENT;
801 return ret;
802 }
803
804 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 struct btrfs_inode_item);
806 if (size)
807 *size = btrfs_inode_size(path->nodes[0], ii);
808 if (gen)
809 *gen = btrfs_inode_generation(path->nodes[0], ii);
810 if (mode)
811 *mode = btrfs_inode_mode(path->nodes[0], ii);
812 if (uid)
813 *uid = btrfs_inode_uid(path->nodes[0], ii);
814 if (gid)
815 *gid = btrfs_inode_gid(path->nodes[0], ii);
816 if (rdev)
817 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
818
819 return ret;
820 }
821
822 static int get_inode_info(struct btrfs_root *root,
823 u64 ino, u64 *size, u64 *gen,
824 u64 *mode, u64 *uid, u64 *gid,
825 u64 *rdev)
826 {
827 struct btrfs_path *path;
828 int ret;
829
830 path = alloc_path_for_send();
831 if (!path)
832 return -ENOMEM;
833 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
834 rdev);
835 btrfs_free_path(path);
836 return ret;
837 }
838
839 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
840 struct fs_path *p,
841 void *ctx);
842
843 /*
844 * Helper function to iterate the entries in ONE btrfs_inode_ref or
845 * btrfs_inode_extref.
846 * The iterate callback may return a non zero value to stop iteration. This can
847 * be a negative value for error codes or 1 to simply stop it.
848 *
849 * path must point to the INODE_REF or INODE_EXTREF when called.
850 */
851 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
852 struct btrfs_key *found_key, int resolve,
853 iterate_inode_ref_t iterate, void *ctx)
854 {
855 struct extent_buffer *eb = path->nodes[0];
856 struct btrfs_item *item;
857 struct btrfs_inode_ref *iref;
858 struct btrfs_inode_extref *extref;
859 struct btrfs_path *tmp_path;
860 struct fs_path *p;
861 u32 cur = 0;
862 u32 total;
863 int slot = path->slots[0];
864 u32 name_len;
865 char *start;
866 int ret = 0;
867 int num = 0;
868 int index;
869 u64 dir;
870 unsigned long name_off;
871 unsigned long elem_size;
872 unsigned long ptr;
873
874 p = fs_path_alloc_reversed();
875 if (!p)
876 return -ENOMEM;
877
878 tmp_path = alloc_path_for_send();
879 if (!tmp_path) {
880 fs_path_free(p);
881 return -ENOMEM;
882 }
883
884
885 if (found_key->type == BTRFS_INODE_REF_KEY) {
886 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 struct btrfs_inode_ref);
888 item = btrfs_item_nr(slot);
889 total = btrfs_item_size(eb, item);
890 elem_size = sizeof(*iref);
891 } else {
892 ptr = btrfs_item_ptr_offset(eb, slot);
893 total = btrfs_item_size_nr(eb, slot);
894 elem_size = sizeof(*extref);
895 }
896
897 while (cur < total) {
898 fs_path_reset(p);
899
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 iref = (struct btrfs_inode_ref *)(ptr + cur);
902 name_len = btrfs_inode_ref_name_len(eb, iref);
903 name_off = (unsigned long)(iref + 1);
904 index = btrfs_inode_ref_index(eb, iref);
905 dir = found_key->offset;
906 } else {
907 extref = (struct btrfs_inode_extref *)(ptr + cur);
908 name_len = btrfs_inode_extref_name_len(eb, extref);
909 name_off = (unsigned long)&extref->name;
910 index = btrfs_inode_extref_index(eb, extref);
911 dir = btrfs_inode_extref_parent(eb, extref);
912 }
913
914 if (resolve) {
915 start = btrfs_ref_to_path(root, tmp_path, name_len,
916 name_off, eb, dir,
917 p->buf, p->buf_len);
918 if (IS_ERR(start)) {
919 ret = PTR_ERR(start);
920 goto out;
921 }
922 if (start < p->buf) {
923 /* overflow , try again with larger buffer */
924 ret = fs_path_ensure_buf(p,
925 p->buf_len + p->buf - start);
926 if (ret < 0)
927 goto out;
928 start = btrfs_ref_to_path(root, tmp_path,
929 name_len, name_off,
930 eb, dir,
931 p->buf, p->buf_len);
932 if (IS_ERR(start)) {
933 ret = PTR_ERR(start);
934 goto out;
935 }
936 BUG_ON(start < p->buf);
937 }
938 p->start = start;
939 } else {
940 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
941 name_len);
942 if (ret < 0)
943 goto out;
944 }
945
946 cur += elem_size + name_len;
947 ret = iterate(num, dir, index, p, ctx);
948 if (ret)
949 goto out;
950 num++;
951 }
952
953 out:
954 btrfs_free_path(tmp_path);
955 fs_path_free(p);
956 return ret;
957 }
958
959 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 const char *name, int name_len,
961 const char *data, int data_len,
962 u8 type, void *ctx);
963
964 /*
965 * Helper function to iterate the entries in ONE btrfs_dir_item.
966 * The iterate callback may return a non zero value to stop iteration. This can
967 * be a negative value for error codes or 1 to simply stop it.
968 *
969 * path must point to the dir item when called.
970 */
971 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
972 struct btrfs_key *found_key,
973 iterate_dir_item_t iterate, void *ctx)
974 {
975 int ret = 0;
976 struct extent_buffer *eb;
977 struct btrfs_item *item;
978 struct btrfs_dir_item *di;
979 struct btrfs_key di_key;
980 char *buf = NULL;
981 int buf_len;
982 u32 name_len;
983 u32 data_len;
984 u32 cur;
985 u32 len;
986 u32 total;
987 int slot;
988 int num;
989 u8 type;
990
991 /*
992 * Start with a small buffer (1 page). If later we end up needing more
993 * space, which can happen for xattrs on a fs with a leaf size greater
994 * then the page size, attempt to increase the buffer. Typically xattr
995 * values are small.
996 */
997 buf_len = PATH_MAX;
998 buf = kmalloc(buf_len, GFP_KERNEL);
999 if (!buf) {
1000 ret = -ENOMEM;
1001 goto out;
1002 }
1003
1004 eb = path->nodes[0];
1005 slot = path->slots[0];
1006 item = btrfs_item_nr(slot);
1007 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1008 cur = 0;
1009 len = 0;
1010 total = btrfs_item_size(eb, item);
1011
1012 num = 0;
1013 while (cur < total) {
1014 name_len = btrfs_dir_name_len(eb, di);
1015 data_len = btrfs_dir_data_len(eb, di);
1016 type = btrfs_dir_type(eb, di);
1017 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1018
1019 if (type == BTRFS_FT_XATTR) {
1020 if (name_len > XATTR_NAME_MAX) {
1021 ret = -ENAMETOOLONG;
1022 goto out;
1023 }
1024 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1025 ret = -E2BIG;
1026 goto out;
1027 }
1028 } else {
1029 /*
1030 * Path too long
1031 */
1032 if (name_len + data_len > PATH_MAX) {
1033 ret = -ENAMETOOLONG;
1034 goto out;
1035 }
1036 }
1037
1038 if (name_len + data_len > buf_len) {
1039 buf_len = name_len + data_len;
1040 if (is_vmalloc_addr(buf)) {
1041 vfree(buf);
1042 buf = NULL;
1043 } else {
1044 char *tmp = krealloc(buf, buf_len,
1045 GFP_KERNEL | __GFP_NOWARN);
1046
1047 if (!tmp)
1048 kfree(buf);
1049 buf = tmp;
1050 }
1051 if (!buf) {
1052 buf = vmalloc(buf_len);
1053 if (!buf) {
1054 ret = -ENOMEM;
1055 goto out;
1056 }
1057 }
1058 }
1059
1060 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 name_len + data_len);
1062
1063 len = sizeof(*di) + name_len + data_len;
1064 di = (struct btrfs_dir_item *)((char *)di + len);
1065 cur += len;
1066
1067 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 data_len, type, ctx);
1069 if (ret < 0)
1070 goto out;
1071 if (ret) {
1072 ret = 0;
1073 goto out;
1074 }
1075
1076 num++;
1077 }
1078
1079 out:
1080 kvfree(buf);
1081 return ret;
1082 }
1083
1084 static int __copy_first_ref(int num, u64 dir, int index,
1085 struct fs_path *p, void *ctx)
1086 {
1087 int ret;
1088 struct fs_path *pt = ctx;
1089
1090 ret = fs_path_copy(pt, p);
1091 if (ret < 0)
1092 return ret;
1093
1094 /* we want the first only */
1095 return 1;
1096 }
1097
1098 /*
1099 * Retrieve the first path of an inode. If an inode has more then one
1100 * ref/hardlink, this is ignored.
1101 */
1102 static int get_inode_path(struct btrfs_root *root,
1103 u64 ino, struct fs_path *path)
1104 {
1105 int ret;
1106 struct btrfs_key key, found_key;
1107 struct btrfs_path *p;
1108
1109 p = alloc_path_for_send();
1110 if (!p)
1111 return -ENOMEM;
1112
1113 fs_path_reset(path);
1114
1115 key.objectid = ino;
1116 key.type = BTRFS_INODE_REF_KEY;
1117 key.offset = 0;
1118
1119 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1120 if (ret < 0)
1121 goto out;
1122 if (ret) {
1123 ret = 1;
1124 goto out;
1125 }
1126 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 if (found_key.objectid != ino ||
1128 (found_key.type != BTRFS_INODE_REF_KEY &&
1129 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1130 ret = -ENOENT;
1131 goto out;
1132 }
1133
1134 ret = iterate_inode_ref(root, p, &found_key, 1,
1135 __copy_first_ref, path);
1136 if (ret < 0)
1137 goto out;
1138 ret = 0;
1139
1140 out:
1141 btrfs_free_path(p);
1142 return ret;
1143 }
1144
1145 struct backref_ctx {
1146 struct send_ctx *sctx;
1147
1148 struct btrfs_path *path;
1149 /* number of total found references */
1150 u64 found;
1151
1152 /*
1153 * used for clones found in send_root. clones found behind cur_objectid
1154 * and cur_offset are not considered as allowed clones.
1155 */
1156 u64 cur_objectid;
1157 u64 cur_offset;
1158
1159 /* may be truncated in case it's the last extent in a file */
1160 u64 extent_len;
1161
1162 /* data offset in the file extent item */
1163 u64 data_offset;
1164
1165 /* Just to check for bugs in backref resolving */
1166 int found_itself;
1167 };
1168
1169 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1170 {
1171 u64 root = (u64)(uintptr_t)key;
1172 struct clone_root *cr = (struct clone_root *)elt;
1173
1174 if (root < cr->root->objectid)
1175 return -1;
1176 if (root > cr->root->objectid)
1177 return 1;
1178 return 0;
1179 }
1180
1181 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1182 {
1183 struct clone_root *cr1 = (struct clone_root *)e1;
1184 struct clone_root *cr2 = (struct clone_root *)e2;
1185
1186 if (cr1->root->objectid < cr2->root->objectid)
1187 return -1;
1188 if (cr1->root->objectid > cr2->root->objectid)
1189 return 1;
1190 return 0;
1191 }
1192
1193 /*
1194 * Called for every backref that is found for the current extent.
1195 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1196 */
1197 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1198 {
1199 struct backref_ctx *bctx = ctx_;
1200 struct clone_root *found;
1201 int ret;
1202 u64 i_size;
1203
1204 /* First check if the root is in the list of accepted clone sources */
1205 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1206 bctx->sctx->clone_roots_cnt,
1207 sizeof(struct clone_root),
1208 __clone_root_cmp_bsearch);
1209 if (!found)
1210 return 0;
1211
1212 if (found->root == bctx->sctx->send_root &&
1213 ino == bctx->cur_objectid &&
1214 offset == bctx->cur_offset) {
1215 bctx->found_itself = 1;
1216 }
1217
1218 /*
1219 * There are inodes that have extents that lie behind its i_size. Don't
1220 * accept clones from these extents.
1221 */
1222 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1223 NULL, NULL, NULL);
1224 btrfs_release_path(bctx->path);
1225 if (ret < 0)
1226 return ret;
1227
1228 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1229 return 0;
1230
1231 /*
1232 * Make sure we don't consider clones from send_root that are
1233 * behind the current inode/offset.
1234 */
1235 if (found->root == bctx->sctx->send_root) {
1236 /*
1237 * TODO for the moment we don't accept clones from the inode
1238 * that is currently send. We may change this when
1239 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1240 * file.
1241 */
1242 if (ino >= bctx->cur_objectid)
1243 return 0;
1244 #if 0
1245 if (ino > bctx->cur_objectid)
1246 return 0;
1247 if (offset + bctx->extent_len > bctx->cur_offset)
1248 return 0;
1249 #endif
1250 }
1251
1252 bctx->found++;
1253 found->found_refs++;
1254 if (ino < found->ino) {
1255 found->ino = ino;
1256 found->offset = offset;
1257 } else if (found->ino == ino) {
1258 /*
1259 * same extent found more then once in the same file.
1260 */
1261 if (found->offset > offset + bctx->extent_len)
1262 found->offset = offset;
1263 }
1264
1265 return 0;
1266 }
1267
1268 /*
1269 * Given an inode, offset and extent item, it finds a good clone for a clone
1270 * instruction. Returns -ENOENT when none could be found. The function makes
1271 * sure that the returned clone is usable at the point where sending is at the
1272 * moment. This means, that no clones are accepted which lie behind the current
1273 * inode+offset.
1274 *
1275 * path must point to the extent item when called.
1276 */
1277 static int find_extent_clone(struct send_ctx *sctx,
1278 struct btrfs_path *path,
1279 u64 ino, u64 data_offset,
1280 u64 ino_size,
1281 struct clone_root **found)
1282 {
1283 int ret;
1284 int extent_type;
1285 u64 logical;
1286 u64 disk_byte;
1287 u64 num_bytes;
1288 u64 extent_item_pos;
1289 u64 flags = 0;
1290 struct btrfs_file_extent_item *fi;
1291 struct extent_buffer *eb = path->nodes[0];
1292 struct backref_ctx *backref_ctx = NULL;
1293 struct clone_root *cur_clone_root;
1294 struct btrfs_key found_key;
1295 struct btrfs_path *tmp_path;
1296 int compressed;
1297 u32 i;
1298
1299 tmp_path = alloc_path_for_send();
1300 if (!tmp_path)
1301 return -ENOMEM;
1302
1303 /* We only use this path under the commit sem */
1304 tmp_path->need_commit_sem = 0;
1305
1306 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1307 if (!backref_ctx) {
1308 ret = -ENOMEM;
1309 goto out;
1310 }
1311
1312 backref_ctx->path = tmp_path;
1313
1314 if (data_offset >= ino_size) {
1315 /*
1316 * There may be extents that lie behind the file's size.
1317 * I at least had this in combination with snapshotting while
1318 * writing large files.
1319 */
1320 ret = 0;
1321 goto out;
1322 }
1323
1324 fi = btrfs_item_ptr(eb, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(eb, fi);
1327 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1328 ret = -ENOENT;
1329 goto out;
1330 }
1331 compressed = btrfs_file_extent_compression(eb, fi);
1332
1333 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1334 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 if (disk_byte == 0) {
1336 ret = -ENOENT;
1337 goto out;
1338 }
1339 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1340
1341 down_read(&sctx->send_root->fs_info->commit_root_sem);
1342 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 &found_key, &flags);
1344 up_read(&sctx->send_root->fs_info->commit_root_sem);
1345 btrfs_release_path(tmp_path);
1346
1347 if (ret < 0)
1348 goto out;
1349 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1350 ret = -EIO;
1351 goto out;
1352 }
1353
1354 /*
1355 * Setup the clone roots.
1356 */
1357 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 cur_clone_root = sctx->clone_roots + i;
1359 cur_clone_root->ino = (u64)-1;
1360 cur_clone_root->offset = 0;
1361 cur_clone_root->found_refs = 0;
1362 }
1363
1364 backref_ctx->sctx = sctx;
1365 backref_ctx->found = 0;
1366 backref_ctx->cur_objectid = ino;
1367 backref_ctx->cur_offset = data_offset;
1368 backref_ctx->found_itself = 0;
1369 backref_ctx->extent_len = num_bytes;
1370 /*
1371 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 * offsets that already take into account the data offset, but not for
1373 * compressed extents, since the offset is logical and not relative to
1374 * the physical extent locations. We must take this into account to
1375 * avoid sending clone offsets that go beyond the source file's size,
1376 * which would result in the clone ioctl failing with -EINVAL on the
1377 * receiving end.
1378 */
1379 if (compressed == BTRFS_COMPRESS_NONE)
1380 backref_ctx->data_offset = 0;
1381 else
1382 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1383
1384 /*
1385 * The last extent of a file may be too large due to page alignment.
1386 * We need to adjust extent_len in this case so that the checks in
1387 * __iterate_backrefs work.
1388 */
1389 if (data_offset + num_bytes >= ino_size)
1390 backref_ctx->extent_len = ino_size - data_offset;
1391
1392 /*
1393 * Now collect all backrefs.
1394 */
1395 if (compressed == BTRFS_COMPRESS_NONE)
1396 extent_item_pos = logical - found_key.objectid;
1397 else
1398 extent_item_pos = 0;
1399 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 found_key.objectid, extent_item_pos, 1,
1401 __iterate_backrefs, backref_ctx);
1402
1403 if (ret < 0)
1404 goto out;
1405
1406 if (!backref_ctx->found_itself) {
1407 /* found a bug in backref code? */
1408 ret = -EIO;
1409 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1410 "send_root. inode=%llu, offset=%llu, "
1411 "disk_byte=%llu found extent=%llu",
1412 ino, data_offset, disk_byte, found_key.objectid);
1413 goto out;
1414 }
1415
1416 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1417 "ino=%llu, "
1418 "num_bytes=%llu, logical=%llu\n",
1419 data_offset, ino, num_bytes, logical);
1420
1421 if (!backref_ctx->found)
1422 verbose_printk("btrfs: no clones found\n");
1423
1424 cur_clone_root = NULL;
1425 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 if (sctx->clone_roots[i].found_refs) {
1427 if (!cur_clone_root)
1428 cur_clone_root = sctx->clone_roots + i;
1429 else if (sctx->clone_roots[i].root == sctx->send_root)
1430 /* prefer clones from send_root over others */
1431 cur_clone_root = sctx->clone_roots + i;
1432 }
1433
1434 }
1435
1436 if (cur_clone_root) {
1437 *found = cur_clone_root;
1438 ret = 0;
1439 } else {
1440 ret = -ENOENT;
1441 }
1442
1443 out:
1444 btrfs_free_path(tmp_path);
1445 kfree(backref_ctx);
1446 return ret;
1447 }
1448
1449 static int read_symlink(struct btrfs_root *root,
1450 u64 ino,
1451 struct fs_path *dest)
1452 {
1453 int ret;
1454 struct btrfs_path *path;
1455 struct btrfs_key key;
1456 struct btrfs_file_extent_item *ei;
1457 u8 type;
1458 u8 compression;
1459 unsigned long off;
1460 int len;
1461
1462 path = alloc_path_for_send();
1463 if (!path)
1464 return -ENOMEM;
1465
1466 key.objectid = ino;
1467 key.type = BTRFS_EXTENT_DATA_KEY;
1468 key.offset = 0;
1469 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1470 if (ret < 0)
1471 goto out;
1472 if (ret) {
1473 /*
1474 * An empty symlink inode. Can happen in rare error paths when
1475 * creating a symlink (transaction committed before the inode
1476 * eviction handler removed the symlink inode items and a crash
1477 * happened in between or the subvol was snapshoted in between).
1478 * Print an informative message to dmesg/syslog so that the user
1479 * can delete the symlink.
1480 */
1481 btrfs_err(root->fs_info,
1482 "Found empty symlink inode %llu at root %llu",
1483 ino, root->root_key.objectid);
1484 ret = -EIO;
1485 goto out;
1486 }
1487
1488 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1489 struct btrfs_file_extent_item);
1490 type = btrfs_file_extent_type(path->nodes[0], ei);
1491 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1492 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1493 BUG_ON(compression);
1494
1495 off = btrfs_file_extent_inline_start(ei);
1496 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1497
1498 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1499
1500 out:
1501 btrfs_free_path(path);
1502 return ret;
1503 }
1504
1505 /*
1506 * Helper function to generate a file name that is unique in the root of
1507 * send_root and parent_root. This is used to generate names for orphan inodes.
1508 */
1509 static int gen_unique_name(struct send_ctx *sctx,
1510 u64 ino, u64 gen,
1511 struct fs_path *dest)
1512 {
1513 int ret = 0;
1514 struct btrfs_path *path;
1515 struct btrfs_dir_item *di;
1516 char tmp[64];
1517 int len;
1518 u64 idx = 0;
1519
1520 path = alloc_path_for_send();
1521 if (!path)
1522 return -ENOMEM;
1523
1524 while (1) {
1525 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1526 ino, gen, idx);
1527 ASSERT(len < sizeof(tmp));
1528
1529 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1530 path, BTRFS_FIRST_FREE_OBJECTID,
1531 tmp, strlen(tmp), 0);
1532 btrfs_release_path(path);
1533 if (IS_ERR(di)) {
1534 ret = PTR_ERR(di);
1535 goto out;
1536 }
1537 if (di) {
1538 /* not unique, try again */
1539 idx++;
1540 continue;
1541 }
1542
1543 if (!sctx->parent_root) {
1544 /* unique */
1545 ret = 0;
1546 break;
1547 }
1548
1549 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1550 path, BTRFS_FIRST_FREE_OBJECTID,
1551 tmp, strlen(tmp), 0);
1552 btrfs_release_path(path);
1553 if (IS_ERR(di)) {
1554 ret = PTR_ERR(di);
1555 goto out;
1556 }
1557 if (di) {
1558 /* not unique, try again */
1559 idx++;
1560 continue;
1561 }
1562 /* unique */
1563 break;
1564 }
1565
1566 ret = fs_path_add(dest, tmp, strlen(tmp));
1567
1568 out:
1569 btrfs_free_path(path);
1570 return ret;
1571 }
1572
1573 enum inode_state {
1574 inode_state_no_change,
1575 inode_state_will_create,
1576 inode_state_did_create,
1577 inode_state_will_delete,
1578 inode_state_did_delete,
1579 };
1580
1581 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1582 {
1583 int ret;
1584 int left_ret;
1585 int right_ret;
1586 u64 left_gen;
1587 u64 right_gen;
1588
1589 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1590 NULL, NULL);
1591 if (ret < 0 && ret != -ENOENT)
1592 goto out;
1593 left_ret = ret;
1594
1595 if (!sctx->parent_root) {
1596 right_ret = -ENOENT;
1597 } else {
1598 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1599 NULL, NULL, NULL, NULL);
1600 if (ret < 0 && ret != -ENOENT)
1601 goto out;
1602 right_ret = ret;
1603 }
1604
1605 if (!left_ret && !right_ret) {
1606 if (left_gen == gen && right_gen == gen) {
1607 ret = inode_state_no_change;
1608 } else if (left_gen == gen) {
1609 if (ino < sctx->send_progress)
1610 ret = inode_state_did_create;
1611 else
1612 ret = inode_state_will_create;
1613 } else if (right_gen == gen) {
1614 if (ino < sctx->send_progress)
1615 ret = inode_state_did_delete;
1616 else
1617 ret = inode_state_will_delete;
1618 } else {
1619 ret = -ENOENT;
1620 }
1621 } else if (!left_ret) {
1622 if (left_gen == gen) {
1623 if (ino < sctx->send_progress)
1624 ret = inode_state_did_create;
1625 else
1626 ret = inode_state_will_create;
1627 } else {
1628 ret = -ENOENT;
1629 }
1630 } else if (!right_ret) {
1631 if (right_gen == gen) {
1632 if (ino < sctx->send_progress)
1633 ret = inode_state_did_delete;
1634 else
1635 ret = inode_state_will_delete;
1636 } else {
1637 ret = -ENOENT;
1638 }
1639 } else {
1640 ret = -ENOENT;
1641 }
1642
1643 out:
1644 return ret;
1645 }
1646
1647 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1648 {
1649 int ret;
1650
1651 ret = get_cur_inode_state(sctx, ino, gen);
1652 if (ret < 0)
1653 goto out;
1654
1655 if (ret == inode_state_no_change ||
1656 ret == inode_state_did_create ||
1657 ret == inode_state_will_delete)
1658 ret = 1;
1659 else
1660 ret = 0;
1661
1662 out:
1663 return ret;
1664 }
1665
1666 /*
1667 * Helper function to lookup a dir item in a dir.
1668 */
1669 static int lookup_dir_item_inode(struct btrfs_root *root,
1670 u64 dir, const char *name, int name_len,
1671 u64 *found_inode,
1672 u8 *found_type)
1673 {
1674 int ret = 0;
1675 struct btrfs_dir_item *di;
1676 struct btrfs_key key;
1677 struct btrfs_path *path;
1678
1679 path = alloc_path_for_send();
1680 if (!path)
1681 return -ENOMEM;
1682
1683 di = btrfs_lookup_dir_item(NULL, root, path,
1684 dir, name, name_len, 0);
1685 if (!di) {
1686 ret = -ENOENT;
1687 goto out;
1688 }
1689 if (IS_ERR(di)) {
1690 ret = PTR_ERR(di);
1691 goto out;
1692 }
1693 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1694 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1695 ret = -ENOENT;
1696 goto out;
1697 }
1698 *found_inode = key.objectid;
1699 *found_type = btrfs_dir_type(path->nodes[0], di);
1700
1701 out:
1702 btrfs_free_path(path);
1703 return ret;
1704 }
1705
1706 /*
1707 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1708 * generation of the parent dir and the name of the dir entry.
1709 */
1710 static int get_first_ref(struct btrfs_root *root, u64 ino,
1711 u64 *dir, u64 *dir_gen, struct fs_path *name)
1712 {
1713 int ret;
1714 struct btrfs_key key;
1715 struct btrfs_key found_key;
1716 struct btrfs_path *path;
1717 int len;
1718 u64 parent_dir;
1719
1720 path = alloc_path_for_send();
1721 if (!path)
1722 return -ENOMEM;
1723
1724 key.objectid = ino;
1725 key.type = BTRFS_INODE_REF_KEY;
1726 key.offset = 0;
1727
1728 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1729 if (ret < 0)
1730 goto out;
1731 if (!ret)
1732 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1733 path->slots[0]);
1734 if (ret || found_key.objectid != ino ||
1735 (found_key.type != BTRFS_INODE_REF_KEY &&
1736 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1737 ret = -ENOENT;
1738 goto out;
1739 }
1740
1741 if (found_key.type == BTRFS_INODE_REF_KEY) {
1742 struct btrfs_inode_ref *iref;
1743 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1744 struct btrfs_inode_ref);
1745 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1746 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1747 (unsigned long)(iref + 1),
1748 len);
1749 parent_dir = found_key.offset;
1750 } else {
1751 struct btrfs_inode_extref *extref;
1752 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1753 struct btrfs_inode_extref);
1754 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1755 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1756 (unsigned long)&extref->name, len);
1757 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1758 }
1759 if (ret < 0)
1760 goto out;
1761 btrfs_release_path(path);
1762
1763 if (dir_gen) {
1764 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1765 NULL, NULL, NULL);
1766 if (ret < 0)
1767 goto out;
1768 }
1769
1770 *dir = parent_dir;
1771
1772 out:
1773 btrfs_free_path(path);
1774 return ret;
1775 }
1776
1777 static int is_first_ref(struct btrfs_root *root,
1778 u64 ino, u64 dir,
1779 const char *name, int name_len)
1780 {
1781 int ret;
1782 struct fs_path *tmp_name;
1783 u64 tmp_dir;
1784
1785 tmp_name = fs_path_alloc();
1786 if (!tmp_name)
1787 return -ENOMEM;
1788
1789 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1790 if (ret < 0)
1791 goto out;
1792
1793 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1794 ret = 0;
1795 goto out;
1796 }
1797
1798 ret = !memcmp(tmp_name->start, name, name_len);
1799
1800 out:
1801 fs_path_free(tmp_name);
1802 return ret;
1803 }
1804
1805 /*
1806 * Used by process_recorded_refs to determine if a new ref would overwrite an
1807 * already existing ref. In case it detects an overwrite, it returns the
1808 * inode/gen in who_ino/who_gen.
1809 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1810 * to make sure later references to the overwritten inode are possible.
1811 * Orphanizing is however only required for the first ref of an inode.
1812 * process_recorded_refs does an additional is_first_ref check to see if
1813 * orphanizing is really required.
1814 */
1815 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1816 const char *name, int name_len,
1817 u64 *who_ino, u64 *who_gen)
1818 {
1819 int ret = 0;
1820 u64 gen;
1821 u64 other_inode = 0;
1822 u8 other_type = 0;
1823
1824 if (!sctx->parent_root)
1825 goto out;
1826
1827 ret = is_inode_existent(sctx, dir, dir_gen);
1828 if (ret <= 0)
1829 goto out;
1830
1831 /*
1832 * If we have a parent root we need to verify that the parent dir was
1833 * not deleted and then re-created, if it was then we have no overwrite
1834 * and we can just unlink this entry.
1835 */
1836 if (sctx->parent_root) {
1837 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1838 NULL, NULL, NULL);
1839 if (ret < 0 && ret != -ENOENT)
1840 goto out;
1841 if (ret) {
1842 ret = 0;
1843 goto out;
1844 }
1845 if (gen != dir_gen)
1846 goto out;
1847 }
1848
1849 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1850 &other_inode, &other_type);
1851 if (ret < 0 && ret != -ENOENT)
1852 goto out;
1853 if (ret) {
1854 ret = 0;
1855 goto out;
1856 }
1857
1858 /*
1859 * Check if the overwritten ref was already processed. If yes, the ref
1860 * was already unlinked/moved, so we can safely assume that we will not
1861 * overwrite anything at this point in time.
1862 */
1863 if (other_inode > sctx->send_progress ||
1864 is_waiting_for_move(sctx, other_inode)) {
1865 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1866 who_gen, NULL, NULL, NULL, NULL);
1867 if (ret < 0)
1868 goto out;
1869
1870 ret = 1;
1871 *who_ino = other_inode;
1872 } else {
1873 ret = 0;
1874 }
1875
1876 out:
1877 return ret;
1878 }
1879
1880 /*
1881 * Checks if the ref was overwritten by an already processed inode. This is
1882 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1883 * thus the orphan name needs be used.
1884 * process_recorded_refs also uses it to avoid unlinking of refs that were
1885 * overwritten.
1886 */
1887 static int did_overwrite_ref(struct send_ctx *sctx,
1888 u64 dir, u64 dir_gen,
1889 u64 ino, u64 ino_gen,
1890 const char *name, int name_len)
1891 {
1892 int ret = 0;
1893 u64 gen;
1894 u64 ow_inode;
1895 u8 other_type;
1896
1897 if (!sctx->parent_root)
1898 goto out;
1899
1900 ret = is_inode_existent(sctx, dir, dir_gen);
1901 if (ret <= 0)
1902 goto out;
1903
1904 /* check if the ref was overwritten by another ref */
1905 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1906 &ow_inode, &other_type);
1907 if (ret < 0 && ret != -ENOENT)
1908 goto out;
1909 if (ret) {
1910 /* was never and will never be overwritten */
1911 ret = 0;
1912 goto out;
1913 }
1914
1915 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1916 NULL, NULL);
1917 if (ret < 0)
1918 goto out;
1919
1920 if (ow_inode == ino && gen == ino_gen) {
1921 ret = 0;
1922 goto out;
1923 }
1924
1925 /*
1926 * We know that it is or will be overwritten. Check this now.
1927 * The current inode being processed might have been the one that caused
1928 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1929 * the current inode being processed.
1930 */
1931 if ((ow_inode < sctx->send_progress) ||
1932 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1933 gen == sctx->cur_inode_gen))
1934 ret = 1;
1935 else
1936 ret = 0;
1937
1938 out:
1939 return ret;
1940 }
1941
1942 /*
1943 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1944 * that got overwritten. This is used by process_recorded_refs to determine
1945 * if it has to use the path as returned by get_cur_path or the orphan name.
1946 */
1947 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1948 {
1949 int ret = 0;
1950 struct fs_path *name = NULL;
1951 u64 dir;
1952 u64 dir_gen;
1953
1954 if (!sctx->parent_root)
1955 goto out;
1956
1957 name = fs_path_alloc();
1958 if (!name)
1959 return -ENOMEM;
1960
1961 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1962 if (ret < 0)
1963 goto out;
1964
1965 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1966 name->start, fs_path_len(name));
1967
1968 out:
1969 fs_path_free(name);
1970 return ret;
1971 }
1972
1973 /*
1974 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1975 * so we need to do some special handling in case we have clashes. This function
1976 * takes care of this with the help of name_cache_entry::radix_list.
1977 * In case of error, nce is kfreed.
1978 */
1979 static int name_cache_insert(struct send_ctx *sctx,
1980 struct name_cache_entry *nce)
1981 {
1982 int ret = 0;
1983 struct list_head *nce_head;
1984
1985 nce_head = radix_tree_lookup(&sctx->name_cache,
1986 (unsigned long)nce->ino);
1987 if (!nce_head) {
1988 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
1989 if (!nce_head) {
1990 kfree(nce);
1991 return -ENOMEM;
1992 }
1993 INIT_LIST_HEAD(nce_head);
1994
1995 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1996 if (ret < 0) {
1997 kfree(nce_head);
1998 kfree(nce);
1999 return ret;
2000 }
2001 }
2002 list_add_tail(&nce->radix_list, nce_head);
2003 list_add_tail(&nce->list, &sctx->name_cache_list);
2004 sctx->name_cache_size++;
2005
2006 return ret;
2007 }
2008
2009 static void name_cache_delete(struct send_ctx *sctx,
2010 struct name_cache_entry *nce)
2011 {
2012 struct list_head *nce_head;
2013
2014 nce_head = radix_tree_lookup(&sctx->name_cache,
2015 (unsigned long)nce->ino);
2016 if (!nce_head) {
2017 btrfs_err(sctx->send_root->fs_info,
2018 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2019 nce->ino, sctx->name_cache_size);
2020 }
2021
2022 list_del(&nce->radix_list);
2023 list_del(&nce->list);
2024 sctx->name_cache_size--;
2025
2026 /*
2027 * We may not get to the final release of nce_head if the lookup fails
2028 */
2029 if (nce_head && list_empty(nce_head)) {
2030 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2031 kfree(nce_head);
2032 }
2033 }
2034
2035 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2036 u64 ino, u64 gen)
2037 {
2038 struct list_head *nce_head;
2039 struct name_cache_entry *cur;
2040
2041 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2042 if (!nce_head)
2043 return NULL;
2044
2045 list_for_each_entry(cur, nce_head, radix_list) {
2046 if (cur->ino == ino && cur->gen == gen)
2047 return cur;
2048 }
2049 return NULL;
2050 }
2051
2052 /*
2053 * Removes the entry from the list and adds it back to the end. This marks the
2054 * entry as recently used so that name_cache_clean_unused does not remove it.
2055 */
2056 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2057 {
2058 list_del(&nce->list);
2059 list_add_tail(&nce->list, &sctx->name_cache_list);
2060 }
2061
2062 /*
2063 * Remove some entries from the beginning of name_cache_list.
2064 */
2065 static void name_cache_clean_unused(struct send_ctx *sctx)
2066 {
2067 struct name_cache_entry *nce;
2068
2069 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2070 return;
2071
2072 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2073 nce = list_entry(sctx->name_cache_list.next,
2074 struct name_cache_entry, list);
2075 name_cache_delete(sctx, nce);
2076 kfree(nce);
2077 }
2078 }
2079
2080 static void name_cache_free(struct send_ctx *sctx)
2081 {
2082 struct name_cache_entry *nce;
2083
2084 while (!list_empty(&sctx->name_cache_list)) {
2085 nce = list_entry(sctx->name_cache_list.next,
2086 struct name_cache_entry, list);
2087 name_cache_delete(sctx, nce);
2088 kfree(nce);
2089 }
2090 }
2091
2092 /*
2093 * Used by get_cur_path for each ref up to the root.
2094 * Returns 0 if it succeeded.
2095 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2096 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2097 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2098 * Returns <0 in case of error.
2099 */
2100 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2101 u64 ino, u64 gen,
2102 u64 *parent_ino,
2103 u64 *parent_gen,
2104 struct fs_path *dest)
2105 {
2106 int ret;
2107 int nce_ret;
2108 struct name_cache_entry *nce = NULL;
2109
2110 /*
2111 * First check if we already did a call to this function with the same
2112 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2113 * return the cached result.
2114 */
2115 nce = name_cache_search(sctx, ino, gen);
2116 if (nce) {
2117 if (ino < sctx->send_progress && nce->need_later_update) {
2118 name_cache_delete(sctx, nce);
2119 kfree(nce);
2120 nce = NULL;
2121 } else {
2122 name_cache_used(sctx, nce);
2123 *parent_ino = nce->parent_ino;
2124 *parent_gen = nce->parent_gen;
2125 ret = fs_path_add(dest, nce->name, nce->name_len);
2126 if (ret < 0)
2127 goto out;
2128 ret = nce->ret;
2129 goto out;
2130 }
2131 }
2132
2133 /*
2134 * If the inode is not existent yet, add the orphan name and return 1.
2135 * This should only happen for the parent dir that we determine in
2136 * __record_new_ref
2137 */
2138 ret = is_inode_existent(sctx, ino, gen);
2139 if (ret < 0)
2140 goto out;
2141
2142 if (!ret) {
2143 ret = gen_unique_name(sctx, ino, gen, dest);
2144 if (ret < 0)
2145 goto out;
2146 ret = 1;
2147 goto out_cache;
2148 }
2149
2150 /*
2151 * Depending on whether the inode was already processed or not, use
2152 * send_root or parent_root for ref lookup.
2153 */
2154 if (ino < sctx->send_progress)
2155 ret = get_first_ref(sctx->send_root, ino,
2156 parent_ino, parent_gen, dest);
2157 else
2158 ret = get_first_ref(sctx->parent_root, ino,
2159 parent_ino, parent_gen, dest);
2160 if (ret < 0)
2161 goto out;
2162
2163 /*
2164 * Check if the ref was overwritten by an inode's ref that was processed
2165 * earlier. If yes, treat as orphan and return 1.
2166 */
2167 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2168 dest->start, dest->end - dest->start);
2169 if (ret < 0)
2170 goto out;
2171 if (ret) {
2172 fs_path_reset(dest);
2173 ret = gen_unique_name(sctx, ino, gen, dest);
2174 if (ret < 0)
2175 goto out;
2176 ret = 1;
2177 }
2178
2179 out_cache:
2180 /*
2181 * Store the result of the lookup in the name cache.
2182 */
2183 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2184 if (!nce) {
2185 ret = -ENOMEM;
2186 goto out;
2187 }
2188
2189 nce->ino = ino;
2190 nce->gen = gen;
2191 nce->parent_ino = *parent_ino;
2192 nce->parent_gen = *parent_gen;
2193 nce->name_len = fs_path_len(dest);
2194 nce->ret = ret;
2195 strcpy(nce->name, dest->start);
2196
2197 if (ino < sctx->send_progress)
2198 nce->need_later_update = 0;
2199 else
2200 nce->need_later_update = 1;
2201
2202 nce_ret = name_cache_insert(sctx, nce);
2203 if (nce_ret < 0)
2204 ret = nce_ret;
2205 name_cache_clean_unused(sctx);
2206
2207 out:
2208 return ret;
2209 }
2210
2211 /*
2212 * Magic happens here. This function returns the first ref to an inode as it
2213 * would look like while receiving the stream at this point in time.
2214 * We walk the path up to the root. For every inode in between, we check if it
2215 * was already processed/sent. If yes, we continue with the parent as found
2216 * in send_root. If not, we continue with the parent as found in parent_root.
2217 * If we encounter an inode that was deleted at this point in time, we use the
2218 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2219 * that were not created yet and overwritten inodes/refs.
2220 *
2221 * When do we have have orphan inodes:
2222 * 1. When an inode is freshly created and thus no valid refs are available yet
2223 * 2. When a directory lost all it's refs (deleted) but still has dir items
2224 * inside which were not processed yet (pending for move/delete). If anyone
2225 * tried to get the path to the dir items, it would get a path inside that
2226 * orphan directory.
2227 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2228 * of an unprocessed inode. If in that case the first ref would be
2229 * overwritten, the overwritten inode gets "orphanized". Later when we
2230 * process this overwritten inode, it is restored at a new place by moving
2231 * the orphan inode.
2232 *
2233 * sctx->send_progress tells this function at which point in time receiving
2234 * would be.
2235 */
2236 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2237 struct fs_path *dest)
2238 {
2239 int ret = 0;
2240 struct fs_path *name = NULL;
2241 u64 parent_inode = 0;
2242 u64 parent_gen = 0;
2243 int stop = 0;
2244
2245 name = fs_path_alloc();
2246 if (!name) {
2247 ret = -ENOMEM;
2248 goto out;
2249 }
2250
2251 dest->reversed = 1;
2252 fs_path_reset(dest);
2253
2254 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2255 struct waiting_dir_move *wdm;
2256
2257 fs_path_reset(name);
2258
2259 if (is_waiting_for_rm(sctx, ino)) {
2260 ret = gen_unique_name(sctx, ino, gen, name);
2261 if (ret < 0)
2262 goto out;
2263 ret = fs_path_add_path(dest, name);
2264 break;
2265 }
2266
2267 wdm = get_waiting_dir_move(sctx, ino);
2268 if (wdm && wdm->orphanized) {
2269 ret = gen_unique_name(sctx, ino, gen, name);
2270 stop = 1;
2271 } else if (wdm) {
2272 ret = get_first_ref(sctx->parent_root, ino,
2273 &parent_inode, &parent_gen, name);
2274 } else {
2275 ret = __get_cur_name_and_parent(sctx, ino, gen,
2276 &parent_inode,
2277 &parent_gen, name);
2278 if (ret)
2279 stop = 1;
2280 }
2281
2282 if (ret < 0)
2283 goto out;
2284
2285 ret = fs_path_add_path(dest, name);
2286 if (ret < 0)
2287 goto out;
2288
2289 ino = parent_inode;
2290 gen = parent_gen;
2291 }
2292
2293 out:
2294 fs_path_free(name);
2295 if (!ret)
2296 fs_path_unreverse(dest);
2297 return ret;
2298 }
2299
2300 /*
2301 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2302 */
2303 static int send_subvol_begin(struct send_ctx *sctx)
2304 {
2305 int ret;
2306 struct btrfs_root *send_root = sctx->send_root;
2307 struct btrfs_root *parent_root = sctx->parent_root;
2308 struct btrfs_path *path;
2309 struct btrfs_key key;
2310 struct btrfs_root_ref *ref;
2311 struct extent_buffer *leaf;
2312 char *name = NULL;
2313 int namelen;
2314
2315 path = btrfs_alloc_path();
2316 if (!path)
2317 return -ENOMEM;
2318
2319 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2320 if (!name) {
2321 btrfs_free_path(path);
2322 return -ENOMEM;
2323 }
2324
2325 key.objectid = send_root->objectid;
2326 key.type = BTRFS_ROOT_BACKREF_KEY;
2327 key.offset = 0;
2328
2329 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2330 &key, path, 1, 0);
2331 if (ret < 0)
2332 goto out;
2333 if (ret) {
2334 ret = -ENOENT;
2335 goto out;
2336 }
2337
2338 leaf = path->nodes[0];
2339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2340 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2341 key.objectid != send_root->objectid) {
2342 ret = -ENOENT;
2343 goto out;
2344 }
2345 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2346 namelen = btrfs_root_ref_name_len(leaf, ref);
2347 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2348 btrfs_release_path(path);
2349
2350 if (parent_root) {
2351 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2352 if (ret < 0)
2353 goto out;
2354 } else {
2355 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2356 if (ret < 0)
2357 goto out;
2358 }
2359
2360 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2361
2362 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2363 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2364 sctx->send_root->root_item.received_uuid);
2365 else
2366 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2367 sctx->send_root->root_item.uuid);
2368
2369 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2370 le64_to_cpu(sctx->send_root->root_item.ctransid));
2371 if (parent_root) {
2372 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2373 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2374 parent_root->root_item.received_uuid);
2375 else
2376 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2377 parent_root->root_item.uuid);
2378 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2379 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2380 }
2381
2382 ret = send_cmd(sctx);
2383
2384 tlv_put_failure:
2385 out:
2386 btrfs_free_path(path);
2387 kfree(name);
2388 return ret;
2389 }
2390
2391 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2392 {
2393 int ret = 0;
2394 struct fs_path *p;
2395
2396 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2397
2398 p = fs_path_alloc();
2399 if (!p)
2400 return -ENOMEM;
2401
2402 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2403 if (ret < 0)
2404 goto out;
2405
2406 ret = get_cur_path(sctx, ino, gen, p);
2407 if (ret < 0)
2408 goto out;
2409 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2410 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2411
2412 ret = send_cmd(sctx);
2413
2414 tlv_put_failure:
2415 out:
2416 fs_path_free(p);
2417 return ret;
2418 }
2419
2420 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2421 {
2422 int ret = 0;
2423 struct fs_path *p;
2424
2425 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2426
2427 p = fs_path_alloc();
2428 if (!p)
2429 return -ENOMEM;
2430
2431 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2432 if (ret < 0)
2433 goto out;
2434
2435 ret = get_cur_path(sctx, ino, gen, p);
2436 if (ret < 0)
2437 goto out;
2438 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2439 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2440
2441 ret = send_cmd(sctx);
2442
2443 tlv_put_failure:
2444 out:
2445 fs_path_free(p);
2446 return ret;
2447 }
2448
2449 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2450 {
2451 int ret = 0;
2452 struct fs_path *p;
2453
2454 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2455
2456 p = fs_path_alloc();
2457 if (!p)
2458 return -ENOMEM;
2459
2460 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2461 if (ret < 0)
2462 goto out;
2463
2464 ret = get_cur_path(sctx, ino, gen, p);
2465 if (ret < 0)
2466 goto out;
2467 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2468 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2469 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2470
2471 ret = send_cmd(sctx);
2472
2473 tlv_put_failure:
2474 out:
2475 fs_path_free(p);
2476 return ret;
2477 }
2478
2479 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2480 {
2481 int ret = 0;
2482 struct fs_path *p = NULL;
2483 struct btrfs_inode_item *ii;
2484 struct btrfs_path *path = NULL;
2485 struct extent_buffer *eb;
2486 struct btrfs_key key;
2487 int slot;
2488
2489 verbose_printk("btrfs: send_utimes %llu\n", ino);
2490
2491 p = fs_path_alloc();
2492 if (!p)
2493 return -ENOMEM;
2494
2495 path = alloc_path_for_send();
2496 if (!path) {
2497 ret = -ENOMEM;
2498 goto out;
2499 }
2500
2501 key.objectid = ino;
2502 key.type = BTRFS_INODE_ITEM_KEY;
2503 key.offset = 0;
2504 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2505 if (ret < 0)
2506 goto out;
2507
2508 eb = path->nodes[0];
2509 slot = path->slots[0];
2510 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2511
2512 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2513 if (ret < 0)
2514 goto out;
2515
2516 ret = get_cur_path(sctx, ino, gen, p);
2517 if (ret < 0)
2518 goto out;
2519 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2520 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2521 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2522 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2523 /* TODO Add otime support when the otime patches get into upstream */
2524
2525 ret = send_cmd(sctx);
2526
2527 tlv_put_failure:
2528 out:
2529 fs_path_free(p);
2530 btrfs_free_path(path);
2531 return ret;
2532 }
2533
2534 /*
2535 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2536 * a valid path yet because we did not process the refs yet. So, the inode
2537 * is created as orphan.
2538 */
2539 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2540 {
2541 int ret = 0;
2542 struct fs_path *p;
2543 int cmd;
2544 u64 gen;
2545 u64 mode;
2546 u64 rdev;
2547
2548 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2549
2550 p = fs_path_alloc();
2551 if (!p)
2552 return -ENOMEM;
2553
2554 if (ino != sctx->cur_ino) {
2555 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2556 NULL, NULL, &rdev);
2557 if (ret < 0)
2558 goto out;
2559 } else {
2560 gen = sctx->cur_inode_gen;
2561 mode = sctx->cur_inode_mode;
2562 rdev = sctx->cur_inode_rdev;
2563 }
2564
2565 if (S_ISREG(mode)) {
2566 cmd = BTRFS_SEND_C_MKFILE;
2567 } else if (S_ISDIR(mode)) {
2568 cmd = BTRFS_SEND_C_MKDIR;
2569 } else if (S_ISLNK(mode)) {
2570 cmd = BTRFS_SEND_C_SYMLINK;
2571 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2572 cmd = BTRFS_SEND_C_MKNOD;
2573 } else if (S_ISFIFO(mode)) {
2574 cmd = BTRFS_SEND_C_MKFIFO;
2575 } else if (S_ISSOCK(mode)) {
2576 cmd = BTRFS_SEND_C_MKSOCK;
2577 } else {
2578 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2579 (int)(mode & S_IFMT));
2580 ret = -ENOTSUPP;
2581 goto out;
2582 }
2583
2584 ret = begin_cmd(sctx, cmd);
2585 if (ret < 0)
2586 goto out;
2587
2588 ret = gen_unique_name(sctx, ino, gen, p);
2589 if (ret < 0)
2590 goto out;
2591
2592 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2593 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2594
2595 if (S_ISLNK(mode)) {
2596 fs_path_reset(p);
2597 ret = read_symlink(sctx->send_root, ino, p);
2598 if (ret < 0)
2599 goto out;
2600 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2601 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2602 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2603 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2604 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2605 }
2606
2607 ret = send_cmd(sctx);
2608 if (ret < 0)
2609 goto out;
2610
2611
2612 tlv_put_failure:
2613 out:
2614 fs_path_free(p);
2615 return ret;
2616 }
2617
2618 /*
2619 * We need some special handling for inodes that get processed before the parent
2620 * directory got created. See process_recorded_refs for details.
2621 * This function does the check if we already created the dir out of order.
2622 */
2623 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2624 {
2625 int ret = 0;
2626 struct btrfs_path *path = NULL;
2627 struct btrfs_key key;
2628 struct btrfs_key found_key;
2629 struct btrfs_key di_key;
2630 struct extent_buffer *eb;
2631 struct btrfs_dir_item *di;
2632 int slot;
2633
2634 path = alloc_path_for_send();
2635 if (!path) {
2636 ret = -ENOMEM;
2637 goto out;
2638 }
2639
2640 key.objectid = dir;
2641 key.type = BTRFS_DIR_INDEX_KEY;
2642 key.offset = 0;
2643 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2644 if (ret < 0)
2645 goto out;
2646
2647 while (1) {
2648 eb = path->nodes[0];
2649 slot = path->slots[0];
2650 if (slot >= btrfs_header_nritems(eb)) {
2651 ret = btrfs_next_leaf(sctx->send_root, path);
2652 if (ret < 0) {
2653 goto out;
2654 } else if (ret > 0) {
2655 ret = 0;
2656 break;
2657 }
2658 continue;
2659 }
2660
2661 btrfs_item_key_to_cpu(eb, &found_key, slot);
2662 if (found_key.objectid != key.objectid ||
2663 found_key.type != key.type) {
2664 ret = 0;
2665 goto out;
2666 }
2667
2668 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2669 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2670
2671 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2672 di_key.objectid < sctx->send_progress) {
2673 ret = 1;
2674 goto out;
2675 }
2676
2677 path->slots[0]++;
2678 }
2679
2680 out:
2681 btrfs_free_path(path);
2682 return ret;
2683 }
2684
2685 /*
2686 * Only creates the inode if it is:
2687 * 1. Not a directory
2688 * 2. Or a directory which was not created already due to out of order
2689 * directories. See did_create_dir and process_recorded_refs for details.
2690 */
2691 static int send_create_inode_if_needed(struct send_ctx *sctx)
2692 {
2693 int ret;
2694
2695 if (S_ISDIR(sctx->cur_inode_mode)) {
2696 ret = did_create_dir(sctx, sctx->cur_ino);
2697 if (ret < 0)
2698 goto out;
2699 if (ret) {
2700 ret = 0;
2701 goto out;
2702 }
2703 }
2704
2705 ret = send_create_inode(sctx, sctx->cur_ino);
2706 if (ret < 0)
2707 goto out;
2708
2709 out:
2710 return ret;
2711 }
2712
2713 struct recorded_ref {
2714 struct list_head list;
2715 char *dir_path;
2716 char *name;
2717 struct fs_path *full_path;
2718 u64 dir;
2719 u64 dir_gen;
2720 int dir_path_len;
2721 int name_len;
2722 };
2723
2724 /*
2725 * We need to process new refs before deleted refs, but compare_tree gives us
2726 * everything mixed. So we first record all refs and later process them.
2727 * This function is a helper to record one ref.
2728 */
2729 static int __record_ref(struct list_head *head, u64 dir,
2730 u64 dir_gen, struct fs_path *path)
2731 {
2732 struct recorded_ref *ref;
2733
2734 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2735 if (!ref)
2736 return -ENOMEM;
2737
2738 ref->dir = dir;
2739 ref->dir_gen = dir_gen;
2740 ref->full_path = path;
2741
2742 ref->name = (char *)kbasename(ref->full_path->start);
2743 ref->name_len = ref->full_path->end - ref->name;
2744 ref->dir_path = ref->full_path->start;
2745 if (ref->name == ref->full_path->start)
2746 ref->dir_path_len = 0;
2747 else
2748 ref->dir_path_len = ref->full_path->end -
2749 ref->full_path->start - 1 - ref->name_len;
2750
2751 list_add_tail(&ref->list, head);
2752 return 0;
2753 }
2754
2755 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2756 {
2757 struct recorded_ref *new;
2758
2759 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2760 if (!new)
2761 return -ENOMEM;
2762
2763 new->dir = ref->dir;
2764 new->dir_gen = ref->dir_gen;
2765 new->full_path = NULL;
2766 INIT_LIST_HEAD(&new->list);
2767 list_add_tail(&new->list, list);
2768 return 0;
2769 }
2770
2771 static void __free_recorded_refs(struct list_head *head)
2772 {
2773 struct recorded_ref *cur;
2774
2775 while (!list_empty(head)) {
2776 cur = list_entry(head->next, struct recorded_ref, list);
2777 fs_path_free(cur->full_path);
2778 list_del(&cur->list);
2779 kfree(cur);
2780 }
2781 }
2782
2783 static void free_recorded_refs(struct send_ctx *sctx)
2784 {
2785 __free_recorded_refs(&sctx->new_refs);
2786 __free_recorded_refs(&sctx->deleted_refs);
2787 }
2788
2789 /*
2790 * Renames/moves a file/dir to its orphan name. Used when the first
2791 * ref of an unprocessed inode gets overwritten and for all non empty
2792 * directories.
2793 */
2794 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2795 struct fs_path *path)
2796 {
2797 int ret;
2798 struct fs_path *orphan;
2799
2800 orphan = fs_path_alloc();
2801 if (!orphan)
2802 return -ENOMEM;
2803
2804 ret = gen_unique_name(sctx, ino, gen, orphan);
2805 if (ret < 0)
2806 goto out;
2807
2808 ret = send_rename(sctx, path, orphan);
2809
2810 out:
2811 fs_path_free(orphan);
2812 return ret;
2813 }
2814
2815 static struct orphan_dir_info *
2816 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2817 {
2818 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2819 struct rb_node *parent = NULL;
2820 struct orphan_dir_info *entry, *odi;
2821
2822 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2823 if (!odi)
2824 return ERR_PTR(-ENOMEM);
2825 odi->ino = dir_ino;
2826 odi->gen = 0;
2827
2828 while (*p) {
2829 parent = *p;
2830 entry = rb_entry(parent, struct orphan_dir_info, node);
2831 if (dir_ino < entry->ino) {
2832 p = &(*p)->rb_left;
2833 } else if (dir_ino > entry->ino) {
2834 p = &(*p)->rb_right;
2835 } else {
2836 kfree(odi);
2837 return entry;
2838 }
2839 }
2840
2841 rb_link_node(&odi->node, parent, p);
2842 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2843 return odi;
2844 }
2845
2846 static struct orphan_dir_info *
2847 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2848 {
2849 struct rb_node *n = sctx->orphan_dirs.rb_node;
2850 struct orphan_dir_info *entry;
2851
2852 while (n) {
2853 entry = rb_entry(n, struct orphan_dir_info, node);
2854 if (dir_ino < entry->ino)
2855 n = n->rb_left;
2856 else if (dir_ino > entry->ino)
2857 n = n->rb_right;
2858 else
2859 return entry;
2860 }
2861 return NULL;
2862 }
2863
2864 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2865 {
2866 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2867
2868 return odi != NULL;
2869 }
2870
2871 static void free_orphan_dir_info(struct send_ctx *sctx,
2872 struct orphan_dir_info *odi)
2873 {
2874 if (!odi)
2875 return;
2876 rb_erase(&odi->node, &sctx->orphan_dirs);
2877 kfree(odi);
2878 }
2879
2880 /*
2881 * Returns 1 if a directory can be removed at this point in time.
2882 * We check this by iterating all dir items and checking if the inode behind
2883 * the dir item was already processed.
2884 */
2885 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2886 u64 send_progress)
2887 {
2888 int ret = 0;
2889 struct btrfs_root *root = sctx->parent_root;
2890 struct btrfs_path *path;
2891 struct btrfs_key key;
2892 struct btrfs_key found_key;
2893 struct btrfs_key loc;
2894 struct btrfs_dir_item *di;
2895
2896 /*
2897 * Don't try to rmdir the top/root subvolume dir.
2898 */
2899 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2900 return 0;
2901
2902 path = alloc_path_for_send();
2903 if (!path)
2904 return -ENOMEM;
2905
2906 key.objectid = dir;
2907 key.type = BTRFS_DIR_INDEX_KEY;
2908 key.offset = 0;
2909 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2910 if (ret < 0)
2911 goto out;
2912
2913 while (1) {
2914 struct waiting_dir_move *dm;
2915
2916 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2917 ret = btrfs_next_leaf(root, path);
2918 if (ret < 0)
2919 goto out;
2920 else if (ret > 0)
2921 break;
2922 continue;
2923 }
2924 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2925 path->slots[0]);
2926 if (found_key.objectid != key.objectid ||
2927 found_key.type != key.type)
2928 break;
2929
2930 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2931 struct btrfs_dir_item);
2932 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2933
2934 dm = get_waiting_dir_move(sctx, loc.objectid);
2935 if (dm) {
2936 struct orphan_dir_info *odi;
2937
2938 odi = add_orphan_dir_info(sctx, dir);
2939 if (IS_ERR(odi)) {
2940 ret = PTR_ERR(odi);
2941 goto out;
2942 }
2943 odi->gen = dir_gen;
2944 dm->rmdir_ino = dir;
2945 ret = 0;
2946 goto out;
2947 }
2948
2949 if (loc.objectid > send_progress) {
2950 ret = 0;
2951 goto out;
2952 }
2953
2954 path->slots[0]++;
2955 }
2956
2957 ret = 1;
2958
2959 out:
2960 btrfs_free_path(path);
2961 return ret;
2962 }
2963
2964 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2965 {
2966 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2967
2968 return entry != NULL;
2969 }
2970
2971 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2972 {
2973 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2974 struct rb_node *parent = NULL;
2975 struct waiting_dir_move *entry, *dm;
2976
2977 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
2978 if (!dm)
2979 return -ENOMEM;
2980 dm->ino = ino;
2981 dm->rmdir_ino = 0;
2982 dm->orphanized = orphanized;
2983
2984 while (*p) {
2985 parent = *p;
2986 entry = rb_entry(parent, struct waiting_dir_move, node);
2987 if (ino < entry->ino) {
2988 p = &(*p)->rb_left;
2989 } else if (ino > entry->ino) {
2990 p = &(*p)->rb_right;
2991 } else {
2992 kfree(dm);
2993 return -EEXIST;
2994 }
2995 }
2996
2997 rb_link_node(&dm->node, parent, p);
2998 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2999 return 0;
3000 }
3001
3002 static struct waiting_dir_move *
3003 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3004 {
3005 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3006 struct waiting_dir_move *entry;
3007
3008 while (n) {
3009 entry = rb_entry(n, struct waiting_dir_move, node);
3010 if (ino < entry->ino)
3011 n = n->rb_left;
3012 else if (ino > entry->ino)
3013 n = n->rb_right;
3014 else
3015 return entry;
3016 }
3017 return NULL;
3018 }
3019
3020 static void free_waiting_dir_move(struct send_ctx *sctx,
3021 struct waiting_dir_move *dm)
3022 {
3023 if (!dm)
3024 return;
3025 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3026 kfree(dm);
3027 }
3028
3029 static int add_pending_dir_move(struct send_ctx *sctx,
3030 u64 ino,
3031 u64 ino_gen,
3032 u64 parent_ino,
3033 struct list_head *new_refs,
3034 struct list_head *deleted_refs,
3035 const bool is_orphan)
3036 {
3037 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3038 struct rb_node *parent = NULL;
3039 struct pending_dir_move *entry = NULL, *pm;
3040 struct recorded_ref *cur;
3041 int exists = 0;
3042 int ret;
3043
3044 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3045 if (!pm)
3046 return -ENOMEM;
3047 pm->parent_ino = parent_ino;
3048 pm->ino = ino;
3049 pm->gen = ino_gen;
3050 INIT_LIST_HEAD(&pm->list);
3051 INIT_LIST_HEAD(&pm->update_refs);
3052 RB_CLEAR_NODE(&pm->node);
3053
3054 while (*p) {
3055 parent = *p;
3056 entry = rb_entry(parent, struct pending_dir_move, node);
3057 if (parent_ino < entry->parent_ino) {
3058 p = &(*p)->rb_left;
3059 } else if (parent_ino > entry->parent_ino) {
3060 p = &(*p)->rb_right;
3061 } else {
3062 exists = 1;
3063 break;
3064 }
3065 }
3066
3067 list_for_each_entry(cur, deleted_refs, list) {
3068 ret = dup_ref(cur, &pm->update_refs);
3069 if (ret < 0)
3070 goto out;
3071 }
3072 list_for_each_entry(cur, new_refs, list) {
3073 ret = dup_ref(cur, &pm->update_refs);
3074 if (ret < 0)
3075 goto out;
3076 }
3077
3078 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3079 if (ret)
3080 goto out;
3081
3082 if (exists) {
3083 list_add_tail(&pm->list, &entry->list);
3084 } else {
3085 rb_link_node(&pm->node, parent, p);
3086 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3087 }
3088 ret = 0;
3089 out:
3090 if (ret) {
3091 __free_recorded_refs(&pm->update_refs);
3092 kfree(pm);
3093 }
3094 return ret;
3095 }
3096
3097 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3098 u64 parent_ino)
3099 {
3100 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3101 struct pending_dir_move *entry;
3102
3103 while (n) {
3104 entry = rb_entry(n, struct pending_dir_move, node);
3105 if (parent_ino < entry->parent_ino)
3106 n = n->rb_left;
3107 else if (parent_ino > entry->parent_ino)
3108 n = n->rb_right;
3109 else
3110 return entry;
3111 }
3112 return NULL;
3113 }
3114
3115 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3116 u64 ino, u64 gen, u64 *ancestor_ino)
3117 {
3118 int ret = 0;
3119 u64 parent_inode = 0;
3120 u64 parent_gen = 0;
3121 u64 start_ino = ino;
3122
3123 *ancestor_ino = 0;
3124 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3125 fs_path_reset(name);
3126
3127 if (is_waiting_for_rm(sctx, ino))
3128 break;
3129 if (is_waiting_for_move(sctx, ino)) {
3130 if (*ancestor_ino == 0)
3131 *ancestor_ino = ino;
3132 ret = get_first_ref(sctx->parent_root, ino,
3133 &parent_inode, &parent_gen, name);
3134 } else {
3135 ret = __get_cur_name_and_parent(sctx, ino, gen,
3136 &parent_inode,
3137 &parent_gen, name);
3138 if (ret > 0) {
3139 ret = 0;
3140 break;
3141 }
3142 }
3143 if (ret < 0)
3144 break;
3145 if (parent_inode == start_ino) {
3146 ret = 1;
3147 if (*ancestor_ino == 0)
3148 *ancestor_ino = ino;
3149 break;
3150 }
3151 ino = parent_inode;
3152 gen = parent_gen;
3153 }
3154 return ret;
3155 }
3156
3157 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3158 {
3159 struct fs_path *from_path = NULL;
3160 struct fs_path *to_path = NULL;
3161 struct fs_path *name = NULL;
3162 u64 orig_progress = sctx->send_progress;
3163 struct recorded_ref *cur;
3164 u64 parent_ino, parent_gen;
3165 struct waiting_dir_move *dm = NULL;
3166 u64 rmdir_ino = 0;
3167 u64 ancestor;
3168 bool is_orphan;
3169 int ret;
3170
3171 name = fs_path_alloc();
3172 from_path = fs_path_alloc();
3173 if (!name || !from_path) {
3174 ret = -ENOMEM;
3175 goto out;
3176 }
3177
3178 dm = get_waiting_dir_move(sctx, pm->ino);
3179 ASSERT(dm);
3180 rmdir_ino = dm->rmdir_ino;
3181 is_orphan = dm->orphanized;
3182 free_waiting_dir_move(sctx, dm);
3183
3184 if (is_orphan) {
3185 ret = gen_unique_name(sctx, pm->ino,
3186 pm->gen, from_path);
3187 } else {
3188 ret = get_first_ref(sctx->parent_root, pm->ino,
3189 &parent_ino, &parent_gen, name);
3190 if (ret < 0)
3191 goto out;
3192 ret = get_cur_path(sctx, parent_ino, parent_gen,
3193 from_path);
3194 if (ret < 0)
3195 goto out;
3196 ret = fs_path_add_path(from_path, name);
3197 }
3198 if (ret < 0)
3199 goto out;
3200
3201 sctx->send_progress = sctx->cur_ino + 1;
3202 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3203 if (ret < 0)
3204 goto out;
3205 if (ret) {
3206 LIST_HEAD(deleted_refs);
3207 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3208 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3209 &pm->update_refs, &deleted_refs,
3210 is_orphan);
3211 if (ret < 0)
3212 goto out;
3213 if (rmdir_ino) {
3214 dm = get_waiting_dir_move(sctx, pm->ino);
3215 ASSERT(dm);
3216 dm->rmdir_ino = rmdir_ino;
3217 }
3218 goto out;
3219 }
3220 fs_path_reset(name);
3221 to_path = name;
3222 name = NULL;
3223 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3224 if (ret < 0)
3225 goto out;
3226
3227 ret = send_rename(sctx, from_path, to_path);
3228 if (ret < 0)
3229 goto out;
3230
3231 if (rmdir_ino) {
3232 struct orphan_dir_info *odi;
3233
3234 odi = get_orphan_dir_info(sctx, rmdir_ino);
3235 if (!odi) {
3236 /* already deleted */
3237 goto finish;
3238 }
3239 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3240 if (ret < 0)
3241 goto out;
3242 if (!ret)
3243 goto finish;
3244
3245 name = fs_path_alloc();
3246 if (!name) {
3247 ret = -ENOMEM;
3248 goto out;
3249 }
3250 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3251 if (ret < 0)
3252 goto out;
3253 ret = send_rmdir(sctx, name);
3254 if (ret < 0)
3255 goto out;
3256 free_orphan_dir_info(sctx, odi);
3257 }
3258
3259 finish:
3260 ret = send_utimes(sctx, pm->ino, pm->gen);
3261 if (ret < 0)
3262 goto out;
3263
3264 /*
3265 * After rename/move, need to update the utimes of both new parent(s)
3266 * and old parent(s).
3267 */
3268 list_for_each_entry(cur, &pm->update_refs, list) {
3269 if (cur->dir == rmdir_ino)
3270 continue;
3271 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3272 if (ret < 0)
3273 goto out;
3274 }
3275
3276 out:
3277 fs_path_free(name);
3278 fs_path_free(from_path);
3279 fs_path_free(to_path);
3280 sctx->send_progress = orig_progress;
3281
3282 return ret;
3283 }
3284
3285 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3286 {
3287 if (!list_empty(&m->list))
3288 list_del(&m->list);
3289 if (!RB_EMPTY_NODE(&m->node))
3290 rb_erase(&m->node, &sctx->pending_dir_moves);
3291 __free_recorded_refs(&m->update_refs);
3292 kfree(m);
3293 }
3294
3295 static void tail_append_pending_moves(struct pending_dir_move *moves,
3296 struct list_head *stack)
3297 {
3298 if (list_empty(&moves->list)) {
3299 list_add_tail(&moves->list, stack);
3300 } else {
3301 LIST_HEAD(list);
3302 list_splice_init(&moves->list, &list);
3303 list_add_tail(&moves->list, stack);
3304 list_splice_tail(&list, stack);
3305 }
3306 }
3307
3308 static int apply_children_dir_moves(struct send_ctx *sctx)
3309 {
3310 struct pending_dir_move *pm;
3311 struct list_head stack;
3312 u64 parent_ino = sctx->cur_ino;
3313 int ret = 0;
3314
3315 pm = get_pending_dir_moves(sctx, parent_ino);
3316 if (!pm)
3317 return 0;
3318
3319 INIT_LIST_HEAD(&stack);
3320 tail_append_pending_moves(pm, &stack);
3321
3322 while (!list_empty(&stack)) {
3323 pm = list_first_entry(&stack, struct pending_dir_move, list);
3324 parent_ino = pm->ino;
3325 ret = apply_dir_move(sctx, pm);
3326 free_pending_move(sctx, pm);
3327 if (ret)
3328 goto out;
3329 pm = get_pending_dir_moves(sctx, parent_ino);
3330 if (pm)
3331 tail_append_pending_moves(pm, &stack);
3332 }
3333 return 0;
3334
3335 out:
3336 while (!list_empty(&stack)) {
3337 pm = list_first_entry(&stack, struct pending_dir_move, list);
3338 free_pending_move(sctx, pm);
3339 }
3340 return ret;
3341 }
3342
3343 /*
3344 * We might need to delay a directory rename even when no ancestor directory
3345 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3346 * renamed. This happens when we rename a directory to the old name (the name
3347 * in the parent root) of some other unrelated directory that got its rename
3348 * delayed due to some ancestor with higher number that got renamed.
3349 *
3350 * Example:
3351 *
3352 * Parent snapshot:
3353 * . (ino 256)
3354 * |---- a/ (ino 257)
3355 * | |---- file (ino 260)
3356 * |
3357 * |---- b/ (ino 258)
3358 * |---- c/ (ino 259)
3359 *
3360 * Send snapshot:
3361 * . (ino 256)
3362 * |---- a/ (ino 258)
3363 * |---- x/ (ino 259)
3364 * |---- y/ (ino 257)
3365 * |----- file (ino 260)
3366 *
3367 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3368 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3369 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3370 * must issue is:
3371 *
3372 * 1 - rename 259 from 'c' to 'x'
3373 * 2 - rename 257 from 'a' to 'x/y'
3374 * 3 - rename 258 from 'b' to 'a'
3375 *
3376 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3377 * be done right away and < 0 on error.
3378 */
3379 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3380 struct recorded_ref *parent_ref,
3381 const bool is_orphan)
3382 {
3383 struct btrfs_path *path;
3384 struct btrfs_key key;
3385 struct btrfs_key di_key;
3386 struct btrfs_dir_item *di;
3387 u64 left_gen;
3388 u64 right_gen;
3389 int ret = 0;
3390 struct waiting_dir_move *wdm;
3391
3392 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3393 return 0;
3394
3395 path = alloc_path_for_send();
3396 if (!path)
3397 return -ENOMEM;
3398
3399 key.objectid = parent_ref->dir;
3400 key.type = BTRFS_DIR_ITEM_KEY;
3401 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3402
3403 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3404 if (ret < 0) {
3405 goto out;
3406 } else if (ret > 0) {
3407 ret = 0;
3408 goto out;
3409 }
3410
3411 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3412 parent_ref->name, parent_ref->name_len);
3413 if (!di) {
3414 ret = 0;
3415 goto out;
3416 }
3417 /*
3418 * di_key.objectid has the number of the inode that has a dentry in the
3419 * parent directory with the same name that sctx->cur_ino is being
3420 * renamed to. We need to check if that inode is in the send root as
3421 * well and if it is currently marked as an inode with a pending rename,
3422 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3423 * that it happens after that other inode is renamed.
3424 */
3425 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3426 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3427 ret = 0;
3428 goto out;
3429 }
3430
3431 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3432 &left_gen, NULL, NULL, NULL, NULL);
3433 if (ret < 0)
3434 goto out;
3435 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3436 &right_gen, NULL, NULL, NULL, NULL);
3437 if (ret < 0) {
3438 if (ret == -ENOENT)
3439 ret = 0;
3440 goto out;
3441 }
3442
3443 /* Different inode, no need to delay the rename of sctx->cur_ino */
3444 if (right_gen != left_gen) {
3445 ret = 0;
3446 goto out;
3447 }
3448
3449 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3450 if (wdm && !wdm->orphanized) {
3451 ret = add_pending_dir_move(sctx,
3452 sctx->cur_ino,
3453 sctx->cur_inode_gen,
3454 di_key.objectid,
3455 &sctx->new_refs,
3456 &sctx->deleted_refs,
3457 is_orphan);
3458 if (!ret)
3459 ret = 1;
3460 }
3461 out:
3462 btrfs_free_path(path);
3463 return ret;
3464 }
3465
3466 /*
3467 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3468 * Return 1 if true, 0 if false and < 0 on error.
3469 */
3470 static int is_ancestor(struct btrfs_root *root,
3471 const u64 ino1,
3472 const u64 ino1_gen,
3473 const u64 ino2,
3474 struct fs_path *fs_path)
3475 {
3476 u64 ino = ino2;
3477
3478 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3479 int ret;
3480 u64 parent;
3481 u64 parent_gen;
3482
3483 fs_path_reset(fs_path);
3484 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3485 if (ret < 0) {
3486 if (ret == -ENOENT && ino == ino2)
3487 ret = 0;
3488 return ret;
3489 }
3490 if (parent == ino1)
3491 return parent_gen == ino1_gen ? 1 : 0;
3492 ino = parent;
3493 }
3494 return 0;
3495 }
3496
3497 static int wait_for_parent_move(struct send_ctx *sctx,
3498 struct recorded_ref *parent_ref,
3499 const bool is_orphan)
3500 {
3501 int ret = 0;
3502 u64 ino = parent_ref->dir;
3503 u64 parent_ino_before, parent_ino_after;
3504 struct fs_path *path_before = NULL;
3505 struct fs_path *path_after = NULL;
3506 int len1, len2;
3507
3508 path_after = fs_path_alloc();
3509 path_before = fs_path_alloc();
3510 if (!path_after || !path_before) {
3511 ret = -ENOMEM;
3512 goto out;
3513 }
3514
3515 /*
3516 * Our current directory inode may not yet be renamed/moved because some
3517 * ancestor (immediate or not) has to be renamed/moved first. So find if
3518 * such ancestor exists and make sure our own rename/move happens after
3519 * that ancestor is processed to avoid path build infinite loops (done
3520 * at get_cur_path()).
3521 */
3522 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3523 if (is_waiting_for_move(sctx, ino)) {
3524 /*
3525 * If the current inode is an ancestor of ino in the
3526 * parent root, we need to delay the rename of the
3527 * current inode, otherwise don't delayed the rename
3528 * because we can end up with a circular dependency
3529 * of renames, resulting in some directories never
3530 * getting the respective rename operations issued in
3531 * the send stream or getting into infinite path build
3532 * loops.
3533 */
3534 ret = is_ancestor(sctx->parent_root,
3535 sctx->cur_ino, sctx->cur_inode_gen,
3536 ino, path_before);
3537 break;
3538 }
3539
3540 fs_path_reset(path_before);
3541 fs_path_reset(path_after);
3542
3543 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3544 NULL, path_after);
3545 if (ret < 0)
3546 goto out;
3547 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3548 NULL, path_before);
3549 if (ret < 0 && ret != -ENOENT) {
3550 goto out;
3551 } else if (ret == -ENOENT) {
3552 ret = 0;
3553 break;
3554 }
3555
3556 len1 = fs_path_len(path_before);
3557 len2 = fs_path_len(path_after);
3558 if (ino > sctx->cur_ino &&
3559 (parent_ino_before != parent_ino_after || len1 != len2 ||
3560 memcmp(path_before->start, path_after->start, len1))) {
3561 ret = 1;
3562 break;
3563 }
3564 ino = parent_ino_after;
3565 }
3566
3567 out:
3568 fs_path_free(path_before);
3569 fs_path_free(path_after);
3570
3571 if (ret == 1) {
3572 ret = add_pending_dir_move(sctx,
3573 sctx->cur_ino,
3574 sctx->cur_inode_gen,
3575 ino,
3576 &sctx->new_refs,
3577 &sctx->deleted_refs,
3578 is_orphan);
3579 if (!ret)
3580 ret = 1;
3581 }
3582
3583 return ret;
3584 }
3585
3586 /*
3587 * This does all the move/link/unlink/rmdir magic.
3588 */
3589 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3590 {
3591 int ret = 0;
3592 struct recorded_ref *cur;
3593 struct recorded_ref *cur2;
3594 struct list_head check_dirs;
3595 struct fs_path *valid_path = NULL;
3596 u64 ow_inode = 0;
3597 u64 ow_gen;
3598 int did_overwrite = 0;
3599 int is_orphan = 0;
3600 u64 last_dir_ino_rm = 0;
3601 bool can_rename = true;
3602
3603 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3604
3605 /*
3606 * This should never happen as the root dir always has the same ref
3607 * which is always '..'
3608 */
3609 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3610 INIT_LIST_HEAD(&check_dirs);
3611
3612 valid_path = fs_path_alloc();
3613 if (!valid_path) {
3614 ret = -ENOMEM;
3615 goto out;
3616 }
3617
3618 /*
3619 * First, check if the first ref of the current inode was overwritten
3620 * before. If yes, we know that the current inode was already orphanized
3621 * and thus use the orphan name. If not, we can use get_cur_path to
3622 * get the path of the first ref as it would like while receiving at
3623 * this point in time.
3624 * New inodes are always orphan at the beginning, so force to use the
3625 * orphan name in this case.
3626 * The first ref is stored in valid_path and will be updated if it
3627 * gets moved around.
3628 */
3629 if (!sctx->cur_inode_new) {
3630 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3631 sctx->cur_inode_gen);
3632 if (ret < 0)
3633 goto out;
3634 if (ret)
3635 did_overwrite = 1;
3636 }
3637 if (sctx->cur_inode_new || did_overwrite) {
3638 ret = gen_unique_name(sctx, sctx->cur_ino,
3639 sctx->cur_inode_gen, valid_path);
3640 if (ret < 0)
3641 goto out;
3642 is_orphan = 1;
3643 } else {
3644 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3645 valid_path);
3646 if (ret < 0)
3647 goto out;
3648 }
3649
3650 list_for_each_entry(cur, &sctx->new_refs, list) {
3651 /*
3652 * We may have refs where the parent directory does not exist
3653 * yet. This happens if the parent directories inum is higher
3654 * the the current inum. To handle this case, we create the
3655 * parent directory out of order. But we need to check if this
3656 * did already happen before due to other refs in the same dir.
3657 */
3658 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3659 if (ret < 0)
3660 goto out;
3661 if (ret == inode_state_will_create) {
3662 ret = 0;
3663 /*
3664 * First check if any of the current inodes refs did
3665 * already create the dir.
3666 */
3667 list_for_each_entry(cur2, &sctx->new_refs, list) {
3668 if (cur == cur2)
3669 break;
3670 if (cur2->dir == cur->dir) {
3671 ret = 1;
3672 break;
3673 }
3674 }
3675
3676 /*
3677 * If that did not happen, check if a previous inode
3678 * did already create the dir.
3679 */
3680 if (!ret)
3681 ret = did_create_dir(sctx, cur->dir);
3682 if (ret < 0)
3683 goto out;
3684 if (!ret) {
3685 ret = send_create_inode(sctx, cur->dir);
3686 if (ret < 0)
3687 goto out;
3688 }
3689 }
3690
3691 /*
3692 * Check if this new ref would overwrite the first ref of
3693 * another unprocessed inode. If yes, orphanize the
3694 * overwritten inode. If we find an overwritten ref that is
3695 * not the first ref, simply unlink it.
3696 */
3697 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3698 cur->name, cur->name_len,
3699 &ow_inode, &ow_gen);
3700 if (ret < 0)
3701 goto out;
3702 if (ret) {
3703 ret = is_first_ref(sctx->parent_root,
3704 ow_inode, cur->dir, cur->name,
3705 cur->name_len);
3706 if (ret < 0)
3707 goto out;
3708 if (ret) {
3709 struct name_cache_entry *nce;
3710 struct waiting_dir_move *wdm;
3711
3712 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3713 cur->full_path);
3714 if (ret < 0)
3715 goto out;
3716
3717 /*
3718 * If ow_inode has its rename operation delayed
3719 * make sure that its orphanized name is used in
3720 * the source path when performing its rename
3721 * operation.
3722 */
3723 if (is_waiting_for_move(sctx, ow_inode)) {
3724 wdm = get_waiting_dir_move(sctx,
3725 ow_inode);
3726 ASSERT(wdm);
3727 wdm->orphanized = true;
3728 }
3729
3730 /*
3731 * Make sure we clear our orphanized inode's
3732 * name from the name cache. This is because the
3733 * inode ow_inode might be an ancestor of some
3734 * other inode that will be orphanized as well
3735 * later and has an inode number greater than
3736 * sctx->send_progress. We need to prevent
3737 * future name lookups from using the old name
3738 * and get instead the orphan name.
3739 */
3740 nce = name_cache_search(sctx, ow_inode, ow_gen);
3741 if (nce) {
3742 name_cache_delete(sctx, nce);
3743 kfree(nce);
3744 }
3745
3746 /*
3747 * ow_inode might currently be an ancestor of
3748 * cur_ino, therefore compute valid_path (the
3749 * current path of cur_ino) again because it
3750 * might contain the pre-orphanization name of
3751 * ow_inode, which is no longer valid.
3752 */
3753 fs_path_reset(valid_path);
3754 ret = get_cur_path(sctx, sctx->cur_ino,
3755 sctx->cur_inode_gen, valid_path);
3756 if (ret < 0)
3757 goto out;
3758 } else {
3759 ret = send_unlink(sctx, cur->full_path);
3760 if (ret < 0)
3761 goto out;
3762 }
3763 }
3764
3765 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3766 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3767 if (ret < 0)
3768 goto out;
3769 if (ret == 1) {
3770 can_rename = false;
3771 *pending_move = 1;
3772 }
3773 }
3774
3775 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3776 can_rename) {
3777 ret = wait_for_parent_move(sctx, cur, is_orphan);
3778 if (ret < 0)
3779 goto out;
3780 if (ret == 1) {
3781 can_rename = false;
3782 *pending_move = 1;
3783 }
3784 }
3785
3786 /*
3787 * link/move the ref to the new place. If we have an orphan
3788 * inode, move it and update valid_path. If not, link or move
3789 * it depending on the inode mode.
3790 */
3791 if (is_orphan && can_rename) {
3792 ret = send_rename(sctx, valid_path, cur->full_path);
3793 if (ret < 0)
3794 goto out;
3795 is_orphan = 0;
3796 ret = fs_path_copy(valid_path, cur->full_path);
3797 if (ret < 0)
3798 goto out;
3799 } else if (can_rename) {
3800 if (S_ISDIR(sctx->cur_inode_mode)) {
3801 /*
3802 * Dirs can't be linked, so move it. For moved
3803 * dirs, we always have one new and one deleted
3804 * ref. The deleted ref is ignored later.
3805 */
3806 ret = send_rename(sctx, valid_path,
3807 cur->full_path);
3808 if (!ret)
3809 ret = fs_path_copy(valid_path,
3810 cur->full_path);
3811 if (ret < 0)
3812 goto out;
3813 } else {
3814 ret = send_link(sctx, cur->full_path,
3815 valid_path);
3816 if (ret < 0)
3817 goto out;
3818 }
3819 }
3820 ret = dup_ref(cur, &check_dirs);
3821 if (ret < 0)
3822 goto out;
3823 }
3824
3825 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3826 /*
3827 * Check if we can already rmdir the directory. If not,
3828 * orphanize it. For every dir item inside that gets deleted
3829 * later, we do this check again and rmdir it then if possible.
3830 * See the use of check_dirs for more details.
3831 */
3832 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3833 sctx->cur_ino);
3834 if (ret < 0)
3835 goto out;
3836 if (ret) {
3837 ret = send_rmdir(sctx, valid_path);
3838 if (ret < 0)
3839 goto out;
3840 } else if (!is_orphan) {
3841 ret = orphanize_inode(sctx, sctx->cur_ino,
3842 sctx->cur_inode_gen, valid_path);
3843 if (ret < 0)
3844 goto out;
3845 is_orphan = 1;
3846 }
3847
3848 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3849 ret = dup_ref(cur, &check_dirs);
3850 if (ret < 0)
3851 goto out;
3852 }
3853 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3854 !list_empty(&sctx->deleted_refs)) {
3855 /*
3856 * We have a moved dir. Add the old parent to check_dirs
3857 */
3858 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3859 list);
3860 ret = dup_ref(cur, &check_dirs);
3861 if (ret < 0)
3862 goto out;
3863 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3864 /*
3865 * We have a non dir inode. Go through all deleted refs and
3866 * unlink them if they were not already overwritten by other
3867 * inodes.
3868 */
3869 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3870 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3871 sctx->cur_ino, sctx->cur_inode_gen,
3872 cur->name, cur->name_len);
3873 if (ret < 0)
3874 goto out;
3875 if (!ret) {
3876 ret = send_unlink(sctx, cur->full_path);
3877 if (ret < 0)
3878 goto out;
3879 }
3880 ret = dup_ref(cur, &check_dirs);
3881 if (ret < 0)
3882 goto out;
3883 }
3884 /*
3885 * If the inode is still orphan, unlink the orphan. This may
3886 * happen when a previous inode did overwrite the first ref
3887 * of this inode and no new refs were added for the current
3888 * inode. Unlinking does not mean that the inode is deleted in
3889 * all cases. There may still be links to this inode in other
3890 * places.
3891 */
3892 if (is_orphan) {
3893 ret = send_unlink(sctx, valid_path);
3894 if (ret < 0)
3895 goto out;
3896 }
3897 }
3898
3899 /*
3900 * We did collect all parent dirs where cur_inode was once located. We
3901 * now go through all these dirs and check if they are pending for
3902 * deletion and if it's finally possible to perform the rmdir now.
3903 * We also update the inode stats of the parent dirs here.
3904 */
3905 list_for_each_entry(cur, &check_dirs, list) {
3906 /*
3907 * In case we had refs into dirs that were not processed yet,
3908 * we don't need to do the utime and rmdir logic for these dirs.
3909 * The dir will be processed later.
3910 */
3911 if (cur->dir > sctx->cur_ino)
3912 continue;
3913
3914 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3915 if (ret < 0)
3916 goto out;
3917
3918 if (ret == inode_state_did_create ||
3919 ret == inode_state_no_change) {
3920 /* TODO delayed utimes */
3921 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3922 if (ret < 0)
3923 goto out;
3924 } else if (ret == inode_state_did_delete &&
3925 cur->dir != last_dir_ino_rm) {
3926 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3927 sctx->cur_ino);
3928 if (ret < 0)
3929 goto out;
3930 if (ret) {
3931 ret = get_cur_path(sctx, cur->dir,
3932 cur->dir_gen, valid_path);
3933 if (ret < 0)
3934 goto out;
3935 ret = send_rmdir(sctx, valid_path);
3936 if (ret < 0)
3937 goto out;
3938 last_dir_ino_rm = cur->dir;
3939 }
3940 }
3941 }
3942
3943 ret = 0;
3944
3945 out:
3946 __free_recorded_refs(&check_dirs);
3947 free_recorded_refs(sctx);
3948 fs_path_free(valid_path);
3949 return ret;
3950 }
3951
3952 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3953 struct fs_path *name, void *ctx, struct list_head *refs)
3954 {
3955 int ret = 0;
3956 struct send_ctx *sctx = ctx;
3957 struct fs_path *p;
3958 u64 gen;
3959
3960 p = fs_path_alloc();
3961 if (!p)
3962 return -ENOMEM;
3963
3964 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3965 NULL, NULL);
3966 if (ret < 0)
3967 goto out;
3968
3969 ret = get_cur_path(sctx, dir, gen, p);
3970 if (ret < 0)
3971 goto out;
3972 ret = fs_path_add_path(p, name);
3973 if (ret < 0)
3974 goto out;
3975
3976 ret = __record_ref(refs, dir, gen, p);
3977
3978 out:
3979 if (ret)
3980 fs_path_free(p);
3981 return ret;
3982 }
3983
3984 static int __record_new_ref(int num, u64 dir, int index,
3985 struct fs_path *name,
3986 void *ctx)
3987 {
3988 struct send_ctx *sctx = ctx;
3989 return record_ref(sctx->send_root, num, dir, index, name,
3990 ctx, &sctx->new_refs);
3991 }
3992
3993
3994 static int __record_deleted_ref(int num, u64 dir, int index,
3995 struct fs_path *name,
3996 void *ctx)
3997 {
3998 struct send_ctx *sctx = ctx;
3999 return record_ref(sctx->parent_root, num, dir, index, name,
4000 ctx, &sctx->deleted_refs);
4001 }
4002
4003 static int record_new_ref(struct send_ctx *sctx)
4004 {
4005 int ret;
4006
4007 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4008 sctx->cmp_key, 0, __record_new_ref, sctx);
4009 if (ret < 0)
4010 goto out;
4011 ret = 0;
4012
4013 out:
4014 return ret;
4015 }
4016
4017 static int record_deleted_ref(struct send_ctx *sctx)
4018 {
4019 int ret;
4020
4021 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4022 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4023 if (ret < 0)
4024 goto out;
4025 ret = 0;
4026
4027 out:
4028 return ret;
4029 }
4030
4031 struct find_ref_ctx {
4032 u64 dir;
4033 u64 dir_gen;
4034 struct btrfs_root *root;
4035 struct fs_path *name;
4036 int found_idx;
4037 };
4038
4039 static int __find_iref(int num, u64 dir, int index,
4040 struct fs_path *name,
4041 void *ctx_)
4042 {
4043 struct find_ref_ctx *ctx = ctx_;
4044 u64 dir_gen;
4045 int ret;
4046
4047 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4048 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4049 /*
4050 * To avoid doing extra lookups we'll only do this if everything
4051 * else matches.
4052 */
4053 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4054 NULL, NULL, NULL);
4055 if (ret)
4056 return ret;
4057 if (dir_gen != ctx->dir_gen)
4058 return 0;
4059 ctx->found_idx = num;
4060 return 1;
4061 }
4062 return 0;
4063 }
4064
4065 static int find_iref(struct btrfs_root *root,
4066 struct btrfs_path *path,
4067 struct btrfs_key *key,
4068 u64 dir, u64 dir_gen, struct fs_path *name)
4069 {
4070 int ret;
4071 struct find_ref_ctx ctx;
4072
4073 ctx.dir = dir;
4074 ctx.name = name;
4075 ctx.dir_gen = dir_gen;
4076 ctx.found_idx = -1;
4077 ctx.root = root;
4078
4079 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4080 if (ret < 0)
4081 return ret;
4082
4083 if (ctx.found_idx == -1)
4084 return -ENOENT;
4085
4086 return ctx.found_idx;
4087 }
4088
4089 static int __record_changed_new_ref(int num, u64 dir, int index,
4090 struct fs_path *name,
4091 void *ctx)
4092 {
4093 u64 dir_gen;
4094 int ret;
4095 struct send_ctx *sctx = ctx;
4096
4097 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4098 NULL, NULL, NULL);
4099 if (ret)
4100 return ret;
4101
4102 ret = find_iref(sctx->parent_root, sctx->right_path,
4103 sctx->cmp_key, dir, dir_gen, name);
4104 if (ret == -ENOENT)
4105 ret = __record_new_ref(num, dir, index, name, sctx);
4106 else if (ret > 0)
4107 ret = 0;
4108
4109 return ret;
4110 }
4111
4112 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4113 struct fs_path *name,
4114 void *ctx)
4115 {
4116 u64 dir_gen;
4117 int ret;
4118 struct send_ctx *sctx = ctx;
4119
4120 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4121 NULL, NULL, NULL);
4122 if (ret)
4123 return ret;
4124
4125 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4126 dir, dir_gen, name);
4127 if (ret == -ENOENT)
4128 ret = __record_deleted_ref(num, dir, index, name, sctx);
4129 else if (ret > 0)
4130 ret = 0;
4131
4132 return ret;
4133 }
4134
4135 static int record_changed_ref(struct send_ctx *sctx)
4136 {
4137 int ret = 0;
4138
4139 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4140 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4141 if (ret < 0)
4142 goto out;
4143 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4144 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4145 if (ret < 0)
4146 goto out;
4147 ret = 0;
4148
4149 out:
4150 return ret;
4151 }
4152
4153 /*
4154 * Record and process all refs at once. Needed when an inode changes the
4155 * generation number, which means that it was deleted and recreated.
4156 */
4157 static int process_all_refs(struct send_ctx *sctx,
4158 enum btrfs_compare_tree_result cmd)
4159 {
4160 int ret;
4161 struct btrfs_root *root;
4162 struct btrfs_path *path;
4163 struct btrfs_key key;
4164 struct btrfs_key found_key;
4165 struct extent_buffer *eb;
4166 int slot;
4167 iterate_inode_ref_t cb;
4168 int pending_move = 0;
4169
4170 path = alloc_path_for_send();
4171 if (!path)
4172 return -ENOMEM;
4173
4174 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4175 root = sctx->send_root;
4176 cb = __record_new_ref;
4177 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4178 root = sctx->parent_root;
4179 cb = __record_deleted_ref;
4180 } else {
4181 btrfs_err(sctx->send_root->fs_info,
4182 "Wrong command %d in process_all_refs", cmd);
4183 ret = -EINVAL;
4184 goto out;
4185 }
4186
4187 key.objectid = sctx->cmp_key->objectid;
4188 key.type = BTRFS_INODE_REF_KEY;
4189 key.offset = 0;
4190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4191 if (ret < 0)
4192 goto out;
4193
4194 while (1) {
4195 eb = path->nodes[0];
4196 slot = path->slots[0];
4197 if (slot >= btrfs_header_nritems(eb)) {
4198 ret = btrfs_next_leaf(root, path);
4199 if (ret < 0)
4200 goto out;
4201 else if (ret > 0)
4202 break;
4203 continue;
4204 }
4205
4206 btrfs_item_key_to_cpu(eb, &found_key, slot);
4207
4208 if (found_key.objectid != key.objectid ||
4209 (found_key.type != BTRFS_INODE_REF_KEY &&
4210 found_key.type != BTRFS_INODE_EXTREF_KEY))
4211 break;
4212
4213 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4214 if (ret < 0)
4215 goto out;
4216
4217 path->slots[0]++;
4218 }
4219 btrfs_release_path(path);
4220
4221 ret = process_recorded_refs(sctx, &pending_move);
4222 /* Only applicable to an incremental send. */
4223 ASSERT(pending_move == 0);
4224
4225 out:
4226 btrfs_free_path(path);
4227 return ret;
4228 }
4229
4230 static int send_set_xattr(struct send_ctx *sctx,
4231 struct fs_path *path,
4232 const char *name, int name_len,
4233 const char *data, int data_len)
4234 {
4235 int ret = 0;
4236
4237 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4238 if (ret < 0)
4239 goto out;
4240
4241 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4242 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4243 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4244
4245 ret = send_cmd(sctx);
4246
4247 tlv_put_failure:
4248 out:
4249 return ret;
4250 }
4251
4252 static int send_remove_xattr(struct send_ctx *sctx,
4253 struct fs_path *path,
4254 const char *name, int name_len)
4255 {
4256 int ret = 0;
4257
4258 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4259 if (ret < 0)
4260 goto out;
4261
4262 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4263 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4264
4265 ret = send_cmd(sctx);
4266
4267 tlv_put_failure:
4268 out:
4269 return ret;
4270 }
4271
4272 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4273 const char *name, int name_len,
4274 const char *data, int data_len,
4275 u8 type, void *ctx)
4276 {
4277 int ret;
4278 struct send_ctx *sctx = ctx;
4279 struct fs_path *p;
4280 posix_acl_xattr_header dummy_acl;
4281
4282 p = fs_path_alloc();
4283 if (!p)
4284 return -ENOMEM;
4285
4286 /*
4287 * This hack is needed because empty acls are stored as zero byte
4288 * data in xattrs. Problem with that is, that receiving these zero byte
4289 * acls will fail later. To fix this, we send a dummy acl list that
4290 * only contains the version number and no entries.
4291 */
4292 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4293 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4294 if (data_len == 0) {
4295 dummy_acl.a_version =
4296 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4297 data = (char *)&dummy_acl;
4298 data_len = sizeof(dummy_acl);
4299 }
4300 }
4301
4302 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4303 if (ret < 0)
4304 goto out;
4305
4306 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4307
4308 out:
4309 fs_path_free(p);
4310 return ret;
4311 }
4312
4313 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4314 const char *name, int name_len,
4315 const char *data, int data_len,
4316 u8 type, void *ctx)
4317 {
4318 int ret;
4319 struct send_ctx *sctx = ctx;
4320 struct fs_path *p;
4321
4322 p = fs_path_alloc();
4323 if (!p)
4324 return -ENOMEM;
4325
4326 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4327 if (ret < 0)
4328 goto out;
4329
4330 ret = send_remove_xattr(sctx, p, name, name_len);
4331
4332 out:
4333 fs_path_free(p);
4334 return ret;
4335 }
4336
4337 static int process_new_xattr(struct send_ctx *sctx)
4338 {
4339 int ret = 0;
4340
4341 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4342 sctx->cmp_key, __process_new_xattr, sctx);
4343
4344 return ret;
4345 }
4346
4347 static int process_deleted_xattr(struct send_ctx *sctx)
4348 {
4349 int ret;
4350
4351 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4352 sctx->cmp_key, __process_deleted_xattr, sctx);
4353
4354 return ret;
4355 }
4356
4357 struct find_xattr_ctx {
4358 const char *name;
4359 int name_len;
4360 int found_idx;
4361 char *found_data;
4362 int found_data_len;
4363 };
4364
4365 static int __find_xattr(int num, struct btrfs_key *di_key,
4366 const char *name, int name_len,
4367 const char *data, int data_len,
4368 u8 type, void *vctx)
4369 {
4370 struct find_xattr_ctx *ctx = vctx;
4371
4372 if (name_len == ctx->name_len &&
4373 strncmp(name, ctx->name, name_len) == 0) {
4374 ctx->found_idx = num;
4375 ctx->found_data_len = data_len;
4376 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4377 if (!ctx->found_data)
4378 return -ENOMEM;
4379 return 1;
4380 }
4381 return 0;
4382 }
4383
4384 static int find_xattr(struct btrfs_root *root,
4385 struct btrfs_path *path,
4386 struct btrfs_key *key,
4387 const char *name, int name_len,
4388 char **data, int *data_len)
4389 {
4390 int ret;
4391 struct find_xattr_ctx ctx;
4392
4393 ctx.name = name;
4394 ctx.name_len = name_len;
4395 ctx.found_idx = -1;
4396 ctx.found_data = NULL;
4397 ctx.found_data_len = 0;
4398
4399 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4400 if (ret < 0)
4401 return ret;
4402
4403 if (ctx.found_idx == -1)
4404 return -ENOENT;
4405 if (data) {
4406 *data = ctx.found_data;
4407 *data_len = ctx.found_data_len;
4408 } else {
4409 kfree(ctx.found_data);
4410 }
4411 return ctx.found_idx;
4412 }
4413
4414
4415 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4416 const char *name, int name_len,
4417 const char *data, int data_len,
4418 u8 type, void *ctx)
4419 {
4420 int ret;
4421 struct send_ctx *sctx = ctx;
4422 char *found_data = NULL;
4423 int found_data_len = 0;
4424
4425 ret = find_xattr(sctx->parent_root, sctx->right_path,
4426 sctx->cmp_key, name, name_len, &found_data,
4427 &found_data_len);
4428 if (ret == -ENOENT) {
4429 ret = __process_new_xattr(num, di_key, name, name_len, data,
4430 data_len, type, ctx);
4431 } else if (ret >= 0) {
4432 if (data_len != found_data_len ||
4433 memcmp(data, found_data, data_len)) {
4434 ret = __process_new_xattr(num, di_key, name, name_len,
4435 data, data_len, type, ctx);
4436 } else {
4437 ret = 0;
4438 }
4439 }
4440
4441 kfree(found_data);
4442 return ret;
4443 }
4444
4445 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4446 const char *name, int name_len,
4447 const char *data, int data_len,
4448 u8 type, void *ctx)
4449 {
4450 int ret;
4451 struct send_ctx *sctx = ctx;
4452
4453 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4454 name, name_len, NULL, NULL);
4455 if (ret == -ENOENT)
4456 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4457 data_len, type, ctx);
4458 else if (ret >= 0)
4459 ret = 0;
4460
4461 return ret;
4462 }
4463
4464 static int process_changed_xattr(struct send_ctx *sctx)
4465 {
4466 int ret = 0;
4467
4468 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4469 sctx->cmp_key, __process_changed_new_xattr, sctx);
4470 if (ret < 0)
4471 goto out;
4472 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4473 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4474
4475 out:
4476 return ret;
4477 }
4478
4479 static int process_all_new_xattrs(struct send_ctx *sctx)
4480 {
4481 int ret;
4482 struct btrfs_root *root;
4483 struct btrfs_path *path;
4484 struct btrfs_key key;
4485 struct btrfs_key found_key;
4486 struct extent_buffer *eb;
4487 int slot;
4488
4489 path = alloc_path_for_send();
4490 if (!path)
4491 return -ENOMEM;
4492
4493 root = sctx->send_root;
4494
4495 key.objectid = sctx->cmp_key->objectid;
4496 key.type = BTRFS_XATTR_ITEM_KEY;
4497 key.offset = 0;
4498 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4499 if (ret < 0)
4500 goto out;
4501
4502 while (1) {
4503 eb = path->nodes[0];
4504 slot = path->slots[0];
4505 if (slot >= btrfs_header_nritems(eb)) {
4506 ret = btrfs_next_leaf(root, path);
4507 if (ret < 0) {
4508 goto out;
4509 } else if (ret > 0) {
4510 ret = 0;
4511 break;
4512 }
4513 continue;
4514 }
4515
4516 btrfs_item_key_to_cpu(eb, &found_key, slot);
4517 if (found_key.objectid != key.objectid ||
4518 found_key.type != key.type) {
4519 ret = 0;
4520 goto out;
4521 }
4522
4523 ret = iterate_dir_item(root, path, &found_key,
4524 __process_new_xattr, sctx);
4525 if (ret < 0)
4526 goto out;
4527
4528 path->slots[0]++;
4529 }
4530
4531 out:
4532 btrfs_free_path(path);
4533 return ret;
4534 }
4535
4536 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4537 {
4538 struct btrfs_root *root = sctx->send_root;
4539 struct btrfs_fs_info *fs_info = root->fs_info;
4540 struct inode *inode;
4541 struct page *page;
4542 char *addr;
4543 struct btrfs_key key;
4544 pgoff_t index = offset >> PAGE_SHIFT;
4545 pgoff_t last_index;
4546 unsigned pg_offset = offset & ~PAGE_MASK;
4547 ssize_t ret = 0;
4548
4549 key.objectid = sctx->cur_ino;
4550 key.type = BTRFS_INODE_ITEM_KEY;
4551 key.offset = 0;
4552
4553 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4554 if (IS_ERR(inode))
4555 return PTR_ERR(inode);
4556
4557 if (offset + len > i_size_read(inode)) {
4558 if (offset > i_size_read(inode))
4559 len = 0;
4560 else
4561 len = offset - i_size_read(inode);
4562 }
4563 if (len == 0)
4564 goto out;
4565
4566 last_index = (offset + len - 1) >> PAGE_SHIFT;
4567
4568 /* initial readahead */
4569 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4570 file_ra_state_init(&sctx->ra, inode->i_mapping);
4571 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4572 last_index - index + 1);
4573
4574 while (index <= last_index) {
4575 unsigned cur_len = min_t(unsigned, len,
4576 PAGE_SIZE - pg_offset);
4577 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4578 if (!page) {
4579 ret = -ENOMEM;
4580 break;
4581 }
4582
4583 if (!PageUptodate(page)) {
4584 btrfs_readpage(NULL, page);
4585 lock_page(page);
4586 if (!PageUptodate(page)) {
4587 unlock_page(page);
4588 put_page(page);
4589 ret = -EIO;
4590 break;
4591 }
4592 }
4593
4594 addr = kmap(page);
4595 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4596 kunmap(page);
4597 unlock_page(page);
4598 put_page(page);
4599 index++;
4600 pg_offset = 0;
4601 len -= cur_len;
4602 ret += cur_len;
4603 }
4604 out:
4605 iput(inode);
4606 return ret;
4607 }
4608
4609 /*
4610 * Read some bytes from the current inode/file and send a write command to
4611 * user space.
4612 */
4613 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4614 {
4615 int ret = 0;
4616 struct fs_path *p;
4617 ssize_t num_read = 0;
4618
4619 p = fs_path_alloc();
4620 if (!p)
4621 return -ENOMEM;
4622
4623 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4624
4625 num_read = fill_read_buf(sctx, offset, len);
4626 if (num_read <= 0) {
4627 if (num_read < 0)
4628 ret = num_read;
4629 goto out;
4630 }
4631
4632 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4633 if (ret < 0)
4634 goto out;
4635
4636 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4637 if (ret < 0)
4638 goto out;
4639
4640 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4641 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4642 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4643
4644 ret = send_cmd(sctx);
4645
4646 tlv_put_failure:
4647 out:
4648 fs_path_free(p);
4649 if (ret < 0)
4650 return ret;
4651 return num_read;
4652 }
4653
4654 /*
4655 * Send a clone command to user space.
4656 */
4657 static int send_clone(struct send_ctx *sctx,
4658 u64 offset, u32 len,
4659 struct clone_root *clone_root)
4660 {
4661 int ret = 0;
4662 struct fs_path *p;
4663 u64 gen;
4664
4665 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4666 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4667 clone_root->root->objectid, clone_root->ino,
4668 clone_root->offset);
4669
4670 p = fs_path_alloc();
4671 if (!p)
4672 return -ENOMEM;
4673
4674 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4675 if (ret < 0)
4676 goto out;
4677
4678 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4679 if (ret < 0)
4680 goto out;
4681
4682 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4683 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4684 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4685
4686 if (clone_root->root == sctx->send_root) {
4687 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4688 &gen, NULL, NULL, NULL, NULL);
4689 if (ret < 0)
4690 goto out;
4691 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4692 } else {
4693 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4694 }
4695 if (ret < 0)
4696 goto out;
4697
4698 /*
4699 * If the parent we're using has a received_uuid set then use that as
4700 * our clone source as that is what we will look for when doing a
4701 * receive.
4702 *
4703 * This covers the case that we create a snapshot off of a received
4704 * subvolume and then use that as the parent and try to receive on a
4705 * different host.
4706 */
4707 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4708 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4709 clone_root->root->root_item.received_uuid);
4710 else
4711 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4712 clone_root->root->root_item.uuid);
4713 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4714 le64_to_cpu(clone_root->root->root_item.ctransid));
4715 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4716 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4717 clone_root->offset);
4718
4719 ret = send_cmd(sctx);
4720
4721 tlv_put_failure:
4722 out:
4723 fs_path_free(p);
4724 return ret;
4725 }
4726
4727 /*
4728 * Send an update extent command to user space.
4729 */
4730 static int send_update_extent(struct send_ctx *sctx,
4731 u64 offset, u32 len)
4732 {
4733 int ret = 0;
4734 struct fs_path *p;
4735
4736 p = fs_path_alloc();
4737 if (!p)
4738 return -ENOMEM;
4739
4740 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4741 if (ret < 0)
4742 goto out;
4743
4744 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4745 if (ret < 0)
4746 goto out;
4747
4748 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4749 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4750 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4751
4752 ret = send_cmd(sctx);
4753
4754 tlv_put_failure:
4755 out:
4756 fs_path_free(p);
4757 return ret;
4758 }
4759
4760 static int send_hole(struct send_ctx *sctx, u64 end)
4761 {
4762 struct fs_path *p = NULL;
4763 u64 offset = sctx->cur_inode_last_extent;
4764 u64 len;
4765 int ret = 0;
4766
4767 p = fs_path_alloc();
4768 if (!p)
4769 return -ENOMEM;
4770 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4771 if (ret < 0)
4772 goto tlv_put_failure;
4773 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4774 while (offset < end) {
4775 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4776
4777 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4778 if (ret < 0)
4779 break;
4780 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4781 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4782 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4783 ret = send_cmd(sctx);
4784 if (ret < 0)
4785 break;
4786 offset += len;
4787 }
4788 tlv_put_failure:
4789 fs_path_free(p);
4790 return ret;
4791 }
4792
4793 static int send_extent_data(struct send_ctx *sctx,
4794 const u64 offset,
4795 const u64 len)
4796 {
4797 u64 sent = 0;
4798
4799 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4800 return send_update_extent(sctx, offset, len);
4801
4802 while (sent < len) {
4803 u64 size = len - sent;
4804 int ret;
4805
4806 if (size > BTRFS_SEND_READ_SIZE)
4807 size = BTRFS_SEND_READ_SIZE;
4808 ret = send_write(sctx, offset + sent, size);
4809 if (ret < 0)
4810 return ret;
4811 if (!ret)
4812 break;
4813 sent += ret;
4814 }
4815 return 0;
4816 }
4817
4818 static int clone_range(struct send_ctx *sctx,
4819 struct clone_root *clone_root,
4820 const u64 disk_byte,
4821 u64 data_offset,
4822 u64 offset,
4823 u64 len)
4824 {
4825 struct btrfs_path *path;
4826 struct btrfs_key key;
4827 int ret;
4828
4829 path = alloc_path_for_send();
4830 if (!path)
4831 return -ENOMEM;
4832
4833 /*
4834 * We can't send a clone operation for the entire range if we find
4835 * extent items in the respective range in the source file that
4836 * refer to different extents or if we find holes.
4837 * So check for that and do a mix of clone and regular write/copy
4838 * operations if needed.
4839 *
4840 * Example:
4841 *
4842 * mkfs.btrfs -f /dev/sda
4843 * mount /dev/sda /mnt
4844 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4845 * cp --reflink=always /mnt/foo /mnt/bar
4846 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4847 * btrfs subvolume snapshot -r /mnt /mnt/snap
4848 *
4849 * If when we send the snapshot and we are processing file bar (which
4850 * has a higher inode number than foo) we blindly send a clone operation
4851 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4852 * a file bar that matches the content of file foo - iow, doesn't match
4853 * the content from bar in the original filesystem.
4854 */
4855 key.objectid = clone_root->ino;
4856 key.type = BTRFS_EXTENT_DATA_KEY;
4857 key.offset = clone_root->offset;
4858 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4859 if (ret < 0)
4860 goto out;
4861 if (ret > 0 && path->slots[0] > 0) {
4862 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4863 if (key.objectid == clone_root->ino &&
4864 key.type == BTRFS_EXTENT_DATA_KEY)
4865 path->slots[0]--;
4866 }
4867
4868 while (true) {
4869 struct extent_buffer *leaf = path->nodes[0];
4870 int slot = path->slots[0];
4871 struct btrfs_file_extent_item *ei;
4872 u8 type;
4873 u64 ext_len;
4874 u64 clone_len;
4875
4876 if (slot >= btrfs_header_nritems(leaf)) {
4877 ret = btrfs_next_leaf(clone_root->root, path);
4878 if (ret < 0)
4879 goto out;
4880 else if (ret > 0)
4881 break;
4882 continue;
4883 }
4884
4885 btrfs_item_key_to_cpu(leaf, &key, slot);
4886
4887 /*
4888 * We might have an implicit trailing hole (NO_HOLES feature
4889 * enabled). We deal with it after leaving this loop.
4890 */
4891 if (key.objectid != clone_root->ino ||
4892 key.type != BTRFS_EXTENT_DATA_KEY)
4893 break;
4894
4895 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4896 type = btrfs_file_extent_type(leaf, ei);
4897 if (type == BTRFS_FILE_EXTENT_INLINE) {
4898 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4899 ext_len = PAGE_ALIGN(ext_len);
4900 } else {
4901 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4902 }
4903
4904 if (key.offset + ext_len <= clone_root->offset)
4905 goto next;
4906
4907 if (key.offset > clone_root->offset) {
4908 /* Implicit hole, NO_HOLES feature enabled. */
4909 u64 hole_len = key.offset - clone_root->offset;
4910
4911 if (hole_len > len)
4912 hole_len = len;
4913 ret = send_extent_data(sctx, offset, hole_len);
4914 if (ret < 0)
4915 goto out;
4916
4917 len -= hole_len;
4918 if (len == 0)
4919 break;
4920 offset += hole_len;
4921 clone_root->offset += hole_len;
4922 data_offset += hole_len;
4923 }
4924
4925 if (key.offset >= clone_root->offset + len)
4926 break;
4927
4928 clone_len = min_t(u64, ext_len, len);
4929
4930 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4931 btrfs_file_extent_offset(leaf, ei) == data_offset)
4932 ret = send_clone(sctx, offset, clone_len, clone_root);
4933 else
4934 ret = send_extent_data(sctx, offset, clone_len);
4935
4936 if (ret < 0)
4937 goto out;
4938
4939 len -= clone_len;
4940 if (len == 0)
4941 break;
4942 offset += clone_len;
4943 clone_root->offset += clone_len;
4944 data_offset += clone_len;
4945 next:
4946 path->slots[0]++;
4947 }
4948
4949 if (len > 0)
4950 ret = send_extent_data(sctx, offset, len);
4951 else
4952 ret = 0;
4953 out:
4954 btrfs_free_path(path);
4955 return ret;
4956 }
4957
4958 static int send_write_or_clone(struct send_ctx *sctx,
4959 struct btrfs_path *path,
4960 struct btrfs_key *key,
4961 struct clone_root *clone_root)
4962 {
4963 int ret = 0;
4964 struct btrfs_file_extent_item *ei;
4965 u64 offset = key->offset;
4966 u64 len;
4967 u8 type;
4968 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4969
4970 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4971 struct btrfs_file_extent_item);
4972 type = btrfs_file_extent_type(path->nodes[0], ei);
4973 if (type == BTRFS_FILE_EXTENT_INLINE) {
4974 len = btrfs_file_extent_inline_len(path->nodes[0],
4975 path->slots[0], ei);
4976 /*
4977 * it is possible the inline item won't cover the whole page,
4978 * but there may be items after this page. Make
4979 * sure to send the whole thing
4980 */
4981 len = PAGE_ALIGN(len);
4982 } else {
4983 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4984 }
4985
4986 if (offset + len > sctx->cur_inode_size)
4987 len = sctx->cur_inode_size - offset;
4988 if (len == 0) {
4989 ret = 0;
4990 goto out;
4991 }
4992
4993 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4994 u64 disk_byte;
4995 u64 data_offset;
4996
4997 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4998 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4999 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5000 offset, len);
5001 } else {
5002 ret = send_extent_data(sctx, offset, len);
5003 }
5004 out:
5005 return ret;
5006 }
5007
5008 static int is_extent_unchanged(struct send_ctx *sctx,
5009 struct btrfs_path *left_path,
5010 struct btrfs_key *ekey)
5011 {
5012 int ret = 0;
5013 struct btrfs_key key;
5014 struct btrfs_path *path = NULL;
5015 struct extent_buffer *eb;
5016 int slot;
5017 struct btrfs_key found_key;
5018 struct btrfs_file_extent_item *ei;
5019 u64 left_disknr;
5020 u64 right_disknr;
5021 u64 left_offset;
5022 u64 right_offset;
5023 u64 left_offset_fixed;
5024 u64 left_len;
5025 u64 right_len;
5026 u64 left_gen;
5027 u64 right_gen;
5028 u8 left_type;
5029 u8 right_type;
5030
5031 path = alloc_path_for_send();
5032 if (!path)
5033 return -ENOMEM;
5034
5035 eb = left_path->nodes[0];
5036 slot = left_path->slots[0];
5037 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5038 left_type = btrfs_file_extent_type(eb, ei);
5039
5040 if (left_type != BTRFS_FILE_EXTENT_REG) {
5041 ret = 0;
5042 goto out;
5043 }
5044 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5045 left_len = btrfs_file_extent_num_bytes(eb, ei);
5046 left_offset = btrfs_file_extent_offset(eb, ei);
5047 left_gen = btrfs_file_extent_generation(eb, ei);
5048
5049 /*
5050 * Following comments will refer to these graphics. L is the left
5051 * extents which we are checking at the moment. 1-8 are the right
5052 * extents that we iterate.
5053 *
5054 * |-----L-----|
5055 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5056 *
5057 * |-----L-----|
5058 * |--1--|-2b-|...(same as above)
5059 *
5060 * Alternative situation. Happens on files where extents got split.
5061 * |-----L-----|
5062 * |-----------7-----------|-6-|
5063 *
5064 * Alternative situation. Happens on files which got larger.
5065 * |-----L-----|
5066 * |-8-|
5067 * Nothing follows after 8.
5068 */
5069
5070 key.objectid = ekey->objectid;
5071 key.type = BTRFS_EXTENT_DATA_KEY;
5072 key.offset = ekey->offset;
5073 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5074 if (ret < 0)
5075 goto out;
5076 if (ret) {
5077 ret = 0;
5078 goto out;
5079 }
5080
5081 /*
5082 * Handle special case where the right side has no extents at all.
5083 */
5084 eb = path->nodes[0];
5085 slot = path->slots[0];
5086 btrfs_item_key_to_cpu(eb, &found_key, slot);
5087 if (found_key.objectid != key.objectid ||
5088 found_key.type != key.type) {
5089 /* If we're a hole then just pretend nothing changed */
5090 ret = (left_disknr) ? 0 : 1;
5091 goto out;
5092 }
5093
5094 /*
5095 * We're now on 2a, 2b or 7.
5096 */
5097 key = found_key;
5098 while (key.offset < ekey->offset + left_len) {
5099 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5100 right_type = btrfs_file_extent_type(eb, ei);
5101 if (right_type != BTRFS_FILE_EXTENT_REG) {
5102 ret = 0;
5103 goto out;
5104 }
5105
5106 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5107 right_len = btrfs_file_extent_num_bytes(eb, ei);
5108 right_offset = btrfs_file_extent_offset(eb, ei);
5109 right_gen = btrfs_file_extent_generation(eb, ei);
5110
5111 /*
5112 * Are we at extent 8? If yes, we know the extent is changed.
5113 * This may only happen on the first iteration.
5114 */
5115 if (found_key.offset + right_len <= ekey->offset) {
5116 /* If we're a hole just pretend nothing changed */
5117 ret = (left_disknr) ? 0 : 1;
5118 goto out;
5119 }
5120
5121 left_offset_fixed = left_offset;
5122 if (key.offset < ekey->offset) {
5123 /* Fix the right offset for 2a and 7. */
5124 right_offset += ekey->offset - key.offset;
5125 } else {
5126 /* Fix the left offset for all behind 2a and 2b */
5127 left_offset_fixed += key.offset - ekey->offset;
5128 }
5129
5130 /*
5131 * Check if we have the same extent.
5132 */
5133 if (left_disknr != right_disknr ||
5134 left_offset_fixed != right_offset ||
5135 left_gen != right_gen) {
5136 ret = 0;
5137 goto out;
5138 }
5139
5140 /*
5141 * Go to the next extent.
5142 */
5143 ret = btrfs_next_item(sctx->parent_root, path);
5144 if (ret < 0)
5145 goto out;
5146 if (!ret) {
5147 eb = path->nodes[0];
5148 slot = path->slots[0];
5149 btrfs_item_key_to_cpu(eb, &found_key, slot);
5150 }
5151 if (ret || found_key.objectid != key.objectid ||
5152 found_key.type != key.type) {
5153 key.offset += right_len;
5154 break;
5155 }
5156 if (found_key.offset != key.offset + right_len) {
5157 ret = 0;
5158 goto out;
5159 }
5160 key = found_key;
5161 }
5162
5163 /*
5164 * We're now behind the left extent (treat as unchanged) or at the end
5165 * of the right side (treat as changed).
5166 */
5167 if (key.offset >= ekey->offset + left_len)
5168 ret = 1;
5169 else
5170 ret = 0;
5171
5172
5173 out:
5174 btrfs_free_path(path);
5175 return ret;
5176 }
5177
5178 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5179 {
5180 struct btrfs_path *path;
5181 struct btrfs_root *root = sctx->send_root;
5182 struct btrfs_file_extent_item *fi;
5183 struct btrfs_key key;
5184 u64 extent_end;
5185 u8 type;
5186 int ret;
5187
5188 path = alloc_path_for_send();
5189 if (!path)
5190 return -ENOMEM;
5191
5192 sctx->cur_inode_last_extent = 0;
5193
5194 key.objectid = sctx->cur_ino;
5195 key.type = BTRFS_EXTENT_DATA_KEY;
5196 key.offset = offset;
5197 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5198 if (ret < 0)
5199 goto out;
5200 ret = 0;
5201 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5202 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5203 goto out;
5204
5205 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5206 struct btrfs_file_extent_item);
5207 type = btrfs_file_extent_type(path->nodes[0], fi);
5208 if (type == BTRFS_FILE_EXTENT_INLINE) {
5209 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5210 path->slots[0], fi);
5211 extent_end = ALIGN(key.offset + size,
5212 sctx->send_root->sectorsize);
5213 } else {
5214 extent_end = key.offset +
5215 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5216 }
5217 sctx->cur_inode_last_extent = extent_end;
5218 out:
5219 btrfs_free_path(path);
5220 return ret;
5221 }
5222
5223 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5224 struct btrfs_key *key)
5225 {
5226 struct btrfs_file_extent_item *fi;
5227 u64 extent_end;
5228 u8 type;
5229 int ret = 0;
5230
5231 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5232 return 0;
5233
5234 if (sctx->cur_inode_last_extent == (u64)-1) {
5235 ret = get_last_extent(sctx, key->offset - 1);
5236 if (ret)
5237 return ret;
5238 }
5239
5240 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5241 struct btrfs_file_extent_item);
5242 type = btrfs_file_extent_type(path->nodes[0], fi);
5243 if (type == BTRFS_FILE_EXTENT_INLINE) {
5244 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5245 path->slots[0], fi);
5246 extent_end = ALIGN(key->offset + size,
5247 sctx->send_root->sectorsize);
5248 } else {
5249 extent_end = key->offset +
5250 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5251 }
5252
5253 if (path->slots[0] == 0 &&
5254 sctx->cur_inode_last_extent < key->offset) {
5255 /*
5256 * We might have skipped entire leafs that contained only
5257 * file extent items for our current inode. These leafs have
5258 * a generation number smaller (older) than the one in the
5259 * current leaf and the leaf our last extent came from, and
5260 * are located between these 2 leafs.
5261 */
5262 ret = get_last_extent(sctx, key->offset - 1);
5263 if (ret)
5264 return ret;
5265 }
5266
5267 if (sctx->cur_inode_last_extent < key->offset)
5268 ret = send_hole(sctx, key->offset);
5269 sctx->cur_inode_last_extent = extent_end;
5270 return ret;
5271 }
5272
5273 static int process_extent(struct send_ctx *sctx,
5274 struct btrfs_path *path,
5275 struct btrfs_key *key)
5276 {
5277 struct clone_root *found_clone = NULL;
5278 int ret = 0;
5279
5280 if (S_ISLNK(sctx->cur_inode_mode))
5281 return 0;
5282
5283 if (sctx->parent_root && !sctx->cur_inode_new) {
5284 ret = is_extent_unchanged(sctx, path, key);
5285 if (ret < 0)
5286 goto out;
5287 if (ret) {
5288 ret = 0;
5289 goto out_hole;
5290 }
5291 } else {
5292 struct btrfs_file_extent_item *ei;
5293 u8 type;
5294
5295 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5296 struct btrfs_file_extent_item);
5297 type = btrfs_file_extent_type(path->nodes[0], ei);
5298 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5299 type == BTRFS_FILE_EXTENT_REG) {
5300 /*
5301 * The send spec does not have a prealloc command yet,
5302 * so just leave a hole for prealloc'ed extents until
5303 * we have enough commands queued up to justify rev'ing
5304 * the send spec.
5305 */
5306 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5307 ret = 0;
5308 goto out;
5309 }
5310
5311 /* Have a hole, just skip it. */
5312 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5313 ret = 0;
5314 goto out;
5315 }
5316 }
5317 }
5318
5319 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5320 sctx->cur_inode_size, &found_clone);
5321 if (ret != -ENOENT && ret < 0)
5322 goto out;
5323
5324 ret = send_write_or_clone(sctx, path, key, found_clone);
5325 if (ret)
5326 goto out;
5327 out_hole:
5328 ret = maybe_send_hole(sctx, path, key);
5329 out:
5330 return ret;
5331 }
5332
5333 static int process_all_extents(struct send_ctx *sctx)
5334 {
5335 int ret;
5336 struct btrfs_root *root;
5337 struct btrfs_path *path;
5338 struct btrfs_key key;
5339 struct btrfs_key found_key;
5340 struct extent_buffer *eb;
5341 int slot;
5342
5343 root = sctx->send_root;
5344 path = alloc_path_for_send();
5345 if (!path)
5346 return -ENOMEM;
5347
5348 key.objectid = sctx->cmp_key->objectid;
5349 key.type = BTRFS_EXTENT_DATA_KEY;
5350 key.offset = 0;
5351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5352 if (ret < 0)
5353 goto out;
5354
5355 while (1) {
5356 eb = path->nodes[0];
5357 slot = path->slots[0];
5358
5359 if (slot >= btrfs_header_nritems(eb)) {
5360 ret = btrfs_next_leaf(root, path);
5361 if (ret < 0) {
5362 goto out;
5363 } else if (ret > 0) {
5364 ret = 0;
5365 break;
5366 }
5367 continue;
5368 }
5369
5370 btrfs_item_key_to_cpu(eb, &found_key, slot);
5371
5372 if (found_key.objectid != key.objectid ||
5373 found_key.type != key.type) {
5374 ret = 0;
5375 goto out;
5376 }
5377
5378 ret = process_extent(sctx, path, &found_key);
5379 if (ret < 0)
5380 goto out;
5381
5382 path->slots[0]++;
5383 }
5384
5385 out:
5386 btrfs_free_path(path);
5387 return ret;
5388 }
5389
5390 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5391 int *pending_move,
5392 int *refs_processed)
5393 {
5394 int ret = 0;
5395
5396 if (sctx->cur_ino == 0)
5397 goto out;
5398 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5399 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5400 goto out;
5401 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5402 goto out;
5403
5404 ret = process_recorded_refs(sctx, pending_move);
5405 if (ret < 0)
5406 goto out;
5407
5408 *refs_processed = 1;
5409 out:
5410 return ret;
5411 }
5412
5413 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5414 {
5415 int ret = 0;
5416 u64 left_mode;
5417 u64 left_uid;
5418 u64 left_gid;
5419 u64 right_mode;
5420 u64 right_uid;
5421 u64 right_gid;
5422 int need_chmod = 0;
5423 int need_chown = 0;
5424 int pending_move = 0;
5425 int refs_processed = 0;
5426
5427 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5428 &refs_processed);
5429 if (ret < 0)
5430 goto out;
5431
5432 /*
5433 * We have processed the refs and thus need to advance send_progress.
5434 * Now, calls to get_cur_xxx will take the updated refs of the current
5435 * inode into account.
5436 *
5437 * On the other hand, if our current inode is a directory and couldn't
5438 * be moved/renamed because its parent was renamed/moved too and it has
5439 * a higher inode number, we can only move/rename our current inode
5440 * after we moved/renamed its parent. Therefore in this case operate on
5441 * the old path (pre move/rename) of our current inode, and the
5442 * move/rename will be performed later.
5443 */
5444 if (refs_processed && !pending_move)
5445 sctx->send_progress = sctx->cur_ino + 1;
5446
5447 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5448 goto out;
5449 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5450 goto out;
5451
5452 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5453 &left_mode, &left_uid, &left_gid, NULL);
5454 if (ret < 0)
5455 goto out;
5456
5457 if (!sctx->parent_root || sctx->cur_inode_new) {
5458 need_chown = 1;
5459 if (!S_ISLNK(sctx->cur_inode_mode))
5460 need_chmod = 1;
5461 } else {
5462 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5463 NULL, NULL, &right_mode, &right_uid,
5464 &right_gid, NULL);
5465 if (ret < 0)
5466 goto out;
5467
5468 if (left_uid != right_uid || left_gid != right_gid)
5469 need_chown = 1;
5470 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5471 need_chmod = 1;
5472 }
5473
5474 if (S_ISREG(sctx->cur_inode_mode)) {
5475 if (need_send_hole(sctx)) {
5476 if (sctx->cur_inode_last_extent == (u64)-1 ||
5477 sctx->cur_inode_last_extent <
5478 sctx->cur_inode_size) {
5479 ret = get_last_extent(sctx, (u64)-1);
5480 if (ret)
5481 goto out;
5482 }
5483 if (sctx->cur_inode_last_extent <
5484 sctx->cur_inode_size) {
5485 ret = send_hole(sctx, sctx->cur_inode_size);
5486 if (ret)
5487 goto out;
5488 }
5489 }
5490 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5491 sctx->cur_inode_size);
5492 if (ret < 0)
5493 goto out;
5494 }
5495
5496 if (need_chown) {
5497 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5498 left_uid, left_gid);
5499 if (ret < 0)
5500 goto out;
5501 }
5502 if (need_chmod) {
5503 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5504 left_mode);
5505 if (ret < 0)
5506 goto out;
5507 }
5508
5509 /*
5510 * If other directory inodes depended on our current directory
5511 * inode's move/rename, now do their move/rename operations.
5512 */
5513 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5514 ret = apply_children_dir_moves(sctx);
5515 if (ret)
5516 goto out;
5517 /*
5518 * Need to send that every time, no matter if it actually
5519 * changed between the two trees as we have done changes to
5520 * the inode before. If our inode is a directory and it's
5521 * waiting to be moved/renamed, we will send its utimes when
5522 * it's moved/renamed, therefore we don't need to do it here.
5523 */
5524 sctx->send_progress = sctx->cur_ino + 1;
5525 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5526 if (ret < 0)
5527 goto out;
5528 }
5529
5530 out:
5531 return ret;
5532 }
5533
5534 static int changed_inode(struct send_ctx *sctx,
5535 enum btrfs_compare_tree_result result)
5536 {
5537 int ret = 0;
5538 struct btrfs_key *key = sctx->cmp_key;
5539 struct btrfs_inode_item *left_ii = NULL;
5540 struct btrfs_inode_item *right_ii = NULL;
5541 u64 left_gen = 0;
5542 u64 right_gen = 0;
5543
5544 sctx->cur_ino = key->objectid;
5545 sctx->cur_inode_new_gen = 0;
5546 sctx->cur_inode_last_extent = (u64)-1;
5547
5548 /*
5549 * Set send_progress to current inode. This will tell all get_cur_xxx
5550 * functions that the current inode's refs are not updated yet. Later,
5551 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5552 */
5553 sctx->send_progress = sctx->cur_ino;
5554
5555 if (result == BTRFS_COMPARE_TREE_NEW ||
5556 result == BTRFS_COMPARE_TREE_CHANGED) {
5557 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5558 sctx->left_path->slots[0],
5559 struct btrfs_inode_item);
5560 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5561 left_ii);
5562 } else {
5563 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5564 sctx->right_path->slots[0],
5565 struct btrfs_inode_item);
5566 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5567 right_ii);
5568 }
5569 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5570 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5571 sctx->right_path->slots[0],
5572 struct btrfs_inode_item);
5573
5574 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5575 right_ii);
5576
5577 /*
5578 * The cur_ino = root dir case is special here. We can't treat
5579 * the inode as deleted+reused because it would generate a
5580 * stream that tries to delete/mkdir the root dir.
5581 */
5582 if (left_gen != right_gen &&
5583 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5584 sctx->cur_inode_new_gen = 1;
5585 }
5586
5587 if (result == BTRFS_COMPARE_TREE_NEW) {
5588 sctx->cur_inode_gen = left_gen;
5589 sctx->cur_inode_new = 1;
5590 sctx->cur_inode_deleted = 0;
5591 sctx->cur_inode_size = btrfs_inode_size(
5592 sctx->left_path->nodes[0], left_ii);
5593 sctx->cur_inode_mode = btrfs_inode_mode(
5594 sctx->left_path->nodes[0], left_ii);
5595 sctx->cur_inode_rdev = btrfs_inode_rdev(
5596 sctx->left_path->nodes[0], left_ii);
5597 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5598 ret = send_create_inode_if_needed(sctx);
5599 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5600 sctx->cur_inode_gen = right_gen;
5601 sctx->cur_inode_new = 0;
5602 sctx->cur_inode_deleted = 1;
5603 sctx->cur_inode_size = btrfs_inode_size(
5604 sctx->right_path->nodes[0], right_ii);
5605 sctx->cur_inode_mode = btrfs_inode_mode(
5606 sctx->right_path->nodes[0], right_ii);
5607 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5608 /*
5609 * We need to do some special handling in case the inode was
5610 * reported as changed with a changed generation number. This
5611 * means that the original inode was deleted and new inode
5612 * reused the same inum. So we have to treat the old inode as
5613 * deleted and the new one as new.
5614 */
5615 if (sctx->cur_inode_new_gen) {
5616 /*
5617 * First, process the inode as if it was deleted.
5618 */
5619 sctx->cur_inode_gen = right_gen;
5620 sctx->cur_inode_new = 0;
5621 sctx->cur_inode_deleted = 1;
5622 sctx->cur_inode_size = btrfs_inode_size(
5623 sctx->right_path->nodes[0], right_ii);
5624 sctx->cur_inode_mode = btrfs_inode_mode(
5625 sctx->right_path->nodes[0], right_ii);
5626 ret = process_all_refs(sctx,
5627 BTRFS_COMPARE_TREE_DELETED);
5628 if (ret < 0)
5629 goto out;
5630
5631 /*
5632 * Now process the inode as if it was new.
5633 */
5634 sctx->cur_inode_gen = left_gen;
5635 sctx->cur_inode_new = 1;
5636 sctx->cur_inode_deleted = 0;
5637 sctx->cur_inode_size = btrfs_inode_size(
5638 sctx->left_path->nodes[0], left_ii);
5639 sctx->cur_inode_mode = btrfs_inode_mode(
5640 sctx->left_path->nodes[0], left_ii);
5641 sctx->cur_inode_rdev = btrfs_inode_rdev(
5642 sctx->left_path->nodes[0], left_ii);
5643 ret = send_create_inode_if_needed(sctx);
5644 if (ret < 0)
5645 goto out;
5646
5647 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5648 if (ret < 0)
5649 goto out;
5650 /*
5651 * Advance send_progress now as we did not get into
5652 * process_recorded_refs_if_needed in the new_gen case.
5653 */
5654 sctx->send_progress = sctx->cur_ino + 1;
5655
5656 /*
5657 * Now process all extents and xattrs of the inode as if
5658 * they were all new.
5659 */
5660 ret = process_all_extents(sctx);
5661 if (ret < 0)
5662 goto out;
5663 ret = process_all_new_xattrs(sctx);
5664 if (ret < 0)
5665 goto out;
5666 } else {
5667 sctx->cur_inode_gen = left_gen;
5668 sctx->cur_inode_new = 0;
5669 sctx->cur_inode_new_gen = 0;
5670 sctx->cur_inode_deleted = 0;
5671 sctx->cur_inode_size = btrfs_inode_size(
5672 sctx->left_path->nodes[0], left_ii);
5673 sctx->cur_inode_mode = btrfs_inode_mode(
5674 sctx->left_path->nodes[0], left_ii);
5675 }
5676 }
5677
5678 out:
5679 return ret;
5680 }
5681
5682 /*
5683 * We have to process new refs before deleted refs, but compare_trees gives us
5684 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5685 * first and later process them in process_recorded_refs.
5686 * For the cur_inode_new_gen case, we skip recording completely because
5687 * changed_inode did already initiate processing of refs. The reason for this is
5688 * that in this case, compare_tree actually compares the refs of 2 different
5689 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5690 * refs of the right tree as deleted and all refs of the left tree as new.
5691 */
5692 static int changed_ref(struct send_ctx *sctx,
5693 enum btrfs_compare_tree_result result)
5694 {
5695 int ret = 0;
5696
5697 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5698
5699 if (!sctx->cur_inode_new_gen &&
5700 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5701 if (result == BTRFS_COMPARE_TREE_NEW)
5702 ret = record_new_ref(sctx);
5703 else if (result == BTRFS_COMPARE_TREE_DELETED)
5704 ret = record_deleted_ref(sctx);
5705 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5706 ret = record_changed_ref(sctx);
5707 }
5708
5709 return ret;
5710 }
5711
5712 /*
5713 * Process new/deleted/changed xattrs. We skip processing in the
5714 * cur_inode_new_gen case because changed_inode did already initiate processing
5715 * of xattrs. The reason is the same as in changed_ref
5716 */
5717 static int changed_xattr(struct send_ctx *sctx,
5718 enum btrfs_compare_tree_result result)
5719 {
5720 int ret = 0;
5721
5722 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5723
5724 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5725 if (result == BTRFS_COMPARE_TREE_NEW)
5726 ret = process_new_xattr(sctx);
5727 else if (result == BTRFS_COMPARE_TREE_DELETED)
5728 ret = process_deleted_xattr(sctx);
5729 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5730 ret = process_changed_xattr(sctx);
5731 }
5732
5733 return ret;
5734 }
5735
5736 /*
5737 * Process new/deleted/changed extents. We skip processing in the
5738 * cur_inode_new_gen case because changed_inode did already initiate processing
5739 * of extents. The reason is the same as in changed_ref
5740 */
5741 static int changed_extent(struct send_ctx *sctx,
5742 enum btrfs_compare_tree_result result)
5743 {
5744 int ret = 0;
5745
5746 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5747
5748 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5749 if (result != BTRFS_COMPARE_TREE_DELETED)
5750 ret = process_extent(sctx, sctx->left_path,
5751 sctx->cmp_key);
5752 }
5753
5754 return ret;
5755 }
5756
5757 static int dir_changed(struct send_ctx *sctx, u64 dir)
5758 {
5759 u64 orig_gen, new_gen;
5760 int ret;
5761
5762 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5763 NULL, NULL);
5764 if (ret)
5765 return ret;
5766
5767 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5768 NULL, NULL, NULL);
5769 if (ret)
5770 return ret;
5771
5772 return (orig_gen != new_gen) ? 1 : 0;
5773 }
5774
5775 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5776 struct btrfs_key *key)
5777 {
5778 struct btrfs_inode_extref *extref;
5779 struct extent_buffer *leaf;
5780 u64 dirid = 0, last_dirid = 0;
5781 unsigned long ptr;
5782 u32 item_size;
5783 u32 cur_offset = 0;
5784 int ref_name_len;
5785 int ret = 0;
5786
5787 /* Easy case, just check this one dirid */
5788 if (key->type == BTRFS_INODE_REF_KEY) {
5789 dirid = key->offset;
5790
5791 ret = dir_changed(sctx, dirid);
5792 goto out;
5793 }
5794
5795 leaf = path->nodes[0];
5796 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5797 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5798 while (cur_offset < item_size) {
5799 extref = (struct btrfs_inode_extref *)(ptr +
5800 cur_offset);
5801 dirid = btrfs_inode_extref_parent(leaf, extref);
5802 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5803 cur_offset += ref_name_len + sizeof(*extref);
5804 if (dirid == last_dirid)
5805 continue;
5806 ret = dir_changed(sctx, dirid);
5807 if (ret)
5808 break;
5809 last_dirid = dirid;
5810 }
5811 out:
5812 return ret;
5813 }
5814
5815 /*
5816 * Updates compare related fields in sctx and simply forwards to the actual
5817 * changed_xxx functions.
5818 */
5819 static int changed_cb(struct btrfs_root *left_root,
5820 struct btrfs_root *right_root,
5821 struct btrfs_path *left_path,
5822 struct btrfs_path *right_path,
5823 struct btrfs_key *key,
5824 enum btrfs_compare_tree_result result,
5825 void *ctx)
5826 {
5827 int ret = 0;
5828 struct send_ctx *sctx = ctx;
5829
5830 if (result == BTRFS_COMPARE_TREE_SAME) {
5831 if (key->type == BTRFS_INODE_REF_KEY ||
5832 key->type == BTRFS_INODE_EXTREF_KEY) {
5833 ret = compare_refs(sctx, left_path, key);
5834 if (!ret)
5835 return 0;
5836 if (ret < 0)
5837 return ret;
5838 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5839 return maybe_send_hole(sctx, left_path, key);
5840 } else {
5841 return 0;
5842 }
5843 result = BTRFS_COMPARE_TREE_CHANGED;
5844 ret = 0;
5845 }
5846
5847 sctx->left_path = left_path;
5848 sctx->right_path = right_path;
5849 sctx->cmp_key = key;
5850
5851 ret = finish_inode_if_needed(sctx, 0);
5852 if (ret < 0)
5853 goto out;
5854
5855 /* Ignore non-FS objects */
5856 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5857 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5858 goto out;
5859
5860 if (key->type == BTRFS_INODE_ITEM_KEY)
5861 ret = changed_inode(sctx, result);
5862 else if (key->type == BTRFS_INODE_REF_KEY ||
5863 key->type == BTRFS_INODE_EXTREF_KEY)
5864 ret = changed_ref(sctx, result);
5865 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5866 ret = changed_xattr(sctx, result);
5867 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5868 ret = changed_extent(sctx, result);
5869
5870 out:
5871 return ret;
5872 }
5873
5874 static int full_send_tree(struct send_ctx *sctx)
5875 {
5876 int ret;
5877 struct btrfs_root *send_root = sctx->send_root;
5878 struct btrfs_key key;
5879 struct btrfs_key found_key;
5880 struct btrfs_path *path;
5881 struct extent_buffer *eb;
5882 int slot;
5883
5884 path = alloc_path_for_send();
5885 if (!path)
5886 return -ENOMEM;
5887
5888 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5889 key.type = BTRFS_INODE_ITEM_KEY;
5890 key.offset = 0;
5891
5892 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5893 if (ret < 0)
5894 goto out;
5895 if (ret)
5896 goto out_finish;
5897
5898 while (1) {
5899 eb = path->nodes[0];
5900 slot = path->slots[0];
5901 btrfs_item_key_to_cpu(eb, &found_key, slot);
5902
5903 ret = changed_cb(send_root, NULL, path, NULL,
5904 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5905 if (ret < 0)
5906 goto out;
5907
5908 key.objectid = found_key.objectid;
5909 key.type = found_key.type;
5910 key.offset = found_key.offset + 1;
5911
5912 ret = btrfs_next_item(send_root, path);
5913 if (ret < 0)
5914 goto out;
5915 if (ret) {
5916 ret = 0;
5917 break;
5918 }
5919 }
5920
5921 out_finish:
5922 ret = finish_inode_if_needed(sctx, 1);
5923
5924 out:
5925 btrfs_free_path(path);
5926 return ret;
5927 }
5928
5929 static int send_subvol(struct send_ctx *sctx)
5930 {
5931 int ret;
5932
5933 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5934 ret = send_header(sctx);
5935 if (ret < 0)
5936 goto out;
5937 }
5938
5939 ret = send_subvol_begin(sctx);
5940 if (ret < 0)
5941 goto out;
5942
5943 if (sctx->parent_root) {
5944 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5945 changed_cb, sctx);
5946 if (ret < 0)
5947 goto out;
5948 ret = finish_inode_if_needed(sctx, 1);
5949 if (ret < 0)
5950 goto out;
5951 } else {
5952 ret = full_send_tree(sctx);
5953 if (ret < 0)
5954 goto out;
5955 }
5956
5957 out:
5958 free_recorded_refs(sctx);
5959 return ret;
5960 }
5961
5962 /*
5963 * If orphan cleanup did remove any orphans from a root, it means the tree
5964 * was modified and therefore the commit root is not the same as the current
5965 * root anymore. This is a problem, because send uses the commit root and
5966 * therefore can see inode items that don't exist in the current root anymore,
5967 * and for example make calls to btrfs_iget, which will do tree lookups based
5968 * on the current root and not on the commit root. Those lookups will fail,
5969 * returning a -ESTALE error, and making send fail with that error. So make
5970 * sure a send does not see any orphans we have just removed, and that it will
5971 * see the same inodes regardless of whether a transaction commit happened
5972 * before it started (meaning that the commit root will be the same as the
5973 * current root) or not.
5974 */
5975 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5976 {
5977 int i;
5978 struct btrfs_trans_handle *trans = NULL;
5979
5980 again:
5981 if (sctx->parent_root &&
5982 sctx->parent_root->node != sctx->parent_root->commit_root)
5983 goto commit_trans;
5984
5985 for (i = 0; i < sctx->clone_roots_cnt; i++)
5986 if (sctx->clone_roots[i].root->node !=
5987 sctx->clone_roots[i].root->commit_root)
5988 goto commit_trans;
5989
5990 if (trans)
5991 return btrfs_end_transaction(trans, sctx->send_root);
5992
5993 return 0;
5994
5995 commit_trans:
5996 /* Use any root, all fs roots will get their commit roots updated. */
5997 if (!trans) {
5998 trans = btrfs_join_transaction(sctx->send_root);
5999 if (IS_ERR(trans))
6000 return PTR_ERR(trans);
6001 goto again;
6002 }
6003
6004 return btrfs_commit_transaction(trans, sctx->send_root);
6005 }
6006
6007 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6008 {
6009 spin_lock(&root->root_item_lock);
6010 root->send_in_progress--;
6011 /*
6012 * Not much left to do, we don't know why it's unbalanced and
6013 * can't blindly reset it to 0.
6014 */
6015 if (root->send_in_progress < 0)
6016 btrfs_err(root->fs_info,
6017 "send_in_progres unbalanced %d root %llu",
6018 root->send_in_progress, root->root_key.objectid);
6019 spin_unlock(&root->root_item_lock);
6020 }
6021
6022 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6023 {
6024 int ret = 0;
6025 struct btrfs_root *send_root;
6026 struct btrfs_root *clone_root;
6027 struct btrfs_fs_info *fs_info;
6028 struct btrfs_ioctl_send_args *arg = NULL;
6029 struct btrfs_key key;
6030 struct send_ctx *sctx = NULL;
6031 u32 i;
6032 u64 *clone_sources_tmp = NULL;
6033 int clone_sources_to_rollback = 0;
6034 unsigned alloc_size;
6035 int sort_clone_roots = 0;
6036 int index;
6037
6038 if (!capable(CAP_SYS_ADMIN))
6039 return -EPERM;
6040
6041 send_root = BTRFS_I(file_inode(mnt_file))->root;
6042 fs_info = send_root->fs_info;
6043
6044 /*
6045 * The subvolume must remain read-only during send, protect against
6046 * making it RW. This also protects against deletion.
6047 */
6048 spin_lock(&send_root->root_item_lock);
6049 send_root->send_in_progress++;
6050 spin_unlock(&send_root->root_item_lock);
6051
6052 /*
6053 * This is done when we lookup the root, it should already be complete
6054 * by the time we get here.
6055 */
6056 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6057
6058 /*
6059 * Userspace tools do the checks and warn the user if it's
6060 * not RO.
6061 */
6062 if (!btrfs_root_readonly(send_root)) {
6063 ret = -EPERM;
6064 goto out;
6065 }
6066
6067 arg = memdup_user(arg_, sizeof(*arg));
6068 if (IS_ERR(arg)) {
6069 ret = PTR_ERR(arg);
6070 arg = NULL;
6071 goto out;
6072 }
6073
6074 if (arg->clone_sources_count >
6075 ULLONG_MAX / sizeof(*arg->clone_sources)) {
6076 ret = -EINVAL;
6077 goto out;
6078 }
6079
6080 if (!access_ok(VERIFY_READ, arg->clone_sources,
6081 sizeof(*arg->clone_sources) *
6082 arg->clone_sources_count)) {
6083 ret = -EFAULT;
6084 goto out;
6085 }
6086
6087 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6088 ret = -EINVAL;
6089 goto out;
6090 }
6091
6092 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6093 if (!sctx) {
6094 ret = -ENOMEM;
6095 goto out;
6096 }
6097
6098 INIT_LIST_HEAD(&sctx->new_refs);
6099 INIT_LIST_HEAD(&sctx->deleted_refs);
6100 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6101 INIT_LIST_HEAD(&sctx->name_cache_list);
6102
6103 sctx->flags = arg->flags;
6104
6105 sctx->send_filp = fget(arg->send_fd);
6106 if (!sctx->send_filp) {
6107 ret = -EBADF;
6108 goto out;
6109 }
6110
6111 sctx->send_root = send_root;
6112 /*
6113 * Unlikely but possible, if the subvolume is marked for deletion but
6114 * is slow to remove the directory entry, send can still be started
6115 */
6116 if (btrfs_root_dead(sctx->send_root)) {
6117 ret = -EPERM;
6118 goto out;
6119 }
6120
6121 sctx->clone_roots_cnt = arg->clone_sources_count;
6122
6123 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6124 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
6125 if (!sctx->send_buf) {
6126 sctx->send_buf = vmalloc(sctx->send_max_size);
6127 if (!sctx->send_buf) {
6128 ret = -ENOMEM;
6129 goto out;
6130 }
6131 }
6132
6133 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
6134 if (!sctx->read_buf) {
6135 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6136 if (!sctx->read_buf) {
6137 ret = -ENOMEM;
6138 goto out;
6139 }
6140 }
6141
6142 sctx->pending_dir_moves = RB_ROOT;
6143 sctx->waiting_dir_moves = RB_ROOT;
6144 sctx->orphan_dirs = RB_ROOT;
6145
6146 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6147
6148 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6149 if (!sctx->clone_roots) {
6150 sctx->clone_roots = vzalloc(alloc_size);
6151 if (!sctx->clone_roots) {
6152 ret = -ENOMEM;
6153 goto out;
6154 }
6155 }
6156
6157 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6158
6159 if (arg->clone_sources_count) {
6160 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6161 if (!clone_sources_tmp) {
6162 clone_sources_tmp = vmalloc(alloc_size);
6163 if (!clone_sources_tmp) {
6164 ret = -ENOMEM;
6165 goto out;
6166 }
6167 }
6168
6169 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6170 alloc_size);
6171 if (ret) {
6172 ret = -EFAULT;
6173 goto out;
6174 }
6175
6176 for (i = 0; i < arg->clone_sources_count; i++) {
6177 key.objectid = clone_sources_tmp[i];
6178 key.type = BTRFS_ROOT_ITEM_KEY;
6179 key.offset = (u64)-1;
6180
6181 index = srcu_read_lock(&fs_info->subvol_srcu);
6182
6183 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6184 if (IS_ERR(clone_root)) {
6185 srcu_read_unlock(&fs_info->subvol_srcu, index);
6186 ret = PTR_ERR(clone_root);
6187 goto out;
6188 }
6189 spin_lock(&clone_root->root_item_lock);
6190 if (!btrfs_root_readonly(clone_root) ||
6191 btrfs_root_dead(clone_root)) {
6192 spin_unlock(&clone_root->root_item_lock);
6193 srcu_read_unlock(&fs_info->subvol_srcu, index);
6194 ret = -EPERM;
6195 goto out;
6196 }
6197 clone_root->send_in_progress++;
6198 spin_unlock(&clone_root->root_item_lock);
6199 srcu_read_unlock(&fs_info->subvol_srcu, index);
6200
6201 sctx->clone_roots[i].root = clone_root;
6202 clone_sources_to_rollback = i + 1;
6203 }
6204 kvfree(clone_sources_tmp);
6205 clone_sources_tmp = NULL;
6206 }
6207
6208 if (arg->parent_root) {
6209 key.objectid = arg->parent_root;
6210 key.type = BTRFS_ROOT_ITEM_KEY;
6211 key.offset = (u64)-1;
6212
6213 index = srcu_read_lock(&fs_info->subvol_srcu);
6214
6215 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6216 if (IS_ERR(sctx->parent_root)) {
6217 srcu_read_unlock(&fs_info->subvol_srcu, index);
6218 ret = PTR_ERR(sctx->parent_root);
6219 goto out;
6220 }
6221
6222 spin_lock(&sctx->parent_root->root_item_lock);
6223 sctx->parent_root->send_in_progress++;
6224 if (!btrfs_root_readonly(sctx->parent_root) ||
6225 btrfs_root_dead(sctx->parent_root)) {
6226 spin_unlock(&sctx->parent_root->root_item_lock);
6227 srcu_read_unlock(&fs_info->subvol_srcu, index);
6228 ret = -EPERM;
6229 goto out;
6230 }
6231 spin_unlock(&sctx->parent_root->root_item_lock);
6232
6233 srcu_read_unlock(&fs_info->subvol_srcu, index);
6234 }
6235
6236 /*
6237 * Clones from send_root are allowed, but only if the clone source
6238 * is behind the current send position. This is checked while searching
6239 * for possible clone sources.
6240 */
6241 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6242
6243 /* We do a bsearch later */
6244 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6245 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6246 NULL);
6247 sort_clone_roots = 1;
6248
6249 ret = ensure_commit_roots_uptodate(sctx);
6250 if (ret)
6251 goto out;
6252
6253 current->journal_info = BTRFS_SEND_TRANS_STUB;
6254 ret = send_subvol(sctx);
6255 current->journal_info = NULL;
6256 if (ret < 0)
6257 goto out;
6258
6259 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6260 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6261 if (ret < 0)
6262 goto out;
6263 ret = send_cmd(sctx);
6264 if (ret < 0)
6265 goto out;
6266 }
6267
6268 out:
6269 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6270 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6271 struct rb_node *n;
6272 struct pending_dir_move *pm;
6273
6274 n = rb_first(&sctx->pending_dir_moves);
6275 pm = rb_entry(n, struct pending_dir_move, node);
6276 while (!list_empty(&pm->list)) {
6277 struct pending_dir_move *pm2;
6278
6279 pm2 = list_first_entry(&pm->list,
6280 struct pending_dir_move, list);
6281 free_pending_move(sctx, pm2);
6282 }
6283 free_pending_move(sctx, pm);
6284 }
6285
6286 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6287 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6288 struct rb_node *n;
6289 struct waiting_dir_move *dm;
6290
6291 n = rb_first(&sctx->waiting_dir_moves);
6292 dm = rb_entry(n, struct waiting_dir_move, node);
6293 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6294 kfree(dm);
6295 }
6296
6297 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6298 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6299 struct rb_node *n;
6300 struct orphan_dir_info *odi;
6301
6302 n = rb_first(&sctx->orphan_dirs);
6303 odi = rb_entry(n, struct orphan_dir_info, node);
6304 free_orphan_dir_info(sctx, odi);
6305 }
6306
6307 if (sort_clone_roots) {
6308 for (i = 0; i < sctx->clone_roots_cnt; i++)
6309 btrfs_root_dec_send_in_progress(
6310 sctx->clone_roots[i].root);
6311 } else {
6312 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6313 btrfs_root_dec_send_in_progress(
6314 sctx->clone_roots[i].root);
6315
6316 btrfs_root_dec_send_in_progress(send_root);
6317 }
6318 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6319 btrfs_root_dec_send_in_progress(sctx->parent_root);
6320
6321 kfree(arg);
6322 kvfree(clone_sources_tmp);
6323
6324 if (sctx) {
6325 if (sctx->send_filp)
6326 fput(sctx->send_filp);
6327
6328 kvfree(sctx->clone_roots);
6329 kvfree(sctx->send_buf);
6330 kvfree(sctx->read_buf);
6331
6332 name_cache_free(sctx);
6333
6334 kfree(sctx);
6335 }
6336
6337 return ret;
6338 }
This page took 0.244949 seconds and 6 git commands to generate.