Btrfs: cleanup some BUG_ON()
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "xattr.h"
50 #include "volumes.h"
51 #include "version.h"
52 #include "export.h"
53 #include "compression.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/btrfs.h>
57
58 static const struct super_operations btrfs_super_ops;
59
60 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
61 char nbuf[16])
62 {
63 char *errstr = NULL;
64
65 switch (errno) {
66 case -EIO:
67 errstr = "IO failure";
68 break;
69 case -ENOMEM:
70 errstr = "Out of memory";
71 break;
72 case -EROFS:
73 errstr = "Readonly filesystem";
74 break;
75 default:
76 if (nbuf) {
77 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
78 errstr = nbuf;
79 }
80 break;
81 }
82
83 return errstr;
84 }
85
86 static void __save_error_info(struct btrfs_fs_info *fs_info)
87 {
88 /*
89 * today we only save the error info into ram. Long term we'll
90 * also send it down to the disk
91 */
92 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
93 }
94
95 /* NOTE:
96 * We move write_super stuff at umount in order to avoid deadlock
97 * for umount hold all lock.
98 */
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101 __save_error_info(fs_info);
102 }
103
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107 struct super_block *sb = fs_info->sb;
108
109 if (sb->s_flags & MS_RDONLY)
110 return;
111
112 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
113 sb->s_flags |= MS_RDONLY;
114 printk(KERN_INFO "btrfs is forced readonly\n");
115 }
116 }
117
118 /*
119 * __btrfs_std_error decodes expected errors from the caller and
120 * invokes the approciate error response.
121 */
122 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
123 unsigned int line, int errno)
124 {
125 struct super_block *sb = fs_info->sb;
126 char nbuf[16];
127 const char *errstr;
128
129 /*
130 * Special case: if the error is EROFS, and we're already
131 * under MS_RDONLY, then it is safe here.
132 */
133 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
134 return;
135
136 errstr = btrfs_decode_error(fs_info, errno, nbuf);
137 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
138 sb->s_id, function, line, errstr);
139 save_error_info(fs_info);
140
141 btrfs_handle_error(fs_info);
142 }
143
144 static void btrfs_put_super(struct super_block *sb)
145 {
146 struct btrfs_root *root = btrfs_sb(sb);
147 int ret;
148
149 ret = close_ctree(root);
150 sb->s_fs_info = NULL;
151
152 (void)ret; /* FIXME: need to fix VFS to return error? */
153 }
154
155 enum {
156 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
157 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
158 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
159 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
160 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
161 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
162 Opt_enospc_debug, Opt_err,
163 };
164
165 static match_table_t tokens = {
166 {Opt_degraded, "degraded"},
167 {Opt_subvol, "subvol=%s"},
168 {Opt_subvolid, "subvolid=%d"},
169 {Opt_device, "device=%s"},
170 {Opt_nodatasum, "nodatasum"},
171 {Opt_nodatacow, "nodatacow"},
172 {Opt_nobarrier, "nobarrier"},
173 {Opt_max_inline, "max_inline=%s"},
174 {Opt_alloc_start, "alloc_start=%s"},
175 {Opt_thread_pool, "thread_pool=%d"},
176 {Opt_compress, "compress"},
177 {Opt_compress_type, "compress=%s"},
178 {Opt_compress_force, "compress-force"},
179 {Opt_compress_force_type, "compress-force=%s"},
180 {Opt_ssd, "ssd"},
181 {Opt_ssd_spread, "ssd_spread"},
182 {Opt_nossd, "nossd"},
183 {Opt_noacl, "noacl"},
184 {Opt_notreelog, "notreelog"},
185 {Opt_flushoncommit, "flushoncommit"},
186 {Opt_ratio, "metadata_ratio=%d"},
187 {Opt_discard, "discard"},
188 {Opt_space_cache, "space_cache"},
189 {Opt_clear_cache, "clear_cache"},
190 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
191 {Opt_enospc_debug, "enospc_debug"},
192 {Opt_err, NULL},
193 };
194
195 /*
196 * Regular mount options parser. Everything that is needed only when
197 * reading in a new superblock is parsed here.
198 */
199 int btrfs_parse_options(struct btrfs_root *root, char *options)
200 {
201 struct btrfs_fs_info *info = root->fs_info;
202 substring_t args[MAX_OPT_ARGS];
203 char *p, *num, *orig;
204 int intarg;
205 int ret = 0;
206 char *compress_type;
207 bool compress_force = false;
208
209 if (!options)
210 return 0;
211
212 /*
213 * strsep changes the string, duplicate it because parse_options
214 * gets called twice
215 */
216 options = kstrdup(options, GFP_NOFS);
217 if (!options)
218 return -ENOMEM;
219
220 orig = options;
221
222 while ((p = strsep(&options, ",")) != NULL) {
223 int token;
224 if (!*p)
225 continue;
226
227 token = match_token(p, tokens, args);
228 switch (token) {
229 case Opt_degraded:
230 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
231 btrfs_set_opt(info->mount_opt, DEGRADED);
232 break;
233 case Opt_subvol:
234 case Opt_subvolid:
235 case Opt_device:
236 /*
237 * These are parsed by btrfs_parse_early_options
238 * and can be happily ignored here.
239 */
240 break;
241 case Opt_nodatasum:
242 printk(KERN_INFO "btrfs: setting nodatasum\n");
243 btrfs_set_opt(info->mount_opt, NODATASUM);
244 break;
245 case Opt_nodatacow:
246 printk(KERN_INFO "btrfs: setting nodatacow\n");
247 btrfs_set_opt(info->mount_opt, NODATACOW);
248 btrfs_set_opt(info->mount_opt, NODATASUM);
249 break;
250 case Opt_compress_force:
251 case Opt_compress_force_type:
252 compress_force = true;
253 case Opt_compress:
254 case Opt_compress_type:
255 if (token == Opt_compress ||
256 token == Opt_compress_force ||
257 strcmp(args[0].from, "zlib") == 0) {
258 compress_type = "zlib";
259 info->compress_type = BTRFS_COMPRESS_ZLIB;
260 } else if (strcmp(args[0].from, "lzo") == 0) {
261 compress_type = "lzo";
262 info->compress_type = BTRFS_COMPRESS_LZO;
263 } else {
264 ret = -EINVAL;
265 goto out;
266 }
267
268 btrfs_set_opt(info->mount_opt, COMPRESS);
269 if (compress_force) {
270 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
271 pr_info("btrfs: force %s compression\n",
272 compress_type);
273 } else
274 pr_info("btrfs: use %s compression\n",
275 compress_type);
276 break;
277 case Opt_ssd:
278 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
279 btrfs_set_opt(info->mount_opt, SSD);
280 break;
281 case Opt_ssd_spread:
282 printk(KERN_INFO "btrfs: use spread ssd "
283 "allocation scheme\n");
284 btrfs_set_opt(info->mount_opt, SSD);
285 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
286 break;
287 case Opt_nossd:
288 printk(KERN_INFO "btrfs: not using ssd allocation "
289 "scheme\n");
290 btrfs_set_opt(info->mount_opt, NOSSD);
291 btrfs_clear_opt(info->mount_opt, SSD);
292 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
293 break;
294 case Opt_nobarrier:
295 printk(KERN_INFO "btrfs: turning off barriers\n");
296 btrfs_set_opt(info->mount_opt, NOBARRIER);
297 break;
298 case Opt_thread_pool:
299 intarg = 0;
300 match_int(&args[0], &intarg);
301 if (intarg) {
302 info->thread_pool_size = intarg;
303 printk(KERN_INFO "btrfs: thread pool %d\n",
304 info->thread_pool_size);
305 }
306 break;
307 case Opt_max_inline:
308 num = match_strdup(&args[0]);
309 if (num) {
310 info->max_inline = memparse(num, NULL);
311 kfree(num);
312
313 if (info->max_inline) {
314 info->max_inline = max_t(u64,
315 info->max_inline,
316 root->sectorsize);
317 }
318 printk(KERN_INFO "btrfs: max_inline at %llu\n",
319 (unsigned long long)info->max_inline);
320 }
321 break;
322 case Opt_alloc_start:
323 num = match_strdup(&args[0]);
324 if (num) {
325 info->alloc_start = memparse(num, NULL);
326 kfree(num);
327 printk(KERN_INFO
328 "btrfs: allocations start at %llu\n",
329 (unsigned long long)info->alloc_start);
330 }
331 break;
332 case Opt_noacl:
333 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
334 break;
335 case Opt_notreelog:
336 printk(KERN_INFO "btrfs: disabling tree log\n");
337 btrfs_set_opt(info->mount_opt, NOTREELOG);
338 break;
339 case Opt_flushoncommit:
340 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
341 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
342 break;
343 case Opt_ratio:
344 intarg = 0;
345 match_int(&args[0], &intarg);
346 if (intarg) {
347 info->metadata_ratio = intarg;
348 printk(KERN_INFO "btrfs: metadata ratio %d\n",
349 info->metadata_ratio);
350 }
351 break;
352 case Opt_discard:
353 btrfs_set_opt(info->mount_opt, DISCARD);
354 break;
355 case Opt_space_cache:
356 printk(KERN_INFO "btrfs: enabling disk space caching\n");
357 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
358 break;
359 case Opt_clear_cache:
360 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
361 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
362 break;
363 case Opt_user_subvol_rm_allowed:
364 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
365 break;
366 case Opt_enospc_debug:
367 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
368 break;
369 case Opt_err:
370 printk(KERN_INFO "btrfs: unrecognized mount option "
371 "'%s'\n", p);
372 ret = -EINVAL;
373 goto out;
374 default:
375 break;
376 }
377 }
378 out:
379 kfree(orig);
380 return ret;
381 }
382
383 /*
384 * Parse mount options that are required early in the mount process.
385 *
386 * All other options will be parsed on much later in the mount process and
387 * only when we need to allocate a new super block.
388 */
389 static int btrfs_parse_early_options(const char *options, fmode_t flags,
390 void *holder, char **subvol_name, u64 *subvol_objectid,
391 struct btrfs_fs_devices **fs_devices)
392 {
393 substring_t args[MAX_OPT_ARGS];
394 char *opts, *orig, *p;
395 int error = 0;
396 int intarg;
397
398 if (!options)
399 goto out;
400
401 /*
402 * strsep changes the string, duplicate it because parse_options
403 * gets called twice
404 */
405 opts = kstrdup(options, GFP_KERNEL);
406 if (!opts)
407 return -ENOMEM;
408 orig = opts;
409
410 while ((p = strsep(&opts, ",")) != NULL) {
411 int token;
412 if (!*p)
413 continue;
414
415 token = match_token(p, tokens, args);
416 switch (token) {
417 case Opt_subvol:
418 *subvol_name = match_strdup(&args[0]);
419 break;
420 case Opt_subvolid:
421 intarg = 0;
422 error = match_int(&args[0], &intarg);
423 if (!error) {
424 /* we want the original fs_tree */
425 if (!intarg)
426 *subvol_objectid =
427 BTRFS_FS_TREE_OBJECTID;
428 else
429 *subvol_objectid = intarg;
430 }
431 break;
432 case Opt_device:
433 error = btrfs_scan_one_device(match_strdup(&args[0]),
434 flags, holder, fs_devices);
435 if (error)
436 goto out_free_opts;
437 break;
438 default:
439 break;
440 }
441 }
442
443 out_free_opts:
444 kfree(orig);
445 out:
446 /*
447 * If no subvolume name is specified we use the default one. Allocate
448 * a copy of the string "." here so that code later in the
449 * mount path doesn't care if it's the default volume or another one.
450 */
451 if (!*subvol_name) {
452 *subvol_name = kstrdup(".", GFP_KERNEL);
453 if (!*subvol_name)
454 return -ENOMEM;
455 }
456 return error;
457 }
458
459 static struct dentry *get_default_root(struct super_block *sb,
460 u64 subvol_objectid)
461 {
462 struct btrfs_root *root = sb->s_fs_info;
463 struct btrfs_root *new_root;
464 struct btrfs_dir_item *di;
465 struct btrfs_path *path;
466 struct btrfs_key location;
467 struct inode *inode;
468 struct dentry *dentry;
469 u64 dir_id;
470 int new = 0;
471
472 /*
473 * We have a specific subvol we want to mount, just setup location and
474 * go look up the root.
475 */
476 if (subvol_objectid) {
477 location.objectid = subvol_objectid;
478 location.type = BTRFS_ROOT_ITEM_KEY;
479 location.offset = (u64)-1;
480 goto find_root;
481 }
482
483 path = btrfs_alloc_path();
484 if (!path)
485 return ERR_PTR(-ENOMEM);
486 path->leave_spinning = 1;
487
488 /*
489 * Find the "default" dir item which points to the root item that we
490 * will mount by default if we haven't been given a specific subvolume
491 * to mount.
492 */
493 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
494 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
495 if (IS_ERR(di))
496 return ERR_CAST(di);
497 if (!di) {
498 /*
499 * Ok the default dir item isn't there. This is weird since
500 * it's always been there, but don't freak out, just try and
501 * mount to root most subvolume.
502 */
503 btrfs_free_path(path);
504 dir_id = BTRFS_FIRST_FREE_OBJECTID;
505 new_root = root->fs_info->fs_root;
506 goto setup_root;
507 }
508
509 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
510 btrfs_free_path(path);
511
512 find_root:
513 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
514 if (IS_ERR(new_root))
515 return ERR_CAST(new_root);
516
517 if (btrfs_root_refs(&new_root->root_item) == 0)
518 return ERR_PTR(-ENOENT);
519
520 dir_id = btrfs_root_dirid(&new_root->root_item);
521 setup_root:
522 location.objectid = dir_id;
523 location.type = BTRFS_INODE_ITEM_KEY;
524 location.offset = 0;
525
526 inode = btrfs_iget(sb, &location, new_root, &new);
527 if (IS_ERR(inode))
528 return ERR_CAST(inode);
529
530 /*
531 * If we're just mounting the root most subvol put the inode and return
532 * a reference to the dentry. We will have already gotten a reference
533 * to the inode in btrfs_fill_super so we're good to go.
534 */
535 if (!new && sb->s_root->d_inode == inode) {
536 iput(inode);
537 return dget(sb->s_root);
538 }
539
540 if (new) {
541 const struct qstr name = { .name = "/", .len = 1 };
542
543 /*
544 * New inode, we need to make the dentry a sibling of s_root so
545 * everything gets cleaned up properly on unmount.
546 */
547 dentry = d_alloc(sb->s_root, &name);
548 if (!dentry) {
549 iput(inode);
550 return ERR_PTR(-ENOMEM);
551 }
552 d_splice_alias(inode, dentry);
553 } else {
554 /*
555 * We found the inode in cache, just find a dentry for it and
556 * put the reference to the inode we just got.
557 */
558 dentry = d_find_alias(inode);
559 iput(inode);
560 }
561
562 return dentry;
563 }
564
565 static int btrfs_fill_super(struct super_block *sb,
566 struct btrfs_fs_devices *fs_devices,
567 void *data, int silent)
568 {
569 struct inode *inode;
570 struct dentry *root_dentry;
571 struct btrfs_root *tree_root;
572 struct btrfs_key key;
573 int err;
574
575 sb->s_maxbytes = MAX_LFS_FILESIZE;
576 sb->s_magic = BTRFS_SUPER_MAGIC;
577 sb->s_op = &btrfs_super_ops;
578 sb->s_d_op = &btrfs_dentry_operations;
579 sb->s_export_op = &btrfs_export_ops;
580 sb->s_xattr = btrfs_xattr_handlers;
581 sb->s_time_gran = 1;
582 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
583 sb->s_flags |= MS_POSIXACL;
584 #endif
585
586 tree_root = open_ctree(sb, fs_devices, (char *)data);
587
588 if (IS_ERR(tree_root)) {
589 printk("btrfs: open_ctree failed\n");
590 return PTR_ERR(tree_root);
591 }
592 sb->s_fs_info = tree_root;
593
594 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
595 key.type = BTRFS_INODE_ITEM_KEY;
596 key.offset = 0;
597 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
598 if (IS_ERR(inode)) {
599 err = PTR_ERR(inode);
600 goto fail_close;
601 }
602
603 root_dentry = d_alloc_root(inode);
604 if (!root_dentry) {
605 iput(inode);
606 err = -ENOMEM;
607 goto fail_close;
608 }
609
610 sb->s_root = root_dentry;
611
612 save_mount_options(sb, data);
613 return 0;
614
615 fail_close:
616 close_ctree(tree_root);
617 return err;
618 }
619
620 int btrfs_sync_fs(struct super_block *sb, int wait)
621 {
622 struct btrfs_trans_handle *trans;
623 struct btrfs_root *root = btrfs_sb(sb);
624 int ret;
625
626 trace_btrfs_sync_fs(wait);
627
628 if (!wait) {
629 filemap_flush(root->fs_info->btree_inode->i_mapping);
630 return 0;
631 }
632
633 btrfs_start_delalloc_inodes(root, 0);
634 btrfs_wait_ordered_extents(root, 0, 0);
635
636 trans = btrfs_start_transaction(root, 0);
637 if (IS_ERR(trans))
638 return PTR_ERR(trans);
639 ret = btrfs_commit_transaction(trans, root);
640 return ret;
641 }
642
643 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
644 {
645 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
646 struct btrfs_fs_info *info = root->fs_info;
647
648 if (btrfs_test_opt(root, DEGRADED))
649 seq_puts(seq, ",degraded");
650 if (btrfs_test_opt(root, NODATASUM))
651 seq_puts(seq, ",nodatasum");
652 if (btrfs_test_opt(root, NODATACOW))
653 seq_puts(seq, ",nodatacow");
654 if (btrfs_test_opt(root, NOBARRIER))
655 seq_puts(seq, ",nobarrier");
656 if (info->max_inline != 8192 * 1024)
657 seq_printf(seq, ",max_inline=%llu",
658 (unsigned long long)info->max_inline);
659 if (info->alloc_start != 0)
660 seq_printf(seq, ",alloc_start=%llu",
661 (unsigned long long)info->alloc_start);
662 if (info->thread_pool_size != min_t(unsigned long,
663 num_online_cpus() + 2, 8))
664 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
665 if (btrfs_test_opt(root, COMPRESS))
666 seq_puts(seq, ",compress");
667 if (btrfs_test_opt(root, NOSSD))
668 seq_puts(seq, ",nossd");
669 if (btrfs_test_opt(root, SSD_SPREAD))
670 seq_puts(seq, ",ssd_spread");
671 else if (btrfs_test_opt(root, SSD))
672 seq_puts(seq, ",ssd");
673 if (btrfs_test_opt(root, NOTREELOG))
674 seq_puts(seq, ",notreelog");
675 if (btrfs_test_opt(root, FLUSHONCOMMIT))
676 seq_puts(seq, ",flushoncommit");
677 if (btrfs_test_opt(root, DISCARD))
678 seq_puts(seq, ",discard");
679 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
680 seq_puts(seq, ",noacl");
681 return 0;
682 }
683
684 static int btrfs_test_super(struct super_block *s, void *data)
685 {
686 struct btrfs_root *test_root = data;
687 struct btrfs_root *root = btrfs_sb(s);
688
689 /*
690 * If this super block is going away, return false as it
691 * can't match as an existing super block.
692 */
693 if (!atomic_read(&s->s_active))
694 return 0;
695 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
696 }
697
698 static int btrfs_set_super(struct super_block *s, void *data)
699 {
700 s->s_fs_info = data;
701
702 return set_anon_super(s, data);
703 }
704
705
706 /*
707 * Find a superblock for the given device / mount point.
708 *
709 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
710 * for multiple device setup. Make sure to keep it in sync.
711 */
712 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
713 const char *dev_name, void *data)
714 {
715 struct block_device *bdev = NULL;
716 struct super_block *s;
717 struct dentry *root;
718 struct btrfs_fs_devices *fs_devices = NULL;
719 struct btrfs_root *tree_root = NULL;
720 struct btrfs_fs_info *fs_info = NULL;
721 fmode_t mode = FMODE_READ;
722 char *subvol_name = NULL;
723 u64 subvol_objectid = 0;
724 int error = 0;
725
726 if (!(flags & MS_RDONLY))
727 mode |= FMODE_WRITE;
728
729 error = btrfs_parse_early_options(data, mode, fs_type,
730 &subvol_name, &subvol_objectid,
731 &fs_devices);
732 if (error)
733 return ERR_PTR(error);
734
735 error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
736 if (error)
737 goto error_free_subvol_name;
738
739 error = btrfs_open_devices(fs_devices, mode, fs_type);
740 if (error)
741 goto error_free_subvol_name;
742
743 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
744 error = -EACCES;
745 goto error_close_devices;
746 }
747
748 /*
749 * Setup a dummy root and fs_info for test/set super. This is because
750 * we don't actually fill this stuff out until open_ctree, but we need
751 * it for searching for existing supers, so this lets us do that and
752 * then open_ctree will properly initialize everything later.
753 */
754 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
755 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
756 if (!fs_info || !tree_root) {
757 error = -ENOMEM;
758 goto error_close_devices;
759 }
760 fs_info->tree_root = tree_root;
761 fs_info->fs_devices = fs_devices;
762 tree_root->fs_info = fs_info;
763
764 bdev = fs_devices->latest_bdev;
765 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
766 if (IS_ERR(s))
767 goto error_s;
768
769 if (s->s_root) {
770 if ((flags ^ s->s_flags) & MS_RDONLY) {
771 deactivate_locked_super(s);
772 error = -EBUSY;
773 goto error_close_devices;
774 }
775
776 btrfs_close_devices(fs_devices);
777 kfree(fs_info);
778 kfree(tree_root);
779 } else {
780 char b[BDEVNAME_SIZE];
781
782 s->s_flags = flags;
783 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
784 error = btrfs_fill_super(s, fs_devices, data,
785 flags & MS_SILENT ? 1 : 0);
786 if (error) {
787 deactivate_locked_super(s);
788 goto error_free_subvol_name;
789 }
790
791 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
792 s->s_flags |= MS_ACTIVE;
793 }
794
795 root = get_default_root(s, subvol_objectid);
796 if (IS_ERR(root)) {
797 error = PTR_ERR(root);
798 deactivate_locked_super(s);
799 goto error_free_subvol_name;
800 }
801 /* if they gave us a subvolume name bind mount into that */
802 if (strcmp(subvol_name, ".")) {
803 struct dentry *new_root;
804 mutex_lock(&root->d_inode->i_mutex);
805 new_root = lookup_one_len(subvol_name, root,
806 strlen(subvol_name));
807 mutex_unlock(&root->d_inode->i_mutex);
808
809 if (IS_ERR(new_root)) {
810 dput(root);
811 deactivate_locked_super(s);
812 error = PTR_ERR(new_root);
813 goto error_free_subvol_name;
814 }
815 if (!new_root->d_inode) {
816 dput(root);
817 dput(new_root);
818 deactivate_locked_super(s);
819 error = -ENXIO;
820 goto error_free_subvol_name;
821 }
822 dput(root);
823 root = new_root;
824 }
825
826 kfree(subvol_name);
827 return root;
828
829 error_s:
830 error = PTR_ERR(s);
831 error_close_devices:
832 btrfs_close_devices(fs_devices);
833 kfree(fs_info);
834 kfree(tree_root);
835 error_free_subvol_name:
836 kfree(subvol_name);
837 return ERR_PTR(error);
838 }
839
840 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
841 {
842 struct btrfs_root *root = btrfs_sb(sb);
843 int ret;
844
845 ret = btrfs_parse_options(root, data);
846 if (ret)
847 return -EINVAL;
848
849 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
850 return 0;
851
852 if (*flags & MS_RDONLY) {
853 sb->s_flags |= MS_RDONLY;
854
855 ret = btrfs_commit_super(root);
856 WARN_ON(ret);
857 } else {
858 if (root->fs_info->fs_devices->rw_devices == 0)
859 return -EACCES;
860
861 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
862 return -EINVAL;
863
864 ret = btrfs_cleanup_fs_roots(root->fs_info);
865 WARN_ON(ret);
866
867 /* recover relocation */
868 ret = btrfs_recover_relocation(root);
869 WARN_ON(ret);
870
871 sb->s_flags &= ~MS_RDONLY;
872 }
873
874 return 0;
875 }
876
877 /*
878 * The helper to calc the free space on the devices that can be used to store
879 * file data.
880 */
881 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
882 {
883 struct btrfs_fs_info *fs_info = root->fs_info;
884 struct btrfs_device_info *devices_info;
885 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
886 struct btrfs_device *device;
887 u64 skip_space;
888 u64 type;
889 u64 avail_space;
890 u64 used_space;
891 u64 min_stripe_size;
892 int min_stripes = 1;
893 int i = 0, nr_devices;
894 int ret;
895
896 nr_devices = fs_info->fs_devices->rw_devices;
897 BUG_ON(!nr_devices);
898
899 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
900 GFP_NOFS);
901 if (!devices_info)
902 return -ENOMEM;
903
904 /* calc min stripe number for data space alloction */
905 type = btrfs_get_alloc_profile(root, 1);
906 if (type & BTRFS_BLOCK_GROUP_RAID0)
907 min_stripes = 2;
908 else if (type & BTRFS_BLOCK_GROUP_RAID1)
909 min_stripes = 2;
910 else if (type & BTRFS_BLOCK_GROUP_RAID10)
911 min_stripes = 4;
912
913 if (type & BTRFS_BLOCK_GROUP_DUP)
914 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
915 else
916 min_stripe_size = BTRFS_STRIPE_LEN;
917
918 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
919 if (!device->in_fs_metadata)
920 continue;
921
922 avail_space = device->total_bytes - device->bytes_used;
923
924 /* align with stripe_len */
925 do_div(avail_space, BTRFS_STRIPE_LEN);
926 avail_space *= BTRFS_STRIPE_LEN;
927
928 /*
929 * In order to avoid overwritting the superblock on the drive,
930 * btrfs starts at an offset of at least 1MB when doing chunk
931 * allocation.
932 */
933 skip_space = 1024 * 1024;
934
935 /* user can set the offset in fs_info->alloc_start. */
936 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
937 device->total_bytes)
938 skip_space = max(fs_info->alloc_start, skip_space);
939
940 /*
941 * btrfs can not use the free space in [0, skip_space - 1],
942 * we must subtract it from the total. In order to implement
943 * it, we account the used space in this range first.
944 */
945 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
946 &used_space);
947 if (ret) {
948 kfree(devices_info);
949 return ret;
950 }
951
952 /* calc the free space in [0, skip_space - 1] */
953 skip_space -= used_space;
954
955 /*
956 * we can use the free space in [0, skip_space - 1], subtract
957 * it from the total.
958 */
959 if (avail_space && avail_space >= skip_space)
960 avail_space -= skip_space;
961 else
962 avail_space = 0;
963
964 if (avail_space < min_stripe_size)
965 continue;
966
967 devices_info[i].dev = device;
968 devices_info[i].max_avail = avail_space;
969
970 i++;
971 }
972
973 nr_devices = i;
974
975 btrfs_descending_sort_devices(devices_info, nr_devices);
976
977 i = nr_devices - 1;
978 avail_space = 0;
979 while (nr_devices >= min_stripes) {
980 if (devices_info[i].max_avail >= min_stripe_size) {
981 int j;
982 u64 alloc_size;
983
984 avail_space += devices_info[i].max_avail * min_stripes;
985 alloc_size = devices_info[i].max_avail;
986 for (j = i + 1 - min_stripes; j <= i; j++)
987 devices_info[j].max_avail -= alloc_size;
988 }
989 i--;
990 nr_devices--;
991 }
992
993 kfree(devices_info);
994 *free_bytes = avail_space;
995 return 0;
996 }
997
998 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
999 {
1000 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1001 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1002 struct list_head *head = &root->fs_info->space_info;
1003 struct btrfs_space_info *found;
1004 u64 total_used = 0;
1005 u64 total_free_data = 0;
1006 int bits = dentry->d_sb->s_blocksize_bits;
1007 __be32 *fsid = (__be32 *)root->fs_info->fsid;
1008 int ret;
1009
1010 /* holding chunk_muext to avoid allocating new chunks */
1011 mutex_lock(&root->fs_info->chunk_mutex);
1012 rcu_read_lock();
1013 list_for_each_entry_rcu(found, head, list) {
1014 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1015 total_free_data += found->disk_total - found->disk_used;
1016 total_free_data -=
1017 btrfs_account_ro_block_groups_free_space(found);
1018 }
1019
1020 total_used += found->disk_used;
1021 }
1022 rcu_read_unlock();
1023
1024 buf->f_namelen = BTRFS_NAME_LEN;
1025 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1026 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1027 buf->f_bsize = dentry->d_sb->s_blocksize;
1028 buf->f_type = BTRFS_SUPER_MAGIC;
1029 buf->f_bavail = total_free_data;
1030 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1031 if (ret) {
1032 mutex_unlock(&root->fs_info->chunk_mutex);
1033 return ret;
1034 }
1035 buf->f_bavail += total_free_data;
1036 buf->f_bavail = buf->f_bavail >> bits;
1037 mutex_unlock(&root->fs_info->chunk_mutex);
1038
1039 /* We treat it as constant endianness (it doesn't matter _which_)
1040 because we want the fsid to come out the same whether mounted
1041 on a big-endian or little-endian host */
1042 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1043 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1044 /* Mask in the root object ID too, to disambiguate subvols */
1045 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1046 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1047
1048 return 0;
1049 }
1050
1051 static struct file_system_type btrfs_fs_type = {
1052 .owner = THIS_MODULE,
1053 .name = "btrfs",
1054 .mount = btrfs_mount,
1055 .kill_sb = kill_anon_super,
1056 .fs_flags = FS_REQUIRES_DEV,
1057 };
1058
1059 /*
1060 * used by btrfsctl to scan devices when no FS is mounted
1061 */
1062 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1063 unsigned long arg)
1064 {
1065 struct btrfs_ioctl_vol_args *vol;
1066 struct btrfs_fs_devices *fs_devices;
1067 int ret = -ENOTTY;
1068
1069 if (!capable(CAP_SYS_ADMIN))
1070 return -EPERM;
1071
1072 vol = memdup_user((void __user *)arg, sizeof(*vol));
1073 if (IS_ERR(vol))
1074 return PTR_ERR(vol);
1075
1076 switch (cmd) {
1077 case BTRFS_IOC_SCAN_DEV:
1078 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1079 &btrfs_fs_type, &fs_devices);
1080 break;
1081 }
1082
1083 kfree(vol);
1084 return ret;
1085 }
1086
1087 static int btrfs_freeze(struct super_block *sb)
1088 {
1089 struct btrfs_root *root = btrfs_sb(sb);
1090 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1091 mutex_lock(&root->fs_info->cleaner_mutex);
1092 return 0;
1093 }
1094
1095 static int btrfs_unfreeze(struct super_block *sb)
1096 {
1097 struct btrfs_root *root = btrfs_sb(sb);
1098 mutex_unlock(&root->fs_info->cleaner_mutex);
1099 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1100 return 0;
1101 }
1102
1103 static const struct super_operations btrfs_super_ops = {
1104 .drop_inode = btrfs_drop_inode,
1105 .evict_inode = btrfs_evict_inode,
1106 .put_super = btrfs_put_super,
1107 .sync_fs = btrfs_sync_fs,
1108 .show_options = btrfs_show_options,
1109 .write_inode = btrfs_write_inode,
1110 .dirty_inode = btrfs_dirty_inode,
1111 .alloc_inode = btrfs_alloc_inode,
1112 .destroy_inode = btrfs_destroy_inode,
1113 .statfs = btrfs_statfs,
1114 .remount_fs = btrfs_remount,
1115 .freeze_fs = btrfs_freeze,
1116 .unfreeze_fs = btrfs_unfreeze,
1117 };
1118
1119 static const struct file_operations btrfs_ctl_fops = {
1120 .unlocked_ioctl = btrfs_control_ioctl,
1121 .compat_ioctl = btrfs_control_ioctl,
1122 .owner = THIS_MODULE,
1123 .llseek = noop_llseek,
1124 };
1125
1126 static struct miscdevice btrfs_misc = {
1127 .minor = BTRFS_MINOR,
1128 .name = "btrfs-control",
1129 .fops = &btrfs_ctl_fops
1130 };
1131
1132 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1133 MODULE_ALIAS("devname:btrfs-control");
1134
1135 static int btrfs_interface_init(void)
1136 {
1137 return misc_register(&btrfs_misc);
1138 }
1139
1140 static void btrfs_interface_exit(void)
1141 {
1142 if (misc_deregister(&btrfs_misc) < 0)
1143 printk(KERN_INFO "misc_deregister failed for control device");
1144 }
1145
1146 static int __init init_btrfs_fs(void)
1147 {
1148 int err;
1149
1150 err = btrfs_init_sysfs();
1151 if (err)
1152 return err;
1153
1154 err = btrfs_init_compress();
1155 if (err)
1156 goto free_sysfs;
1157
1158 err = btrfs_init_cachep();
1159 if (err)
1160 goto free_compress;
1161
1162 err = extent_io_init();
1163 if (err)
1164 goto free_cachep;
1165
1166 err = extent_map_init();
1167 if (err)
1168 goto free_extent_io;
1169
1170 err = btrfs_interface_init();
1171 if (err)
1172 goto free_extent_map;
1173
1174 err = register_filesystem(&btrfs_fs_type);
1175 if (err)
1176 goto unregister_ioctl;
1177
1178 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1179 return 0;
1180
1181 unregister_ioctl:
1182 btrfs_interface_exit();
1183 free_extent_map:
1184 extent_map_exit();
1185 free_extent_io:
1186 extent_io_exit();
1187 free_cachep:
1188 btrfs_destroy_cachep();
1189 free_compress:
1190 btrfs_exit_compress();
1191 free_sysfs:
1192 btrfs_exit_sysfs();
1193 return err;
1194 }
1195
1196 static void __exit exit_btrfs_fs(void)
1197 {
1198 btrfs_destroy_cachep();
1199 extent_map_exit();
1200 extent_io_exit();
1201 btrfs_interface_exit();
1202 unregister_filesystem(&btrfs_fs_type);
1203 btrfs_exit_sysfs();
1204 btrfs_cleanup_fs_uuids();
1205 btrfs_exit_compress();
1206 }
1207
1208 module_init(init_btrfs_fs)
1209 module_exit(exit_btrfs_fs)
1210
1211 MODULE_LICENSE("GPL");
This page took 0.05546 seconds and 5 git commands to generate.