Btrfs: Remove the invalid shrink size check up from btrfs_shrink_dev()
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 char nbuf[16])
67 {
68 char *errstr = NULL;
69
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 default:
84 if (nbuf) {
85 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 errstr = nbuf;
87 }
88 break;
89 }
90
91 return errstr;
92 }
93
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96 /*
97 * today we only save the error info into ram. Long term we'll
98 * also send it down to the disk
99 */
100 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105 __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 struct super_block *sb = fs_info->sb;
112
113 if (sb->s_flags & MS_RDONLY)
114 return;
115
116 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 sb->s_flags |= MS_RDONLY;
118 printk(KERN_INFO "btrfs is forced readonly\n");
119 __btrfs_scrub_cancel(fs_info);
120 // WARN_ON(1);
121 }
122 }
123
124 #ifdef CONFIG_PRINTK
125 /*
126 * __btrfs_std_error decodes expected errors from the caller and
127 * invokes the approciate error response.
128 */
129 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
130 unsigned int line, int errno, const char *fmt, ...)
131 {
132 struct super_block *sb = fs_info->sb;
133 char nbuf[16];
134 const char *errstr;
135 va_list args;
136 va_start(args, fmt);
137
138 /*
139 * Special case: if the error is EROFS, and we're already
140 * under MS_RDONLY, then it is safe here.
141 */
142 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
143 return;
144
145 errstr = btrfs_decode_error(fs_info, errno, nbuf);
146 if (fmt) {
147 struct va_format vaf = {
148 .fmt = fmt,
149 .va = &args,
150 };
151
152 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
153 sb->s_id, function, line, errstr, &vaf);
154 } else {
155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
156 sb->s_id, function, line, errstr);
157 }
158
159 /* Don't go through full error handling during mount */
160 if (sb->s_flags & MS_BORN) {
161 save_error_info(fs_info);
162 btrfs_handle_error(fs_info);
163 }
164 va_end(args);
165 }
166
167 static const char * const logtypes[] = {
168 "emergency",
169 "alert",
170 "critical",
171 "error",
172 "warning",
173 "notice",
174 "info",
175 "debug",
176 };
177
178 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
179 {
180 struct super_block *sb = fs_info->sb;
181 char lvl[4];
182 struct va_format vaf;
183 va_list args;
184 const char *type = logtypes[4];
185 int kern_level;
186
187 va_start(args, fmt);
188
189 kern_level = printk_get_level(fmt);
190 if (kern_level) {
191 size_t size = printk_skip_level(fmt) - fmt;
192 memcpy(lvl, fmt, size);
193 lvl[size] = '\0';
194 fmt += size;
195 type = logtypes[kern_level - '0'];
196 } else
197 *lvl = '\0';
198
199 vaf.fmt = fmt;
200 vaf.va = &args;
201
202 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
203
204 va_end(args);
205 }
206
207 #else
208
209 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
210 unsigned int line, int errno, const char *fmt, ...)
211 {
212 struct super_block *sb = fs_info->sb;
213
214 /*
215 * Special case: if the error is EROFS, and we're already
216 * under MS_RDONLY, then it is safe here.
217 */
218 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
219 return;
220
221 /* Don't go through full error handling during mount */
222 if (sb->s_flags & MS_BORN) {
223 save_error_info(fs_info);
224 btrfs_handle_error(fs_info);
225 }
226 }
227 #endif
228
229 /*
230 * We only mark the transaction aborted and then set the file system read-only.
231 * This will prevent new transactions from starting or trying to join this
232 * one.
233 *
234 * This means that error recovery at the call site is limited to freeing
235 * any local memory allocations and passing the error code up without
236 * further cleanup. The transaction should complete as it normally would
237 * in the call path but will return -EIO.
238 *
239 * We'll complete the cleanup in btrfs_end_transaction and
240 * btrfs_commit_transaction.
241 */
242 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
243 struct btrfs_root *root, const char *function,
244 unsigned int line, int errno)
245 {
246 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n");
247 trans->aborted = errno;
248 /* Nothing used. The other threads that have joined this
249 * transaction may be able to continue. */
250 if (!trans->blocks_used) {
251 char nbuf[16];
252 const char *errstr;
253
254 errstr = btrfs_decode_error(root->fs_info, errno, nbuf);
255 btrfs_printk(root->fs_info,
256 "%s:%d: Aborting unused transaction(%s).\n",
257 function, line, errstr);
258 return;
259 }
260 trans->transaction->aborted = errno;
261 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
262 }
263 /*
264 * __btrfs_panic decodes unexpected, fatal errors from the caller,
265 * issues an alert, and either panics or BUGs, depending on mount options.
266 */
267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268 unsigned int line, int errno, const char *fmt, ...)
269 {
270 char nbuf[16];
271 char *s_id = "<unknown>";
272 const char *errstr;
273 struct va_format vaf = { .fmt = fmt };
274 va_list args;
275
276 if (fs_info)
277 s_id = fs_info->sb->s_id;
278
279 va_start(args, fmt);
280 vaf.va = &args;
281
282 errstr = btrfs_decode_error(fs_info, errno, nbuf);
283 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
284 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
285 s_id, function, line, &vaf, errstr);
286
287 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
288 s_id, function, line, &vaf, errstr);
289 va_end(args);
290 /* Caller calls BUG() */
291 }
292
293 static void btrfs_put_super(struct super_block *sb)
294 {
295 (void)close_ctree(btrfs_sb(sb)->tree_root);
296 /* FIXME: need to fix VFS to return error? */
297 /* AV: return it _where_? ->put_super() can be triggered by any number
298 * of async events, up to and including delivery of SIGKILL to the
299 * last process that kept it busy. Or segfault in the aforementioned
300 * process... Whom would you report that to?
301 */
302 }
303
304 enum {
305 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
306 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
307 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
308 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
309 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
310 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
311 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
312 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
313 Opt_check_integrity, Opt_check_integrity_including_extent_data,
314 Opt_check_integrity_print_mask, Opt_fatal_errors,
315 Opt_err,
316 };
317
318 static match_table_t tokens = {
319 {Opt_degraded, "degraded"},
320 {Opt_subvol, "subvol=%s"},
321 {Opt_subvolid, "subvolid=%d"},
322 {Opt_device, "device=%s"},
323 {Opt_nodatasum, "nodatasum"},
324 {Opt_nodatacow, "nodatacow"},
325 {Opt_nobarrier, "nobarrier"},
326 {Opt_max_inline, "max_inline=%s"},
327 {Opt_alloc_start, "alloc_start=%s"},
328 {Opt_thread_pool, "thread_pool=%d"},
329 {Opt_compress, "compress"},
330 {Opt_compress_type, "compress=%s"},
331 {Opt_compress_force, "compress-force"},
332 {Opt_compress_force_type, "compress-force=%s"},
333 {Opt_ssd, "ssd"},
334 {Opt_ssd_spread, "ssd_spread"},
335 {Opt_nossd, "nossd"},
336 {Opt_noacl, "noacl"},
337 {Opt_notreelog, "notreelog"},
338 {Opt_flushoncommit, "flushoncommit"},
339 {Opt_ratio, "metadata_ratio=%d"},
340 {Opt_discard, "discard"},
341 {Opt_space_cache, "space_cache"},
342 {Opt_clear_cache, "clear_cache"},
343 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
344 {Opt_enospc_debug, "enospc_debug"},
345 {Opt_subvolrootid, "subvolrootid=%d"},
346 {Opt_defrag, "autodefrag"},
347 {Opt_inode_cache, "inode_cache"},
348 {Opt_no_space_cache, "nospace_cache"},
349 {Opt_recovery, "recovery"},
350 {Opt_skip_balance, "skip_balance"},
351 {Opt_check_integrity, "check_int"},
352 {Opt_check_integrity_including_extent_data, "check_int_data"},
353 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
354 {Opt_fatal_errors, "fatal_errors=%s"},
355 {Opt_err, NULL},
356 };
357
358 /*
359 * Regular mount options parser. Everything that is needed only when
360 * reading in a new superblock is parsed here.
361 * XXX JDM: This needs to be cleaned up for remount.
362 */
363 int btrfs_parse_options(struct btrfs_root *root, char *options)
364 {
365 struct btrfs_fs_info *info = root->fs_info;
366 substring_t args[MAX_OPT_ARGS];
367 char *p, *num, *orig = NULL;
368 u64 cache_gen;
369 int intarg;
370 int ret = 0;
371 char *compress_type;
372 bool compress_force = false;
373
374 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
375 if (cache_gen)
376 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
377
378 if (!options)
379 goto out;
380
381 /*
382 * strsep changes the string, duplicate it because parse_options
383 * gets called twice
384 */
385 options = kstrdup(options, GFP_NOFS);
386 if (!options)
387 return -ENOMEM;
388
389 orig = options;
390
391 while ((p = strsep(&options, ",")) != NULL) {
392 int token;
393 if (!*p)
394 continue;
395
396 token = match_token(p, tokens, args);
397 switch (token) {
398 case Opt_degraded:
399 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
400 btrfs_set_opt(info->mount_opt, DEGRADED);
401 break;
402 case Opt_subvol:
403 case Opt_subvolid:
404 case Opt_subvolrootid:
405 case Opt_device:
406 /*
407 * These are parsed by btrfs_parse_early_options
408 * and can be happily ignored here.
409 */
410 break;
411 case Opt_nodatasum:
412 printk(KERN_INFO "btrfs: setting nodatasum\n");
413 btrfs_set_opt(info->mount_opt, NODATASUM);
414 break;
415 case Opt_nodatacow:
416 if (!btrfs_test_opt(root, COMPRESS) ||
417 !btrfs_test_opt(root, FORCE_COMPRESS)) {
418 printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
419 } else {
420 printk(KERN_INFO "btrfs: setting nodatacow\n");
421 }
422 info->compress_type = BTRFS_COMPRESS_NONE;
423 btrfs_clear_opt(info->mount_opt, COMPRESS);
424 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
425 btrfs_set_opt(info->mount_opt, NODATACOW);
426 btrfs_set_opt(info->mount_opt, NODATASUM);
427 break;
428 case Opt_compress_force:
429 case Opt_compress_force_type:
430 compress_force = true;
431 case Opt_compress:
432 case Opt_compress_type:
433 if (token == Opt_compress ||
434 token == Opt_compress_force ||
435 strcmp(args[0].from, "zlib") == 0) {
436 compress_type = "zlib";
437 info->compress_type = BTRFS_COMPRESS_ZLIB;
438 btrfs_set_opt(info->mount_opt, COMPRESS);
439 btrfs_clear_opt(info->mount_opt, NODATACOW);
440 btrfs_clear_opt(info->mount_opt, NODATASUM);
441 } else if (strcmp(args[0].from, "lzo") == 0) {
442 compress_type = "lzo";
443 info->compress_type = BTRFS_COMPRESS_LZO;
444 btrfs_set_opt(info->mount_opt, COMPRESS);
445 btrfs_clear_opt(info->mount_opt, NODATACOW);
446 btrfs_clear_opt(info->mount_opt, NODATASUM);
447 btrfs_set_fs_incompat(info, COMPRESS_LZO);
448 } else if (strncmp(args[0].from, "no", 2) == 0) {
449 compress_type = "no";
450 info->compress_type = BTRFS_COMPRESS_NONE;
451 btrfs_clear_opt(info->mount_opt, COMPRESS);
452 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
453 compress_force = false;
454 } else {
455 ret = -EINVAL;
456 goto out;
457 }
458
459 if (compress_force) {
460 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
461 pr_info("btrfs: force %s compression\n",
462 compress_type);
463 } else
464 pr_info("btrfs: use %s compression\n",
465 compress_type);
466 break;
467 case Opt_ssd:
468 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
469 btrfs_set_opt(info->mount_opt, SSD);
470 break;
471 case Opt_ssd_spread:
472 printk(KERN_INFO "btrfs: use spread ssd "
473 "allocation scheme\n");
474 btrfs_set_opt(info->mount_opt, SSD);
475 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
476 break;
477 case Opt_nossd:
478 printk(KERN_INFO "btrfs: not using ssd allocation "
479 "scheme\n");
480 btrfs_set_opt(info->mount_opt, NOSSD);
481 btrfs_clear_opt(info->mount_opt, SSD);
482 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
483 break;
484 case Opt_nobarrier:
485 printk(KERN_INFO "btrfs: turning off barriers\n");
486 btrfs_set_opt(info->mount_opt, NOBARRIER);
487 break;
488 case Opt_thread_pool:
489 intarg = 0;
490 match_int(&args[0], &intarg);
491 if (intarg)
492 info->thread_pool_size = intarg;
493 break;
494 case Opt_max_inline:
495 num = match_strdup(&args[0]);
496 if (num) {
497 info->max_inline = memparse(num, NULL);
498 kfree(num);
499
500 if (info->max_inline) {
501 info->max_inline = max_t(u64,
502 info->max_inline,
503 root->sectorsize);
504 }
505 printk(KERN_INFO "btrfs: max_inline at %llu\n",
506 (unsigned long long)info->max_inline);
507 }
508 break;
509 case Opt_alloc_start:
510 num = match_strdup(&args[0]);
511 if (num) {
512 info->alloc_start = memparse(num, NULL);
513 kfree(num);
514 printk(KERN_INFO
515 "btrfs: allocations start at %llu\n",
516 (unsigned long long)info->alloc_start);
517 }
518 break;
519 case Opt_noacl:
520 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
521 break;
522 case Opt_notreelog:
523 printk(KERN_INFO "btrfs: disabling tree log\n");
524 btrfs_set_opt(info->mount_opt, NOTREELOG);
525 break;
526 case Opt_flushoncommit:
527 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
528 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
529 break;
530 case Opt_ratio:
531 intarg = 0;
532 match_int(&args[0], &intarg);
533 if (intarg) {
534 info->metadata_ratio = intarg;
535 printk(KERN_INFO "btrfs: metadata ratio %d\n",
536 info->metadata_ratio);
537 }
538 break;
539 case Opt_discard:
540 btrfs_set_opt(info->mount_opt, DISCARD);
541 break;
542 case Opt_space_cache:
543 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
544 break;
545 case Opt_no_space_cache:
546 printk(KERN_INFO "btrfs: disabling disk space caching\n");
547 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
548 break;
549 case Opt_inode_cache:
550 printk(KERN_INFO "btrfs: enabling inode map caching\n");
551 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
552 break;
553 case Opt_clear_cache:
554 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
555 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
556 break;
557 case Opt_user_subvol_rm_allowed:
558 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
559 break;
560 case Opt_enospc_debug:
561 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
562 break;
563 case Opt_defrag:
564 printk(KERN_INFO "btrfs: enabling auto defrag\n");
565 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
566 break;
567 case Opt_recovery:
568 printk(KERN_INFO "btrfs: enabling auto recovery\n");
569 btrfs_set_opt(info->mount_opt, RECOVERY);
570 break;
571 case Opt_skip_balance:
572 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
573 break;
574 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
575 case Opt_check_integrity_including_extent_data:
576 printk(KERN_INFO "btrfs: enabling check integrity"
577 " including extent data\n");
578 btrfs_set_opt(info->mount_opt,
579 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
580 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
581 break;
582 case Opt_check_integrity:
583 printk(KERN_INFO "btrfs: enabling check integrity\n");
584 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
585 break;
586 case Opt_check_integrity_print_mask:
587 intarg = 0;
588 match_int(&args[0], &intarg);
589 if (intarg) {
590 info->check_integrity_print_mask = intarg;
591 printk(KERN_INFO "btrfs:"
592 " check_integrity_print_mask 0x%x\n",
593 info->check_integrity_print_mask);
594 }
595 break;
596 #else
597 case Opt_check_integrity_including_extent_data:
598 case Opt_check_integrity:
599 case Opt_check_integrity_print_mask:
600 printk(KERN_ERR "btrfs: support for check_integrity*"
601 " not compiled in!\n");
602 ret = -EINVAL;
603 goto out;
604 #endif
605 case Opt_fatal_errors:
606 if (strcmp(args[0].from, "panic") == 0)
607 btrfs_set_opt(info->mount_opt,
608 PANIC_ON_FATAL_ERROR);
609 else if (strcmp(args[0].from, "bug") == 0)
610 btrfs_clear_opt(info->mount_opt,
611 PANIC_ON_FATAL_ERROR);
612 else {
613 ret = -EINVAL;
614 goto out;
615 }
616 break;
617 case Opt_err:
618 printk(KERN_INFO "btrfs: unrecognized mount option "
619 "'%s'\n", p);
620 ret = -EINVAL;
621 goto out;
622 default:
623 break;
624 }
625 }
626 out:
627 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
628 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
629 kfree(orig);
630 return ret;
631 }
632
633 /*
634 * Parse mount options that are required early in the mount process.
635 *
636 * All other options will be parsed on much later in the mount process and
637 * only when we need to allocate a new super block.
638 */
639 static int btrfs_parse_early_options(const char *options, fmode_t flags,
640 void *holder, char **subvol_name, u64 *subvol_objectid,
641 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
642 {
643 substring_t args[MAX_OPT_ARGS];
644 char *device_name, *opts, *orig, *p;
645 int error = 0;
646 int intarg;
647
648 if (!options)
649 return 0;
650
651 /*
652 * strsep changes the string, duplicate it because parse_options
653 * gets called twice
654 */
655 opts = kstrdup(options, GFP_KERNEL);
656 if (!opts)
657 return -ENOMEM;
658 orig = opts;
659
660 while ((p = strsep(&opts, ",")) != NULL) {
661 int token;
662 if (!*p)
663 continue;
664
665 token = match_token(p, tokens, args);
666 switch (token) {
667 case Opt_subvol:
668 kfree(*subvol_name);
669 *subvol_name = match_strdup(&args[0]);
670 break;
671 case Opt_subvolid:
672 intarg = 0;
673 error = match_int(&args[0], &intarg);
674 if (!error) {
675 /* we want the original fs_tree */
676 if (!intarg)
677 *subvol_objectid =
678 BTRFS_FS_TREE_OBJECTID;
679 else
680 *subvol_objectid = intarg;
681 }
682 break;
683 case Opt_subvolrootid:
684 intarg = 0;
685 error = match_int(&args[0], &intarg);
686 if (!error) {
687 /* we want the original fs_tree */
688 if (!intarg)
689 *subvol_rootid =
690 BTRFS_FS_TREE_OBJECTID;
691 else
692 *subvol_rootid = intarg;
693 }
694 break;
695 case Opt_device:
696 device_name = match_strdup(&args[0]);
697 if (!device_name) {
698 error = -ENOMEM;
699 goto out;
700 }
701 error = btrfs_scan_one_device(device_name,
702 flags, holder, fs_devices);
703 kfree(device_name);
704 if (error)
705 goto out;
706 break;
707 default:
708 break;
709 }
710 }
711
712 out:
713 kfree(orig);
714 return error;
715 }
716
717 static struct dentry *get_default_root(struct super_block *sb,
718 u64 subvol_objectid)
719 {
720 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
721 struct btrfs_root *root = fs_info->tree_root;
722 struct btrfs_root *new_root;
723 struct btrfs_dir_item *di;
724 struct btrfs_path *path;
725 struct btrfs_key location;
726 struct inode *inode;
727 u64 dir_id;
728 int new = 0;
729
730 /*
731 * We have a specific subvol we want to mount, just setup location and
732 * go look up the root.
733 */
734 if (subvol_objectid) {
735 location.objectid = subvol_objectid;
736 location.type = BTRFS_ROOT_ITEM_KEY;
737 location.offset = (u64)-1;
738 goto find_root;
739 }
740
741 path = btrfs_alloc_path();
742 if (!path)
743 return ERR_PTR(-ENOMEM);
744 path->leave_spinning = 1;
745
746 /*
747 * Find the "default" dir item which points to the root item that we
748 * will mount by default if we haven't been given a specific subvolume
749 * to mount.
750 */
751 dir_id = btrfs_super_root_dir(fs_info->super_copy);
752 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
753 if (IS_ERR(di)) {
754 btrfs_free_path(path);
755 return ERR_CAST(di);
756 }
757 if (!di) {
758 /*
759 * Ok the default dir item isn't there. This is weird since
760 * it's always been there, but don't freak out, just try and
761 * mount to root most subvolume.
762 */
763 btrfs_free_path(path);
764 dir_id = BTRFS_FIRST_FREE_OBJECTID;
765 new_root = fs_info->fs_root;
766 goto setup_root;
767 }
768
769 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
770 btrfs_free_path(path);
771
772 find_root:
773 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
774 if (IS_ERR(new_root))
775 return ERR_CAST(new_root);
776
777 if (btrfs_root_refs(&new_root->root_item) == 0)
778 return ERR_PTR(-ENOENT);
779
780 dir_id = btrfs_root_dirid(&new_root->root_item);
781 setup_root:
782 location.objectid = dir_id;
783 location.type = BTRFS_INODE_ITEM_KEY;
784 location.offset = 0;
785
786 inode = btrfs_iget(sb, &location, new_root, &new);
787 if (IS_ERR(inode))
788 return ERR_CAST(inode);
789
790 /*
791 * If we're just mounting the root most subvol put the inode and return
792 * a reference to the dentry. We will have already gotten a reference
793 * to the inode in btrfs_fill_super so we're good to go.
794 */
795 if (!new && sb->s_root->d_inode == inode) {
796 iput(inode);
797 return dget(sb->s_root);
798 }
799
800 return d_obtain_alias(inode);
801 }
802
803 static int btrfs_fill_super(struct super_block *sb,
804 struct btrfs_fs_devices *fs_devices,
805 void *data, int silent)
806 {
807 struct inode *inode;
808 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
809 struct btrfs_key key;
810 int err;
811
812 sb->s_maxbytes = MAX_LFS_FILESIZE;
813 sb->s_magic = BTRFS_SUPER_MAGIC;
814 sb->s_op = &btrfs_super_ops;
815 sb->s_d_op = &btrfs_dentry_operations;
816 sb->s_export_op = &btrfs_export_ops;
817 sb->s_xattr = btrfs_xattr_handlers;
818 sb->s_time_gran = 1;
819 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
820 sb->s_flags |= MS_POSIXACL;
821 #endif
822 sb->s_flags |= MS_I_VERSION;
823 err = open_ctree(sb, fs_devices, (char *)data);
824 if (err) {
825 printk("btrfs: open_ctree failed\n");
826 return err;
827 }
828
829 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
830 key.type = BTRFS_INODE_ITEM_KEY;
831 key.offset = 0;
832 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
833 if (IS_ERR(inode)) {
834 err = PTR_ERR(inode);
835 goto fail_close;
836 }
837
838 sb->s_root = d_make_root(inode);
839 if (!sb->s_root) {
840 err = -ENOMEM;
841 goto fail_close;
842 }
843
844 save_mount_options(sb, data);
845 cleancache_init_fs(sb);
846 sb->s_flags |= MS_ACTIVE;
847 return 0;
848
849 fail_close:
850 close_ctree(fs_info->tree_root);
851 return err;
852 }
853
854 int btrfs_sync_fs(struct super_block *sb, int wait)
855 {
856 struct btrfs_trans_handle *trans;
857 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
858 struct btrfs_root *root = fs_info->tree_root;
859
860 trace_btrfs_sync_fs(wait);
861
862 if (!wait) {
863 filemap_flush(fs_info->btree_inode->i_mapping);
864 return 0;
865 }
866
867 btrfs_wait_ordered_extents(root, 0);
868
869 trans = btrfs_attach_transaction(root);
870 if (IS_ERR(trans)) {
871 /* no transaction, don't bother */
872 if (PTR_ERR(trans) == -ENOENT)
873 return 0;
874 return PTR_ERR(trans);
875 }
876 return btrfs_commit_transaction(trans, root);
877 }
878
879 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
880 {
881 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
882 struct btrfs_root *root = info->tree_root;
883 char *compress_type;
884
885 if (btrfs_test_opt(root, DEGRADED))
886 seq_puts(seq, ",degraded");
887 if (btrfs_test_opt(root, NODATASUM))
888 seq_puts(seq, ",nodatasum");
889 if (btrfs_test_opt(root, NODATACOW))
890 seq_puts(seq, ",nodatacow");
891 if (btrfs_test_opt(root, NOBARRIER))
892 seq_puts(seq, ",nobarrier");
893 if (info->max_inline != 8192 * 1024)
894 seq_printf(seq, ",max_inline=%llu",
895 (unsigned long long)info->max_inline);
896 if (info->alloc_start != 0)
897 seq_printf(seq, ",alloc_start=%llu",
898 (unsigned long long)info->alloc_start);
899 if (info->thread_pool_size != min_t(unsigned long,
900 num_online_cpus() + 2, 8))
901 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
902 if (btrfs_test_opt(root, COMPRESS)) {
903 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
904 compress_type = "zlib";
905 else
906 compress_type = "lzo";
907 if (btrfs_test_opt(root, FORCE_COMPRESS))
908 seq_printf(seq, ",compress-force=%s", compress_type);
909 else
910 seq_printf(seq, ",compress=%s", compress_type);
911 }
912 if (btrfs_test_opt(root, NOSSD))
913 seq_puts(seq, ",nossd");
914 if (btrfs_test_opt(root, SSD_SPREAD))
915 seq_puts(seq, ",ssd_spread");
916 else if (btrfs_test_opt(root, SSD))
917 seq_puts(seq, ",ssd");
918 if (btrfs_test_opt(root, NOTREELOG))
919 seq_puts(seq, ",notreelog");
920 if (btrfs_test_opt(root, FLUSHONCOMMIT))
921 seq_puts(seq, ",flushoncommit");
922 if (btrfs_test_opt(root, DISCARD))
923 seq_puts(seq, ",discard");
924 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
925 seq_puts(seq, ",noacl");
926 if (btrfs_test_opt(root, SPACE_CACHE))
927 seq_puts(seq, ",space_cache");
928 else
929 seq_puts(seq, ",nospace_cache");
930 if (btrfs_test_opt(root, CLEAR_CACHE))
931 seq_puts(seq, ",clear_cache");
932 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
933 seq_puts(seq, ",user_subvol_rm_allowed");
934 if (btrfs_test_opt(root, ENOSPC_DEBUG))
935 seq_puts(seq, ",enospc_debug");
936 if (btrfs_test_opt(root, AUTO_DEFRAG))
937 seq_puts(seq, ",autodefrag");
938 if (btrfs_test_opt(root, INODE_MAP_CACHE))
939 seq_puts(seq, ",inode_cache");
940 if (btrfs_test_opt(root, SKIP_BALANCE))
941 seq_puts(seq, ",skip_balance");
942 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
943 seq_puts(seq, ",fatal_errors=panic");
944 return 0;
945 }
946
947 static int btrfs_test_super(struct super_block *s, void *data)
948 {
949 struct btrfs_fs_info *p = data;
950 struct btrfs_fs_info *fs_info = btrfs_sb(s);
951
952 return fs_info->fs_devices == p->fs_devices;
953 }
954
955 static int btrfs_set_super(struct super_block *s, void *data)
956 {
957 int err = set_anon_super(s, data);
958 if (!err)
959 s->s_fs_info = data;
960 return err;
961 }
962
963 /*
964 * subvolumes are identified by ino 256
965 */
966 static inline int is_subvolume_inode(struct inode *inode)
967 {
968 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
969 return 1;
970 return 0;
971 }
972
973 /*
974 * This will strip out the subvol=%s argument for an argument string and add
975 * subvolid=0 to make sure we get the actual tree root for path walking to the
976 * subvol we want.
977 */
978 static char *setup_root_args(char *args)
979 {
980 unsigned len = strlen(args) + 2 + 1;
981 char *src, *dst, *buf;
982
983 /*
984 * We need the same args as before, but with this substitution:
985 * s!subvol=[^,]+!subvolid=0!
986 *
987 * Since the replacement string is up to 2 bytes longer than the
988 * original, allocate strlen(args) + 2 + 1 bytes.
989 */
990
991 src = strstr(args, "subvol=");
992 /* This shouldn't happen, but just in case.. */
993 if (!src)
994 return NULL;
995
996 buf = dst = kmalloc(len, GFP_NOFS);
997 if (!buf)
998 return NULL;
999
1000 /*
1001 * If the subvol= arg is not at the start of the string,
1002 * copy whatever precedes it into buf.
1003 */
1004 if (src != args) {
1005 *src++ = '\0';
1006 strcpy(buf, args);
1007 dst += strlen(args);
1008 }
1009
1010 strcpy(dst, "subvolid=0");
1011 dst += strlen("subvolid=0");
1012
1013 /*
1014 * If there is a "," after the original subvol=... string,
1015 * copy that suffix into our buffer. Otherwise, we're done.
1016 */
1017 src = strchr(src, ',');
1018 if (src)
1019 strcpy(dst, src);
1020
1021 return buf;
1022 }
1023
1024 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1025 const char *device_name, char *data)
1026 {
1027 struct dentry *root;
1028 struct vfsmount *mnt;
1029 char *newargs;
1030
1031 newargs = setup_root_args(data);
1032 if (!newargs)
1033 return ERR_PTR(-ENOMEM);
1034 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1035 newargs);
1036 kfree(newargs);
1037 if (IS_ERR(mnt))
1038 return ERR_CAST(mnt);
1039
1040 root = mount_subtree(mnt, subvol_name);
1041
1042 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1043 struct super_block *s = root->d_sb;
1044 dput(root);
1045 root = ERR_PTR(-EINVAL);
1046 deactivate_locked_super(s);
1047 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1048 subvol_name);
1049 }
1050
1051 return root;
1052 }
1053
1054 /*
1055 * Find a superblock for the given device / mount point.
1056 *
1057 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1058 * for multiple device setup. Make sure to keep it in sync.
1059 */
1060 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1061 const char *device_name, void *data)
1062 {
1063 struct block_device *bdev = NULL;
1064 struct super_block *s;
1065 struct dentry *root;
1066 struct btrfs_fs_devices *fs_devices = NULL;
1067 struct btrfs_fs_info *fs_info = NULL;
1068 fmode_t mode = FMODE_READ;
1069 char *subvol_name = NULL;
1070 u64 subvol_objectid = 0;
1071 u64 subvol_rootid = 0;
1072 int error = 0;
1073
1074 if (!(flags & MS_RDONLY))
1075 mode |= FMODE_WRITE;
1076
1077 error = btrfs_parse_early_options(data, mode, fs_type,
1078 &subvol_name, &subvol_objectid,
1079 &subvol_rootid, &fs_devices);
1080 if (error) {
1081 kfree(subvol_name);
1082 return ERR_PTR(error);
1083 }
1084
1085 if (subvol_name) {
1086 root = mount_subvol(subvol_name, flags, device_name, data);
1087 kfree(subvol_name);
1088 return root;
1089 }
1090
1091 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1092 if (error)
1093 return ERR_PTR(error);
1094
1095 /*
1096 * Setup a dummy root and fs_info for test/set super. This is because
1097 * we don't actually fill this stuff out until open_ctree, but we need
1098 * it for searching for existing supers, so this lets us do that and
1099 * then open_ctree will properly initialize everything later.
1100 */
1101 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1102 if (!fs_info)
1103 return ERR_PTR(-ENOMEM);
1104
1105 fs_info->fs_devices = fs_devices;
1106
1107 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1108 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1109 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1110 error = -ENOMEM;
1111 goto error_fs_info;
1112 }
1113
1114 error = btrfs_open_devices(fs_devices, mode, fs_type);
1115 if (error)
1116 goto error_fs_info;
1117
1118 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1119 error = -EACCES;
1120 goto error_close_devices;
1121 }
1122
1123 bdev = fs_devices->latest_bdev;
1124 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1125 fs_info);
1126 if (IS_ERR(s)) {
1127 error = PTR_ERR(s);
1128 goto error_close_devices;
1129 }
1130
1131 if (s->s_root) {
1132 btrfs_close_devices(fs_devices);
1133 free_fs_info(fs_info);
1134 if ((flags ^ s->s_flags) & MS_RDONLY)
1135 error = -EBUSY;
1136 } else {
1137 char b[BDEVNAME_SIZE];
1138
1139 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1140 btrfs_sb(s)->bdev_holder = fs_type;
1141 error = btrfs_fill_super(s, fs_devices, data,
1142 flags & MS_SILENT ? 1 : 0);
1143 }
1144
1145 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1146 if (IS_ERR(root))
1147 deactivate_locked_super(s);
1148
1149 return root;
1150
1151 error_close_devices:
1152 btrfs_close_devices(fs_devices);
1153 error_fs_info:
1154 free_fs_info(fs_info);
1155 return ERR_PTR(error);
1156 }
1157
1158 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1159 {
1160 spin_lock_irq(&workers->lock);
1161 workers->max_workers = new_limit;
1162 spin_unlock_irq(&workers->lock);
1163 }
1164
1165 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1166 int new_pool_size, int old_pool_size)
1167 {
1168 if (new_pool_size == old_pool_size)
1169 return;
1170
1171 fs_info->thread_pool_size = new_pool_size;
1172
1173 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1174 old_pool_size, new_pool_size);
1175
1176 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1177 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1178 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1179 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1180 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1181 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1182 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1183 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1184 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1185 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1186 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1187 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1188 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1189 btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1190 }
1191
1192 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1193 {
1194 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1195 struct btrfs_root *root = fs_info->tree_root;
1196 unsigned old_flags = sb->s_flags;
1197 unsigned long old_opts = fs_info->mount_opt;
1198 unsigned long old_compress_type = fs_info->compress_type;
1199 u64 old_max_inline = fs_info->max_inline;
1200 u64 old_alloc_start = fs_info->alloc_start;
1201 int old_thread_pool_size = fs_info->thread_pool_size;
1202 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1203 int ret;
1204
1205 ret = btrfs_parse_options(root, data);
1206 if (ret) {
1207 ret = -EINVAL;
1208 goto restore;
1209 }
1210
1211 btrfs_resize_thread_pool(fs_info,
1212 fs_info->thread_pool_size, old_thread_pool_size);
1213
1214 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1215 return 0;
1216
1217 if (*flags & MS_RDONLY) {
1218 sb->s_flags |= MS_RDONLY;
1219
1220 ret = btrfs_commit_super(root);
1221 if (ret)
1222 goto restore;
1223 } else {
1224 if (fs_info->fs_devices->rw_devices == 0) {
1225 ret = -EACCES;
1226 goto restore;
1227 }
1228
1229 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1230 ret = -EINVAL;
1231 goto restore;
1232 }
1233
1234 ret = btrfs_cleanup_fs_roots(fs_info);
1235 if (ret)
1236 goto restore;
1237
1238 /* recover relocation */
1239 ret = btrfs_recover_relocation(root);
1240 if (ret)
1241 goto restore;
1242
1243 ret = btrfs_resume_balance_async(fs_info);
1244 if (ret)
1245 goto restore;
1246
1247 sb->s_flags &= ~MS_RDONLY;
1248 }
1249
1250 return 0;
1251
1252 restore:
1253 /* We've hit an error - don't reset MS_RDONLY */
1254 if (sb->s_flags & MS_RDONLY)
1255 old_flags |= MS_RDONLY;
1256 sb->s_flags = old_flags;
1257 fs_info->mount_opt = old_opts;
1258 fs_info->compress_type = old_compress_type;
1259 fs_info->max_inline = old_max_inline;
1260 fs_info->alloc_start = old_alloc_start;
1261 btrfs_resize_thread_pool(fs_info,
1262 old_thread_pool_size, fs_info->thread_pool_size);
1263 fs_info->metadata_ratio = old_metadata_ratio;
1264 return ret;
1265 }
1266
1267 /* Used to sort the devices by max_avail(descending sort) */
1268 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1269 const void *dev_info2)
1270 {
1271 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1272 ((struct btrfs_device_info *)dev_info2)->max_avail)
1273 return -1;
1274 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1275 ((struct btrfs_device_info *)dev_info2)->max_avail)
1276 return 1;
1277 else
1278 return 0;
1279 }
1280
1281 /*
1282 * sort the devices by max_avail, in which max free extent size of each device
1283 * is stored.(Descending Sort)
1284 */
1285 static inline void btrfs_descending_sort_devices(
1286 struct btrfs_device_info *devices,
1287 size_t nr_devices)
1288 {
1289 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1290 btrfs_cmp_device_free_bytes, NULL);
1291 }
1292
1293 /*
1294 * The helper to calc the free space on the devices that can be used to store
1295 * file data.
1296 */
1297 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1298 {
1299 struct btrfs_fs_info *fs_info = root->fs_info;
1300 struct btrfs_device_info *devices_info;
1301 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1302 struct btrfs_device *device;
1303 u64 skip_space;
1304 u64 type;
1305 u64 avail_space;
1306 u64 used_space;
1307 u64 min_stripe_size;
1308 int min_stripes = 1, num_stripes = 1;
1309 int i = 0, nr_devices;
1310 int ret;
1311
1312 nr_devices = fs_info->fs_devices->open_devices;
1313 BUG_ON(!nr_devices);
1314
1315 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1316 GFP_NOFS);
1317 if (!devices_info)
1318 return -ENOMEM;
1319
1320 /* calc min stripe number for data space alloction */
1321 type = btrfs_get_alloc_profile(root, 1);
1322 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1323 min_stripes = 2;
1324 num_stripes = nr_devices;
1325 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1326 min_stripes = 2;
1327 num_stripes = 2;
1328 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1329 min_stripes = 4;
1330 num_stripes = 4;
1331 }
1332
1333 if (type & BTRFS_BLOCK_GROUP_DUP)
1334 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1335 else
1336 min_stripe_size = BTRFS_STRIPE_LEN;
1337
1338 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1339 if (!device->in_fs_metadata || !device->bdev)
1340 continue;
1341
1342 avail_space = device->total_bytes - device->bytes_used;
1343
1344 /* align with stripe_len */
1345 do_div(avail_space, BTRFS_STRIPE_LEN);
1346 avail_space *= BTRFS_STRIPE_LEN;
1347
1348 /*
1349 * In order to avoid overwritting the superblock on the drive,
1350 * btrfs starts at an offset of at least 1MB when doing chunk
1351 * allocation.
1352 */
1353 skip_space = 1024 * 1024;
1354
1355 /* user can set the offset in fs_info->alloc_start. */
1356 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1357 device->total_bytes)
1358 skip_space = max(fs_info->alloc_start, skip_space);
1359
1360 /*
1361 * btrfs can not use the free space in [0, skip_space - 1],
1362 * we must subtract it from the total. In order to implement
1363 * it, we account the used space in this range first.
1364 */
1365 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1366 &used_space);
1367 if (ret) {
1368 kfree(devices_info);
1369 return ret;
1370 }
1371
1372 /* calc the free space in [0, skip_space - 1] */
1373 skip_space -= used_space;
1374
1375 /*
1376 * we can use the free space in [0, skip_space - 1], subtract
1377 * it from the total.
1378 */
1379 if (avail_space && avail_space >= skip_space)
1380 avail_space -= skip_space;
1381 else
1382 avail_space = 0;
1383
1384 if (avail_space < min_stripe_size)
1385 continue;
1386
1387 devices_info[i].dev = device;
1388 devices_info[i].max_avail = avail_space;
1389
1390 i++;
1391 }
1392
1393 nr_devices = i;
1394
1395 btrfs_descending_sort_devices(devices_info, nr_devices);
1396
1397 i = nr_devices - 1;
1398 avail_space = 0;
1399 while (nr_devices >= min_stripes) {
1400 if (num_stripes > nr_devices)
1401 num_stripes = nr_devices;
1402
1403 if (devices_info[i].max_avail >= min_stripe_size) {
1404 int j;
1405 u64 alloc_size;
1406
1407 avail_space += devices_info[i].max_avail * num_stripes;
1408 alloc_size = devices_info[i].max_avail;
1409 for (j = i + 1 - num_stripes; j <= i; j++)
1410 devices_info[j].max_avail -= alloc_size;
1411 }
1412 i--;
1413 nr_devices--;
1414 }
1415
1416 kfree(devices_info);
1417 *free_bytes = avail_space;
1418 return 0;
1419 }
1420
1421 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1422 {
1423 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1424 struct btrfs_super_block *disk_super = fs_info->super_copy;
1425 struct list_head *head = &fs_info->space_info;
1426 struct btrfs_space_info *found;
1427 u64 total_used = 0;
1428 u64 total_free_data = 0;
1429 int bits = dentry->d_sb->s_blocksize_bits;
1430 __be32 *fsid = (__be32 *)fs_info->fsid;
1431 int ret;
1432
1433 /* holding chunk_muext to avoid allocating new chunks */
1434 mutex_lock(&fs_info->chunk_mutex);
1435 rcu_read_lock();
1436 list_for_each_entry_rcu(found, head, list) {
1437 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1438 total_free_data += found->disk_total - found->disk_used;
1439 total_free_data -=
1440 btrfs_account_ro_block_groups_free_space(found);
1441 }
1442
1443 total_used += found->disk_used;
1444 }
1445 rcu_read_unlock();
1446
1447 buf->f_namelen = BTRFS_NAME_LEN;
1448 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1449 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1450 buf->f_bsize = dentry->d_sb->s_blocksize;
1451 buf->f_type = BTRFS_SUPER_MAGIC;
1452 buf->f_bavail = total_free_data;
1453 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1454 if (ret) {
1455 mutex_unlock(&fs_info->chunk_mutex);
1456 return ret;
1457 }
1458 buf->f_bavail += total_free_data;
1459 buf->f_bavail = buf->f_bavail >> bits;
1460 mutex_unlock(&fs_info->chunk_mutex);
1461
1462 /* We treat it as constant endianness (it doesn't matter _which_)
1463 because we want the fsid to come out the same whether mounted
1464 on a big-endian or little-endian host */
1465 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1466 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1467 /* Mask in the root object ID too, to disambiguate subvols */
1468 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1469 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1470
1471 return 0;
1472 }
1473
1474 static void btrfs_kill_super(struct super_block *sb)
1475 {
1476 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1477 kill_anon_super(sb);
1478 free_fs_info(fs_info);
1479 }
1480
1481 static struct file_system_type btrfs_fs_type = {
1482 .owner = THIS_MODULE,
1483 .name = "btrfs",
1484 .mount = btrfs_mount,
1485 .kill_sb = btrfs_kill_super,
1486 .fs_flags = FS_REQUIRES_DEV,
1487 };
1488
1489 /*
1490 * used by btrfsctl to scan devices when no FS is mounted
1491 */
1492 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1493 unsigned long arg)
1494 {
1495 struct btrfs_ioctl_vol_args *vol;
1496 struct btrfs_fs_devices *fs_devices;
1497 int ret = -ENOTTY;
1498
1499 if (!capable(CAP_SYS_ADMIN))
1500 return -EPERM;
1501
1502 vol = memdup_user((void __user *)arg, sizeof(*vol));
1503 if (IS_ERR(vol))
1504 return PTR_ERR(vol);
1505
1506 switch (cmd) {
1507 case BTRFS_IOC_SCAN_DEV:
1508 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1509 &btrfs_fs_type, &fs_devices);
1510 break;
1511 case BTRFS_IOC_DEVICES_READY:
1512 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1513 &btrfs_fs_type, &fs_devices);
1514 if (ret)
1515 break;
1516 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1517 break;
1518 }
1519
1520 kfree(vol);
1521 return ret;
1522 }
1523
1524 static int btrfs_freeze(struct super_block *sb)
1525 {
1526 struct btrfs_trans_handle *trans;
1527 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1528
1529 trans = btrfs_attach_transaction(root);
1530 if (IS_ERR(trans)) {
1531 /* no transaction, don't bother */
1532 if (PTR_ERR(trans) == -ENOENT)
1533 return 0;
1534 return PTR_ERR(trans);
1535 }
1536 return btrfs_commit_transaction(trans, root);
1537 }
1538
1539 static int btrfs_unfreeze(struct super_block *sb)
1540 {
1541 return 0;
1542 }
1543
1544 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1545 {
1546 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1547 struct btrfs_fs_devices *cur_devices;
1548 struct btrfs_device *dev, *first_dev = NULL;
1549 struct list_head *head;
1550 struct rcu_string *name;
1551
1552 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1553 cur_devices = fs_info->fs_devices;
1554 while (cur_devices) {
1555 head = &cur_devices->devices;
1556 list_for_each_entry(dev, head, dev_list) {
1557 if (dev->missing)
1558 continue;
1559 if (!first_dev || dev->devid < first_dev->devid)
1560 first_dev = dev;
1561 }
1562 cur_devices = cur_devices->seed;
1563 }
1564
1565 if (first_dev) {
1566 rcu_read_lock();
1567 name = rcu_dereference(first_dev->name);
1568 seq_escape(m, name->str, " \t\n\\");
1569 rcu_read_unlock();
1570 } else {
1571 WARN_ON(1);
1572 }
1573 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1574 return 0;
1575 }
1576
1577 static const struct super_operations btrfs_super_ops = {
1578 .drop_inode = btrfs_drop_inode,
1579 .evict_inode = btrfs_evict_inode,
1580 .put_super = btrfs_put_super,
1581 .sync_fs = btrfs_sync_fs,
1582 .show_options = btrfs_show_options,
1583 .show_devname = btrfs_show_devname,
1584 .write_inode = btrfs_write_inode,
1585 .alloc_inode = btrfs_alloc_inode,
1586 .destroy_inode = btrfs_destroy_inode,
1587 .statfs = btrfs_statfs,
1588 .remount_fs = btrfs_remount,
1589 .freeze_fs = btrfs_freeze,
1590 .unfreeze_fs = btrfs_unfreeze,
1591 };
1592
1593 static const struct file_operations btrfs_ctl_fops = {
1594 .unlocked_ioctl = btrfs_control_ioctl,
1595 .compat_ioctl = btrfs_control_ioctl,
1596 .owner = THIS_MODULE,
1597 .llseek = noop_llseek,
1598 };
1599
1600 static struct miscdevice btrfs_misc = {
1601 .minor = BTRFS_MINOR,
1602 .name = "btrfs-control",
1603 .fops = &btrfs_ctl_fops
1604 };
1605
1606 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1607 MODULE_ALIAS("devname:btrfs-control");
1608
1609 static int btrfs_interface_init(void)
1610 {
1611 return misc_register(&btrfs_misc);
1612 }
1613
1614 static void btrfs_interface_exit(void)
1615 {
1616 if (misc_deregister(&btrfs_misc) < 0)
1617 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1618 }
1619
1620 static int __init init_btrfs_fs(void)
1621 {
1622 int err;
1623
1624 err = btrfs_init_sysfs();
1625 if (err)
1626 return err;
1627
1628 btrfs_init_compress();
1629
1630 err = btrfs_init_cachep();
1631 if (err)
1632 goto free_compress;
1633
1634 err = extent_io_init();
1635 if (err)
1636 goto free_cachep;
1637
1638 err = extent_map_init();
1639 if (err)
1640 goto free_extent_io;
1641
1642 err = ordered_data_init();
1643 if (err)
1644 goto free_extent_map;
1645
1646 err = btrfs_delayed_inode_init();
1647 if (err)
1648 goto free_ordered_data;
1649
1650 err = btrfs_interface_init();
1651 if (err)
1652 goto free_delayed_inode;
1653
1654 err = register_filesystem(&btrfs_fs_type);
1655 if (err)
1656 goto unregister_ioctl;
1657
1658 btrfs_init_lockdep();
1659
1660 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1661 return 0;
1662
1663 unregister_ioctl:
1664 btrfs_interface_exit();
1665 free_delayed_inode:
1666 btrfs_delayed_inode_exit();
1667 free_ordered_data:
1668 ordered_data_exit();
1669 free_extent_map:
1670 extent_map_exit();
1671 free_extent_io:
1672 extent_io_exit();
1673 free_cachep:
1674 btrfs_destroy_cachep();
1675 free_compress:
1676 btrfs_exit_compress();
1677 btrfs_exit_sysfs();
1678 return err;
1679 }
1680
1681 static void __exit exit_btrfs_fs(void)
1682 {
1683 btrfs_destroy_cachep();
1684 btrfs_delayed_inode_exit();
1685 ordered_data_exit();
1686 extent_map_exit();
1687 extent_io_exit();
1688 btrfs_interface_exit();
1689 unregister_filesystem(&btrfs_fs_type);
1690 btrfs_exit_sysfs();
1691 btrfs_cleanup_fs_uuids();
1692 btrfs_exit_compress();
1693 }
1694
1695 module_init(init_btrfs_fs)
1696 module_exit(exit_btrfs_fs)
1697
1698 MODULE_LICENSE("GPL");
This page took 0.083318 seconds and 5 git commands to generate.