fs/btrfs: Add missing btrfs_free_path
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "xattr.h"
50 #include "volumes.h"
51 #include "version.h"
52 #include "export.h"
53 #include "compression.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/btrfs.h>
57
58 static const struct super_operations btrfs_super_ops;
59
60 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
61 char nbuf[16])
62 {
63 char *errstr = NULL;
64
65 switch (errno) {
66 case -EIO:
67 errstr = "IO failure";
68 break;
69 case -ENOMEM:
70 errstr = "Out of memory";
71 break;
72 case -EROFS:
73 errstr = "Readonly filesystem";
74 break;
75 default:
76 if (nbuf) {
77 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
78 errstr = nbuf;
79 }
80 break;
81 }
82
83 return errstr;
84 }
85
86 static void __save_error_info(struct btrfs_fs_info *fs_info)
87 {
88 /*
89 * today we only save the error info into ram. Long term we'll
90 * also send it down to the disk
91 */
92 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
93 }
94
95 /* NOTE:
96 * We move write_super stuff at umount in order to avoid deadlock
97 * for umount hold all lock.
98 */
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101 __save_error_info(fs_info);
102 }
103
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107 struct super_block *sb = fs_info->sb;
108
109 if (sb->s_flags & MS_RDONLY)
110 return;
111
112 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
113 sb->s_flags |= MS_RDONLY;
114 printk(KERN_INFO "btrfs is forced readonly\n");
115 }
116 }
117
118 /*
119 * __btrfs_std_error decodes expected errors from the caller and
120 * invokes the approciate error response.
121 */
122 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
123 unsigned int line, int errno)
124 {
125 struct super_block *sb = fs_info->sb;
126 char nbuf[16];
127 const char *errstr;
128
129 /*
130 * Special case: if the error is EROFS, and we're already
131 * under MS_RDONLY, then it is safe here.
132 */
133 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
134 return;
135
136 errstr = btrfs_decode_error(fs_info, errno, nbuf);
137 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
138 sb->s_id, function, line, errstr);
139 save_error_info(fs_info);
140
141 btrfs_handle_error(fs_info);
142 }
143
144 static void btrfs_put_super(struct super_block *sb)
145 {
146 struct btrfs_root *root = btrfs_sb(sb);
147 int ret;
148
149 ret = close_ctree(root);
150 sb->s_fs_info = NULL;
151
152 (void)ret; /* FIXME: need to fix VFS to return error? */
153 }
154
155 enum {
156 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
157 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
158 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
159 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
160 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
161 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
162 Opt_enospc_debug, Opt_subvolrootid, Opt_err,
163 };
164
165 static match_table_t tokens = {
166 {Opt_degraded, "degraded"},
167 {Opt_subvol, "subvol=%s"},
168 {Opt_subvolid, "subvolid=%d"},
169 {Opt_device, "device=%s"},
170 {Opt_nodatasum, "nodatasum"},
171 {Opt_nodatacow, "nodatacow"},
172 {Opt_nobarrier, "nobarrier"},
173 {Opt_max_inline, "max_inline=%s"},
174 {Opt_alloc_start, "alloc_start=%s"},
175 {Opt_thread_pool, "thread_pool=%d"},
176 {Opt_compress, "compress"},
177 {Opt_compress_type, "compress=%s"},
178 {Opt_compress_force, "compress-force"},
179 {Opt_compress_force_type, "compress-force=%s"},
180 {Opt_ssd, "ssd"},
181 {Opt_ssd_spread, "ssd_spread"},
182 {Opt_nossd, "nossd"},
183 {Opt_noacl, "noacl"},
184 {Opt_notreelog, "notreelog"},
185 {Opt_flushoncommit, "flushoncommit"},
186 {Opt_ratio, "metadata_ratio=%d"},
187 {Opt_discard, "discard"},
188 {Opt_space_cache, "space_cache"},
189 {Opt_clear_cache, "clear_cache"},
190 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
191 {Opt_enospc_debug, "enospc_debug"},
192 {Opt_subvolrootid, "subvolrootid=%d"},
193 {Opt_err, NULL},
194 };
195
196 /*
197 * Regular mount options parser. Everything that is needed only when
198 * reading in a new superblock is parsed here.
199 */
200 int btrfs_parse_options(struct btrfs_root *root, char *options)
201 {
202 struct btrfs_fs_info *info = root->fs_info;
203 substring_t args[MAX_OPT_ARGS];
204 char *p, *num, *orig;
205 int intarg;
206 int ret = 0;
207 char *compress_type;
208 bool compress_force = false;
209
210 if (!options)
211 return 0;
212
213 /*
214 * strsep changes the string, duplicate it because parse_options
215 * gets called twice
216 */
217 options = kstrdup(options, GFP_NOFS);
218 if (!options)
219 return -ENOMEM;
220
221 orig = options;
222
223 while ((p = strsep(&options, ",")) != NULL) {
224 int token;
225 if (!*p)
226 continue;
227
228 token = match_token(p, tokens, args);
229 switch (token) {
230 case Opt_degraded:
231 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
232 btrfs_set_opt(info->mount_opt, DEGRADED);
233 break;
234 case Opt_subvol:
235 case Opt_subvolid:
236 case Opt_subvolrootid:
237 case Opt_device:
238 /*
239 * These are parsed by btrfs_parse_early_options
240 * and can be happily ignored here.
241 */
242 break;
243 case Opt_nodatasum:
244 printk(KERN_INFO "btrfs: setting nodatasum\n");
245 btrfs_set_opt(info->mount_opt, NODATASUM);
246 break;
247 case Opt_nodatacow:
248 printk(KERN_INFO "btrfs: setting nodatacow\n");
249 btrfs_set_opt(info->mount_opt, NODATACOW);
250 btrfs_set_opt(info->mount_opt, NODATASUM);
251 break;
252 case Opt_compress_force:
253 case Opt_compress_force_type:
254 compress_force = true;
255 case Opt_compress:
256 case Opt_compress_type:
257 if (token == Opt_compress ||
258 token == Opt_compress_force ||
259 strcmp(args[0].from, "zlib") == 0) {
260 compress_type = "zlib";
261 info->compress_type = BTRFS_COMPRESS_ZLIB;
262 } else if (strcmp(args[0].from, "lzo") == 0) {
263 compress_type = "lzo";
264 info->compress_type = BTRFS_COMPRESS_LZO;
265 } else {
266 ret = -EINVAL;
267 goto out;
268 }
269
270 btrfs_set_opt(info->mount_opt, COMPRESS);
271 if (compress_force) {
272 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
273 pr_info("btrfs: force %s compression\n",
274 compress_type);
275 } else
276 pr_info("btrfs: use %s compression\n",
277 compress_type);
278 break;
279 case Opt_ssd:
280 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
281 btrfs_set_opt(info->mount_opt, SSD);
282 break;
283 case Opt_ssd_spread:
284 printk(KERN_INFO "btrfs: use spread ssd "
285 "allocation scheme\n");
286 btrfs_set_opt(info->mount_opt, SSD);
287 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
288 break;
289 case Opt_nossd:
290 printk(KERN_INFO "btrfs: not using ssd allocation "
291 "scheme\n");
292 btrfs_set_opt(info->mount_opt, NOSSD);
293 btrfs_clear_opt(info->mount_opt, SSD);
294 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
295 break;
296 case Opt_nobarrier:
297 printk(KERN_INFO "btrfs: turning off barriers\n");
298 btrfs_set_opt(info->mount_opt, NOBARRIER);
299 break;
300 case Opt_thread_pool:
301 intarg = 0;
302 match_int(&args[0], &intarg);
303 if (intarg) {
304 info->thread_pool_size = intarg;
305 printk(KERN_INFO "btrfs: thread pool %d\n",
306 info->thread_pool_size);
307 }
308 break;
309 case Opt_max_inline:
310 num = match_strdup(&args[0]);
311 if (num) {
312 info->max_inline = memparse(num, NULL);
313 kfree(num);
314
315 if (info->max_inline) {
316 info->max_inline = max_t(u64,
317 info->max_inline,
318 root->sectorsize);
319 }
320 printk(KERN_INFO "btrfs: max_inline at %llu\n",
321 (unsigned long long)info->max_inline);
322 }
323 break;
324 case Opt_alloc_start:
325 num = match_strdup(&args[0]);
326 if (num) {
327 info->alloc_start = memparse(num, NULL);
328 kfree(num);
329 printk(KERN_INFO
330 "btrfs: allocations start at %llu\n",
331 (unsigned long long)info->alloc_start);
332 }
333 break;
334 case Opt_noacl:
335 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
336 break;
337 case Opt_notreelog:
338 printk(KERN_INFO "btrfs: disabling tree log\n");
339 btrfs_set_opt(info->mount_opt, NOTREELOG);
340 break;
341 case Opt_flushoncommit:
342 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
343 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
344 break;
345 case Opt_ratio:
346 intarg = 0;
347 match_int(&args[0], &intarg);
348 if (intarg) {
349 info->metadata_ratio = intarg;
350 printk(KERN_INFO "btrfs: metadata ratio %d\n",
351 info->metadata_ratio);
352 }
353 break;
354 case Opt_discard:
355 btrfs_set_opt(info->mount_opt, DISCARD);
356 break;
357 case Opt_space_cache:
358 printk(KERN_INFO "btrfs: enabling disk space caching\n");
359 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
360 break;
361 case Opt_clear_cache:
362 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
363 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
364 break;
365 case Opt_user_subvol_rm_allowed:
366 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
367 break;
368 case Opt_enospc_debug:
369 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
370 break;
371 case Opt_err:
372 printk(KERN_INFO "btrfs: unrecognized mount option "
373 "'%s'\n", p);
374 ret = -EINVAL;
375 goto out;
376 default:
377 break;
378 }
379 }
380 out:
381 kfree(orig);
382 return ret;
383 }
384
385 /*
386 * Parse mount options that are required early in the mount process.
387 *
388 * All other options will be parsed on much later in the mount process and
389 * only when we need to allocate a new super block.
390 */
391 static int btrfs_parse_early_options(const char *options, fmode_t flags,
392 void *holder, char **subvol_name, u64 *subvol_objectid,
393 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
394 {
395 substring_t args[MAX_OPT_ARGS];
396 char *opts, *orig, *p;
397 int error = 0;
398 int intarg;
399
400 if (!options)
401 goto out;
402
403 /*
404 * strsep changes the string, duplicate it because parse_options
405 * gets called twice
406 */
407 opts = kstrdup(options, GFP_KERNEL);
408 if (!opts)
409 return -ENOMEM;
410 orig = opts;
411
412 while ((p = strsep(&opts, ",")) != NULL) {
413 int token;
414 if (!*p)
415 continue;
416
417 token = match_token(p, tokens, args);
418 switch (token) {
419 case Opt_subvol:
420 *subvol_name = match_strdup(&args[0]);
421 break;
422 case Opt_subvolid:
423 intarg = 0;
424 error = match_int(&args[0], &intarg);
425 if (!error) {
426 /* we want the original fs_tree */
427 if (!intarg)
428 *subvol_objectid =
429 BTRFS_FS_TREE_OBJECTID;
430 else
431 *subvol_objectid = intarg;
432 }
433 break;
434 case Opt_subvolrootid:
435 intarg = 0;
436 error = match_int(&args[0], &intarg);
437 if (!error) {
438 /* we want the original fs_tree */
439 if (!intarg)
440 *subvol_rootid =
441 BTRFS_FS_TREE_OBJECTID;
442 else
443 *subvol_rootid = intarg;
444 }
445 break;
446 case Opt_device:
447 error = btrfs_scan_one_device(match_strdup(&args[0]),
448 flags, holder, fs_devices);
449 if (error)
450 goto out_free_opts;
451 break;
452 default:
453 break;
454 }
455 }
456
457 out_free_opts:
458 kfree(orig);
459 out:
460 /*
461 * If no subvolume name is specified we use the default one. Allocate
462 * a copy of the string "." here so that code later in the
463 * mount path doesn't care if it's the default volume or another one.
464 */
465 if (!*subvol_name) {
466 *subvol_name = kstrdup(".", GFP_KERNEL);
467 if (!*subvol_name)
468 return -ENOMEM;
469 }
470 return error;
471 }
472
473 static struct dentry *get_default_root(struct super_block *sb,
474 u64 subvol_objectid)
475 {
476 struct btrfs_root *root = sb->s_fs_info;
477 struct btrfs_root *new_root;
478 struct btrfs_dir_item *di;
479 struct btrfs_path *path;
480 struct btrfs_key location;
481 struct inode *inode;
482 struct dentry *dentry;
483 u64 dir_id;
484 int new = 0;
485
486 /*
487 * We have a specific subvol we want to mount, just setup location and
488 * go look up the root.
489 */
490 if (subvol_objectid) {
491 location.objectid = subvol_objectid;
492 location.type = BTRFS_ROOT_ITEM_KEY;
493 location.offset = (u64)-1;
494 goto find_root;
495 }
496
497 path = btrfs_alloc_path();
498 if (!path)
499 return ERR_PTR(-ENOMEM);
500 path->leave_spinning = 1;
501
502 /*
503 * Find the "default" dir item which points to the root item that we
504 * will mount by default if we haven't been given a specific subvolume
505 * to mount.
506 */
507 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
508 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
509 if (IS_ERR(di)) {
510 btrfs_free_path(path);
511 return ERR_CAST(di);
512 }
513 if (!di) {
514 /*
515 * Ok the default dir item isn't there. This is weird since
516 * it's always been there, but don't freak out, just try and
517 * mount to root most subvolume.
518 */
519 btrfs_free_path(path);
520 dir_id = BTRFS_FIRST_FREE_OBJECTID;
521 new_root = root->fs_info->fs_root;
522 goto setup_root;
523 }
524
525 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
526 btrfs_free_path(path);
527
528 find_root:
529 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
530 if (IS_ERR(new_root))
531 return ERR_CAST(new_root);
532
533 if (btrfs_root_refs(&new_root->root_item) == 0)
534 return ERR_PTR(-ENOENT);
535
536 dir_id = btrfs_root_dirid(&new_root->root_item);
537 setup_root:
538 location.objectid = dir_id;
539 location.type = BTRFS_INODE_ITEM_KEY;
540 location.offset = 0;
541
542 inode = btrfs_iget(sb, &location, new_root, &new);
543 if (IS_ERR(inode))
544 return ERR_CAST(inode);
545
546 /*
547 * If we're just mounting the root most subvol put the inode and return
548 * a reference to the dentry. We will have already gotten a reference
549 * to the inode in btrfs_fill_super so we're good to go.
550 */
551 if (!new && sb->s_root->d_inode == inode) {
552 iput(inode);
553 return dget(sb->s_root);
554 }
555
556 if (new) {
557 const struct qstr name = { .name = "/", .len = 1 };
558
559 /*
560 * New inode, we need to make the dentry a sibling of s_root so
561 * everything gets cleaned up properly on unmount.
562 */
563 dentry = d_alloc(sb->s_root, &name);
564 if (!dentry) {
565 iput(inode);
566 return ERR_PTR(-ENOMEM);
567 }
568 d_splice_alias(inode, dentry);
569 } else {
570 /*
571 * We found the inode in cache, just find a dentry for it and
572 * put the reference to the inode we just got.
573 */
574 dentry = d_find_alias(inode);
575 iput(inode);
576 }
577
578 return dentry;
579 }
580
581 static int btrfs_fill_super(struct super_block *sb,
582 struct btrfs_fs_devices *fs_devices,
583 void *data, int silent)
584 {
585 struct inode *inode;
586 struct dentry *root_dentry;
587 struct btrfs_root *tree_root;
588 struct btrfs_key key;
589 int err;
590
591 sb->s_maxbytes = MAX_LFS_FILESIZE;
592 sb->s_magic = BTRFS_SUPER_MAGIC;
593 sb->s_op = &btrfs_super_ops;
594 sb->s_d_op = &btrfs_dentry_operations;
595 sb->s_export_op = &btrfs_export_ops;
596 sb->s_xattr = btrfs_xattr_handlers;
597 sb->s_time_gran = 1;
598 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
599 sb->s_flags |= MS_POSIXACL;
600 #endif
601
602 tree_root = open_ctree(sb, fs_devices, (char *)data);
603
604 if (IS_ERR(tree_root)) {
605 printk("btrfs: open_ctree failed\n");
606 return PTR_ERR(tree_root);
607 }
608 sb->s_fs_info = tree_root;
609
610 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
611 key.type = BTRFS_INODE_ITEM_KEY;
612 key.offset = 0;
613 inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
614 if (IS_ERR(inode)) {
615 err = PTR_ERR(inode);
616 goto fail_close;
617 }
618
619 root_dentry = d_alloc_root(inode);
620 if (!root_dentry) {
621 iput(inode);
622 err = -ENOMEM;
623 goto fail_close;
624 }
625
626 sb->s_root = root_dentry;
627
628 save_mount_options(sb, data);
629 return 0;
630
631 fail_close:
632 close_ctree(tree_root);
633 return err;
634 }
635
636 int btrfs_sync_fs(struct super_block *sb, int wait)
637 {
638 struct btrfs_trans_handle *trans;
639 struct btrfs_root *root = btrfs_sb(sb);
640 int ret;
641
642 trace_btrfs_sync_fs(wait);
643
644 if (!wait) {
645 filemap_flush(root->fs_info->btree_inode->i_mapping);
646 return 0;
647 }
648
649 btrfs_start_delalloc_inodes(root, 0);
650 btrfs_wait_ordered_extents(root, 0, 0);
651
652 trans = btrfs_start_transaction(root, 0);
653 if (IS_ERR(trans))
654 return PTR_ERR(trans);
655 ret = btrfs_commit_transaction(trans, root);
656 return ret;
657 }
658
659 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
660 {
661 struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
662 struct btrfs_fs_info *info = root->fs_info;
663 char *compress_type;
664
665 if (btrfs_test_opt(root, DEGRADED))
666 seq_puts(seq, ",degraded");
667 if (btrfs_test_opt(root, NODATASUM))
668 seq_puts(seq, ",nodatasum");
669 if (btrfs_test_opt(root, NODATACOW))
670 seq_puts(seq, ",nodatacow");
671 if (btrfs_test_opt(root, NOBARRIER))
672 seq_puts(seq, ",nobarrier");
673 if (info->max_inline != 8192 * 1024)
674 seq_printf(seq, ",max_inline=%llu",
675 (unsigned long long)info->max_inline);
676 if (info->alloc_start != 0)
677 seq_printf(seq, ",alloc_start=%llu",
678 (unsigned long long)info->alloc_start);
679 if (info->thread_pool_size != min_t(unsigned long,
680 num_online_cpus() + 2, 8))
681 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
682 if (btrfs_test_opt(root, COMPRESS)) {
683 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
684 compress_type = "zlib";
685 else
686 compress_type = "lzo";
687 if (btrfs_test_opt(root, FORCE_COMPRESS))
688 seq_printf(seq, ",compress-force=%s", compress_type);
689 else
690 seq_printf(seq, ",compress=%s", compress_type);
691 }
692 if (btrfs_test_opt(root, NOSSD))
693 seq_puts(seq, ",nossd");
694 if (btrfs_test_opt(root, SSD_SPREAD))
695 seq_puts(seq, ",ssd_spread");
696 else if (btrfs_test_opt(root, SSD))
697 seq_puts(seq, ",ssd");
698 if (btrfs_test_opt(root, NOTREELOG))
699 seq_puts(seq, ",notreelog");
700 if (btrfs_test_opt(root, FLUSHONCOMMIT))
701 seq_puts(seq, ",flushoncommit");
702 if (btrfs_test_opt(root, DISCARD))
703 seq_puts(seq, ",discard");
704 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
705 seq_puts(seq, ",noacl");
706 if (btrfs_test_opt(root, SPACE_CACHE))
707 seq_puts(seq, ",space_cache");
708 if (btrfs_test_opt(root, CLEAR_CACHE))
709 seq_puts(seq, ",clear_cache");
710 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
711 seq_puts(seq, ",user_subvol_rm_allowed");
712 return 0;
713 }
714
715 static int btrfs_test_super(struct super_block *s, void *data)
716 {
717 struct btrfs_root *test_root = data;
718 struct btrfs_root *root = btrfs_sb(s);
719
720 /*
721 * If this super block is going away, return false as it
722 * can't match as an existing super block.
723 */
724 if (!atomic_read(&s->s_active))
725 return 0;
726 return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
727 }
728
729 static int btrfs_set_super(struct super_block *s, void *data)
730 {
731 s->s_fs_info = data;
732
733 return set_anon_super(s, data);
734 }
735
736
737 /*
738 * Find a superblock for the given device / mount point.
739 *
740 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
741 * for multiple device setup. Make sure to keep it in sync.
742 */
743 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
744 const char *dev_name, void *data)
745 {
746 struct block_device *bdev = NULL;
747 struct super_block *s;
748 struct dentry *root;
749 struct btrfs_fs_devices *fs_devices = NULL;
750 struct btrfs_root *tree_root = NULL;
751 struct btrfs_fs_info *fs_info = NULL;
752 fmode_t mode = FMODE_READ;
753 char *subvol_name = NULL;
754 u64 subvol_objectid = 0;
755 u64 subvol_rootid = 0;
756 int error = 0;
757
758 if (!(flags & MS_RDONLY))
759 mode |= FMODE_WRITE;
760
761 error = btrfs_parse_early_options(data, mode, fs_type,
762 &subvol_name, &subvol_objectid,
763 &subvol_rootid, &fs_devices);
764 if (error)
765 return ERR_PTR(error);
766
767 error = btrfs_scan_one_device(dev_name, mode, fs_type, &fs_devices);
768 if (error)
769 goto error_free_subvol_name;
770
771 error = btrfs_open_devices(fs_devices, mode, fs_type);
772 if (error)
773 goto error_free_subvol_name;
774
775 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
776 error = -EACCES;
777 goto error_close_devices;
778 }
779
780 /*
781 * Setup a dummy root and fs_info for test/set super. This is because
782 * we don't actually fill this stuff out until open_ctree, but we need
783 * it for searching for existing supers, so this lets us do that and
784 * then open_ctree will properly initialize everything later.
785 */
786 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
787 tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
788 if (!fs_info || !tree_root) {
789 error = -ENOMEM;
790 goto error_close_devices;
791 }
792 fs_info->tree_root = tree_root;
793 fs_info->fs_devices = fs_devices;
794 tree_root->fs_info = fs_info;
795
796 bdev = fs_devices->latest_bdev;
797 s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
798 if (IS_ERR(s))
799 goto error_s;
800
801 if (s->s_root) {
802 if ((flags ^ s->s_flags) & MS_RDONLY) {
803 deactivate_locked_super(s);
804 error = -EBUSY;
805 goto error_close_devices;
806 }
807
808 btrfs_close_devices(fs_devices);
809 kfree(fs_info);
810 kfree(tree_root);
811 } else {
812 char b[BDEVNAME_SIZE];
813
814 s->s_flags = flags;
815 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
816 error = btrfs_fill_super(s, fs_devices, data,
817 flags & MS_SILENT ? 1 : 0);
818 if (error) {
819 deactivate_locked_super(s);
820 goto error_free_subvol_name;
821 }
822
823 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
824 s->s_flags |= MS_ACTIVE;
825 }
826
827 /* if they gave us a subvolume name bind mount into that */
828 if (strcmp(subvol_name, ".")) {
829 struct dentry *new_root;
830
831 root = get_default_root(s, subvol_rootid);
832 if (IS_ERR(root)) {
833 error = PTR_ERR(root);
834 deactivate_locked_super(s);
835 goto error_free_subvol_name;
836 }
837
838 mutex_lock(&root->d_inode->i_mutex);
839 new_root = lookup_one_len(subvol_name, root,
840 strlen(subvol_name));
841 mutex_unlock(&root->d_inode->i_mutex);
842
843 if (IS_ERR(new_root)) {
844 dput(root);
845 deactivate_locked_super(s);
846 error = PTR_ERR(new_root);
847 goto error_free_subvol_name;
848 }
849 if (!new_root->d_inode) {
850 dput(root);
851 dput(new_root);
852 deactivate_locked_super(s);
853 error = -ENXIO;
854 goto error_free_subvol_name;
855 }
856 dput(root);
857 root = new_root;
858 } else {
859 root = get_default_root(s, subvol_objectid);
860 if (IS_ERR(root)) {
861 error = PTR_ERR(root);
862 deactivate_locked_super(s);
863 goto error_free_subvol_name;
864 }
865 }
866
867 kfree(subvol_name);
868 return root;
869
870 error_s:
871 error = PTR_ERR(s);
872 error_close_devices:
873 btrfs_close_devices(fs_devices);
874 kfree(fs_info);
875 kfree(tree_root);
876 error_free_subvol_name:
877 kfree(subvol_name);
878 return ERR_PTR(error);
879 }
880
881 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
882 {
883 struct btrfs_root *root = btrfs_sb(sb);
884 int ret;
885
886 ret = btrfs_parse_options(root, data);
887 if (ret)
888 return -EINVAL;
889
890 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
891 return 0;
892
893 if (*flags & MS_RDONLY) {
894 sb->s_flags |= MS_RDONLY;
895
896 ret = btrfs_commit_super(root);
897 WARN_ON(ret);
898 } else {
899 if (root->fs_info->fs_devices->rw_devices == 0)
900 return -EACCES;
901
902 if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
903 return -EINVAL;
904
905 ret = btrfs_cleanup_fs_roots(root->fs_info);
906 WARN_ON(ret);
907
908 /* recover relocation */
909 ret = btrfs_recover_relocation(root);
910 WARN_ON(ret);
911
912 sb->s_flags &= ~MS_RDONLY;
913 }
914
915 return 0;
916 }
917
918 /*
919 * The helper to calc the free space on the devices that can be used to store
920 * file data.
921 */
922 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
923 {
924 struct btrfs_fs_info *fs_info = root->fs_info;
925 struct btrfs_device_info *devices_info;
926 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
927 struct btrfs_device *device;
928 u64 skip_space;
929 u64 type;
930 u64 avail_space;
931 u64 used_space;
932 u64 min_stripe_size;
933 int min_stripes = 1;
934 int i = 0, nr_devices;
935 int ret;
936
937 nr_devices = fs_info->fs_devices->rw_devices;
938 BUG_ON(!nr_devices);
939
940 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
941 GFP_NOFS);
942 if (!devices_info)
943 return -ENOMEM;
944
945 /* calc min stripe number for data space alloction */
946 type = btrfs_get_alloc_profile(root, 1);
947 if (type & BTRFS_BLOCK_GROUP_RAID0)
948 min_stripes = 2;
949 else if (type & BTRFS_BLOCK_GROUP_RAID1)
950 min_stripes = 2;
951 else if (type & BTRFS_BLOCK_GROUP_RAID10)
952 min_stripes = 4;
953
954 if (type & BTRFS_BLOCK_GROUP_DUP)
955 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
956 else
957 min_stripe_size = BTRFS_STRIPE_LEN;
958
959 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
960 if (!device->in_fs_metadata)
961 continue;
962
963 avail_space = device->total_bytes - device->bytes_used;
964
965 /* align with stripe_len */
966 do_div(avail_space, BTRFS_STRIPE_LEN);
967 avail_space *= BTRFS_STRIPE_LEN;
968
969 /*
970 * In order to avoid overwritting the superblock on the drive,
971 * btrfs starts at an offset of at least 1MB when doing chunk
972 * allocation.
973 */
974 skip_space = 1024 * 1024;
975
976 /* user can set the offset in fs_info->alloc_start. */
977 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
978 device->total_bytes)
979 skip_space = max(fs_info->alloc_start, skip_space);
980
981 /*
982 * btrfs can not use the free space in [0, skip_space - 1],
983 * we must subtract it from the total. In order to implement
984 * it, we account the used space in this range first.
985 */
986 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
987 &used_space);
988 if (ret) {
989 kfree(devices_info);
990 return ret;
991 }
992
993 /* calc the free space in [0, skip_space - 1] */
994 skip_space -= used_space;
995
996 /*
997 * we can use the free space in [0, skip_space - 1], subtract
998 * it from the total.
999 */
1000 if (avail_space && avail_space >= skip_space)
1001 avail_space -= skip_space;
1002 else
1003 avail_space = 0;
1004
1005 if (avail_space < min_stripe_size)
1006 continue;
1007
1008 devices_info[i].dev = device;
1009 devices_info[i].max_avail = avail_space;
1010
1011 i++;
1012 }
1013
1014 nr_devices = i;
1015
1016 btrfs_descending_sort_devices(devices_info, nr_devices);
1017
1018 i = nr_devices - 1;
1019 avail_space = 0;
1020 while (nr_devices >= min_stripes) {
1021 if (devices_info[i].max_avail >= min_stripe_size) {
1022 int j;
1023 u64 alloc_size;
1024
1025 avail_space += devices_info[i].max_avail * min_stripes;
1026 alloc_size = devices_info[i].max_avail;
1027 for (j = i + 1 - min_stripes; j <= i; j++)
1028 devices_info[j].max_avail -= alloc_size;
1029 }
1030 i--;
1031 nr_devices--;
1032 }
1033
1034 kfree(devices_info);
1035 *free_bytes = avail_space;
1036 return 0;
1037 }
1038
1039 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1040 {
1041 struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1042 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1043 struct list_head *head = &root->fs_info->space_info;
1044 struct btrfs_space_info *found;
1045 u64 total_used = 0;
1046 u64 total_free_data = 0;
1047 int bits = dentry->d_sb->s_blocksize_bits;
1048 __be32 *fsid = (__be32 *)root->fs_info->fsid;
1049 int ret;
1050
1051 /* holding chunk_muext to avoid allocating new chunks */
1052 mutex_lock(&root->fs_info->chunk_mutex);
1053 rcu_read_lock();
1054 list_for_each_entry_rcu(found, head, list) {
1055 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1056 total_free_data += found->disk_total - found->disk_used;
1057 total_free_data -=
1058 btrfs_account_ro_block_groups_free_space(found);
1059 }
1060
1061 total_used += found->disk_used;
1062 }
1063 rcu_read_unlock();
1064
1065 buf->f_namelen = BTRFS_NAME_LEN;
1066 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1067 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1068 buf->f_bsize = dentry->d_sb->s_blocksize;
1069 buf->f_type = BTRFS_SUPER_MAGIC;
1070 buf->f_bavail = total_free_data;
1071 ret = btrfs_calc_avail_data_space(root, &total_free_data);
1072 if (ret) {
1073 mutex_unlock(&root->fs_info->chunk_mutex);
1074 return ret;
1075 }
1076 buf->f_bavail += total_free_data;
1077 buf->f_bavail = buf->f_bavail >> bits;
1078 mutex_unlock(&root->fs_info->chunk_mutex);
1079
1080 /* We treat it as constant endianness (it doesn't matter _which_)
1081 because we want the fsid to come out the same whether mounted
1082 on a big-endian or little-endian host */
1083 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1084 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1085 /* Mask in the root object ID too, to disambiguate subvols */
1086 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1087 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1088
1089 return 0;
1090 }
1091
1092 static struct file_system_type btrfs_fs_type = {
1093 .owner = THIS_MODULE,
1094 .name = "btrfs",
1095 .mount = btrfs_mount,
1096 .kill_sb = kill_anon_super,
1097 .fs_flags = FS_REQUIRES_DEV,
1098 };
1099
1100 /*
1101 * used by btrfsctl to scan devices when no FS is mounted
1102 */
1103 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1104 unsigned long arg)
1105 {
1106 struct btrfs_ioctl_vol_args *vol;
1107 struct btrfs_fs_devices *fs_devices;
1108 int ret = -ENOTTY;
1109
1110 if (!capable(CAP_SYS_ADMIN))
1111 return -EPERM;
1112
1113 vol = memdup_user((void __user *)arg, sizeof(*vol));
1114 if (IS_ERR(vol))
1115 return PTR_ERR(vol);
1116
1117 switch (cmd) {
1118 case BTRFS_IOC_SCAN_DEV:
1119 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1120 &btrfs_fs_type, &fs_devices);
1121 break;
1122 }
1123
1124 kfree(vol);
1125 return ret;
1126 }
1127
1128 static int btrfs_freeze(struct super_block *sb)
1129 {
1130 struct btrfs_root *root = btrfs_sb(sb);
1131 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1132 mutex_lock(&root->fs_info->cleaner_mutex);
1133 return 0;
1134 }
1135
1136 static int btrfs_unfreeze(struct super_block *sb)
1137 {
1138 struct btrfs_root *root = btrfs_sb(sb);
1139 mutex_unlock(&root->fs_info->cleaner_mutex);
1140 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1141 return 0;
1142 }
1143
1144 static const struct super_operations btrfs_super_ops = {
1145 .drop_inode = btrfs_drop_inode,
1146 .evict_inode = btrfs_evict_inode,
1147 .put_super = btrfs_put_super,
1148 .sync_fs = btrfs_sync_fs,
1149 .show_options = btrfs_show_options,
1150 .write_inode = btrfs_write_inode,
1151 .dirty_inode = btrfs_dirty_inode,
1152 .alloc_inode = btrfs_alloc_inode,
1153 .destroy_inode = btrfs_destroy_inode,
1154 .statfs = btrfs_statfs,
1155 .remount_fs = btrfs_remount,
1156 .freeze_fs = btrfs_freeze,
1157 .unfreeze_fs = btrfs_unfreeze,
1158 };
1159
1160 static const struct file_operations btrfs_ctl_fops = {
1161 .unlocked_ioctl = btrfs_control_ioctl,
1162 .compat_ioctl = btrfs_control_ioctl,
1163 .owner = THIS_MODULE,
1164 .llseek = noop_llseek,
1165 };
1166
1167 static struct miscdevice btrfs_misc = {
1168 .minor = BTRFS_MINOR,
1169 .name = "btrfs-control",
1170 .fops = &btrfs_ctl_fops
1171 };
1172
1173 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1174 MODULE_ALIAS("devname:btrfs-control");
1175
1176 static int btrfs_interface_init(void)
1177 {
1178 return misc_register(&btrfs_misc);
1179 }
1180
1181 static void btrfs_interface_exit(void)
1182 {
1183 if (misc_deregister(&btrfs_misc) < 0)
1184 printk(KERN_INFO "misc_deregister failed for control device");
1185 }
1186
1187 static int __init init_btrfs_fs(void)
1188 {
1189 int err;
1190
1191 err = btrfs_init_sysfs();
1192 if (err)
1193 return err;
1194
1195 err = btrfs_init_compress();
1196 if (err)
1197 goto free_sysfs;
1198
1199 err = btrfs_init_cachep();
1200 if (err)
1201 goto free_compress;
1202
1203 err = extent_io_init();
1204 if (err)
1205 goto free_cachep;
1206
1207 err = extent_map_init();
1208 if (err)
1209 goto free_extent_io;
1210
1211 err = btrfs_interface_init();
1212 if (err)
1213 goto free_extent_map;
1214
1215 err = register_filesystem(&btrfs_fs_type);
1216 if (err)
1217 goto unregister_ioctl;
1218
1219 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1220 return 0;
1221
1222 unregister_ioctl:
1223 btrfs_interface_exit();
1224 free_extent_map:
1225 extent_map_exit();
1226 free_extent_io:
1227 extent_io_exit();
1228 free_cachep:
1229 btrfs_destroy_cachep();
1230 free_compress:
1231 btrfs_exit_compress();
1232 free_sysfs:
1233 btrfs_exit_sysfs();
1234 return err;
1235 }
1236
1237 static void __exit exit_btrfs_fs(void)
1238 {
1239 btrfs_destroy_cachep();
1240 extent_map_exit();
1241 extent_io_exit();
1242 btrfs_interface_exit();
1243 unregister_filesystem(&btrfs_fs_type);
1244 btrfs_exit_sysfs();
1245 btrfs_cleanup_fs_uuids();
1246 btrfs_exit_compress();
1247 }
1248
1249 module_init(init_btrfs_fs)
1250 module_exit(exit_btrfs_fs)
1251
1252 MODULE_LICENSE("GPL");
This page took 0.064275 seconds and 5 git commands to generate.