Btrfs: __btrfs_std_error() logic should be consistent w/out CONFIG_PRINTK defined
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71
72 const char *btrfs_decode_error(int errno)
73 {
74 char *errstr = "unknown";
75
76 switch (errno) {
77 case -EIO:
78 errstr = "IO failure";
79 break;
80 case -ENOMEM:
81 errstr = "Out of memory";
82 break;
83 case -EROFS:
84 errstr = "Readonly filesystem";
85 break;
86 case -EEXIST:
87 errstr = "Object already exists";
88 break;
89 case -ENOSPC:
90 errstr = "No space left";
91 break;
92 case -ENOENT:
93 errstr = "No such entry";
94 break;
95 }
96
97 return errstr;
98 }
99
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102 /*
103 * today we only save the error info into ram. Long term we'll
104 * also send it down to the disk
105 */
106 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107 }
108
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112 struct super_block *sb = fs_info->sb;
113
114 if (sb->s_flags & MS_RDONLY)
115 return;
116
117 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118 sb->s_flags |= MS_RDONLY;
119 btrfs_info(fs_info, "forced readonly");
120 /*
121 * Note that a running device replace operation is not
122 * canceled here although there is no way to update
123 * the progress. It would add the risk of a deadlock,
124 * therefore the canceling is ommited. The only penalty
125 * is that some I/O remains active until the procedure
126 * completes. The next time when the filesystem is
127 * mounted writeable again, the device replace
128 * operation continues.
129 */
130 }
131 }
132
133 /*
134 * __btrfs_std_error decodes expected errors from the caller and
135 * invokes the approciate error response.
136 */
137 __cold
138 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
139 unsigned int line, int errno, const char *fmt, ...)
140 {
141 struct super_block *sb = fs_info->sb;
142 #ifdef CONFIG_PRINTK
143 const char *errstr;
144 #endif
145
146 /*
147 * Special case: if the error is EROFS, and we're already
148 * under MS_RDONLY, then it is safe here.
149 */
150 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
151 return;
152
153 #ifdef CONFIG_PRINTK
154 errstr = btrfs_decode_error(errno);
155 if (fmt) {
156 struct va_format vaf;
157 va_list args;
158
159 va_start(args, fmt);
160 vaf.fmt = fmt;
161 vaf.va = &args;
162
163 printk(KERN_CRIT
164 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
165 sb->s_id, function, line, errno, errstr, &vaf);
166 va_end(args);
167 } else {
168 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
169 sb->s_id, function, line, errno, errstr);
170 }
171 #endif
172
173 /* Don't go through full error handling during mount */
174 save_error_info(fs_info);
175 if (sb->s_flags & MS_BORN)
176 btrfs_handle_error(fs_info);
177 }
178
179 #ifdef CONFIG_PRINTK
180 static const char * const logtypes[] = {
181 "emergency",
182 "alert",
183 "critical",
184 "error",
185 "warning",
186 "notice",
187 "info",
188 "debug",
189 };
190
191 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
192 {
193 struct super_block *sb = fs_info->sb;
194 char lvl[4];
195 struct va_format vaf;
196 va_list args;
197 const char *type = logtypes[4];
198 int kern_level;
199
200 va_start(args, fmt);
201
202 kern_level = printk_get_level(fmt);
203 if (kern_level) {
204 size_t size = printk_skip_level(fmt) - fmt;
205 memcpy(lvl, fmt, size);
206 lvl[size] = '\0';
207 fmt += size;
208 type = logtypes[kern_level - '0'];
209 } else
210 *lvl = '\0';
211
212 vaf.fmt = fmt;
213 vaf.va = &args;
214
215 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
216
217 va_end(args);
218 }
219 #endif
220
221 /*
222 * We only mark the transaction aborted and then set the file system read-only.
223 * This will prevent new transactions from starting or trying to join this
224 * one.
225 *
226 * This means that error recovery at the call site is limited to freeing
227 * any local memory allocations and passing the error code up without
228 * further cleanup. The transaction should complete as it normally would
229 * in the call path but will return -EIO.
230 *
231 * We'll complete the cleanup in btrfs_end_transaction and
232 * btrfs_commit_transaction.
233 */
234 __cold
235 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
236 struct btrfs_root *root, const char *function,
237 unsigned int line, int errno)
238 {
239 trans->aborted = errno;
240 /* Nothing used. The other threads that have joined this
241 * transaction may be able to continue. */
242 if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
243 const char *errstr;
244
245 errstr = btrfs_decode_error(errno);
246 btrfs_warn(root->fs_info,
247 "%s:%d: Aborting unused transaction(%s).",
248 function, line, errstr);
249 return;
250 }
251 ACCESS_ONCE(trans->transaction->aborted) = errno;
252 /* Wake up anybody who may be waiting on this transaction */
253 wake_up(&root->fs_info->transaction_wait);
254 wake_up(&root->fs_info->transaction_blocked_wait);
255 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
256 }
257 /*
258 * __btrfs_panic decodes unexpected, fatal errors from the caller,
259 * issues an alert, and either panics or BUGs, depending on mount options.
260 */
261 __cold
262 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
263 unsigned int line, int errno, const char *fmt, ...)
264 {
265 char *s_id = "<unknown>";
266 const char *errstr;
267 struct va_format vaf = { .fmt = fmt };
268 va_list args;
269
270 if (fs_info)
271 s_id = fs_info->sb->s_id;
272
273 va_start(args, fmt);
274 vaf.va = &args;
275
276 errstr = btrfs_decode_error(errno);
277 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
278 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
279 s_id, function, line, &vaf, errno, errstr);
280
281 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
282 function, line, &vaf, errno, errstr);
283 va_end(args);
284 /* Caller calls BUG() */
285 }
286
287 static void btrfs_put_super(struct super_block *sb)
288 {
289 close_ctree(btrfs_sb(sb)->tree_root);
290 }
291
292 enum {
293 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
294 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
295 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
296 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
297 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
298 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
299 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
300 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
301 Opt_check_integrity, Opt_check_integrity_including_extent_data,
302 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
303 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
304 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
305 Opt_datasum, Opt_treelog, Opt_noinode_cache,
306 Opt_err,
307 };
308
309 static match_table_t tokens = {
310 {Opt_degraded, "degraded"},
311 {Opt_subvol, "subvol=%s"},
312 {Opt_subvolid, "subvolid=%s"},
313 {Opt_device, "device=%s"},
314 {Opt_nodatasum, "nodatasum"},
315 {Opt_datasum, "datasum"},
316 {Opt_nodatacow, "nodatacow"},
317 {Opt_datacow, "datacow"},
318 {Opt_nobarrier, "nobarrier"},
319 {Opt_barrier, "barrier"},
320 {Opt_max_inline, "max_inline=%s"},
321 {Opt_alloc_start, "alloc_start=%s"},
322 {Opt_thread_pool, "thread_pool=%d"},
323 {Opt_compress, "compress"},
324 {Opt_compress_type, "compress=%s"},
325 {Opt_compress_force, "compress-force"},
326 {Opt_compress_force_type, "compress-force=%s"},
327 {Opt_ssd, "ssd"},
328 {Opt_ssd_spread, "ssd_spread"},
329 {Opt_nossd, "nossd"},
330 {Opt_acl, "acl"},
331 {Opt_noacl, "noacl"},
332 {Opt_notreelog, "notreelog"},
333 {Opt_treelog, "treelog"},
334 {Opt_flushoncommit, "flushoncommit"},
335 {Opt_noflushoncommit, "noflushoncommit"},
336 {Opt_ratio, "metadata_ratio=%d"},
337 {Opt_discard, "discard"},
338 {Opt_nodiscard, "nodiscard"},
339 {Opt_space_cache, "space_cache"},
340 {Opt_clear_cache, "clear_cache"},
341 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
342 {Opt_enospc_debug, "enospc_debug"},
343 {Opt_noenospc_debug, "noenospc_debug"},
344 {Opt_subvolrootid, "subvolrootid=%d"},
345 {Opt_defrag, "autodefrag"},
346 {Opt_nodefrag, "noautodefrag"},
347 {Opt_inode_cache, "inode_cache"},
348 {Opt_noinode_cache, "noinode_cache"},
349 {Opt_no_space_cache, "nospace_cache"},
350 {Opt_recovery, "recovery"},
351 {Opt_skip_balance, "skip_balance"},
352 {Opt_check_integrity, "check_int"},
353 {Opt_check_integrity_including_extent_data, "check_int_data"},
354 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
355 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
356 {Opt_fatal_errors, "fatal_errors=%s"},
357 {Opt_commit_interval, "commit=%d"},
358 {Opt_err, NULL},
359 };
360
361 /*
362 * Regular mount options parser. Everything that is needed only when
363 * reading in a new superblock is parsed here.
364 * XXX JDM: This needs to be cleaned up for remount.
365 */
366 int btrfs_parse_options(struct btrfs_root *root, char *options)
367 {
368 struct btrfs_fs_info *info = root->fs_info;
369 substring_t args[MAX_OPT_ARGS];
370 char *p, *num, *orig = NULL;
371 u64 cache_gen;
372 int intarg;
373 int ret = 0;
374 char *compress_type;
375 bool compress_force = false;
376
377 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
378 if (cache_gen)
379 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
380
381 if (!options)
382 goto out;
383
384 /*
385 * strsep changes the string, duplicate it because parse_options
386 * gets called twice
387 */
388 options = kstrdup(options, GFP_NOFS);
389 if (!options)
390 return -ENOMEM;
391
392 orig = options;
393
394 while ((p = strsep(&options, ",")) != NULL) {
395 int token;
396 if (!*p)
397 continue;
398
399 token = match_token(p, tokens, args);
400 switch (token) {
401 case Opt_degraded:
402 btrfs_info(root->fs_info, "allowing degraded mounts");
403 btrfs_set_opt(info->mount_opt, DEGRADED);
404 break;
405 case Opt_subvol:
406 case Opt_subvolid:
407 case Opt_subvolrootid:
408 case Opt_device:
409 /*
410 * These are parsed by btrfs_parse_early_options
411 * and can be happily ignored here.
412 */
413 break;
414 case Opt_nodatasum:
415 btrfs_set_and_info(root, NODATASUM,
416 "setting nodatasum");
417 break;
418 case Opt_datasum:
419 if (btrfs_test_opt(root, NODATASUM)) {
420 if (btrfs_test_opt(root, NODATACOW))
421 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
422 else
423 btrfs_info(root->fs_info, "setting datasum");
424 }
425 btrfs_clear_opt(info->mount_opt, NODATACOW);
426 btrfs_clear_opt(info->mount_opt, NODATASUM);
427 break;
428 case Opt_nodatacow:
429 if (!btrfs_test_opt(root, NODATACOW)) {
430 if (!btrfs_test_opt(root, COMPRESS) ||
431 !btrfs_test_opt(root, FORCE_COMPRESS)) {
432 btrfs_info(root->fs_info,
433 "setting nodatacow, compression disabled");
434 } else {
435 btrfs_info(root->fs_info, "setting nodatacow");
436 }
437 }
438 btrfs_clear_opt(info->mount_opt, COMPRESS);
439 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
440 btrfs_set_opt(info->mount_opt, NODATACOW);
441 btrfs_set_opt(info->mount_opt, NODATASUM);
442 break;
443 case Opt_datacow:
444 btrfs_clear_and_info(root, NODATACOW,
445 "setting datacow");
446 break;
447 case Opt_compress_force:
448 case Opt_compress_force_type:
449 compress_force = true;
450 /* Fallthrough */
451 case Opt_compress:
452 case Opt_compress_type:
453 if (token == Opt_compress ||
454 token == Opt_compress_force ||
455 strcmp(args[0].from, "zlib") == 0) {
456 compress_type = "zlib";
457 info->compress_type = BTRFS_COMPRESS_ZLIB;
458 btrfs_set_opt(info->mount_opt, COMPRESS);
459 btrfs_clear_opt(info->mount_opt, NODATACOW);
460 btrfs_clear_opt(info->mount_opt, NODATASUM);
461 } else if (strcmp(args[0].from, "lzo") == 0) {
462 compress_type = "lzo";
463 info->compress_type = BTRFS_COMPRESS_LZO;
464 btrfs_set_opt(info->mount_opt, COMPRESS);
465 btrfs_clear_opt(info->mount_opt, NODATACOW);
466 btrfs_clear_opt(info->mount_opt, NODATASUM);
467 btrfs_set_fs_incompat(info, COMPRESS_LZO);
468 } else if (strncmp(args[0].from, "no", 2) == 0) {
469 compress_type = "no";
470 btrfs_clear_opt(info->mount_opt, COMPRESS);
471 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
472 compress_force = false;
473 } else {
474 ret = -EINVAL;
475 goto out;
476 }
477
478 if (compress_force) {
479 btrfs_set_and_info(root, FORCE_COMPRESS,
480 "force %s compression",
481 compress_type);
482 } else {
483 if (!btrfs_test_opt(root, COMPRESS))
484 btrfs_info(root->fs_info,
485 "btrfs: use %s compression",
486 compress_type);
487 /*
488 * If we remount from compress-force=xxx to
489 * compress=xxx, we need clear FORCE_COMPRESS
490 * flag, otherwise, there is no way for users
491 * to disable forcible compression separately.
492 */
493 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
494 }
495 break;
496 case Opt_ssd:
497 btrfs_set_and_info(root, SSD,
498 "use ssd allocation scheme");
499 break;
500 case Opt_ssd_spread:
501 btrfs_set_and_info(root, SSD_SPREAD,
502 "use spread ssd allocation scheme");
503 btrfs_set_opt(info->mount_opt, SSD);
504 break;
505 case Opt_nossd:
506 btrfs_set_and_info(root, NOSSD,
507 "not using ssd allocation scheme");
508 btrfs_clear_opt(info->mount_opt, SSD);
509 break;
510 case Opt_barrier:
511 btrfs_clear_and_info(root, NOBARRIER,
512 "turning on barriers");
513 break;
514 case Opt_nobarrier:
515 btrfs_set_and_info(root, NOBARRIER,
516 "turning off barriers");
517 break;
518 case Opt_thread_pool:
519 ret = match_int(&args[0], &intarg);
520 if (ret) {
521 goto out;
522 } else if (intarg > 0) {
523 info->thread_pool_size = intarg;
524 } else {
525 ret = -EINVAL;
526 goto out;
527 }
528 break;
529 case Opt_max_inline:
530 num = match_strdup(&args[0]);
531 if (num) {
532 info->max_inline = memparse(num, NULL);
533 kfree(num);
534
535 if (info->max_inline) {
536 info->max_inline = min_t(u64,
537 info->max_inline,
538 root->sectorsize);
539 }
540 btrfs_info(root->fs_info, "max_inline at %llu",
541 info->max_inline);
542 } else {
543 ret = -ENOMEM;
544 goto out;
545 }
546 break;
547 case Opt_alloc_start:
548 num = match_strdup(&args[0]);
549 if (num) {
550 mutex_lock(&info->chunk_mutex);
551 info->alloc_start = memparse(num, NULL);
552 mutex_unlock(&info->chunk_mutex);
553 kfree(num);
554 btrfs_info(root->fs_info, "allocations start at %llu",
555 info->alloc_start);
556 } else {
557 ret = -ENOMEM;
558 goto out;
559 }
560 break;
561 case Opt_acl:
562 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
563 root->fs_info->sb->s_flags |= MS_POSIXACL;
564 break;
565 #else
566 btrfs_err(root->fs_info,
567 "support for ACL not compiled in!");
568 ret = -EINVAL;
569 goto out;
570 #endif
571 case Opt_noacl:
572 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
573 break;
574 case Opt_notreelog:
575 btrfs_set_and_info(root, NOTREELOG,
576 "disabling tree log");
577 break;
578 case Opt_treelog:
579 btrfs_clear_and_info(root, NOTREELOG,
580 "enabling tree log");
581 break;
582 case Opt_flushoncommit:
583 btrfs_set_and_info(root, FLUSHONCOMMIT,
584 "turning on flush-on-commit");
585 break;
586 case Opt_noflushoncommit:
587 btrfs_clear_and_info(root, FLUSHONCOMMIT,
588 "turning off flush-on-commit");
589 break;
590 case Opt_ratio:
591 ret = match_int(&args[0], &intarg);
592 if (ret) {
593 goto out;
594 } else if (intarg >= 0) {
595 info->metadata_ratio = intarg;
596 btrfs_info(root->fs_info, "metadata ratio %d",
597 info->metadata_ratio);
598 } else {
599 ret = -EINVAL;
600 goto out;
601 }
602 break;
603 case Opt_discard:
604 btrfs_set_and_info(root, DISCARD,
605 "turning on discard");
606 break;
607 case Opt_nodiscard:
608 btrfs_clear_and_info(root, DISCARD,
609 "turning off discard");
610 break;
611 case Opt_space_cache:
612 btrfs_set_and_info(root, SPACE_CACHE,
613 "enabling disk space caching");
614 break;
615 case Opt_rescan_uuid_tree:
616 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
617 break;
618 case Opt_no_space_cache:
619 btrfs_clear_and_info(root, SPACE_CACHE,
620 "disabling disk space caching");
621 break;
622 case Opt_inode_cache:
623 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
624 "enabling inode map caching");
625 break;
626 case Opt_noinode_cache:
627 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
628 "disabling inode map caching");
629 break;
630 case Opt_clear_cache:
631 btrfs_set_and_info(root, CLEAR_CACHE,
632 "force clearing of disk cache");
633 break;
634 case Opt_user_subvol_rm_allowed:
635 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
636 break;
637 case Opt_enospc_debug:
638 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
639 break;
640 case Opt_noenospc_debug:
641 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
642 break;
643 case Opt_defrag:
644 btrfs_set_and_info(root, AUTO_DEFRAG,
645 "enabling auto defrag");
646 break;
647 case Opt_nodefrag:
648 btrfs_clear_and_info(root, AUTO_DEFRAG,
649 "disabling auto defrag");
650 break;
651 case Opt_recovery:
652 btrfs_info(root->fs_info, "enabling auto recovery");
653 btrfs_set_opt(info->mount_opt, RECOVERY);
654 break;
655 case Opt_skip_balance:
656 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
657 break;
658 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
659 case Opt_check_integrity_including_extent_data:
660 btrfs_info(root->fs_info,
661 "enabling check integrity including extent data");
662 btrfs_set_opt(info->mount_opt,
663 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
664 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
665 break;
666 case Opt_check_integrity:
667 btrfs_info(root->fs_info, "enabling check integrity");
668 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
669 break;
670 case Opt_check_integrity_print_mask:
671 ret = match_int(&args[0], &intarg);
672 if (ret) {
673 goto out;
674 } else if (intarg >= 0) {
675 info->check_integrity_print_mask = intarg;
676 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
677 info->check_integrity_print_mask);
678 } else {
679 ret = -EINVAL;
680 goto out;
681 }
682 break;
683 #else
684 case Opt_check_integrity_including_extent_data:
685 case Opt_check_integrity:
686 case Opt_check_integrity_print_mask:
687 btrfs_err(root->fs_info,
688 "support for check_integrity* not compiled in!");
689 ret = -EINVAL;
690 goto out;
691 #endif
692 case Opt_fatal_errors:
693 if (strcmp(args[0].from, "panic") == 0)
694 btrfs_set_opt(info->mount_opt,
695 PANIC_ON_FATAL_ERROR);
696 else if (strcmp(args[0].from, "bug") == 0)
697 btrfs_clear_opt(info->mount_opt,
698 PANIC_ON_FATAL_ERROR);
699 else {
700 ret = -EINVAL;
701 goto out;
702 }
703 break;
704 case Opt_commit_interval:
705 intarg = 0;
706 ret = match_int(&args[0], &intarg);
707 if (ret < 0) {
708 btrfs_err(root->fs_info, "invalid commit interval");
709 ret = -EINVAL;
710 goto out;
711 }
712 if (intarg > 0) {
713 if (intarg > 300) {
714 btrfs_warn(root->fs_info, "excessive commit interval %d",
715 intarg);
716 }
717 info->commit_interval = intarg;
718 } else {
719 btrfs_info(root->fs_info, "using default commit interval %ds",
720 BTRFS_DEFAULT_COMMIT_INTERVAL);
721 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
722 }
723 break;
724 case Opt_err:
725 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
726 ret = -EINVAL;
727 goto out;
728 default:
729 break;
730 }
731 }
732 out:
733 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
734 btrfs_info(root->fs_info, "disk space caching is enabled");
735 kfree(orig);
736 return ret;
737 }
738
739 /*
740 * Parse mount options that are required early in the mount process.
741 *
742 * All other options will be parsed on much later in the mount process and
743 * only when we need to allocate a new super block.
744 */
745 static int btrfs_parse_early_options(const char *options, fmode_t flags,
746 void *holder, char **subvol_name, u64 *subvol_objectid,
747 struct btrfs_fs_devices **fs_devices)
748 {
749 substring_t args[MAX_OPT_ARGS];
750 char *device_name, *opts, *orig, *p;
751 char *num = NULL;
752 int error = 0;
753
754 if (!options)
755 return 0;
756
757 /*
758 * strsep changes the string, duplicate it because parse_options
759 * gets called twice
760 */
761 opts = kstrdup(options, GFP_KERNEL);
762 if (!opts)
763 return -ENOMEM;
764 orig = opts;
765
766 while ((p = strsep(&opts, ",")) != NULL) {
767 int token;
768 if (!*p)
769 continue;
770
771 token = match_token(p, tokens, args);
772 switch (token) {
773 case Opt_subvol:
774 kfree(*subvol_name);
775 *subvol_name = match_strdup(&args[0]);
776 if (!*subvol_name) {
777 error = -ENOMEM;
778 goto out;
779 }
780 break;
781 case Opt_subvolid:
782 num = match_strdup(&args[0]);
783 if (num) {
784 *subvol_objectid = memparse(num, NULL);
785 kfree(num);
786 /* we want the original fs_tree */
787 if (!*subvol_objectid)
788 *subvol_objectid =
789 BTRFS_FS_TREE_OBJECTID;
790 } else {
791 error = -EINVAL;
792 goto out;
793 }
794 break;
795 case Opt_subvolrootid:
796 printk(KERN_WARNING
797 "BTRFS: 'subvolrootid' mount option is deprecated and has "
798 "no effect\n");
799 break;
800 case Opt_device:
801 device_name = match_strdup(&args[0]);
802 if (!device_name) {
803 error = -ENOMEM;
804 goto out;
805 }
806 error = btrfs_scan_one_device(device_name,
807 flags, holder, fs_devices);
808 kfree(device_name);
809 if (error)
810 goto out;
811 break;
812 default:
813 break;
814 }
815 }
816
817 out:
818 kfree(orig);
819 return error;
820 }
821
822 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
823 u64 subvol_objectid)
824 {
825 struct btrfs_root *root = fs_info->tree_root;
826 struct btrfs_root *fs_root;
827 struct btrfs_root_ref *root_ref;
828 struct btrfs_inode_ref *inode_ref;
829 struct btrfs_key key;
830 struct btrfs_path *path = NULL;
831 char *name = NULL, *ptr;
832 u64 dirid;
833 int len;
834 int ret;
835
836 path = btrfs_alloc_path();
837 if (!path) {
838 ret = -ENOMEM;
839 goto err;
840 }
841 path->leave_spinning = 1;
842
843 name = kmalloc(PATH_MAX, GFP_NOFS);
844 if (!name) {
845 ret = -ENOMEM;
846 goto err;
847 }
848 ptr = name + PATH_MAX - 1;
849 ptr[0] = '\0';
850
851 /*
852 * Walk up the subvolume trees in the tree of tree roots by root
853 * backrefs until we hit the top-level subvolume.
854 */
855 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
856 key.objectid = subvol_objectid;
857 key.type = BTRFS_ROOT_BACKREF_KEY;
858 key.offset = (u64)-1;
859
860 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
861 if (ret < 0) {
862 goto err;
863 } else if (ret > 0) {
864 ret = btrfs_previous_item(root, path, subvol_objectid,
865 BTRFS_ROOT_BACKREF_KEY);
866 if (ret < 0) {
867 goto err;
868 } else if (ret > 0) {
869 ret = -ENOENT;
870 goto err;
871 }
872 }
873
874 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
875 subvol_objectid = key.offset;
876
877 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
878 struct btrfs_root_ref);
879 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
880 ptr -= len + 1;
881 if (ptr < name) {
882 ret = -ENAMETOOLONG;
883 goto err;
884 }
885 read_extent_buffer(path->nodes[0], ptr + 1,
886 (unsigned long)(root_ref + 1), len);
887 ptr[0] = '/';
888 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
889 btrfs_release_path(path);
890
891 key.objectid = subvol_objectid;
892 key.type = BTRFS_ROOT_ITEM_KEY;
893 key.offset = (u64)-1;
894 fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
895 if (IS_ERR(fs_root)) {
896 ret = PTR_ERR(fs_root);
897 goto err;
898 }
899
900 /*
901 * Walk up the filesystem tree by inode refs until we hit the
902 * root directory.
903 */
904 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
905 key.objectid = dirid;
906 key.type = BTRFS_INODE_REF_KEY;
907 key.offset = (u64)-1;
908
909 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
910 if (ret < 0) {
911 goto err;
912 } else if (ret > 0) {
913 ret = btrfs_previous_item(fs_root, path, dirid,
914 BTRFS_INODE_REF_KEY);
915 if (ret < 0) {
916 goto err;
917 } else if (ret > 0) {
918 ret = -ENOENT;
919 goto err;
920 }
921 }
922
923 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
924 dirid = key.offset;
925
926 inode_ref = btrfs_item_ptr(path->nodes[0],
927 path->slots[0],
928 struct btrfs_inode_ref);
929 len = btrfs_inode_ref_name_len(path->nodes[0],
930 inode_ref);
931 ptr -= len + 1;
932 if (ptr < name) {
933 ret = -ENAMETOOLONG;
934 goto err;
935 }
936 read_extent_buffer(path->nodes[0], ptr + 1,
937 (unsigned long)(inode_ref + 1), len);
938 ptr[0] = '/';
939 btrfs_release_path(path);
940 }
941 }
942
943 btrfs_free_path(path);
944 if (ptr == name + PATH_MAX - 1) {
945 name[0] = '/';
946 name[1] = '\0';
947 } else {
948 memmove(name, ptr, name + PATH_MAX - ptr);
949 }
950 return name;
951
952 err:
953 btrfs_free_path(path);
954 kfree(name);
955 return ERR_PTR(ret);
956 }
957
958 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
959 {
960 struct btrfs_root *root = fs_info->tree_root;
961 struct btrfs_dir_item *di;
962 struct btrfs_path *path;
963 struct btrfs_key location;
964 u64 dir_id;
965
966 path = btrfs_alloc_path();
967 if (!path)
968 return -ENOMEM;
969 path->leave_spinning = 1;
970
971 /*
972 * Find the "default" dir item which points to the root item that we
973 * will mount by default if we haven't been given a specific subvolume
974 * to mount.
975 */
976 dir_id = btrfs_super_root_dir(fs_info->super_copy);
977 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
978 if (IS_ERR(di)) {
979 btrfs_free_path(path);
980 return PTR_ERR(di);
981 }
982 if (!di) {
983 /*
984 * Ok the default dir item isn't there. This is weird since
985 * it's always been there, but don't freak out, just try and
986 * mount the top-level subvolume.
987 */
988 btrfs_free_path(path);
989 *objectid = BTRFS_FS_TREE_OBJECTID;
990 return 0;
991 }
992
993 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
994 btrfs_free_path(path);
995 *objectid = location.objectid;
996 return 0;
997 }
998
999 static int btrfs_fill_super(struct super_block *sb,
1000 struct btrfs_fs_devices *fs_devices,
1001 void *data, int silent)
1002 {
1003 struct inode *inode;
1004 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1005 struct btrfs_key key;
1006 int err;
1007
1008 sb->s_maxbytes = MAX_LFS_FILESIZE;
1009 sb->s_magic = BTRFS_SUPER_MAGIC;
1010 sb->s_op = &btrfs_super_ops;
1011 sb->s_d_op = &btrfs_dentry_operations;
1012 sb->s_export_op = &btrfs_export_ops;
1013 sb->s_xattr = btrfs_xattr_handlers;
1014 sb->s_time_gran = 1;
1015 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1016 sb->s_flags |= MS_POSIXACL;
1017 #endif
1018 sb->s_flags |= MS_I_VERSION;
1019 sb->s_iflags |= SB_I_CGROUPWB;
1020 err = open_ctree(sb, fs_devices, (char *)data);
1021 if (err) {
1022 printk(KERN_ERR "BTRFS: open_ctree failed\n");
1023 return err;
1024 }
1025
1026 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1027 key.type = BTRFS_INODE_ITEM_KEY;
1028 key.offset = 0;
1029 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1030 if (IS_ERR(inode)) {
1031 err = PTR_ERR(inode);
1032 goto fail_close;
1033 }
1034
1035 sb->s_root = d_make_root(inode);
1036 if (!sb->s_root) {
1037 err = -ENOMEM;
1038 goto fail_close;
1039 }
1040
1041 save_mount_options(sb, data);
1042 cleancache_init_fs(sb);
1043 sb->s_flags |= MS_ACTIVE;
1044 return 0;
1045
1046 fail_close:
1047 close_ctree(fs_info->tree_root);
1048 return err;
1049 }
1050
1051 int btrfs_sync_fs(struct super_block *sb, int wait)
1052 {
1053 struct btrfs_trans_handle *trans;
1054 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1055 struct btrfs_root *root = fs_info->tree_root;
1056
1057 trace_btrfs_sync_fs(wait);
1058
1059 if (!wait) {
1060 filemap_flush(fs_info->btree_inode->i_mapping);
1061 return 0;
1062 }
1063
1064 btrfs_wait_ordered_roots(fs_info, -1);
1065
1066 trans = btrfs_attach_transaction_barrier(root);
1067 if (IS_ERR(trans)) {
1068 /* no transaction, don't bother */
1069 if (PTR_ERR(trans) == -ENOENT) {
1070 /*
1071 * Exit unless we have some pending changes
1072 * that need to go through commit
1073 */
1074 if (fs_info->pending_changes == 0)
1075 return 0;
1076 /*
1077 * A non-blocking test if the fs is frozen. We must not
1078 * start a new transaction here otherwise a deadlock
1079 * happens. The pending operations are delayed to the
1080 * next commit after thawing.
1081 */
1082 if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1083 __sb_end_write(sb, SB_FREEZE_WRITE);
1084 else
1085 return 0;
1086 trans = btrfs_start_transaction(root, 0);
1087 }
1088 if (IS_ERR(trans))
1089 return PTR_ERR(trans);
1090 }
1091 return btrfs_commit_transaction(trans, root);
1092 }
1093
1094 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1095 {
1096 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1097 struct btrfs_root *root = info->tree_root;
1098 char *compress_type;
1099
1100 if (btrfs_test_opt(root, DEGRADED))
1101 seq_puts(seq, ",degraded");
1102 if (btrfs_test_opt(root, NODATASUM))
1103 seq_puts(seq, ",nodatasum");
1104 if (btrfs_test_opt(root, NODATACOW))
1105 seq_puts(seq, ",nodatacow");
1106 if (btrfs_test_opt(root, NOBARRIER))
1107 seq_puts(seq, ",nobarrier");
1108 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1109 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1110 if (info->alloc_start != 0)
1111 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1112 if (info->thread_pool_size != min_t(unsigned long,
1113 num_online_cpus() + 2, 8))
1114 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1115 if (btrfs_test_opt(root, COMPRESS)) {
1116 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1117 compress_type = "zlib";
1118 else
1119 compress_type = "lzo";
1120 if (btrfs_test_opt(root, FORCE_COMPRESS))
1121 seq_printf(seq, ",compress-force=%s", compress_type);
1122 else
1123 seq_printf(seq, ",compress=%s", compress_type);
1124 }
1125 if (btrfs_test_opt(root, NOSSD))
1126 seq_puts(seq, ",nossd");
1127 if (btrfs_test_opt(root, SSD_SPREAD))
1128 seq_puts(seq, ",ssd_spread");
1129 else if (btrfs_test_opt(root, SSD))
1130 seq_puts(seq, ",ssd");
1131 if (btrfs_test_opt(root, NOTREELOG))
1132 seq_puts(seq, ",notreelog");
1133 if (btrfs_test_opt(root, FLUSHONCOMMIT))
1134 seq_puts(seq, ",flushoncommit");
1135 if (btrfs_test_opt(root, DISCARD))
1136 seq_puts(seq, ",discard");
1137 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1138 seq_puts(seq, ",noacl");
1139 if (btrfs_test_opt(root, SPACE_CACHE))
1140 seq_puts(seq, ",space_cache");
1141 else
1142 seq_puts(seq, ",nospace_cache");
1143 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1144 seq_puts(seq, ",rescan_uuid_tree");
1145 if (btrfs_test_opt(root, CLEAR_CACHE))
1146 seq_puts(seq, ",clear_cache");
1147 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1148 seq_puts(seq, ",user_subvol_rm_allowed");
1149 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1150 seq_puts(seq, ",enospc_debug");
1151 if (btrfs_test_opt(root, AUTO_DEFRAG))
1152 seq_puts(seq, ",autodefrag");
1153 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1154 seq_puts(seq, ",inode_cache");
1155 if (btrfs_test_opt(root, SKIP_BALANCE))
1156 seq_puts(seq, ",skip_balance");
1157 if (btrfs_test_opt(root, RECOVERY))
1158 seq_puts(seq, ",recovery");
1159 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1160 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1161 seq_puts(seq, ",check_int_data");
1162 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1163 seq_puts(seq, ",check_int");
1164 if (info->check_integrity_print_mask)
1165 seq_printf(seq, ",check_int_print_mask=%d",
1166 info->check_integrity_print_mask);
1167 #endif
1168 if (info->metadata_ratio)
1169 seq_printf(seq, ",metadata_ratio=%d",
1170 info->metadata_ratio);
1171 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1172 seq_puts(seq, ",fatal_errors=panic");
1173 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1174 seq_printf(seq, ",commit=%d", info->commit_interval);
1175 seq_printf(seq, ",subvolid=%llu",
1176 BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1177 seq_puts(seq, ",subvol=");
1178 seq_dentry(seq, dentry, " \t\n\\");
1179 return 0;
1180 }
1181
1182 static int btrfs_test_super(struct super_block *s, void *data)
1183 {
1184 struct btrfs_fs_info *p = data;
1185 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1186
1187 return fs_info->fs_devices == p->fs_devices;
1188 }
1189
1190 static int btrfs_set_super(struct super_block *s, void *data)
1191 {
1192 int err = set_anon_super(s, data);
1193 if (!err)
1194 s->s_fs_info = data;
1195 return err;
1196 }
1197
1198 /*
1199 * subvolumes are identified by ino 256
1200 */
1201 static inline int is_subvolume_inode(struct inode *inode)
1202 {
1203 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1204 return 1;
1205 return 0;
1206 }
1207
1208 /*
1209 * This will add subvolid=0 to the argument string while removing any subvol=
1210 * and subvolid= arguments to make sure we get the top-level root for path
1211 * walking to the subvol we want.
1212 */
1213 static char *setup_root_args(char *args)
1214 {
1215 char *buf, *dst, *sep;
1216
1217 if (!args)
1218 return kstrdup("subvolid=0", GFP_NOFS);
1219
1220 /* The worst case is that we add ",subvolid=0" to the end. */
1221 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1222 if (!buf)
1223 return NULL;
1224
1225 while (1) {
1226 sep = strchrnul(args, ',');
1227 if (!strstarts(args, "subvol=") &&
1228 !strstarts(args, "subvolid=")) {
1229 memcpy(dst, args, sep - args);
1230 dst += sep - args;
1231 *dst++ = ',';
1232 }
1233 if (*sep)
1234 args = sep + 1;
1235 else
1236 break;
1237 }
1238 strcpy(dst, "subvolid=0");
1239
1240 return buf;
1241 }
1242
1243 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1244 int flags, const char *device_name,
1245 char *data)
1246 {
1247 struct dentry *root;
1248 struct vfsmount *mnt = NULL;
1249 char *newargs;
1250 int ret;
1251
1252 newargs = setup_root_args(data);
1253 if (!newargs) {
1254 root = ERR_PTR(-ENOMEM);
1255 goto out;
1256 }
1257
1258 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1259 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1260 if (flags & MS_RDONLY) {
1261 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1262 device_name, newargs);
1263 } else {
1264 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1265 device_name, newargs);
1266 if (IS_ERR(mnt)) {
1267 root = ERR_CAST(mnt);
1268 mnt = NULL;
1269 goto out;
1270 }
1271
1272 down_write(&mnt->mnt_sb->s_umount);
1273 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1274 up_write(&mnt->mnt_sb->s_umount);
1275 if (ret < 0) {
1276 root = ERR_PTR(ret);
1277 goto out;
1278 }
1279 }
1280 }
1281 if (IS_ERR(mnt)) {
1282 root = ERR_CAST(mnt);
1283 mnt = NULL;
1284 goto out;
1285 }
1286
1287 if (!subvol_name) {
1288 if (!subvol_objectid) {
1289 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1290 &subvol_objectid);
1291 if (ret) {
1292 root = ERR_PTR(ret);
1293 goto out;
1294 }
1295 }
1296 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1297 subvol_objectid);
1298 if (IS_ERR(subvol_name)) {
1299 root = ERR_CAST(subvol_name);
1300 subvol_name = NULL;
1301 goto out;
1302 }
1303
1304 }
1305
1306 root = mount_subtree(mnt, subvol_name);
1307 /* mount_subtree() drops our reference on the vfsmount. */
1308 mnt = NULL;
1309
1310 if (!IS_ERR(root)) {
1311 struct super_block *s = root->d_sb;
1312 struct inode *root_inode = d_inode(root);
1313 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1314
1315 ret = 0;
1316 if (!is_subvolume_inode(root_inode)) {
1317 pr_err("BTRFS: '%s' is not a valid subvolume\n",
1318 subvol_name);
1319 ret = -EINVAL;
1320 }
1321 if (subvol_objectid && root_objectid != subvol_objectid) {
1322 /*
1323 * This will also catch a race condition where a
1324 * subvolume which was passed by ID is renamed and
1325 * another subvolume is renamed over the old location.
1326 */
1327 pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n",
1328 subvol_name, subvol_objectid);
1329 ret = -EINVAL;
1330 }
1331 if (ret) {
1332 dput(root);
1333 root = ERR_PTR(ret);
1334 deactivate_locked_super(s);
1335 }
1336 }
1337
1338 out:
1339 mntput(mnt);
1340 kfree(newargs);
1341 kfree(subvol_name);
1342 return root;
1343 }
1344
1345 static int parse_security_options(char *orig_opts,
1346 struct security_mnt_opts *sec_opts)
1347 {
1348 char *secdata = NULL;
1349 int ret = 0;
1350
1351 secdata = alloc_secdata();
1352 if (!secdata)
1353 return -ENOMEM;
1354 ret = security_sb_copy_data(orig_opts, secdata);
1355 if (ret) {
1356 free_secdata(secdata);
1357 return ret;
1358 }
1359 ret = security_sb_parse_opts_str(secdata, sec_opts);
1360 free_secdata(secdata);
1361 return ret;
1362 }
1363
1364 static int setup_security_options(struct btrfs_fs_info *fs_info,
1365 struct super_block *sb,
1366 struct security_mnt_opts *sec_opts)
1367 {
1368 int ret = 0;
1369
1370 /*
1371 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1372 * is valid.
1373 */
1374 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1375 if (ret)
1376 return ret;
1377
1378 #ifdef CONFIG_SECURITY
1379 if (!fs_info->security_opts.num_mnt_opts) {
1380 /* first time security setup, copy sec_opts to fs_info */
1381 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1382 } else {
1383 /*
1384 * Since SELinux(the only one supports security_mnt_opts) does
1385 * NOT support changing context during remount/mount same sb,
1386 * This must be the same or part of the same security options,
1387 * just free it.
1388 */
1389 security_free_mnt_opts(sec_opts);
1390 }
1391 #endif
1392 return ret;
1393 }
1394
1395 /*
1396 * Find a superblock for the given device / mount point.
1397 *
1398 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1399 * for multiple device setup. Make sure to keep it in sync.
1400 */
1401 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1402 const char *device_name, void *data)
1403 {
1404 struct block_device *bdev = NULL;
1405 struct super_block *s;
1406 struct btrfs_fs_devices *fs_devices = NULL;
1407 struct btrfs_fs_info *fs_info = NULL;
1408 struct security_mnt_opts new_sec_opts;
1409 fmode_t mode = FMODE_READ;
1410 char *subvol_name = NULL;
1411 u64 subvol_objectid = 0;
1412 int error = 0;
1413
1414 if (!(flags & MS_RDONLY))
1415 mode |= FMODE_WRITE;
1416
1417 error = btrfs_parse_early_options(data, mode, fs_type,
1418 &subvol_name, &subvol_objectid,
1419 &fs_devices);
1420 if (error) {
1421 kfree(subvol_name);
1422 return ERR_PTR(error);
1423 }
1424
1425 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1426 /* mount_subvol() will free subvol_name. */
1427 return mount_subvol(subvol_name, subvol_objectid, flags,
1428 device_name, data);
1429 }
1430
1431 security_init_mnt_opts(&new_sec_opts);
1432 if (data) {
1433 error = parse_security_options(data, &new_sec_opts);
1434 if (error)
1435 return ERR_PTR(error);
1436 }
1437
1438 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1439 if (error)
1440 goto error_sec_opts;
1441
1442 /*
1443 * Setup a dummy root and fs_info for test/set super. This is because
1444 * we don't actually fill this stuff out until open_ctree, but we need
1445 * it for searching for existing supers, so this lets us do that and
1446 * then open_ctree will properly initialize everything later.
1447 */
1448 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1449 if (!fs_info) {
1450 error = -ENOMEM;
1451 goto error_sec_opts;
1452 }
1453
1454 fs_info->fs_devices = fs_devices;
1455
1456 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1457 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1458 security_init_mnt_opts(&fs_info->security_opts);
1459 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1460 error = -ENOMEM;
1461 goto error_fs_info;
1462 }
1463
1464 error = btrfs_open_devices(fs_devices, mode, fs_type);
1465 if (error)
1466 goto error_fs_info;
1467
1468 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1469 error = -EACCES;
1470 goto error_close_devices;
1471 }
1472
1473 bdev = fs_devices->latest_bdev;
1474 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1475 fs_info);
1476 if (IS_ERR(s)) {
1477 error = PTR_ERR(s);
1478 goto error_close_devices;
1479 }
1480
1481 if (s->s_root) {
1482 btrfs_close_devices(fs_devices);
1483 free_fs_info(fs_info);
1484 if ((flags ^ s->s_flags) & MS_RDONLY)
1485 error = -EBUSY;
1486 } else {
1487 char b[BDEVNAME_SIZE];
1488
1489 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1490 btrfs_sb(s)->bdev_holder = fs_type;
1491 error = btrfs_fill_super(s, fs_devices, data,
1492 flags & MS_SILENT ? 1 : 0);
1493 }
1494 if (error) {
1495 deactivate_locked_super(s);
1496 goto error_sec_opts;
1497 }
1498
1499 fs_info = btrfs_sb(s);
1500 error = setup_security_options(fs_info, s, &new_sec_opts);
1501 if (error) {
1502 deactivate_locked_super(s);
1503 goto error_sec_opts;
1504 }
1505
1506 return dget(s->s_root);
1507
1508 error_close_devices:
1509 btrfs_close_devices(fs_devices);
1510 error_fs_info:
1511 free_fs_info(fs_info);
1512 error_sec_opts:
1513 security_free_mnt_opts(&new_sec_opts);
1514 return ERR_PTR(error);
1515 }
1516
1517 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1518 int new_pool_size, int old_pool_size)
1519 {
1520 if (new_pool_size == old_pool_size)
1521 return;
1522
1523 fs_info->thread_pool_size = new_pool_size;
1524
1525 btrfs_info(fs_info, "resize thread pool %d -> %d",
1526 old_pool_size, new_pool_size);
1527
1528 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1529 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1530 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1531 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1532 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1533 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1534 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1535 new_pool_size);
1536 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1537 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1538 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1539 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1540 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1541 new_pool_size);
1542 }
1543
1544 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1545 {
1546 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1547 }
1548
1549 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1550 unsigned long old_opts, int flags)
1551 {
1552 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1553 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1554 (flags & MS_RDONLY))) {
1555 /* wait for any defraggers to finish */
1556 wait_event(fs_info->transaction_wait,
1557 (atomic_read(&fs_info->defrag_running) == 0));
1558 if (flags & MS_RDONLY)
1559 sync_filesystem(fs_info->sb);
1560 }
1561 }
1562
1563 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1564 unsigned long old_opts)
1565 {
1566 /*
1567 * We need cleanup all defragable inodes if the autodefragment is
1568 * close or the fs is R/O.
1569 */
1570 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1571 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1572 (fs_info->sb->s_flags & MS_RDONLY))) {
1573 btrfs_cleanup_defrag_inodes(fs_info);
1574 }
1575
1576 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1577 }
1578
1579 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1580 {
1581 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1582 struct btrfs_root *root = fs_info->tree_root;
1583 unsigned old_flags = sb->s_flags;
1584 unsigned long old_opts = fs_info->mount_opt;
1585 unsigned long old_compress_type = fs_info->compress_type;
1586 u64 old_max_inline = fs_info->max_inline;
1587 u64 old_alloc_start = fs_info->alloc_start;
1588 int old_thread_pool_size = fs_info->thread_pool_size;
1589 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1590 int ret;
1591
1592 sync_filesystem(sb);
1593 btrfs_remount_prepare(fs_info);
1594
1595 if (data) {
1596 struct security_mnt_opts new_sec_opts;
1597
1598 security_init_mnt_opts(&new_sec_opts);
1599 ret = parse_security_options(data, &new_sec_opts);
1600 if (ret)
1601 goto restore;
1602 ret = setup_security_options(fs_info, sb,
1603 &new_sec_opts);
1604 if (ret) {
1605 security_free_mnt_opts(&new_sec_opts);
1606 goto restore;
1607 }
1608 }
1609
1610 ret = btrfs_parse_options(root, data);
1611 if (ret) {
1612 ret = -EINVAL;
1613 goto restore;
1614 }
1615
1616 btrfs_remount_begin(fs_info, old_opts, *flags);
1617 btrfs_resize_thread_pool(fs_info,
1618 fs_info->thread_pool_size, old_thread_pool_size);
1619
1620 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1621 goto out;
1622
1623 if (*flags & MS_RDONLY) {
1624 /*
1625 * this also happens on 'umount -rf' or on shutdown, when
1626 * the filesystem is busy.
1627 */
1628 cancel_work_sync(&fs_info->async_reclaim_work);
1629
1630 /* wait for the uuid_scan task to finish */
1631 down(&fs_info->uuid_tree_rescan_sem);
1632 /* avoid complains from lockdep et al. */
1633 up(&fs_info->uuid_tree_rescan_sem);
1634
1635 sb->s_flags |= MS_RDONLY;
1636
1637 /*
1638 * Setting MS_RDONLY will put the cleaner thread to
1639 * sleep at the next loop if it's already active.
1640 * If it's already asleep, we'll leave unused block
1641 * groups on disk until we're mounted read-write again
1642 * unless we clean them up here.
1643 */
1644 btrfs_delete_unused_bgs(fs_info);
1645
1646 btrfs_dev_replace_suspend_for_unmount(fs_info);
1647 btrfs_scrub_cancel(fs_info);
1648 btrfs_pause_balance(fs_info);
1649
1650 ret = btrfs_commit_super(root);
1651 if (ret)
1652 goto restore;
1653 } else {
1654 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1655 btrfs_err(fs_info,
1656 "Remounting read-write after error is not allowed");
1657 ret = -EINVAL;
1658 goto restore;
1659 }
1660 if (fs_info->fs_devices->rw_devices == 0) {
1661 ret = -EACCES;
1662 goto restore;
1663 }
1664
1665 if (fs_info->fs_devices->missing_devices >
1666 fs_info->num_tolerated_disk_barrier_failures &&
1667 !(*flags & MS_RDONLY)) {
1668 btrfs_warn(fs_info,
1669 "too many missing devices, writeable remount is not allowed");
1670 ret = -EACCES;
1671 goto restore;
1672 }
1673
1674 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1675 ret = -EINVAL;
1676 goto restore;
1677 }
1678
1679 ret = btrfs_cleanup_fs_roots(fs_info);
1680 if (ret)
1681 goto restore;
1682
1683 /* recover relocation */
1684 mutex_lock(&fs_info->cleaner_mutex);
1685 ret = btrfs_recover_relocation(root);
1686 mutex_unlock(&fs_info->cleaner_mutex);
1687 if (ret)
1688 goto restore;
1689
1690 ret = btrfs_resume_balance_async(fs_info);
1691 if (ret)
1692 goto restore;
1693
1694 ret = btrfs_resume_dev_replace_async(fs_info);
1695 if (ret) {
1696 btrfs_warn(fs_info, "failed to resume dev_replace");
1697 goto restore;
1698 }
1699
1700 if (!fs_info->uuid_root) {
1701 btrfs_info(fs_info, "creating UUID tree");
1702 ret = btrfs_create_uuid_tree(fs_info);
1703 if (ret) {
1704 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1705 goto restore;
1706 }
1707 }
1708 sb->s_flags &= ~MS_RDONLY;
1709 }
1710 out:
1711 wake_up_process(fs_info->transaction_kthread);
1712 btrfs_remount_cleanup(fs_info, old_opts);
1713 return 0;
1714
1715 restore:
1716 /* We've hit an error - don't reset MS_RDONLY */
1717 if (sb->s_flags & MS_RDONLY)
1718 old_flags |= MS_RDONLY;
1719 sb->s_flags = old_flags;
1720 fs_info->mount_opt = old_opts;
1721 fs_info->compress_type = old_compress_type;
1722 fs_info->max_inline = old_max_inline;
1723 mutex_lock(&fs_info->chunk_mutex);
1724 fs_info->alloc_start = old_alloc_start;
1725 mutex_unlock(&fs_info->chunk_mutex);
1726 btrfs_resize_thread_pool(fs_info,
1727 old_thread_pool_size, fs_info->thread_pool_size);
1728 fs_info->metadata_ratio = old_metadata_ratio;
1729 btrfs_remount_cleanup(fs_info, old_opts);
1730 return ret;
1731 }
1732
1733 /* Used to sort the devices by max_avail(descending sort) */
1734 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1735 const void *dev_info2)
1736 {
1737 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1738 ((struct btrfs_device_info *)dev_info2)->max_avail)
1739 return -1;
1740 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1741 ((struct btrfs_device_info *)dev_info2)->max_avail)
1742 return 1;
1743 else
1744 return 0;
1745 }
1746
1747 /*
1748 * sort the devices by max_avail, in which max free extent size of each device
1749 * is stored.(Descending Sort)
1750 */
1751 static inline void btrfs_descending_sort_devices(
1752 struct btrfs_device_info *devices,
1753 size_t nr_devices)
1754 {
1755 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1756 btrfs_cmp_device_free_bytes, NULL);
1757 }
1758
1759 /*
1760 * The helper to calc the free space on the devices that can be used to store
1761 * file data.
1762 */
1763 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1764 {
1765 struct btrfs_fs_info *fs_info = root->fs_info;
1766 struct btrfs_device_info *devices_info;
1767 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1768 struct btrfs_device *device;
1769 u64 skip_space;
1770 u64 type;
1771 u64 avail_space;
1772 u64 used_space;
1773 u64 min_stripe_size;
1774 int min_stripes = 1, num_stripes = 1;
1775 int i = 0, nr_devices;
1776 int ret;
1777
1778 /*
1779 * We aren't under the device list lock, so this is racey-ish, but good
1780 * enough for our purposes.
1781 */
1782 nr_devices = fs_info->fs_devices->open_devices;
1783 if (!nr_devices) {
1784 smp_mb();
1785 nr_devices = fs_info->fs_devices->open_devices;
1786 ASSERT(nr_devices);
1787 if (!nr_devices) {
1788 *free_bytes = 0;
1789 return 0;
1790 }
1791 }
1792
1793 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1794 GFP_NOFS);
1795 if (!devices_info)
1796 return -ENOMEM;
1797
1798 /* calc min stripe number for data space alloction */
1799 type = btrfs_get_alloc_profile(root, 1);
1800 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1801 min_stripes = 2;
1802 num_stripes = nr_devices;
1803 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1804 min_stripes = 2;
1805 num_stripes = 2;
1806 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1807 min_stripes = 4;
1808 num_stripes = 4;
1809 }
1810
1811 if (type & BTRFS_BLOCK_GROUP_DUP)
1812 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1813 else
1814 min_stripe_size = BTRFS_STRIPE_LEN;
1815
1816 if (fs_info->alloc_start)
1817 mutex_lock(&fs_devices->device_list_mutex);
1818 rcu_read_lock();
1819 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1820 if (!device->in_fs_metadata || !device->bdev ||
1821 device->is_tgtdev_for_dev_replace)
1822 continue;
1823
1824 if (i >= nr_devices)
1825 break;
1826
1827 avail_space = device->total_bytes - device->bytes_used;
1828
1829 /* align with stripe_len */
1830 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1831 avail_space *= BTRFS_STRIPE_LEN;
1832
1833 /*
1834 * In order to avoid overwritting the superblock on the drive,
1835 * btrfs starts at an offset of at least 1MB when doing chunk
1836 * allocation.
1837 */
1838 skip_space = 1024 * 1024;
1839
1840 /* user can set the offset in fs_info->alloc_start. */
1841 if (fs_info->alloc_start &&
1842 fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1843 device->total_bytes) {
1844 rcu_read_unlock();
1845 skip_space = max(fs_info->alloc_start, skip_space);
1846
1847 /*
1848 * btrfs can not use the free space in
1849 * [0, skip_space - 1], we must subtract it from the
1850 * total. In order to implement it, we account the used
1851 * space in this range first.
1852 */
1853 ret = btrfs_account_dev_extents_size(device, 0,
1854 skip_space - 1,
1855 &used_space);
1856 if (ret) {
1857 kfree(devices_info);
1858 mutex_unlock(&fs_devices->device_list_mutex);
1859 return ret;
1860 }
1861
1862 rcu_read_lock();
1863
1864 /* calc the free space in [0, skip_space - 1] */
1865 skip_space -= used_space;
1866 }
1867
1868 /*
1869 * we can use the free space in [0, skip_space - 1], subtract
1870 * it from the total.
1871 */
1872 if (avail_space && avail_space >= skip_space)
1873 avail_space -= skip_space;
1874 else
1875 avail_space = 0;
1876
1877 if (avail_space < min_stripe_size)
1878 continue;
1879
1880 devices_info[i].dev = device;
1881 devices_info[i].max_avail = avail_space;
1882
1883 i++;
1884 }
1885 rcu_read_unlock();
1886 if (fs_info->alloc_start)
1887 mutex_unlock(&fs_devices->device_list_mutex);
1888
1889 nr_devices = i;
1890
1891 btrfs_descending_sort_devices(devices_info, nr_devices);
1892
1893 i = nr_devices - 1;
1894 avail_space = 0;
1895 while (nr_devices >= min_stripes) {
1896 if (num_stripes > nr_devices)
1897 num_stripes = nr_devices;
1898
1899 if (devices_info[i].max_avail >= min_stripe_size) {
1900 int j;
1901 u64 alloc_size;
1902
1903 avail_space += devices_info[i].max_avail * num_stripes;
1904 alloc_size = devices_info[i].max_avail;
1905 for (j = i + 1 - num_stripes; j <= i; j++)
1906 devices_info[j].max_avail -= alloc_size;
1907 }
1908 i--;
1909 nr_devices--;
1910 }
1911
1912 kfree(devices_info);
1913 *free_bytes = avail_space;
1914 return 0;
1915 }
1916
1917 /*
1918 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1919 *
1920 * If there's a redundant raid level at DATA block groups, use the respective
1921 * multiplier to scale the sizes.
1922 *
1923 * Unused device space usage is based on simulating the chunk allocator
1924 * algorithm that respects the device sizes, order of allocations and the
1925 * 'alloc_start' value, this is a close approximation of the actual use but
1926 * there are other factors that may change the result (like a new metadata
1927 * chunk).
1928 *
1929 * FIXME: not accurate for mixed block groups, total and free/used are ok,
1930 * available appears slightly larger.
1931 */
1932 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1933 {
1934 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1935 struct btrfs_super_block *disk_super = fs_info->super_copy;
1936 struct list_head *head = &fs_info->space_info;
1937 struct btrfs_space_info *found;
1938 u64 total_used = 0;
1939 u64 total_free_data = 0;
1940 int bits = dentry->d_sb->s_blocksize_bits;
1941 __be32 *fsid = (__be32 *)fs_info->fsid;
1942 unsigned factor = 1;
1943 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1944 int ret;
1945
1946 /*
1947 * holding chunk_muext to avoid allocating new chunks, holding
1948 * device_list_mutex to avoid the device being removed
1949 */
1950 rcu_read_lock();
1951 list_for_each_entry_rcu(found, head, list) {
1952 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1953 int i;
1954
1955 total_free_data += found->disk_total - found->disk_used;
1956 total_free_data -=
1957 btrfs_account_ro_block_groups_free_space(found);
1958
1959 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1960 if (!list_empty(&found->block_groups[i])) {
1961 switch (i) {
1962 case BTRFS_RAID_DUP:
1963 case BTRFS_RAID_RAID1:
1964 case BTRFS_RAID_RAID10:
1965 factor = 2;
1966 }
1967 }
1968 }
1969 }
1970
1971 total_used += found->disk_used;
1972 }
1973
1974 rcu_read_unlock();
1975
1976 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1977 buf->f_blocks >>= bits;
1978 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1979
1980 /* Account global block reserve as used, it's in logical size already */
1981 spin_lock(&block_rsv->lock);
1982 buf->f_bfree -= block_rsv->size >> bits;
1983 spin_unlock(&block_rsv->lock);
1984
1985 buf->f_bavail = div_u64(total_free_data, factor);
1986 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1987 if (ret)
1988 return ret;
1989 buf->f_bavail += div_u64(total_free_data, factor);
1990 buf->f_bavail = buf->f_bavail >> bits;
1991
1992 buf->f_type = BTRFS_SUPER_MAGIC;
1993 buf->f_bsize = dentry->d_sb->s_blocksize;
1994 buf->f_namelen = BTRFS_NAME_LEN;
1995
1996 /* We treat it as constant endianness (it doesn't matter _which_)
1997 because we want the fsid to come out the same whether mounted
1998 on a big-endian or little-endian host */
1999 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2000 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2001 /* Mask in the root object ID too, to disambiguate subvols */
2002 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2003 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2004
2005 return 0;
2006 }
2007
2008 static void btrfs_kill_super(struct super_block *sb)
2009 {
2010 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2011 kill_anon_super(sb);
2012 free_fs_info(fs_info);
2013 }
2014
2015 static struct file_system_type btrfs_fs_type = {
2016 .owner = THIS_MODULE,
2017 .name = "btrfs",
2018 .mount = btrfs_mount,
2019 .kill_sb = btrfs_kill_super,
2020 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2021 };
2022 MODULE_ALIAS_FS("btrfs");
2023
2024 static int btrfs_control_open(struct inode *inode, struct file *file)
2025 {
2026 /*
2027 * The control file's private_data is used to hold the
2028 * transaction when it is started and is used to keep
2029 * track of whether a transaction is already in progress.
2030 */
2031 file->private_data = NULL;
2032 return 0;
2033 }
2034
2035 /*
2036 * used by btrfsctl to scan devices when no FS is mounted
2037 */
2038 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2039 unsigned long arg)
2040 {
2041 struct btrfs_ioctl_vol_args *vol;
2042 struct btrfs_fs_devices *fs_devices;
2043 int ret = -ENOTTY;
2044
2045 if (!capable(CAP_SYS_ADMIN))
2046 return -EPERM;
2047
2048 vol = memdup_user((void __user *)arg, sizeof(*vol));
2049 if (IS_ERR(vol))
2050 return PTR_ERR(vol);
2051
2052 switch (cmd) {
2053 case BTRFS_IOC_SCAN_DEV:
2054 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2055 &btrfs_fs_type, &fs_devices);
2056 break;
2057 case BTRFS_IOC_DEVICES_READY:
2058 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2059 &btrfs_fs_type, &fs_devices);
2060 if (ret)
2061 break;
2062 ret = !(fs_devices->num_devices == fs_devices->total_devices);
2063 break;
2064 }
2065
2066 kfree(vol);
2067 return ret;
2068 }
2069
2070 static int btrfs_freeze(struct super_block *sb)
2071 {
2072 struct btrfs_trans_handle *trans;
2073 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2074
2075 trans = btrfs_attach_transaction_barrier(root);
2076 if (IS_ERR(trans)) {
2077 /* no transaction, don't bother */
2078 if (PTR_ERR(trans) == -ENOENT)
2079 return 0;
2080 return PTR_ERR(trans);
2081 }
2082 return btrfs_commit_transaction(trans, root);
2083 }
2084
2085 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2086 {
2087 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2088 struct btrfs_fs_devices *cur_devices;
2089 struct btrfs_device *dev, *first_dev = NULL;
2090 struct list_head *head;
2091 struct rcu_string *name;
2092
2093 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2094 cur_devices = fs_info->fs_devices;
2095 while (cur_devices) {
2096 head = &cur_devices->devices;
2097 list_for_each_entry(dev, head, dev_list) {
2098 if (dev->missing)
2099 continue;
2100 if (!dev->name)
2101 continue;
2102 if (!first_dev || dev->devid < first_dev->devid)
2103 first_dev = dev;
2104 }
2105 cur_devices = cur_devices->seed;
2106 }
2107
2108 if (first_dev) {
2109 rcu_read_lock();
2110 name = rcu_dereference(first_dev->name);
2111 seq_escape(m, name->str, " \t\n\\");
2112 rcu_read_unlock();
2113 } else {
2114 WARN_ON(1);
2115 }
2116 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2117 return 0;
2118 }
2119
2120 static const struct super_operations btrfs_super_ops = {
2121 .drop_inode = btrfs_drop_inode,
2122 .evict_inode = btrfs_evict_inode,
2123 .put_super = btrfs_put_super,
2124 .sync_fs = btrfs_sync_fs,
2125 .show_options = btrfs_show_options,
2126 .show_devname = btrfs_show_devname,
2127 .write_inode = btrfs_write_inode,
2128 .alloc_inode = btrfs_alloc_inode,
2129 .destroy_inode = btrfs_destroy_inode,
2130 .statfs = btrfs_statfs,
2131 .remount_fs = btrfs_remount,
2132 .freeze_fs = btrfs_freeze,
2133 };
2134
2135 static const struct file_operations btrfs_ctl_fops = {
2136 .open = btrfs_control_open,
2137 .unlocked_ioctl = btrfs_control_ioctl,
2138 .compat_ioctl = btrfs_control_ioctl,
2139 .owner = THIS_MODULE,
2140 .llseek = noop_llseek,
2141 };
2142
2143 static struct miscdevice btrfs_misc = {
2144 .minor = BTRFS_MINOR,
2145 .name = "btrfs-control",
2146 .fops = &btrfs_ctl_fops
2147 };
2148
2149 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2150 MODULE_ALIAS("devname:btrfs-control");
2151
2152 static int btrfs_interface_init(void)
2153 {
2154 return misc_register(&btrfs_misc);
2155 }
2156
2157 static void btrfs_interface_exit(void)
2158 {
2159 misc_deregister(&btrfs_misc);
2160 }
2161
2162 static void btrfs_print_info(void)
2163 {
2164 printk(KERN_INFO "Btrfs loaded"
2165 #ifdef CONFIG_BTRFS_DEBUG
2166 ", debug=on"
2167 #endif
2168 #ifdef CONFIG_BTRFS_ASSERT
2169 ", assert=on"
2170 #endif
2171 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2172 ", integrity-checker=on"
2173 #endif
2174 "\n");
2175 }
2176
2177 static int btrfs_run_sanity_tests(void)
2178 {
2179 int ret;
2180
2181 ret = btrfs_init_test_fs();
2182 if (ret)
2183 return ret;
2184
2185 ret = btrfs_test_free_space_cache();
2186 if (ret)
2187 goto out;
2188 ret = btrfs_test_extent_buffer_operations();
2189 if (ret)
2190 goto out;
2191 ret = btrfs_test_extent_io();
2192 if (ret)
2193 goto out;
2194 ret = btrfs_test_inodes();
2195 if (ret)
2196 goto out;
2197 ret = btrfs_test_qgroups();
2198 out:
2199 btrfs_destroy_test_fs();
2200 return ret;
2201 }
2202
2203 static int __init init_btrfs_fs(void)
2204 {
2205 int err;
2206
2207 err = btrfs_hash_init();
2208 if (err)
2209 return err;
2210
2211 btrfs_props_init();
2212
2213 err = btrfs_init_sysfs();
2214 if (err)
2215 goto free_hash;
2216
2217 btrfs_init_compress();
2218
2219 err = btrfs_init_cachep();
2220 if (err)
2221 goto free_compress;
2222
2223 err = extent_io_init();
2224 if (err)
2225 goto free_cachep;
2226
2227 err = extent_map_init();
2228 if (err)
2229 goto free_extent_io;
2230
2231 err = ordered_data_init();
2232 if (err)
2233 goto free_extent_map;
2234
2235 err = btrfs_delayed_inode_init();
2236 if (err)
2237 goto free_ordered_data;
2238
2239 err = btrfs_auto_defrag_init();
2240 if (err)
2241 goto free_delayed_inode;
2242
2243 err = btrfs_delayed_ref_init();
2244 if (err)
2245 goto free_auto_defrag;
2246
2247 err = btrfs_prelim_ref_init();
2248 if (err)
2249 goto free_delayed_ref;
2250
2251 err = btrfs_end_io_wq_init();
2252 if (err)
2253 goto free_prelim_ref;
2254
2255 err = btrfs_interface_init();
2256 if (err)
2257 goto free_end_io_wq;
2258
2259 btrfs_init_lockdep();
2260
2261 btrfs_print_info();
2262
2263 err = btrfs_run_sanity_tests();
2264 if (err)
2265 goto unregister_ioctl;
2266
2267 err = register_filesystem(&btrfs_fs_type);
2268 if (err)
2269 goto unregister_ioctl;
2270
2271 return 0;
2272
2273 unregister_ioctl:
2274 btrfs_interface_exit();
2275 free_end_io_wq:
2276 btrfs_end_io_wq_exit();
2277 free_prelim_ref:
2278 btrfs_prelim_ref_exit();
2279 free_delayed_ref:
2280 btrfs_delayed_ref_exit();
2281 free_auto_defrag:
2282 btrfs_auto_defrag_exit();
2283 free_delayed_inode:
2284 btrfs_delayed_inode_exit();
2285 free_ordered_data:
2286 ordered_data_exit();
2287 free_extent_map:
2288 extent_map_exit();
2289 free_extent_io:
2290 extent_io_exit();
2291 free_cachep:
2292 btrfs_destroy_cachep();
2293 free_compress:
2294 btrfs_exit_compress();
2295 btrfs_exit_sysfs();
2296 free_hash:
2297 btrfs_hash_exit();
2298 return err;
2299 }
2300
2301 static void __exit exit_btrfs_fs(void)
2302 {
2303 btrfs_destroy_cachep();
2304 btrfs_delayed_ref_exit();
2305 btrfs_auto_defrag_exit();
2306 btrfs_delayed_inode_exit();
2307 btrfs_prelim_ref_exit();
2308 ordered_data_exit();
2309 extent_map_exit();
2310 extent_io_exit();
2311 btrfs_interface_exit();
2312 btrfs_end_io_wq_exit();
2313 unregister_filesystem(&btrfs_fs_type);
2314 btrfs_exit_sysfs();
2315 btrfs_cleanup_fs_uuids();
2316 btrfs_exit_compress();
2317 btrfs_hash_exit();
2318 }
2319
2320 late_initcall(init_btrfs_fs);
2321 module_exit(exit_btrfs_fs)
2322
2323 MODULE_LICENSE("GPL");
This page took 0.0803 seconds and 5 git commands to generate.