Btrfs: kill obsolete arguments in btrfs_wait_ordered_extents
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 char nbuf[16])
67 {
68 char *errstr = NULL;
69
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 default:
84 if (nbuf) {
85 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 errstr = nbuf;
87 }
88 break;
89 }
90
91 return errstr;
92 }
93
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96 /*
97 * today we only save the error info into ram. Long term we'll
98 * also send it down to the disk
99 */
100 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105 __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 struct super_block *sb = fs_info->sb;
112
113 if (sb->s_flags & MS_RDONLY)
114 return;
115
116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 sb->s_flags |= MS_RDONLY;
118 printk(KERN_INFO "btrfs is forced readonly\n");
119 __btrfs_scrub_cancel(fs_info);
120 // WARN_ON(1);
121 }
122 }
123
124 #ifdef CONFIG_PRINTK
125 /*
126 * __btrfs_std_error decodes expected errors from the caller and
127 * invokes the approciate error response.
128 */
129 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
130 unsigned int line, int errno, const char *fmt, ...)
131 {
132 struct super_block *sb = fs_info->sb;
133 char nbuf[16];
134 const char *errstr;
135 va_list args;
136 va_start(args, fmt);
137
138 /*
139 * Special case: if the error is EROFS, and we're already
140 * under MS_RDONLY, then it is safe here.
141 */
142 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
143 return;
144
145 errstr = btrfs_decode_error(fs_info, errno, nbuf);
146 if (fmt) {
147 struct va_format vaf = {
148 .fmt = fmt,
149 .va = &args,
150 };
151
152 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
153 sb->s_id, function, line, errstr, &vaf);
154 } else {
155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
156 sb->s_id, function, line, errstr);
157 }
158
159 /* Don't go through full error handling during mount */
160 if (sb->s_flags & MS_BORN) {
161 save_error_info(fs_info);
162 btrfs_handle_error(fs_info);
163 }
164 va_end(args);
165 }
166
167 static const char * const logtypes[] = {
168 "emergency",
169 "alert",
170 "critical",
171 "error",
172 "warning",
173 "notice",
174 "info",
175 "debug",
176 };
177
178 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
179 {
180 struct super_block *sb = fs_info->sb;
181 char lvl[4];
182 struct va_format vaf;
183 va_list args;
184 const char *type = logtypes[4];
185 int kern_level;
186
187 va_start(args, fmt);
188
189 kern_level = printk_get_level(fmt);
190 if (kern_level) {
191 size_t size = printk_skip_level(fmt) - fmt;
192 memcpy(lvl, fmt, size);
193 lvl[size] = '\0';
194 fmt += size;
195 type = logtypes[kern_level - '0'];
196 } else
197 *lvl = '\0';
198
199 vaf.fmt = fmt;
200 vaf.va = &args;
201
202 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
203
204 va_end(args);
205 }
206
207 #else
208
209 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
210 unsigned int line, int errno, const char *fmt, ...)
211 {
212 struct super_block *sb = fs_info->sb;
213
214 /*
215 * Special case: if the error is EROFS, and we're already
216 * under MS_RDONLY, then it is safe here.
217 */
218 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
219 return;
220
221 /* Don't go through full error handling during mount */
222 if (sb->s_flags & MS_BORN) {
223 save_error_info(fs_info);
224 btrfs_handle_error(fs_info);
225 }
226 }
227 #endif
228
229 /*
230 * We only mark the transaction aborted and then set the file system read-only.
231 * This will prevent new transactions from starting or trying to join this
232 * one.
233 *
234 * This means that error recovery at the call site is limited to freeing
235 * any local memory allocations and passing the error code up without
236 * further cleanup. The transaction should complete as it normally would
237 * in the call path but will return -EIO.
238 *
239 * We'll complete the cleanup in btrfs_end_transaction and
240 * btrfs_commit_transaction.
241 */
242 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
243 struct btrfs_root *root, const char *function,
244 unsigned int line, int errno)
245 {
246 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
247 trans->aborted = errno;
248 /* Nothing used. The other threads that have joined this
249 * transaction may be able to continue. */
250 if (!trans->blocks_used) {
251 char nbuf[16];
252 const char *errstr;
253
254 errstr = btrfs_decode_error(root->fs_info, errno, nbuf);
255 btrfs_printk(root->fs_info,
256 "%s:%d: Aborting unused transaction(%s).\n",
257 function, line, errstr);
258 return;
259 }
260 trans->transaction->aborted = errno;
261 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
262 }
263 /*
264 * __btrfs_panic decodes unexpected, fatal errors from the caller,
265 * issues an alert, and either panics or BUGs, depending on mount options.
266 */
267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268 unsigned int line, int errno, const char *fmt, ...)
269 {
270 char nbuf[16];
271 char *s_id = "<unknown>";
272 const char *errstr;
273 struct va_format vaf = { .fmt = fmt };
274 va_list args;
275
276 if (fs_info)
277 s_id = fs_info->sb->s_id;
278
279 va_start(args, fmt);
280 vaf.va = &args;
281
282 errstr = btrfs_decode_error(fs_info, errno, nbuf);
283 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
284 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
285 s_id, function, line, &vaf, errstr);
286
287 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
288 s_id, function, line, &vaf, errstr);
289 va_end(args);
290 /* Caller calls BUG() */
291 }
292
293 static void btrfs_put_super(struct super_block *sb)
294 {
295 (void)close_ctree(btrfs_sb(sb)->tree_root);
296 /* FIXME: need to fix VFS to return error? */
297 /* AV: return it _where_? ->put_super() can be triggered by any number
298 * of async events, up to and including delivery of SIGKILL to the
299 * last process that kept it busy. Or segfault in the aforementioned
300 * process... Whom would you report that to?
301 */
302 }
303
304 enum {
305 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
306 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
307 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
308 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
309 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
310 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
311 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
312 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
313 Opt_check_integrity, Opt_check_integrity_including_extent_data,
314 Opt_check_integrity_print_mask, Opt_fatal_errors,
315 Opt_err,
316 };
317
318 static match_table_t tokens = {
319 {Opt_degraded, "degraded"},
320 {Opt_subvol, "subvol=%s"},
321 {Opt_subvolid, "subvolid=%d"},
322 {Opt_device, "device=%s"},
323 {Opt_nodatasum, "nodatasum"},
324 {Opt_nodatacow, "nodatacow"},
325 {Opt_nobarrier, "nobarrier"},
326 {Opt_max_inline, "max_inline=%s"},
327 {Opt_alloc_start, "alloc_start=%s"},
328 {Opt_thread_pool, "thread_pool=%d"},
329 {Opt_compress, "compress"},
330 {Opt_compress_type, "compress=%s"},
331 {Opt_compress_force, "compress-force"},
332 {Opt_compress_force_type, "compress-force=%s"},
333 {Opt_ssd, "ssd"},
334 {Opt_ssd_spread, "ssd_spread"},
335 {Opt_nossd, "nossd"},
336 {Opt_noacl, "noacl"},
337 {Opt_notreelog, "notreelog"},
338 {Opt_flushoncommit, "flushoncommit"},
339 {Opt_ratio, "metadata_ratio=%d"},
340 {Opt_discard, "discard"},
341 {Opt_space_cache, "space_cache"},
342 {Opt_clear_cache, "clear_cache"},
343 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
344 {Opt_enospc_debug, "enospc_debug"},
345 {Opt_subvolrootid, "subvolrootid=%d"},
346 {Opt_defrag, "autodefrag"},
347 {Opt_inode_cache, "inode_cache"},
348 {Opt_no_space_cache, "nospace_cache"},
349 {Opt_recovery, "recovery"},
350 {Opt_skip_balance, "skip_balance"},
351 {Opt_check_integrity, "check_int"},
352 {Opt_check_integrity_including_extent_data, "check_int_data"},
353 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
354 {Opt_fatal_errors, "fatal_errors=%s"},
355 {Opt_err, NULL},
356 };
357
358 /*
359 * Regular mount options parser. Everything that is needed only when
360 * reading in a new superblock is parsed here.
361 * XXX JDM: This needs to be cleaned up for remount.
362 */
363 int btrfs_parse_options(struct btrfs_root *root, char *options)
364 {
365 struct btrfs_fs_info *info = root->fs_info;
366 substring_t args[MAX_OPT_ARGS];
367 char *p, *num, *orig = NULL;
368 u64 cache_gen;
369 int intarg;
370 int ret = 0;
371 char *compress_type;
372 bool compress_force = false;
373
374 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
375 if (cache_gen)
376 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
377
378 if (!options)
379 goto out;
380
381 /*
382 * strsep changes the string, duplicate it because parse_options
383 * gets called twice
384 */
385 options = kstrdup(options, GFP_NOFS);
386 if (!options)
387 return -ENOMEM;
388
389 orig = options;
390
391 while ((p = strsep(&options, ",")) != NULL) {
392 int token;
393 if (!*p)
394 continue;
395
396 token = match_token(p, tokens, args);
397 switch (token) {
398 case Opt_degraded:
399 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
400 btrfs_set_opt(info->mount_opt, DEGRADED);
401 break;
402 case Opt_subvol:
403 case Opt_subvolid:
404 case Opt_subvolrootid:
405 case Opt_device:
406 /*
407 * These are parsed by btrfs_parse_early_options
408 * and can be happily ignored here.
409 */
410 break;
411 case Opt_nodatasum:
412 printk(KERN_INFO "btrfs: setting nodatasum\n");
413 btrfs_set_opt(info->mount_opt, NODATASUM);
414 break;
415 case Opt_nodatacow:
416 printk(KERN_INFO "btrfs: setting nodatacow\n");
417 btrfs_set_opt(info->mount_opt, NODATACOW);
418 btrfs_set_opt(info->mount_opt, NODATASUM);
419 break;
420 case Opt_compress_force:
421 case Opt_compress_force_type:
422 compress_force = true;
423 case Opt_compress:
424 case Opt_compress_type:
425 if (token == Opt_compress ||
426 token == Opt_compress_force ||
427 strcmp(args[0].from, "zlib") == 0) {
428 compress_type = "zlib";
429 info->compress_type = BTRFS_COMPRESS_ZLIB;
430 btrfs_set_opt(info->mount_opt, COMPRESS);
431 } else if (strcmp(args[0].from, "lzo") == 0) {
432 compress_type = "lzo";
433 info->compress_type = BTRFS_COMPRESS_LZO;
434 btrfs_set_opt(info->mount_opt, COMPRESS);
435 btrfs_set_fs_incompat(info, COMPRESS_LZO);
436 } else if (strncmp(args[0].from, "no", 2) == 0) {
437 compress_type = "no";
438 info->compress_type = BTRFS_COMPRESS_NONE;
439 btrfs_clear_opt(info->mount_opt, COMPRESS);
440 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
441 compress_force = false;
442 } else {
443 ret = -EINVAL;
444 goto out;
445 }
446
447 if (compress_force) {
448 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
449 pr_info("btrfs: force %s compression\n",
450 compress_type);
451 } else
452 pr_info("btrfs: use %s compression\n",
453 compress_type);
454 break;
455 case Opt_ssd:
456 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
457 btrfs_set_opt(info->mount_opt, SSD);
458 break;
459 case Opt_ssd_spread:
460 printk(KERN_INFO "btrfs: use spread ssd "
461 "allocation scheme\n");
462 btrfs_set_opt(info->mount_opt, SSD);
463 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
464 break;
465 case Opt_nossd:
466 printk(KERN_INFO "btrfs: not using ssd allocation "
467 "scheme\n");
468 btrfs_set_opt(info->mount_opt, NOSSD);
469 btrfs_clear_opt(info->mount_opt, SSD);
470 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
471 break;
472 case Opt_nobarrier:
473 printk(KERN_INFO "btrfs: turning off barriers\n");
474 btrfs_set_opt(info->mount_opt, NOBARRIER);
475 break;
476 case Opt_thread_pool:
477 intarg = 0;
478 match_int(&args[0], &intarg);
479 if (intarg)
480 info->thread_pool_size = intarg;
481 break;
482 case Opt_max_inline:
483 num = match_strdup(&args[0]);
484 if (num) {
485 info->max_inline = memparse(num, NULL);
486 kfree(num);
487
488 if (info->max_inline) {
489 info->max_inline = max_t(u64,
490 info->max_inline,
491 root->sectorsize);
492 }
493 printk(KERN_INFO "btrfs: max_inline at %llu\n",
494 (unsigned long long)info->max_inline);
495 }
496 break;
497 case Opt_alloc_start:
498 num = match_strdup(&args[0]);
499 if (num) {
500 info->alloc_start = memparse(num, NULL);
501 kfree(num);
502 printk(KERN_INFO
503 "btrfs: allocations start at %llu\n",
504 (unsigned long long)info->alloc_start);
505 }
506 break;
507 case Opt_noacl:
508 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
509 break;
510 case Opt_notreelog:
511 printk(KERN_INFO "btrfs: disabling tree log\n");
512 btrfs_set_opt(info->mount_opt, NOTREELOG);
513 break;
514 case Opt_flushoncommit:
515 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
516 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
517 break;
518 case Opt_ratio:
519 intarg = 0;
520 match_int(&args[0], &intarg);
521 if (intarg) {
522 info->metadata_ratio = intarg;
523 printk(KERN_INFO "btrfs: metadata ratio %d\n",
524 info->metadata_ratio);
525 }
526 break;
527 case Opt_discard:
528 btrfs_set_opt(info->mount_opt, DISCARD);
529 break;
530 case Opt_space_cache:
531 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
532 break;
533 case Opt_no_space_cache:
534 printk(KERN_INFO "btrfs: disabling disk space caching\n");
535 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
536 break;
537 case Opt_inode_cache:
538 printk(KERN_INFO "btrfs: enabling inode map caching\n");
539 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
540 break;
541 case Opt_clear_cache:
542 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
543 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
544 break;
545 case Opt_user_subvol_rm_allowed:
546 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
547 break;
548 case Opt_enospc_debug:
549 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
550 break;
551 case Opt_defrag:
552 printk(KERN_INFO "btrfs: enabling auto defrag");
553 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
554 break;
555 case Opt_recovery:
556 printk(KERN_INFO "btrfs: enabling auto recovery");
557 btrfs_set_opt(info->mount_opt, RECOVERY);
558 break;
559 case Opt_skip_balance:
560 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
561 break;
562 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
563 case Opt_check_integrity_including_extent_data:
564 printk(KERN_INFO "btrfs: enabling check integrity"
565 " including extent data\n");
566 btrfs_set_opt(info->mount_opt,
567 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
568 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
569 break;
570 case Opt_check_integrity:
571 printk(KERN_INFO "btrfs: enabling check integrity\n");
572 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
573 break;
574 case Opt_check_integrity_print_mask:
575 intarg = 0;
576 match_int(&args[0], &intarg);
577 if (intarg) {
578 info->check_integrity_print_mask = intarg;
579 printk(KERN_INFO "btrfs:"
580 " check_integrity_print_mask 0x%x\n",
581 info->check_integrity_print_mask);
582 }
583 break;
584 #else
585 case Opt_check_integrity_including_extent_data:
586 case Opt_check_integrity:
587 case Opt_check_integrity_print_mask:
588 printk(KERN_ERR "btrfs: support for check_integrity*"
589 " not compiled in!\n");
590 ret = -EINVAL;
591 goto out;
592 #endif
593 case Opt_fatal_errors:
594 if (strcmp(args[0].from, "panic") == 0)
595 btrfs_set_opt(info->mount_opt,
596 PANIC_ON_FATAL_ERROR);
597 else if (strcmp(args[0].from, "bug") == 0)
598 btrfs_clear_opt(info->mount_opt,
599 PANIC_ON_FATAL_ERROR);
600 else {
601 ret = -EINVAL;
602 goto out;
603 }
604 break;
605 case Opt_err:
606 printk(KERN_INFO "btrfs: unrecognized mount option "
607 "'%s'\n", p);
608 ret = -EINVAL;
609 goto out;
610 default:
611 break;
612 }
613 }
614 out:
615 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
616 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
617 kfree(orig);
618 return ret;
619 }
620
621 /*
622 * Parse mount options that are required early in the mount process.
623 *
624 * All other options will be parsed on much later in the mount process and
625 * only when we need to allocate a new super block.
626 */
627 static int btrfs_parse_early_options(const char *options, fmode_t flags,
628 void *holder, char **subvol_name, u64 *subvol_objectid,
629 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
630 {
631 substring_t args[MAX_OPT_ARGS];
632 char *device_name, *opts, *orig, *p;
633 int error = 0;
634 int intarg;
635
636 if (!options)
637 return 0;
638
639 /*
640 * strsep changes the string, duplicate it because parse_options
641 * gets called twice
642 */
643 opts = kstrdup(options, GFP_KERNEL);
644 if (!opts)
645 return -ENOMEM;
646 orig = opts;
647
648 while ((p = strsep(&opts, ",")) != NULL) {
649 int token;
650 if (!*p)
651 continue;
652
653 token = match_token(p, tokens, args);
654 switch (token) {
655 case Opt_subvol:
656 kfree(*subvol_name);
657 *subvol_name = match_strdup(&args[0]);
658 break;
659 case Opt_subvolid:
660 intarg = 0;
661 error = match_int(&args[0], &intarg);
662 if (!error) {
663 /* we want the original fs_tree */
664 if (!intarg)
665 *subvol_objectid =
666 BTRFS_FS_TREE_OBJECTID;
667 else
668 *subvol_objectid = intarg;
669 }
670 break;
671 case Opt_subvolrootid:
672 intarg = 0;
673 error = match_int(&args[0], &intarg);
674 if (!error) {
675 /* we want the original fs_tree */
676 if (!intarg)
677 *subvol_rootid =
678 BTRFS_FS_TREE_OBJECTID;
679 else
680 *subvol_rootid = intarg;
681 }
682 break;
683 case Opt_device:
684 device_name = match_strdup(&args[0]);
685 if (!device_name) {
686 error = -ENOMEM;
687 goto out;
688 }
689 error = btrfs_scan_one_device(device_name,
690 flags, holder, fs_devices);
691 kfree(device_name);
692 if (error)
693 goto out;
694 break;
695 default:
696 break;
697 }
698 }
699
700 out:
701 kfree(orig);
702 return error;
703 }
704
705 static struct dentry *get_default_root(struct super_block *sb,
706 u64 subvol_objectid)
707 {
708 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
709 struct btrfs_root *root = fs_info->tree_root;
710 struct btrfs_root *new_root;
711 struct btrfs_dir_item *di;
712 struct btrfs_path *path;
713 struct btrfs_key location;
714 struct inode *inode;
715 u64 dir_id;
716 int new = 0;
717
718 /*
719 * We have a specific subvol we want to mount, just setup location and
720 * go look up the root.
721 */
722 if (subvol_objectid) {
723 location.objectid = subvol_objectid;
724 location.type = BTRFS_ROOT_ITEM_KEY;
725 location.offset = (u64)-1;
726 goto find_root;
727 }
728
729 path = btrfs_alloc_path();
730 if (!path)
731 return ERR_PTR(-ENOMEM);
732 path->leave_spinning = 1;
733
734 /*
735 * Find the "default" dir item which points to the root item that we
736 * will mount by default if we haven't been given a specific subvolume
737 * to mount.
738 */
739 dir_id = btrfs_super_root_dir(fs_info->super_copy);
740 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
741 if (IS_ERR(di)) {
742 btrfs_free_path(path);
743 return ERR_CAST(di);
744 }
745 if (!di) {
746 /*
747 * Ok the default dir item isn't there. This is weird since
748 * it's always been there, but don't freak out, just try and
749 * mount to root most subvolume.
750 */
751 btrfs_free_path(path);
752 dir_id = BTRFS_FIRST_FREE_OBJECTID;
753 new_root = fs_info->fs_root;
754 goto setup_root;
755 }
756
757 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
758 btrfs_free_path(path);
759
760 find_root:
761 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
762 if (IS_ERR(new_root))
763 return ERR_CAST(new_root);
764
765 if (btrfs_root_refs(&new_root->root_item) == 0)
766 return ERR_PTR(-ENOENT);
767
768 dir_id = btrfs_root_dirid(&new_root->root_item);
769 setup_root:
770 location.objectid = dir_id;
771 location.type = BTRFS_INODE_ITEM_KEY;
772 location.offset = 0;
773
774 inode = btrfs_iget(sb, &location, new_root, &new);
775 if (IS_ERR(inode))
776 return ERR_CAST(inode);
777
778 /*
779 * If we're just mounting the root most subvol put the inode and return
780 * a reference to the dentry. We will have already gotten a reference
781 * to the inode in btrfs_fill_super so we're good to go.
782 */
783 if (!new && sb->s_root->d_inode == inode) {
784 iput(inode);
785 return dget(sb->s_root);
786 }
787
788 return d_obtain_alias(inode);
789 }
790
791 static int btrfs_fill_super(struct super_block *sb,
792 struct btrfs_fs_devices *fs_devices,
793 void *data, int silent)
794 {
795 struct inode *inode;
796 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
797 struct btrfs_key key;
798 int err;
799
800 sb->s_maxbytes = MAX_LFS_FILESIZE;
801 sb->s_magic = BTRFS_SUPER_MAGIC;
802 sb->s_op = &btrfs_super_ops;
803 sb->s_d_op = &btrfs_dentry_operations;
804 sb->s_export_op = &btrfs_export_ops;
805 sb->s_xattr = btrfs_xattr_handlers;
806 sb->s_time_gran = 1;
807 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
808 sb->s_flags |= MS_POSIXACL;
809 #endif
810 sb->s_flags |= MS_I_VERSION;
811 err = open_ctree(sb, fs_devices, (char *)data);
812 if (err) {
813 printk("btrfs: open_ctree failed\n");
814 return err;
815 }
816
817 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
818 key.type = BTRFS_INODE_ITEM_KEY;
819 key.offset = 0;
820 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
821 if (IS_ERR(inode)) {
822 err = PTR_ERR(inode);
823 goto fail_close;
824 }
825
826 sb->s_root = d_make_root(inode);
827 if (!sb->s_root) {
828 err = -ENOMEM;
829 goto fail_close;
830 }
831
832 save_mount_options(sb, data);
833 cleancache_init_fs(sb);
834 sb->s_flags |= MS_ACTIVE;
835 return 0;
836
837 fail_close:
838 close_ctree(fs_info->tree_root);
839 return err;
840 }
841
842 int btrfs_sync_fs(struct super_block *sb, int wait)
843 {
844 struct btrfs_trans_handle *trans;
845 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
846 struct btrfs_root *root = fs_info->tree_root;
847
848 trace_btrfs_sync_fs(wait);
849
850 if (!wait) {
851 filemap_flush(fs_info->btree_inode->i_mapping);
852 return 0;
853 }
854
855 btrfs_wait_ordered_extents(root, 0);
856
857 trans = btrfs_join_transaction_freeze(root);
858 if (IS_ERR(trans)) {
859 /* Frozen, don't bother */
860 if (PTR_ERR(trans) == -EPERM)
861 return 0;
862 return PTR_ERR(trans);
863 }
864 return btrfs_commit_transaction(trans, root);
865 }
866
867 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
868 {
869 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
870 struct btrfs_root *root = info->tree_root;
871 char *compress_type;
872
873 if (btrfs_test_opt(root, DEGRADED))
874 seq_puts(seq, ",degraded");
875 if (btrfs_test_opt(root, NODATASUM))
876 seq_puts(seq, ",nodatasum");
877 if (btrfs_test_opt(root, NODATACOW))
878 seq_puts(seq, ",nodatacow");
879 if (btrfs_test_opt(root, NOBARRIER))
880 seq_puts(seq, ",nobarrier");
881 if (info->max_inline != 8192 * 1024)
882 seq_printf(seq, ",max_inline=%llu",
883 (unsigned long long)info->max_inline);
884 if (info->alloc_start != 0)
885 seq_printf(seq, ",alloc_start=%llu",
886 (unsigned long long)info->alloc_start);
887 if (info->thread_pool_size != min_t(unsigned long,
888 num_online_cpus() + 2, 8))
889 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
890 if (btrfs_test_opt(root, COMPRESS)) {
891 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
892 compress_type = "zlib";
893 else
894 compress_type = "lzo";
895 if (btrfs_test_opt(root, FORCE_COMPRESS))
896 seq_printf(seq, ",compress-force=%s", compress_type);
897 else
898 seq_printf(seq, ",compress=%s", compress_type);
899 }
900 if (btrfs_test_opt(root, NOSSD))
901 seq_puts(seq, ",nossd");
902 if (btrfs_test_opt(root, SSD_SPREAD))
903 seq_puts(seq, ",ssd_spread");
904 else if (btrfs_test_opt(root, SSD))
905 seq_puts(seq, ",ssd");
906 if (btrfs_test_opt(root, NOTREELOG))
907 seq_puts(seq, ",notreelog");
908 if (btrfs_test_opt(root, FLUSHONCOMMIT))
909 seq_puts(seq, ",flushoncommit");
910 if (btrfs_test_opt(root, DISCARD))
911 seq_puts(seq, ",discard");
912 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
913 seq_puts(seq, ",noacl");
914 if (btrfs_test_opt(root, SPACE_CACHE))
915 seq_puts(seq, ",space_cache");
916 else
917 seq_puts(seq, ",nospace_cache");
918 if (btrfs_test_opt(root, CLEAR_CACHE))
919 seq_puts(seq, ",clear_cache");
920 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
921 seq_puts(seq, ",user_subvol_rm_allowed");
922 if (btrfs_test_opt(root, ENOSPC_DEBUG))
923 seq_puts(seq, ",enospc_debug");
924 if (btrfs_test_opt(root, AUTO_DEFRAG))
925 seq_puts(seq, ",autodefrag");
926 if (btrfs_test_opt(root, INODE_MAP_CACHE))
927 seq_puts(seq, ",inode_cache");
928 if (btrfs_test_opt(root, SKIP_BALANCE))
929 seq_puts(seq, ",skip_balance");
930 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
931 seq_puts(seq, ",fatal_errors=panic");
932 return 0;
933 }
934
935 static int btrfs_test_super(struct super_block *s, void *data)
936 {
937 struct btrfs_fs_info *p = data;
938 struct btrfs_fs_info *fs_info = btrfs_sb(s);
939
940 return fs_info->fs_devices == p->fs_devices;
941 }
942
943 static int btrfs_set_super(struct super_block *s, void *data)
944 {
945 int err = set_anon_super(s, data);
946 if (!err)
947 s->s_fs_info = data;
948 return err;
949 }
950
951 /*
952 * subvolumes are identified by ino 256
953 */
954 static inline int is_subvolume_inode(struct inode *inode)
955 {
956 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
957 return 1;
958 return 0;
959 }
960
961 /*
962 * This will strip out the subvol=%s argument for an argument string and add
963 * subvolid=0 to make sure we get the actual tree root for path walking to the
964 * subvol we want.
965 */
966 static char *setup_root_args(char *args)
967 {
968 unsigned len = strlen(args) + 2 + 1;
969 char *src, *dst, *buf;
970
971 /*
972 * We need the same args as before, but with this substitution:
973 * s!subvol=[^,]+!subvolid=0!
974 *
975 * Since the replacement string is up to 2 bytes longer than the
976 * original, allocate strlen(args) + 2 + 1 bytes.
977 */
978
979 src = strstr(args, "subvol=");
980 /* This shouldn't happen, but just in case.. */
981 if (!src)
982 return NULL;
983
984 buf = dst = kmalloc(len, GFP_NOFS);
985 if (!buf)
986 return NULL;
987
988 /*
989 * If the subvol= arg is not at the start of the string,
990 * copy whatever precedes it into buf.
991 */
992 if (src != args) {
993 *src++ = '\0';
994 strcpy(buf, args);
995 dst += strlen(args);
996 }
997
998 strcpy(dst, "subvolid=0");
999 dst += strlen("subvolid=0");
1000
1001 /*
1002 * If there is a "," after the original subvol=... string,
1003 * copy that suffix into our buffer. Otherwise, we're done.
1004 */
1005 src = strchr(src, ',');
1006 if (src)
1007 strcpy(dst, src);
1008
1009 return buf;
1010 }
1011
1012 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1013 const char *device_name, char *data)
1014 {
1015 struct dentry *root;
1016 struct vfsmount *mnt;
1017 char *newargs;
1018
1019 newargs = setup_root_args(data);
1020 if (!newargs)
1021 return ERR_PTR(-ENOMEM);
1022 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1023 newargs);
1024 kfree(newargs);
1025 if (IS_ERR(mnt))
1026 return ERR_CAST(mnt);
1027
1028 root = mount_subtree(mnt, subvol_name);
1029
1030 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1031 struct super_block *s = root->d_sb;
1032 dput(root);
1033 root = ERR_PTR(-EINVAL);
1034 deactivate_locked_super(s);
1035 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1036 subvol_name);
1037 }
1038
1039 return root;
1040 }
1041
1042 /*
1043 * Find a superblock for the given device / mount point.
1044 *
1045 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1046 * for multiple device setup. Make sure to keep it in sync.
1047 */
1048 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1049 const char *device_name, void *data)
1050 {
1051 struct block_device *bdev = NULL;
1052 struct super_block *s;
1053 struct dentry *root;
1054 struct btrfs_fs_devices *fs_devices = NULL;
1055 struct btrfs_fs_info *fs_info = NULL;
1056 fmode_t mode = FMODE_READ;
1057 char *subvol_name = NULL;
1058 u64 subvol_objectid = 0;
1059 u64 subvol_rootid = 0;
1060 int error = 0;
1061
1062 if (!(flags & MS_RDONLY))
1063 mode |= FMODE_WRITE;
1064
1065 error = btrfs_parse_early_options(data, mode, fs_type,
1066 &subvol_name, &subvol_objectid,
1067 &subvol_rootid, &fs_devices);
1068 if (error) {
1069 kfree(subvol_name);
1070 return ERR_PTR(error);
1071 }
1072
1073 if (subvol_name) {
1074 root = mount_subvol(subvol_name, flags, device_name, data);
1075 kfree(subvol_name);
1076 return root;
1077 }
1078
1079 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1080 if (error)
1081 return ERR_PTR(error);
1082
1083 /*
1084 * Setup a dummy root and fs_info for test/set super. This is because
1085 * we don't actually fill this stuff out until open_ctree, but we need
1086 * it for searching for existing supers, so this lets us do that and
1087 * then open_ctree will properly initialize everything later.
1088 */
1089 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1090 if (!fs_info)
1091 return ERR_PTR(-ENOMEM);
1092
1093 fs_info->fs_devices = fs_devices;
1094
1095 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1096 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1097 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1098 error = -ENOMEM;
1099 goto error_fs_info;
1100 }
1101
1102 error = btrfs_open_devices(fs_devices, mode, fs_type);
1103 if (error)
1104 goto error_fs_info;
1105
1106 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1107 error = -EACCES;
1108 goto error_close_devices;
1109 }
1110
1111 bdev = fs_devices->latest_bdev;
1112 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1113 fs_info);
1114 if (IS_ERR(s)) {
1115 error = PTR_ERR(s);
1116 goto error_close_devices;
1117 }
1118
1119 if (s->s_root) {
1120 btrfs_close_devices(fs_devices);
1121 free_fs_info(fs_info);
1122 if ((flags ^ s->s_flags) & MS_RDONLY)
1123 error = -EBUSY;
1124 } else {
1125 char b[BDEVNAME_SIZE];
1126
1127 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1128 btrfs_sb(s)->bdev_holder = fs_type;
1129 error = btrfs_fill_super(s, fs_devices, data,
1130 flags & MS_SILENT ? 1 : 0);
1131 }
1132
1133 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1134 if (IS_ERR(root))
1135 deactivate_locked_super(s);
1136
1137 return root;
1138
1139 error_close_devices:
1140 btrfs_close_devices(fs_devices);
1141 error_fs_info:
1142 free_fs_info(fs_info);
1143 return ERR_PTR(error);
1144 }
1145
1146 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1147 {
1148 spin_lock_irq(&workers->lock);
1149 workers->max_workers = new_limit;
1150 spin_unlock_irq(&workers->lock);
1151 }
1152
1153 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1154 int new_pool_size, int old_pool_size)
1155 {
1156 if (new_pool_size == old_pool_size)
1157 return;
1158
1159 fs_info->thread_pool_size = new_pool_size;
1160
1161 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1162 old_pool_size, new_pool_size);
1163
1164 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1165 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1166 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1167 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1168 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1169 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1170 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1171 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1172 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1173 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1174 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1175 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1176 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1177 btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1178 }
1179
1180 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1181 {
1182 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1183 struct btrfs_root *root = fs_info->tree_root;
1184 unsigned old_flags = sb->s_flags;
1185 unsigned long old_opts = fs_info->mount_opt;
1186 unsigned long old_compress_type = fs_info->compress_type;
1187 u64 old_max_inline = fs_info->max_inline;
1188 u64 old_alloc_start = fs_info->alloc_start;
1189 int old_thread_pool_size = fs_info->thread_pool_size;
1190 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1191 int ret;
1192
1193 ret = btrfs_parse_options(root, data);
1194 if (ret) {
1195 ret = -EINVAL;
1196 goto restore;
1197 }
1198
1199 btrfs_resize_thread_pool(fs_info,
1200 fs_info->thread_pool_size, old_thread_pool_size);
1201
1202 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1203 return 0;
1204
1205 if (*flags & MS_RDONLY) {
1206 sb->s_flags |= MS_RDONLY;
1207
1208 ret = btrfs_commit_super(root);
1209 if (ret)
1210 goto restore;
1211 } else {
1212 if (fs_info->fs_devices->rw_devices == 0) {
1213 ret = -EACCES;
1214 goto restore;
1215 }
1216
1217 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1218 ret = -EINVAL;
1219 goto restore;
1220 }
1221
1222 ret = btrfs_cleanup_fs_roots(fs_info);
1223 if (ret)
1224 goto restore;
1225
1226 /* recover relocation */
1227 ret = btrfs_recover_relocation(root);
1228 if (ret)
1229 goto restore;
1230
1231 ret = btrfs_resume_balance_async(fs_info);
1232 if (ret)
1233 goto restore;
1234
1235 sb->s_flags &= ~MS_RDONLY;
1236 }
1237
1238 return 0;
1239
1240 restore:
1241 /* We've hit an error - don't reset MS_RDONLY */
1242 if (sb->s_flags & MS_RDONLY)
1243 old_flags |= MS_RDONLY;
1244 sb->s_flags = old_flags;
1245 fs_info->mount_opt = old_opts;
1246 fs_info->compress_type = old_compress_type;
1247 fs_info->max_inline = old_max_inline;
1248 fs_info->alloc_start = old_alloc_start;
1249 btrfs_resize_thread_pool(fs_info,
1250 old_thread_pool_size, fs_info->thread_pool_size);
1251 fs_info->metadata_ratio = old_metadata_ratio;
1252 return ret;
1253 }
1254
1255 /* Used to sort the devices by max_avail(descending sort) */
1256 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1257 const void *dev_info2)
1258 {
1259 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1260 ((struct btrfs_device_info *)dev_info2)->max_avail)
1261 return -1;
1262 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1263 ((struct btrfs_device_info *)dev_info2)->max_avail)
1264 return 1;
1265 else
1266 return 0;
1267 }
1268
1269 /*
1270 * sort the devices by max_avail, in which max free extent size of each device
1271 * is stored.(Descending Sort)
1272 */
1273 static inline void btrfs_descending_sort_devices(
1274 struct btrfs_device_info *devices,
1275 size_t nr_devices)
1276 {
1277 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1278 btrfs_cmp_device_free_bytes, NULL);
1279 }
1280
1281 /*
1282 * The helper to calc the free space on the devices that can be used to store
1283 * file data.
1284 */
1285 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1286 {
1287 struct btrfs_fs_info *fs_info = root->fs_info;
1288 struct btrfs_device_info *devices_info;
1289 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1290 struct btrfs_device *device;
1291 u64 skip_space;
1292 u64 type;
1293 u64 avail_space;
1294 u64 used_space;
1295 u64 min_stripe_size;
1296 int min_stripes = 1, num_stripes = 1;
1297 int i = 0, nr_devices;
1298 int ret;
1299
1300 nr_devices = fs_info->fs_devices->open_devices;
1301 BUG_ON(!nr_devices);
1302
1303 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1304 GFP_NOFS);
1305 if (!devices_info)
1306 return -ENOMEM;
1307
1308 /* calc min stripe number for data space alloction */
1309 type = btrfs_get_alloc_profile(root, 1);
1310 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1311 min_stripes = 2;
1312 num_stripes = nr_devices;
1313 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1314 min_stripes = 2;
1315 num_stripes = 2;
1316 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1317 min_stripes = 4;
1318 num_stripes = 4;
1319 }
1320
1321 if (type & BTRFS_BLOCK_GROUP_DUP)
1322 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1323 else
1324 min_stripe_size = BTRFS_STRIPE_LEN;
1325
1326 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1327 if (!device->in_fs_metadata || !device->bdev)
1328 continue;
1329
1330 avail_space = device->total_bytes - device->bytes_used;
1331
1332 /* align with stripe_len */
1333 do_div(avail_space, BTRFS_STRIPE_LEN);
1334 avail_space *= BTRFS_STRIPE_LEN;
1335
1336 /*
1337 * In order to avoid overwritting the superblock on the drive,
1338 * btrfs starts at an offset of at least 1MB when doing chunk
1339 * allocation.
1340 */
1341 skip_space = 1024 * 1024;
1342
1343 /* user can set the offset in fs_info->alloc_start. */
1344 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1345 device->total_bytes)
1346 skip_space = max(fs_info->alloc_start, skip_space);
1347
1348 /*
1349 * btrfs can not use the free space in [0, skip_space - 1],
1350 * we must subtract it from the total. In order to implement
1351 * it, we account the used space in this range first.
1352 */
1353 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1354 &used_space);
1355 if (ret) {
1356 kfree(devices_info);
1357 return ret;
1358 }
1359
1360 /* calc the free space in [0, skip_space - 1] */
1361 skip_space -= used_space;
1362
1363 /*
1364 * we can use the free space in [0, skip_space - 1], subtract
1365 * it from the total.
1366 */
1367 if (avail_space && avail_space >= skip_space)
1368 avail_space -= skip_space;
1369 else
1370 avail_space = 0;
1371
1372 if (avail_space < min_stripe_size)
1373 continue;
1374
1375 devices_info[i].dev = device;
1376 devices_info[i].max_avail = avail_space;
1377
1378 i++;
1379 }
1380
1381 nr_devices = i;
1382
1383 btrfs_descending_sort_devices(devices_info, nr_devices);
1384
1385 i = nr_devices - 1;
1386 avail_space = 0;
1387 while (nr_devices >= min_stripes) {
1388 if (num_stripes > nr_devices)
1389 num_stripes = nr_devices;
1390
1391 if (devices_info[i].max_avail >= min_stripe_size) {
1392 int j;
1393 u64 alloc_size;
1394
1395 avail_space += devices_info[i].max_avail * num_stripes;
1396 alloc_size = devices_info[i].max_avail;
1397 for (j = i + 1 - num_stripes; j <= i; j++)
1398 devices_info[j].max_avail -= alloc_size;
1399 }
1400 i--;
1401 nr_devices--;
1402 }
1403
1404 kfree(devices_info);
1405 *free_bytes = avail_space;
1406 return 0;
1407 }
1408
1409 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1410 {
1411 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1412 struct btrfs_super_block *disk_super = fs_info->super_copy;
1413 struct list_head *head = &fs_info->space_info;
1414 struct btrfs_space_info *found;
1415 u64 total_used = 0;
1416 u64 total_free_data = 0;
1417 int bits = dentry->d_sb->s_blocksize_bits;
1418 __be32 *fsid = (__be32 *)fs_info->fsid;
1419 int ret;
1420
1421 /* holding chunk_muext to avoid allocating new chunks */
1422 mutex_lock(&fs_info->chunk_mutex);
1423 rcu_read_lock();
1424 list_for_each_entry_rcu(found, head, list) {
1425 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1426 total_free_data += found->disk_total - found->disk_used;
1427 total_free_data -=
1428 btrfs_account_ro_block_groups_free_space(found);
1429 }
1430
1431 total_used += found->disk_used;
1432 }
1433 rcu_read_unlock();
1434
1435 buf->f_namelen = BTRFS_NAME_LEN;
1436 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1437 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1438 buf->f_bsize = dentry->d_sb->s_blocksize;
1439 buf->f_type = BTRFS_SUPER_MAGIC;
1440 buf->f_bavail = total_free_data;
1441 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1442 if (ret) {
1443 mutex_unlock(&fs_info->chunk_mutex);
1444 return ret;
1445 }
1446 buf->f_bavail += total_free_data;
1447 buf->f_bavail = buf->f_bavail >> bits;
1448 mutex_unlock(&fs_info->chunk_mutex);
1449
1450 /* We treat it as constant endianness (it doesn't matter _which_)
1451 because we want the fsid to come out the same whether mounted
1452 on a big-endian or little-endian host */
1453 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1454 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1455 /* Mask in the root object ID too, to disambiguate subvols */
1456 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1457 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1458
1459 return 0;
1460 }
1461
1462 static void btrfs_kill_super(struct super_block *sb)
1463 {
1464 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1465 kill_anon_super(sb);
1466 free_fs_info(fs_info);
1467 }
1468
1469 static struct file_system_type btrfs_fs_type = {
1470 .owner = THIS_MODULE,
1471 .name = "btrfs",
1472 .mount = btrfs_mount,
1473 .kill_sb = btrfs_kill_super,
1474 .fs_flags = FS_REQUIRES_DEV,
1475 };
1476
1477 /*
1478 * used by btrfsctl to scan devices when no FS is mounted
1479 */
1480 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1481 unsigned long arg)
1482 {
1483 struct btrfs_ioctl_vol_args *vol;
1484 struct btrfs_fs_devices *fs_devices;
1485 int ret = -ENOTTY;
1486
1487 if (!capable(CAP_SYS_ADMIN))
1488 return -EPERM;
1489
1490 vol = memdup_user((void __user *)arg, sizeof(*vol));
1491 if (IS_ERR(vol))
1492 return PTR_ERR(vol);
1493
1494 switch (cmd) {
1495 case BTRFS_IOC_SCAN_DEV:
1496 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1497 &btrfs_fs_type, &fs_devices);
1498 break;
1499 case BTRFS_IOC_DEVICES_READY:
1500 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1501 &btrfs_fs_type, &fs_devices);
1502 if (ret)
1503 break;
1504 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1505 break;
1506 }
1507
1508 kfree(vol);
1509 return ret;
1510 }
1511
1512 static int btrfs_freeze(struct super_block *sb)
1513 {
1514 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1515 mutex_lock(&fs_info->transaction_kthread_mutex);
1516 mutex_lock(&fs_info->cleaner_mutex);
1517 return 0;
1518 }
1519
1520 static int btrfs_unfreeze(struct super_block *sb)
1521 {
1522 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1523 mutex_unlock(&fs_info->cleaner_mutex);
1524 mutex_unlock(&fs_info->transaction_kthread_mutex);
1525 return 0;
1526 }
1527
1528 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1529 {
1530 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1531 struct btrfs_fs_devices *cur_devices;
1532 struct btrfs_device *dev, *first_dev = NULL;
1533 struct list_head *head;
1534 struct rcu_string *name;
1535
1536 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1537 cur_devices = fs_info->fs_devices;
1538 while (cur_devices) {
1539 head = &cur_devices->devices;
1540 list_for_each_entry(dev, head, dev_list) {
1541 if (dev->missing)
1542 continue;
1543 if (!first_dev || dev->devid < first_dev->devid)
1544 first_dev = dev;
1545 }
1546 cur_devices = cur_devices->seed;
1547 }
1548
1549 if (first_dev) {
1550 rcu_read_lock();
1551 name = rcu_dereference(first_dev->name);
1552 seq_escape(m, name->str, " \t\n\\");
1553 rcu_read_unlock();
1554 } else {
1555 WARN_ON(1);
1556 }
1557 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1558 return 0;
1559 }
1560
1561 static const struct super_operations btrfs_super_ops = {
1562 .drop_inode = btrfs_drop_inode,
1563 .evict_inode = btrfs_evict_inode,
1564 .put_super = btrfs_put_super,
1565 .sync_fs = btrfs_sync_fs,
1566 .show_options = btrfs_show_options,
1567 .show_devname = btrfs_show_devname,
1568 .write_inode = btrfs_write_inode,
1569 .alloc_inode = btrfs_alloc_inode,
1570 .destroy_inode = btrfs_destroy_inode,
1571 .statfs = btrfs_statfs,
1572 .remount_fs = btrfs_remount,
1573 .freeze_fs = btrfs_freeze,
1574 .unfreeze_fs = btrfs_unfreeze,
1575 };
1576
1577 static const struct file_operations btrfs_ctl_fops = {
1578 .unlocked_ioctl = btrfs_control_ioctl,
1579 .compat_ioctl = btrfs_control_ioctl,
1580 .owner = THIS_MODULE,
1581 .llseek = noop_llseek,
1582 };
1583
1584 static struct miscdevice btrfs_misc = {
1585 .minor = BTRFS_MINOR,
1586 .name = "btrfs-control",
1587 .fops = &btrfs_ctl_fops
1588 };
1589
1590 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1591 MODULE_ALIAS("devname:btrfs-control");
1592
1593 static int btrfs_interface_init(void)
1594 {
1595 return misc_register(&btrfs_misc);
1596 }
1597
1598 static void btrfs_interface_exit(void)
1599 {
1600 if (misc_deregister(&btrfs_misc) < 0)
1601 printk(KERN_INFO "misc_deregister failed for control device");
1602 }
1603
1604 static int __init init_btrfs_fs(void)
1605 {
1606 int err;
1607
1608 err = btrfs_init_sysfs();
1609 if (err)
1610 return err;
1611
1612 btrfs_init_compress();
1613
1614 err = btrfs_init_cachep();
1615 if (err)
1616 goto free_compress;
1617
1618 err = extent_io_init();
1619 if (err)
1620 goto free_cachep;
1621
1622 err = extent_map_init();
1623 if (err)
1624 goto free_extent_io;
1625
1626 err = ordered_data_init();
1627 if (err)
1628 goto free_extent_map;
1629
1630 err = btrfs_delayed_inode_init();
1631 if (err)
1632 goto free_ordered_data;
1633
1634 err = btrfs_interface_init();
1635 if (err)
1636 goto free_delayed_inode;
1637
1638 err = register_filesystem(&btrfs_fs_type);
1639 if (err)
1640 goto unregister_ioctl;
1641
1642 btrfs_init_lockdep();
1643
1644 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1645 return 0;
1646
1647 unregister_ioctl:
1648 btrfs_interface_exit();
1649 free_delayed_inode:
1650 btrfs_delayed_inode_exit();
1651 free_ordered_data:
1652 ordered_data_exit();
1653 free_extent_map:
1654 extent_map_exit();
1655 free_extent_io:
1656 extent_io_exit();
1657 free_cachep:
1658 btrfs_destroy_cachep();
1659 free_compress:
1660 btrfs_exit_compress();
1661 btrfs_exit_sysfs();
1662 return err;
1663 }
1664
1665 static void __exit exit_btrfs_fs(void)
1666 {
1667 btrfs_destroy_cachep();
1668 btrfs_delayed_inode_exit();
1669 ordered_data_exit();
1670 extent_map_exit();
1671 extent_io_exit();
1672 btrfs_interface_exit();
1673 unregister_filesystem(&btrfs_fs_type);
1674 btrfs_exit_sysfs();
1675 btrfs_cleanup_fs_uuids();
1676 btrfs_exit_compress();
1677 }
1678
1679 module_init(init_btrfs_fs)
1680 module_exit(exit_btrfs_fs)
1681
1682 MODULE_LICENSE("GPL");
This page took 0.08679 seconds and 5 git commands to generate.