btrfs: add 'cold' compiler annotations to all error handling functions
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71
72 static const char *btrfs_decode_error(int errno)
73 {
74 char *errstr = "unknown";
75
76 switch (errno) {
77 case -EIO:
78 errstr = "IO failure";
79 break;
80 case -ENOMEM:
81 errstr = "Out of memory";
82 break;
83 case -EROFS:
84 errstr = "Readonly filesystem";
85 break;
86 case -EEXIST:
87 errstr = "Object already exists";
88 break;
89 case -ENOSPC:
90 errstr = "No space left";
91 break;
92 case -ENOENT:
93 errstr = "No such entry";
94 break;
95 }
96
97 return errstr;
98 }
99
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102 /*
103 * today we only save the error info into ram. Long term we'll
104 * also send it down to the disk
105 */
106 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107 }
108
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112 struct super_block *sb = fs_info->sb;
113
114 if (sb->s_flags & MS_RDONLY)
115 return;
116
117 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118 sb->s_flags |= MS_RDONLY;
119 btrfs_info(fs_info, "forced readonly");
120 /*
121 * Note that a running device replace operation is not
122 * canceled here although there is no way to update
123 * the progress. It would add the risk of a deadlock,
124 * therefore the canceling is ommited. The only penalty
125 * is that some I/O remains active until the procedure
126 * completes. The next time when the filesystem is
127 * mounted writeable again, the device replace
128 * operation continues.
129 */
130 }
131 }
132
133 #ifdef CONFIG_PRINTK
134 /*
135 * __btrfs_std_error decodes expected errors from the caller and
136 * invokes the approciate error response.
137 */
138 __cold
139 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
140 unsigned int line, int errno, const char *fmt, ...)
141 {
142 struct super_block *sb = fs_info->sb;
143 const char *errstr;
144
145 /*
146 * Special case: if the error is EROFS, and we're already
147 * under MS_RDONLY, then it is safe here.
148 */
149 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
150 return;
151
152 errstr = btrfs_decode_error(errno);
153 if (fmt) {
154 struct va_format vaf;
155 va_list args;
156
157 va_start(args, fmt);
158 vaf.fmt = fmt;
159 vaf.va = &args;
160
161 printk(KERN_CRIT
162 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
163 sb->s_id, function, line, errno, errstr, &vaf);
164 va_end(args);
165 } else {
166 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
167 sb->s_id, function, line, errno, errstr);
168 }
169
170 /* Don't go through full error handling during mount */
171 save_error_info(fs_info);
172 if (sb->s_flags & MS_BORN)
173 btrfs_handle_error(fs_info);
174 }
175
176 static const char * const logtypes[] = {
177 "emergency",
178 "alert",
179 "critical",
180 "error",
181 "warning",
182 "notice",
183 "info",
184 "debug",
185 };
186
187 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189 struct super_block *sb = fs_info->sb;
190 char lvl[4];
191 struct va_format vaf;
192 va_list args;
193 const char *type = logtypes[4];
194 int kern_level;
195
196 va_start(args, fmt);
197
198 kern_level = printk_get_level(fmt);
199 if (kern_level) {
200 size_t size = printk_skip_level(fmt) - fmt;
201 memcpy(lvl, fmt, size);
202 lvl[size] = '\0';
203 fmt += size;
204 type = logtypes[kern_level - '0'];
205 } else
206 *lvl = '\0';
207
208 vaf.fmt = fmt;
209 vaf.va = &args;
210
211 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
212
213 va_end(args);
214 }
215
216 #else
217
218 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
219 unsigned int line, int errno, const char *fmt, ...)
220 {
221 struct super_block *sb = fs_info->sb;
222
223 /*
224 * Special case: if the error is EROFS, and we're already
225 * under MS_RDONLY, then it is safe here.
226 */
227 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
228 return;
229
230 /* Don't go through full error handling during mount */
231 if (sb->s_flags & MS_BORN) {
232 save_error_info(fs_info);
233 btrfs_handle_error(fs_info);
234 }
235 }
236 #endif
237
238 /*
239 * We only mark the transaction aborted and then set the file system read-only.
240 * This will prevent new transactions from starting or trying to join this
241 * one.
242 *
243 * This means that error recovery at the call site is limited to freeing
244 * any local memory allocations and passing the error code up without
245 * further cleanup. The transaction should complete as it normally would
246 * in the call path but will return -EIO.
247 *
248 * We'll complete the cleanup in btrfs_end_transaction and
249 * btrfs_commit_transaction.
250 */
251 __cold
252 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
253 struct btrfs_root *root, const char *function,
254 unsigned int line, int errno)
255 {
256 trans->aborted = errno;
257 /* Nothing used. The other threads that have joined this
258 * transaction may be able to continue. */
259 if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
260 const char *errstr;
261
262 errstr = btrfs_decode_error(errno);
263 btrfs_warn(root->fs_info,
264 "%s:%d: Aborting unused transaction(%s).",
265 function, line, errstr);
266 return;
267 }
268 ACCESS_ONCE(trans->transaction->aborted) = errno;
269 /* Wake up anybody who may be waiting on this transaction */
270 wake_up(&root->fs_info->transaction_wait);
271 wake_up(&root->fs_info->transaction_blocked_wait);
272 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
273 }
274 /*
275 * __btrfs_panic decodes unexpected, fatal errors from the caller,
276 * issues an alert, and either panics or BUGs, depending on mount options.
277 */
278 __cold
279 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
280 unsigned int line, int errno, const char *fmt, ...)
281 {
282 char *s_id = "<unknown>";
283 const char *errstr;
284 struct va_format vaf = { .fmt = fmt };
285 va_list args;
286
287 if (fs_info)
288 s_id = fs_info->sb->s_id;
289
290 va_start(args, fmt);
291 vaf.va = &args;
292
293 errstr = btrfs_decode_error(errno);
294 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
295 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
296 s_id, function, line, &vaf, errno, errstr);
297
298 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
299 function, line, &vaf, errno, errstr);
300 va_end(args);
301 /* Caller calls BUG() */
302 }
303
304 static void btrfs_put_super(struct super_block *sb)
305 {
306 close_ctree(btrfs_sb(sb)->tree_root);
307 }
308
309 enum {
310 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
311 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
312 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
313 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
314 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
315 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
316 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
317 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
318 Opt_check_integrity, Opt_check_integrity_including_extent_data,
319 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
320 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
321 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
322 Opt_datasum, Opt_treelog, Opt_noinode_cache,
323 Opt_err,
324 };
325
326 static match_table_t tokens = {
327 {Opt_degraded, "degraded"},
328 {Opt_subvol, "subvol=%s"},
329 {Opt_subvolid, "subvolid=%s"},
330 {Opt_device, "device=%s"},
331 {Opt_nodatasum, "nodatasum"},
332 {Opt_datasum, "datasum"},
333 {Opt_nodatacow, "nodatacow"},
334 {Opt_datacow, "datacow"},
335 {Opt_nobarrier, "nobarrier"},
336 {Opt_barrier, "barrier"},
337 {Opt_max_inline, "max_inline=%s"},
338 {Opt_alloc_start, "alloc_start=%s"},
339 {Opt_thread_pool, "thread_pool=%d"},
340 {Opt_compress, "compress"},
341 {Opt_compress_type, "compress=%s"},
342 {Opt_compress_force, "compress-force"},
343 {Opt_compress_force_type, "compress-force=%s"},
344 {Opt_ssd, "ssd"},
345 {Opt_ssd_spread, "ssd_spread"},
346 {Opt_nossd, "nossd"},
347 {Opt_acl, "acl"},
348 {Opt_noacl, "noacl"},
349 {Opt_notreelog, "notreelog"},
350 {Opt_treelog, "treelog"},
351 {Opt_flushoncommit, "flushoncommit"},
352 {Opt_noflushoncommit, "noflushoncommit"},
353 {Opt_ratio, "metadata_ratio=%d"},
354 {Opt_discard, "discard"},
355 {Opt_nodiscard, "nodiscard"},
356 {Opt_space_cache, "space_cache"},
357 {Opt_clear_cache, "clear_cache"},
358 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
359 {Opt_enospc_debug, "enospc_debug"},
360 {Opt_noenospc_debug, "noenospc_debug"},
361 {Opt_subvolrootid, "subvolrootid=%d"},
362 {Opt_defrag, "autodefrag"},
363 {Opt_nodefrag, "noautodefrag"},
364 {Opt_inode_cache, "inode_cache"},
365 {Opt_noinode_cache, "noinode_cache"},
366 {Opt_no_space_cache, "nospace_cache"},
367 {Opt_recovery, "recovery"},
368 {Opt_skip_balance, "skip_balance"},
369 {Opt_check_integrity, "check_int"},
370 {Opt_check_integrity_including_extent_data, "check_int_data"},
371 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
372 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
373 {Opt_fatal_errors, "fatal_errors=%s"},
374 {Opt_commit_interval, "commit=%d"},
375 {Opt_err, NULL},
376 };
377
378 /*
379 * Regular mount options parser. Everything that is needed only when
380 * reading in a new superblock is parsed here.
381 * XXX JDM: This needs to be cleaned up for remount.
382 */
383 int btrfs_parse_options(struct btrfs_root *root, char *options)
384 {
385 struct btrfs_fs_info *info = root->fs_info;
386 substring_t args[MAX_OPT_ARGS];
387 char *p, *num, *orig = NULL;
388 u64 cache_gen;
389 int intarg;
390 int ret = 0;
391 char *compress_type;
392 bool compress_force = false;
393
394 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
395 if (cache_gen)
396 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
397
398 if (!options)
399 goto out;
400
401 /*
402 * strsep changes the string, duplicate it because parse_options
403 * gets called twice
404 */
405 options = kstrdup(options, GFP_NOFS);
406 if (!options)
407 return -ENOMEM;
408
409 orig = options;
410
411 while ((p = strsep(&options, ",")) != NULL) {
412 int token;
413 if (!*p)
414 continue;
415
416 token = match_token(p, tokens, args);
417 switch (token) {
418 case Opt_degraded:
419 btrfs_info(root->fs_info, "allowing degraded mounts");
420 btrfs_set_opt(info->mount_opt, DEGRADED);
421 break;
422 case Opt_subvol:
423 case Opt_subvolid:
424 case Opt_subvolrootid:
425 case Opt_device:
426 /*
427 * These are parsed by btrfs_parse_early_options
428 * and can be happily ignored here.
429 */
430 break;
431 case Opt_nodatasum:
432 btrfs_set_and_info(root, NODATASUM,
433 "setting nodatasum");
434 break;
435 case Opt_datasum:
436 if (btrfs_test_opt(root, NODATASUM)) {
437 if (btrfs_test_opt(root, NODATACOW))
438 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
439 else
440 btrfs_info(root->fs_info, "setting datasum");
441 }
442 btrfs_clear_opt(info->mount_opt, NODATACOW);
443 btrfs_clear_opt(info->mount_opt, NODATASUM);
444 break;
445 case Opt_nodatacow:
446 if (!btrfs_test_opt(root, NODATACOW)) {
447 if (!btrfs_test_opt(root, COMPRESS) ||
448 !btrfs_test_opt(root, FORCE_COMPRESS)) {
449 btrfs_info(root->fs_info,
450 "setting nodatacow, compression disabled");
451 } else {
452 btrfs_info(root->fs_info, "setting nodatacow");
453 }
454 }
455 btrfs_clear_opt(info->mount_opt, COMPRESS);
456 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
457 btrfs_set_opt(info->mount_opt, NODATACOW);
458 btrfs_set_opt(info->mount_opt, NODATASUM);
459 break;
460 case Opt_datacow:
461 btrfs_clear_and_info(root, NODATACOW,
462 "setting datacow");
463 break;
464 case Opt_compress_force:
465 case Opt_compress_force_type:
466 compress_force = true;
467 /* Fallthrough */
468 case Opt_compress:
469 case Opt_compress_type:
470 if (token == Opt_compress ||
471 token == Opt_compress_force ||
472 strcmp(args[0].from, "zlib") == 0) {
473 compress_type = "zlib";
474 info->compress_type = BTRFS_COMPRESS_ZLIB;
475 btrfs_set_opt(info->mount_opt, COMPRESS);
476 btrfs_clear_opt(info->mount_opt, NODATACOW);
477 btrfs_clear_opt(info->mount_opt, NODATASUM);
478 } else if (strcmp(args[0].from, "lzo") == 0) {
479 compress_type = "lzo";
480 info->compress_type = BTRFS_COMPRESS_LZO;
481 btrfs_set_opt(info->mount_opt, COMPRESS);
482 btrfs_clear_opt(info->mount_opt, NODATACOW);
483 btrfs_clear_opt(info->mount_opt, NODATASUM);
484 btrfs_set_fs_incompat(info, COMPRESS_LZO);
485 } else if (strncmp(args[0].from, "no", 2) == 0) {
486 compress_type = "no";
487 btrfs_clear_opt(info->mount_opt, COMPRESS);
488 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
489 compress_force = false;
490 } else {
491 ret = -EINVAL;
492 goto out;
493 }
494
495 if (compress_force) {
496 btrfs_set_and_info(root, FORCE_COMPRESS,
497 "force %s compression",
498 compress_type);
499 } else {
500 if (!btrfs_test_opt(root, COMPRESS))
501 btrfs_info(root->fs_info,
502 "btrfs: use %s compression",
503 compress_type);
504 /*
505 * If we remount from compress-force=xxx to
506 * compress=xxx, we need clear FORCE_COMPRESS
507 * flag, otherwise, there is no way for users
508 * to disable forcible compression separately.
509 */
510 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
511 }
512 break;
513 case Opt_ssd:
514 btrfs_set_and_info(root, SSD,
515 "use ssd allocation scheme");
516 break;
517 case Opt_ssd_spread:
518 btrfs_set_and_info(root, SSD_SPREAD,
519 "use spread ssd allocation scheme");
520 btrfs_set_opt(info->mount_opt, SSD);
521 break;
522 case Opt_nossd:
523 btrfs_set_and_info(root, NOSSD,
524 "not using ssd allocation scheme");
525 btrfs_clear_opt(info->mount_opt, SSD);
526 break;
527 case Opt_barrier:
528 btrfs_clear_and_info(root, NOBARRIER,
529 "turning on barriers");
530 break;
531 case Opt_nobarrier:
532 btrfs_set_and_info(root, NOBARRIER,
533 "turning off barriers");
534 break;
535 case Opt_thread_pool:
536 ret = match_int(&args[0], &intarg);
537 if (ret) {
538 goto out;
539 } else if (intarg > 0) {
540 info->thread_pool_size = intarg;
541 } else {
542 ret = -EINVAL;
543 goto out;
544 }
545 break;
546 case Opt_max_inline:
547 num = match_strdup(&args[0]);
548 if (num) {
549 info->max_inline = memparse(num, NULL);
550 kfree(num);
551
552 if (info->max_inline) {
553 info->max_inline = min_t(u64,
554 info->max_inline,
555 root->sectorsize);
556 }
557 btrfs_info(root->fs_info, "max_inline at %llu",
558 info->max_inline);
559 } else {
560 ret = -ENOMEM;
561 goto out;
562 }
563 break;
564 case Opt_alloc_start:
565 num = match_strdup(&args[0]);
566 if (num) {
567 mutex_lock(&info->chunk_mutex);
568 info->alloc_start = memparse(num, NULL);
569 mutex_unlock(&info->chunk_mutex);
570 kfree(num);
571 btrfs_info(root->fs_info, "allocations start at %llu",
572 info->alloc_start);
573 } else {
574 ret = -ENOMEM;
575 goto out;
576 }
577 break;
578 case Opt_acl:
579 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
580 root->fs_info->sb->s_flags |= MS_POSIXACL;
581 break;
582 #else
583 btrfs_err(root->fs_info,
584 "support for ACL not compiled in!");
585 ret = -EINVAL;
586 goto out;
587 #endif
588 case Opt_noacl:
589 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
590 break;
591 case Opt_notreelog:
592 btrfs_set_and_info(root, NOTREELOG,
593 "disabling tree log");
594 break;
595 case Opt_treelog:
596 btrfs_clear_and_info(root, NOTREELOG,
597 "enabling tree log");
598 break;
599 case Opt_flushoncommit:
600 btrfs_set_and_info(root, FLUSHONCOMMIT,
601 "turning on flush-on-commit");
602 break;
603 case Opt_noflushoncommit:
604 btrfs_clear_and_info(root, FLUSHONCOMMIT,
605 "turning off flush-on-commit");
606 break;
607 case Opt_ratio:
608 ret = match_int(&args[0], &intarg);
609 if (ret) {
610 goto out;
611 } else if (intarg >= 0) {
612 info->metadata_ratio = intarg;
613 btrfs_info(root->fs_info, "metadata ratio %d",
614 info->metadata_ratio);
615 } else {
616 ret = -EINVAL;
617 goto out;
618 }
619 break;
620 case Opt_discard:
621 btrfs_set_and_info(root, DISCARD,
622 "turning on discard");
623 break;
624 case Opt_nodiscard:
625 btrfs_clear_and_info(root, DISCARD,
626 "turning off discard");
627 break;
628 case Opt_space_cache:
629 btrfs_set_and_info(root, SPACE_CACHE,
630 "enabling disk space caching");
631 break;
632 case Opt_rescan_uuid_tree:
633 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
634 break;
635 case Opt_no_space_cache:
636 btrfs_clear_and_info(root, SPACE_CACHE,
637 "disabling disk space caching");
638 break;
639 case Opt_inode_cache:
640 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
641 "enabling inode map caching");
642 break;
643 case Opt_noinode_cache:
644 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
645 "disabling inode map caching");
646 break;
647 case Opt_clear_cache:
648 btrfs_set_and_info(root, CLEAR_CACHE,
649 "force clearing of disk cache");
650 break;
651 case Opt_user_subvol_rm_allowed:
652 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
653 break;
654 case Opt_enospc_debug:
655 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
656 break;
657 case Opt_noenospc_debug:
658 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
659 break;
660 case Opt_defrag:
661 btrfs_set_and_info(root, AUTO_DEFRAG,
662 "enabling auto defrag");
663 break;
664 case Opt_nodefrag:
665 btrfs_clear_and_info(root, AUTO_DEFRAG,
666 "disabling auto defrag");
667 break;
668 case Opt_recovery:
669 btrfs_info(root->fs_info, "enabling auto recovery");
670 btrfs_set_opt(info->mount_opt, RECOVERY);
671 break;
672 case Opt_skip_balance:
673 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
674 break;
675 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
676 case Opt_check_integrity_including_extent_data:
677 btrfs_info(root->fs_info,
678 "enabling check integrity including extent data");
679 btrfs_set_opt(info->mount_opt,
680 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
681 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
682 break;
683 case Opt_check_integrity:
684 btrfs_info(root->fs_info, "enabling check integrity");
685 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
686 break;
687 case Opt_check_integrity_print_mask:
688 ret = match_int(&args[0], &intarg);
689 if (ret) {
690 goto out;
691 } else if (intarg >= 0) {
692 info->check_integrity_print_mask = intarg;
693 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
694 info->check_integrity_print_mask);
695 } else {
696 ret = -EINVAL;
697 goto out;
698 }
699 break;
700 #else
701 case Opt_check_integrity_including_extent_data:
702 case Opt_check_integrity:
703 case Opt_check_integrity_print_mask:
704 btrfs_err(root->fs_info,
705 "support for check_integrity* not compiled in!");
706 ret = -EINVAL;
707 goto out;
708 #endif
709 case Opt_fatal_errors:
710 if (strcmp(args[0].from, "panic") == 0)
711 btrfs_set_opt(info->mount_opt,
712 PANIC_ON_FATAL_ERROR);
713 else if (strcmp(args[0].from, "bug") == 0)
714 btrfs_clear_opt(info->mount_opt,
715 PANIC_ON_FATAL_ERROR);
716 else {
717 ret = -EINVAL;
718 goto out;
719 }
720 break;
721 case Opt_commit_interval:
722 intarg = 0;
723 ret = match_int(&args[0], &intarg);
724 if (ret < 0) {
725 btrfs_err(root->fs_info, "invalid commit interval");
726 ret = -EINVAL;
727 goto out;
728 }
729 if (intarg > 0) {
730 if (intarg > 300) {
731 btrfs_warn(root->fs_info, "excessive commit interval %d",
732 intarg);
733 }
734 info->commit_interval = intarg;
735 } else {
736 btrfs_info(root->fs_info, "using default commit interval %ds",
737 BTRFS_DEFAULT_COMMIT_INTERVAL);
738 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
739 }
740 break;
741 case Opt_err:
742 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
743 ret = -EINVAL;
744 goto out;
745 default:
746 break;
747 }
748 }
749 out:
750 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
751 btrfs_info(root->fs_info, "disk space caching is enabled");
752 kfree(orig);
753 return ret;
754 }
755
756 /*
757 * Parse mount options that are required early in the mount process.
758 *
759 * All other options will be parsed on much later in the mount process and
760 * only when we need to allocate a new super block.
761 */
762 static int btrfs_parse_early_options(const char *options, fmode_t flags,
763 void *holder, char **subvol_name, u64 *subvol_objectid,
764 struct btrfs_fs_devices **fs_devices)
765 {
766 substring_t args[MAX_OPT_ARGS];
767 char *device_name, *opts, *orig, *p;
768 char *num = NULL;
769 int error = 0;
770
771 if (!options)
772 return 0;
773
774 /*
775 * strsep changes the string, duplicate it because parse_options
776 * gets called twice
777 */
778 opts = kstrdup(options, GFP_KERNEL);
779 if (!opts)
780 return -ENOMEM;
781 orig = opts;
782
783 while ((p = strsep(&opts, ",")) != NULL) {
784 int token;
785 if (!*p)
786 continue;
787
788 token = match_token(p, tokens, args);
789 switch (token) {
790 case Opt_subvol:
791 kfree(*subvol_name);
792 *subvol_name = match_strdup(&args[0]);
793 if (!*subvol_name) {
794 error = -ENOMEM;
795 goto out;
796 }
797 break;
798 case Opt_subvolid:
799 num = match_strdup(&args[0]);
800 if (num) {
801 *subvol_objectid = memparse(num, NULL);
802 kfree(num);
803 /* we want the original fs_tree */
804 if (!*subvol_objectid)
805 *subvol_objectid =
806 BTRFS_FS_TREE_OBJECTID;
807 } else {
808 error = -EINVAL;
809 goto out;
810 }
811 break;
812 case Opt_subvolrootid:
813 printk(KERN_WARNING
814 "BTRFS: 'subvolrootid' mount option is deprecated and has "
815 "no effect\n");
816 break;
817 case Opt_device:
818 device_name = match_strdup(&args[0]);
819 if (!device_name) {
820 error = -ENOMEM;
821 goto out;
822 }
823 error = btrfs_scan_one_device(device_name,
824 flags, holder, fs_devices);
825 kfree(device_name);
826 if (error)
827 goto out;
828 break;
829 default:
830 break;
831 }
832 }
833
834 out:
835 kfree(orig);
836 return error;
837 }
838
839 static struct dentry *get_default_root(struct super_block *sb,
840 u64 subvol_objectid)
841 {
842 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
843 struct btrfs_root *root = fs_info->tree_root;
844 struct btrfs_root *new_root;
845 struct btrfs_dir_item *di;
846 struct btrfs_path *path;
847 struct btrfs_key location;
848 struct inode *inode;
849 u64 dir_id;
850 int new = 0;
851
852 /*
853 * We have a specific subvol we want to mount, just setup location and
854 * go look up the root.
855 */
856 if (subvol_objectid) {
857 location.objectid = subvol_objectid;
858 location.type = BTRFS_ROOT_ITEM_KEY;
859 location.offset = (u64)-1;
860 goto find_root;
861 }
862
863 path = btrfs_alloc_path();
864 if (!path)
865 return ERR_PTR(-ENOMEM);
866 path->leave_spinning = 1;
867
868 /*
869 * Find the "default" dir item which points to the root item that we
870 * will mount by default if we haven't been given a specific subvolume
871 * to mount.
872 */
873 dir_id = btrfs_super_root_dir(fs_info->super_copy);
874 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
875 if (IS_ERR(di)) {
876 btrfs_free_path(path);
877 return ERR_CAST(di);
878 }
879 if (!di) {
880 /*
881 * Ok the default dir item isn't there. This is weird since
882 * it's always been there, but don't freak out, just try and
883 * mount to root most subvolume.
884 */
885 btrfs_free_path(path);
886 dir_id = BTRFS_FIRST_FREE_OBJECTID;
887 new_root = fs_info->fs_root;
888 goto setup_root;
889 }
890
891 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
892 btrfs_free_path(path);
893
894 find_root:
895 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
896 if (IS_ERR(new_root))
897 return ERR_CAST(new_root);
898
899 if (!(sb->s_flags & MS_RDONLY)) {
900 int ret;
901 down_read(&fs_info->cleanup_work_sem);
902 ret = btrfs_orphan_cleanup(new_root);
903 up_read(&fs_info->cleanup_work_sem);
904 if (ret)
905 return ERR_PTR(ret);
906 }
907
908 dir_id = btrfs_root_dirid(&new_root->root_item);
909 setup_root:
910 location.objectid = dir_id;
911 location.type = BTRFS_INODE_ITEM_KEY;
912 location.offset = 0;
913
914 inode = btrfs_iget(sb, &location, new_root, &new);
915 if (IS_ERR(inode))
916 return ERR_CAST(inode);
917
918 /*
919 * If we're just mounting the root most subvol put the inode and return
920 * a reference to the dentry. We will have already gotten a reference
921 * to the inode in btrfs_fill_super so we're good to go.
922 */
923 if (!new && d_inode(sb->s_root) == inode) {
924 iput(inode);
925 return dget(sb->s_root);
926 }
927
928 return d_obtain_root(inode);
929 }
930
931 static int btrfs_fill_super(struct super_block *sb,
932 struct btrfs_fs_devices *fs_devices,
933 void *data, int silent)
934 {
935 struct inode *inode;
936 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
937 struct btrfs_key key;
938 int err;
939
940 sb->s_maxbytes = MAX_LFS_FILESIZE;
941 sb->s_magic = BTRFS_SUPER_MAGIC;
942 sb->s_op = &btrfs_super_ops;
943 sb->s_d_op = &btrfs_dentry_operations;
944 sb->s_export_op = &btrfs_export_ops;
945 sb->s_xattr = btrfs_xattr_handlers;
946 sb->s_time_gran = 1;
947 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
948 sb->s_flags |= MS_POSIXACL;
949 #endif
950 sb->s_flags |= MS_I_VERSION;
951 err = open_ctree(sb, fs_devices, (char *)data);
952 if (err) {
953 printk(KERN_ERR "BTRFS: open_ctree failed\n");
954 return err;
955 }
956
957 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
958 key.type = BTRFS_INODE_ITEM_KEY;
959 key.offset = 0;
960 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
961 if (IS_ERR(inode)) {
962 err = PTR_ERR(inode);
963 goto fail_close;
964 }
965
966 sb->s_root = d_make_root(inode);
967 if (!sb->s_root) {
968 err = -ENOMEM;
969 goto fail_close;
970 }
971
972 save_mount_options(sb, data);
973 cleancache_init_fs(sb);
974 sb->s_flags |= MS_ACTIVE;
975 return 0;
976
977 fail_close:
978 close_ctree(fs_info->tree_root);
979 return err;
980 }
981
982 int btrfs_sync_fs(struct super_block *sb, int wait)
983 {
984 struct btrfs_trans_handle *trans;
985 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
986 struct btrfs_root *root = fs_info->tree_root;
987
988 trace_btrfs_sync_fs(wait);
989
990 if (!wait) {
991 filemap_flush(fs_info->btree_inode->i_mapping);
992 return 0;
993 }
994
995 btrfs_wait_ordered_roots(fs_info, -1);
996
997 trans = btrfs_attach_transaction_barrier(root);
998 if (IS_ERR(trans)) {
999 /* no transaction, don't bother */
1000 if (PTR_ERR(trans) == -ENOENT) {
1001 /*
1002 * Exit unless we have some pending changes
1003 * that need to go through commit
1004 */
1005 if (fs_info->pending_changes == 0)
1006 return 0;
1007 /*
1008 * A non-blocking test if the fs is frozen. We must not
1009 * start a new transaction here otherwise a deadlock
1010 * happens. The pending operations are delayed to the
1011 * next commit after thawing.
1012 */
1013 if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1014 __sb_end_write(sb, SB_FREEZE_WRITE);
1015 else
1016 return 0;
1017 trans = btrfs_start_transaction(root, 0);
1018 }
1019 if (IS_ERR(trans))
1020 return PTR_ERR(trans);
1021 }
1022 return btrfs_commit_transaction(trans, root);
1023 }
1024
1025 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1026 {
1027 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1028 struct btrfs_root *root = info->tree_root;
1029 char *compress_type;
1030
1031 if (btrfs_test_opt(root, DEGRADED))
1032 seq_puts(seq, ",degraded");
1033 if (btrfs_test_opt(root, NODATASUM))
1034 seq_puts(seq, ",nodatasum");
1035 if (btrfs_test_opt(root, NODATACOW))
1036 seq_puts(seq, ",nodatacow");
1037 if (btrfs_test_opt(root, NOBARRIER))
1038 seq_puts(seq, ",nobarrier");
1039 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1040 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1041 if (info->alloc_start != 0)
1042 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1043 if (info->thread_pool_size != min_t(unsigned long,
1044 num_online_cpus() + 2, 8))
1045 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1046 if (btrfs_test_opt(root, COMPRESS)) {
1047 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1048 compress_type = "zlib";
1049 else
1050 compress_type = "lzo";
1051 if (btrfs_test_opt(root, FORCE_COMPRESS))
1052 seq_printf(seq, ",compress-force=%s", compress_type);
1053 else
1054 seq_printf(seq, ",compress=%s", compress_type);
1055 }
1056 if (btrfs_test_opt(root, NOSSD))
1057 seq_puts(seq, ",nossd");
1058 if (btrfs_test_opt(root, SSD_SPREAD))
1059 seq_puts(seq, ",ssd_spread");
1060 else if (btrfs_test_opt(root, SSD))
1061 seq_puts(seq, ",ssd");
1062 if (btrfs_test_opt(root, NOTREELOG))
1063 seq_puts(seq, ",notreelog");
1064 if (btrfs_test_opt(root, FLUSHONCOMMIT))
1065 seq_puts(seq, ",flushoncommit");
1066 if (btrfs_test_opt(root, DISCARD))
1067 seq_puts(seq, ",discard");
1068 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1069 seq_puts(seq, ",noacl");
1070 if (btrfs_test_opt(root, SPACE_CACHE))
1071 seq_puts(seq, ",space_cache");
1072 else
1073 seq_puts(seq, ",nospace_cache");
1074 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1075 seq_puts(seq, ",rescan_uuid_tree");
1076 if (btrfs_test_opt(root, CLEAR_CACHE))
1077 seq_puts(seq, ",clear_cache");
1078 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1079 seq_puts(seq, ",user_subvol_rm_allowed");
1080 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1081 seq_puts(seq, ",enospc_debug");
1082 if (btrfs_test_opt(root, AUTO_DEFRAG))
1083 seq_puts(seq, ",autodefrag");
1084 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1085 seq_puts(seq, ",inode_cache");
1086 if (btrfs_test_opt(root, SKIP_BALANCE))
1087 seq_puts(seq, ",skip_balance");
1088 if (btrfs_test_opt(root, RECOVERY))
1089 seq_puts(seq, ",recovery");
1090 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1091 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1092 seq_puts(seq, ",check_int_data");
1093 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1094 seq_puts(seq, ",check_int");
1095 if (info->check_integrity_print_mask)
1096 seq_printf(seq, ",check_int_print_mask=%d",
1097 info->check_integrity_print_mask);
1098 #endif
1099 if (info->metadata_ratio)
1100 seq_printf(seq, ",metadata_ratio=%d",
1101 info->metadata_ratio);
1102 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1103 seq_puts(seq, ",fatal_errors=panic");
1104 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1105 seq_printf(seq, ",commit=%d", info->commit_interval);
1106 return 0;
1107 }
1108
1109 static int btrfs_test_super(struct super_block *s, void *data)
1110 {
1111 struct btrfs_fs_info *p = data;
1112 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1113
1114 return fs_info->fs_devices == p->fs_devices;
1115 }
1116
1117 static int btrfs_set_super(struct super_block *s, void *data)
1118 {
1119 int err = set_anon_super(s, data);
1120 if (!err)
1121 s->s_fs_info = data;
1122 return err;
1123 }
1124
1125 /*
1126 * subvolumes are identified by ino 256
1127 */
1128 static inline int is_subvolume_inode(struct inode *inode)
1129 {
1130 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1131 return 1;
1132 return 0;
1133 }
1134
1135 /*
1136 * This will strip out the subvol=%s argument for an argument string and add
1137 * subvolid=0 to make sure we get the actual tree root for path walking to the
1138 * subvol we want.
1139 */
1140 static char *setup_root_args(char *args)
1141 {
1142 unsigned len = strlen(args) + 2 + 1;
1143 char *src, *dst, *buf;
1144
1145 /*
1146 * We need the same args as before, but with this substitution:
1147 * s!subvol=[^,]+!subvolid=0!
1148 *
1149 * Since the replacement string is up to 2 bytes longer than the
1150 * original, allocate strlen(args) + 2 + 1 bytes.
1151 */
1152
1153 src = strstr(args, "subvol=");
1154 /* This shouldn't happen, but just in case.. */
1155 if (!src)
1156 return NULL;
1157
1158 buf = dst = kmalloc(len, GFP_NOFS);
1159 if (!buf)
1160 return NULL;
1161
1162 /*
1163 * If the subvol= arg is not at the start of the string,
1164 * copy whatever precedes it into buf.
1165 */
1166 if (src != args) {
1167 *src++ = '\0';
1168 strcpy(buf, args);
1169 dst += strlen(args);
1170 }
1171
1172 strcpy(dst, "subvolid=0");
1173 dst += strlen("subvolid=0");
1174
1175 /*
1176 * If there is a "," after the original subvol=... string,
1177 * copy that suffix into our buffer. Otherwise, we're done.
1178 */
1179 src = strchr(src, ',');
1180 if (src)
1181 strcpy(dst, src);
1182
1183 return buf;
1184 }
1185
1186 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1187 const char *device_name, char *data)
1188 {
1189 struct dentry *root;
1190 struct vfsmount *mnt;
1191 char *newargs;
1192
1193 newargs = setup_root_args(data);
1194 if (!newargs)
1195 return ERR_PTR(-ENOMEM);
1196 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1197 newargs);
1198
1199 if (PTR_RET(mnt) == -EBUSY) {
1200 if (flags & MS_RDONLY) {
1201 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1202 newargs);
1203 } else {
1204 int r;
1205 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1206 newargs);
1207 if (IS_ERR(mnt)) {
1208 kfree(newargs);
1209 return ERR_CAST(mnt);
1210 }
1211
1212 r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1213 if (r < 0) {
1214 /* FIXME: release vfsmount mnt ??*/
1215 kfree(newargs);
1216 return ERR_PTR(r);
1217 }
1218 }
1219 }
1220
1221 kfree(newargs);
1222
1223 if (IS_ERR(mnt))
1224 return ERR_CAST(mnt);
1225
1226 root = mount_subtree(mnt, subvol_name);
1227
1228 if (!IS_ERR(root) && !is_subvolume_inode(d_inode(root))) {
1229 struct super_block *s = root->d_sb;
1230 dput(root);
1231 root = ERR_PTR(-EINVAL);
1232 deactivate_locked_super(s);
1233 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1234 subvol_name);
1235 }
1236
1237 return root;
1238 }
1239
1240 static int parse_security_options(char *orig_opts,
1241 struct security_mnt_opts *sec_opts)
1242 {
1243 char *secdata = NULL;
1244 int ret = 0;
1245
1246 secdata = alloc_secdata();
1247 if (!secdata)
1248 return -ENOMEM;
1249 ret = security_sb_copy_data(orig_opts, secdata);
1250 if (ret) {
1251 free_secdata(secdata);
1252 return ret;
1253 }
1254 ret = security_sb_parse_opts_str(secdata, sec_opts);
1255 free_secdata(secdata);
1256 return ret;
1257 }
1258
1259 static int setup_security_options(struct btrfs_fs_info *fs_info,
1260 struct super_block *sb,
1261 struct security_mnt_opts *sec_opts)
1262 {
1263 int ret = 0;
1264
1265 /*
1266 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1267 * is valid.
1268 */
1269 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1270 if (ret)
1271 return ret;
1272
1273 #ifdef CONFIG_SECURITY
1274 if (!fs_info->security_opts.num_mnt_opts) {
1275 /* first time security setup, copy sec_opts to fs_info */
1276 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1277 } else {
1278 /*
1279 * Since SELinux(the only one supports security_mnt_opts) does
1280 * NOT support changing context during remount/mount same sb,
1281 * This must be the same or part of the same security options,
1282 * just free it.
1283 */
1284 security_free_mnt_opts(sec_opts);
1285 }
1286 #endif
1287 return ret;
1288 }
1289
1290 /*
1291 * Find a superblock for the given device / mount point.
1292 *
1293 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1294 * for multiple device setup. Make sure to keep it in sync.
1295 */
1296 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1297 const char *device_name, void *data)
1298 {
1299 struct block_device *bdev = NULL;
1300 struct super_block *s;
1301 struct dentry *root;
1302 struct btrfs_fs_devices *fs_devices = NULL;
1303 struct btrfs_fs_info *fs_info = NULL;
1304 struct security_mnt_opts new_sec_opts;
1305 fmode_t mode = FMODE_READ;
1306 char *subvol_name = NULL;
1307 u64 subvol_objectid = 0;
1308 int error = 0;
1309
1310 if (!(flags & MS_RDONLY))
1311 mode |= FMODE_WRITE;
1312
1313 error = btrfs_parse_early_options(data, mode, fs_type,
1314 &subvol_name, &subvol_objectid,
1315 &fs_devices);
1316 if (error) {
1317 kfree(subvol_name);
1318 return ERR_PTR(error);
1319 }
1320
1321 if (subvol_name) {
1322 root = mount_subvol(subvol_name, flags, device_name, data);
1323 kfree(subvol_name);
1324 return root;
1325 }
1326
1327 security_init_mnt_opts(&new_sec_opts);
1328 if (data) {
1329 error = parse_security_options(data, &new_sec_opts);
1330 if (error)
1331 return ERR_PTR(error);
1332 }
1333
1334 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1335 if (error)
1336 goto error_sec_opts;
1337
1338 /*
1339 * Setup a dummy root and fs_info for test/set super. This is because
1340 * we don't actually fill this stuff out until open_ctree, but we need
1341 * it for searching for existing supers, so this lets us do that and
1342 * then open_ctree will properly initialize everything later.
1343 */
1344 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1345 if (!fs_info) {
1346 error = -ENOMEM;
1347 goto error_sec_opts;
1348 }
1349
1350 fs_info->fs_devices = fs_devices;
1351
1352 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1353 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1354 security_init_mnt_opts(&fs_info->security_opts);
1355 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1356 error = -ENOMEM;
1357 goto error_fs_info;
1358 }
1359
1360 error = btrfs_open_devices(fs_devices, mode, fs_type);
1361 if (error)
1362 goto error_fs_info;
1363
1364 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1365 error = -EACCES;
1366 goto error_close_devices;
1367 }
1368
1369 bdev = fs_devices->latest_bdev;
1370 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1371 fs_info);
1372 if (IS_ERR(s)) {
1373 error = PTR_ERR(s);
1374 goto error_close_devices;
1375 }
1376
1377 if (s->s_root) {
1378 btrfs_close_devices(fs_devices);
1379 free_fs_info(fs_info);
1380 if ((flags ^ s->s_flags) & MS_RDONLY)
1381 error = -EBUSY;
1382 } else {
1383 char b[BDEVNAME_SIZE];
1384
1385 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1386 btrfs_sb(s)->bdev_holder = fs_type;
1387 error = btrfs_fill_super(s, fs_devices, data,
1388 flags & MS_SILENT ? 1 : 0);
1389 }
1390
1391 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1392 if (IS_ERR(root)) {
1393 deactivate_locked_super(s);
1394 error = PTR_ERR(root);
1395 goto error_sec_opts;
1396 }
1397
1398 fs_info = btrfs_sb(s);
1399 error = setup_security_options(fs_info, s, &new_sec_opts);
1400 if (error) {
1401 dput(root);
1402 deactivate_locked_super(s);
1403 goto error_sec_opts;
1404 }
1405
1406 return root;
1407
1408 error_close_devices:
1409 btrfs_close_devices(fs_devices);
1410 error_fs_info:
1411 free_fs_info(fs_info);
1412 error_sec_opts:
1413 security_free_mnt_opts(&new_sec_opts);
1414 return ERR_PTR(error);
1415 }
1416
1417 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1418 int new_pool_size, int old_pool_size)
1419 {
1420 if (new_pool_size == old_pool_size)
1421 return;
1422
1423 fs_info->thread_pool_size = new_pool_size;
1424
1425 btrfs_info(fs_info, "resize thread pool %d -> %d",
1426 old_pool_size, new_pool_size);
1427
1428 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1429 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1430 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1431 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1432 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1433 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1434 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1435 new_pool_size);
1436 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1437 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1438 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1439 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1440 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1441 new_pool_size);
1442 }
1443
1444 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1445 {
1446 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1447 }
1448
1449 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1450 unsigned long old_opts, int flags)
1451 {
1452 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1453 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1454 (flags & MS_RDONLY))) {
1455 /* wait for any defraggers to finish */
1456 wait_event(fs_info->transaction_wait,
1457 (atomic_read(&fs_info->defrag_running) == 0));
1458 if (flags & MS_RDONLY)
1459 sync_filesystem(fs_info->sb);
1460 }
1461 }
1462
1463 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1464 unsigned long old_opts)
1465 {
1466 /*
1467 * We need cleanup all defragable inodes if the autodefragment is
1468 * close or the fs is R/O.
1469 */
1470 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1471 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1472 (fs_info->sb->s_flags & MS_RDONLY))) {
1473 btrfs_cleanup_defrag_inodes(fs_info);
1474 }
1475
1476 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1477 }
1478
1479 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1480 {
1481 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1482 struct btrfs_root *root = fs_info->tree_root;
1483 unsigned old_flags = sb->s_flags;
1484 unsigned long old_opts = fs_info->mount_opt;
1485 unsigned long old_compress_type = fs_info->compress_type;
1486 u64 old_max_inline = fs_info->max_inline;
1487 u64 old_alloc_start = fs_info->alloc_start;
1488 int old_thread_pool_size = fs_info->thread_pool_size;
1489 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1490 int ret;
1491
1492 sync_filesystem(sb);
1493 btrfs_remount_prepare(fs_info);
1494
1495 if (data) {
1496 struct security_mnt_opts new_sec_opts;
1497
1498 security_init_mnt_opts(&new_sec_opts);
1499 ret = parse_security_options(data, &new_sec_opts);
1500 if (ret)
1501 goto restore;
1502 ret = setup_security_options(fs_info, sb,
1503 &new_sec_opts);
1504 if (ret) {
1505 security_free_mnt_opts(&new_sec_opts);
1506 goto restore;
1507 }
1508 }
1509
1510 ret = btrfs_parse_options(root, data);
1511 if (ret) {
1512 ret = -EINVAL;
1513 goto restore;
1514 }
1515
1516 btrfs_remount_begin(fs_info, old_opts, *flags);
1517 btrfs_resize_thread_pool(fs_info,
1518 fs_info->thread_pool_size, old_thread_pool_size);
1519
1520 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1521 goto out;
1522
1523 if (*flags & MS_RDONLY) {
1524 /*
1525 * this also happens on 'umount -rf' or on shutdown, when
1526 * the filesystem is busy.
1527 */
1528 cancel_work_sync(&fs_info->async_reclaim_work);
1529
1530 /* wait for the uuid_scan task to finish */
1531 down(&fs_info->uuid_tree_rescan_sem);
1532 /* avoid complains from lockdep et al. */
1533 up(&fs_info->uuid_tree_rescan_sem);
1534
1535 sb->s_flags |= MS_RDONLY;
1536
1537 btrfs_dev_replace_suspend_for_unmount(fs_info);
1538 btrfs_scrub_cancel(fs_info);
1539 btrfs_pause_balance(fs_info);
1540
1541 ret = btrfs_commit_super(root);
1542 if (ret)
1543 goto restore;
1544 } else {
1545 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1546 btrfs_err(fs_info,
1547 "Remounting read-write after error is not allowed");
1548 ret = -EINVAL;
1549 goto restore;
1550 }
1551 if (fs_info->fs_devices->rw_devices == 0) {
1552 ret = -EACCES;
1553 goto restore;
1554 }
1555
1556 if (fs_info->fs_devices->missing_devices >
1557 fs_info->num_tolerated_disk_barrier_failures &&
1558 !(*flags & MS_RDONLY)) {
1559 btrfs_warn(fs_info,
1560 "too many missing devices, writeable remount is not allowed");
1561 ret = -EACCES;
1562 goto restore;
1563 }
1564
1565 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1566 ret = -EINVAL;
1567 goto restore;
1568 }
1569
1570 ret = btrfs_cleanup_fs_roots(fs_info);
1571 if (ret)
1572 goto restore;
1573
1574 /* recover relocation */
1575 mutex_lock(&fs_info->cleaner_mutex);
1576 ret = btrfs_recover_relocation(root);
1577 mutex_unlock(&fs_info->cleaner_mutex);
1578 if (ret)
1579 goto restore;
1580
1581 ret = btrfs_resume_balance_async(fs_info);
1582 if (ret)
1583 goto restore;
1584
1585 ret = btrfs_resume_dev_replace_async(fs_info);
1586 if (ret) {
1587 btrfs_warn(fs_info, "failed to resume dev_replace");
1588 goto restore;
1589 }
1590
1591 if (!fs_info->uuid_root) {
1592 btrfs_info(fs_info, "creating UUID tree");
1593 ret = btrfs_create_uuid_tree(fs_info);
1594 if (ret) {
1595 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1596 goto restore;
1597 }
1598 }
1599 sb->s_flags &= ~MS_RDONLY;
1600 }
1601 out:
1602 wake_up_process(fs_info->transaction_kthread);
1603 btrfs_remount_cleanup(fs_info, old_opts);
1604 return 0;
1605
1606 restore:
1607 /* We've hit an error - don't reset MS_RDONLY */
1608 if (sb->s_flags & MS_RDONLY)
1609 old_flags |= MS_RDONLY;
1610 sb->s_flags = old_flags;
1611 fs_info->mount_opt = old_opts;
1612 fs_info->compress_type = old_compress_type;
1613 fs_info->max_inline = old_max_inline;
1614 mutex_lock(&fs_info->chunk_mutex);
1615 fs_info->alloc_start = old_alloc_start;
1616 mutex_unlock(&fs_info->chunk_mutex);
1617 btrfs_resize_thread_pool(fs_info,
1618 old_thread_pool_size, fs_info->thread_pool_size);
1619 fs_info->metadata_ratio = old_metadata_ratio;
1620 btrfs_remount_cleanup(fs_info, old_opts);
1621 return ret;
1622 }
1623
1624 /* Used to sort the devices by max_avail(descending sort) */
1625 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1626 const void *dev_info2)
1627 {
1628 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1629 ((struct btrfs_device_info *)dev_info2)->max_avail)
1630 return -1;
1631 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1632 ((struct btrfs_device_info *)dev_info2)->max_avail)
1633 return 1;
1634 else
1635 return 0;
1636 }
1637
1638 /*
1639 * sort the devices by max_avail, in which max free extent size of each device
1640 * is stored.(Descending Sort)
1641 */
1642 static inline void btrfs_descending_sort_devices(
1643 struct btrfs_device_info *devices,
1644 size_t nr_devices)
1645 {
1646 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1647 btrfs_cmp_device_free_bytes, NULL);
1648 }
1649
1650 /*
1651 * The helper to calc the free space on the devices that can be used to store
1652 * file data.
1653 */
1654 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1655 {
1656 struct btrfs_fs_info *fs_info = root->fs_info;
1657 struct btrfs_device_info *devices_info;
1658 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1659 struct btrfs_device *device;
1660 u64 skip_space;
1661 u64 type;
1662 u64 avail_space;
1663 u64 used_space;
1664 u64 min_stripe_size;
1665 int min_stripes = 1, num_stripes = 1;
1666 int i = 0, nr_devices;
1667 int ret;
1668
1669 /*
1670 * We aren't under the device list lock, so this is racey-ish, but good
1671 * enough for our purposes.
1672 */
1673 nr_devices = fs_info->fs_devices->open_devices;
1674 if (!nr_devices) {
1675 smp_mb();
1676 nr_devices = fs_info->fs_devices->open_devices;
1677 ASSERT(nr_devices);
1678 if (!nr_devices) {
1679 *free_bytes = 0;
1680 return 0;
1681 }
1682 }
1683
1684 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1685 GFP_NOFS);
1686 if (!devices_info)
1687 return -ENOMEM;
1688
1689 /* calc min stripe number for data space alloction */
1690 type = btrfs_get_alloc_profile(root, 1);
1691 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1692 min_stripes = 2;
1693 num_stripes = nr_devices;
1694 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1695 min_stripes = 2;
1696 num_stripes = 2;
1697 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1698 min_stripes = 4;
1699 num_stripes = 4;
1700 }
1701
1702 if (type & BTRFS_BLOCK_GROUP_DUP)
1703 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1704 else
1705 min_stripe_size = BTRFS_STRIPE_LEN;
1706
1707 if (fs_info->alloc_start)
1708 mutex_lock(&fs_devices->device_list_mutex);
1709 rcu_read_lock();
1710 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1711 if (!device->in_fs_metadata || !device->bdev ||
1712 device->is_tgtdev_for_dev_replace)
1713 continue;
1714
1715 if (i >= nr_devices)
1716 break;
1717
1718 avail_space = device->total_bytes - device->bytes_used;
1719
1720 /* align with stripe_len */
1721 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1722 avail_space *= BTRFS_STRIPE_LEN;
1723
1724 /*
1725 * In order to avoid overwritting the superblock on the drive,
1726 * btrfs starts at an offset of at least 1MB when doing chunk
1727 * allocation.
1728 */
1729 skip_space = 1024 * 1024;
1730
1731 /* user can set the offset in fs_info->alloc_start. */
1732 if (fs_info->alloc_start &&
1733 fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1734 device->total_bytes) {
1735 rcu_read_unlock();
1736 skip_space = max(fs_info->alloc_start, skip_space);
1737
1738 /*
1739 * btrfs can not use the free space in
1740 * [0, skip_space - 1], we must subtract it from the
1741 * total. In order to implement it, we account the used
1742 * space in this range first.
1743 */
1744 ret = btrfs_account_dev_extents_size(device, 0,
1745 skip_space - 1,
1746 &used_space);
1747 if (ret) {
1748 kfree(devices_info);
1749 mutex_unlock(&fs_devices->device_list_mutex);
1750 return ret;
1751 }
1752
1753 rcu_read_lock();
1754
1755 /* calc the free space in [0, skip_space - 1] */
1756 skip_space -= used_space;
1757 }
1758
1759 /*
1760 * we can use the free space in [0, skip_space - 1], subtract
1761 * it from the total.
1762 */
1763 if (avail_space && avail_space >= skip_space)
1764 avail_space -= skip_space;
1765 else
1766 avail_space = 0;
1767
1768 if (avail_space < min_stripe_size)
1769 continue;
1770
1771 devices_info[i].dev = device;
1772 devices_info[i].max_avail = avail_space;
1773
1774 i++;
1775 }
1776 rcu_read_unlock();
1777 if (fs_info->alloc_start)
1778 mutex_unlock(&fs_devices->device_list_mutex);
1779
1780 nr_devices = i;
1781
1782 btrfs_descending_sort_devices(devices_info, nr_devices);
1783
1784 i = nr_devices - 1;
1785 avail_space = 0;
1786 while (nr_devices >= min_stripes) {
1787 if (num_stripes > nr_devices)
1788 num_stripes = nr_devices;
1789
1790 if (devices_info[i].max_avail >= min_stripe_size) {
1791 int j;
1792 u64 alloc_size;
1793
1794 avail_space += devices_info[i].max_avail * num_stripes;
1795 alloc_size = devices_info[i].max_avail;
1796 for (j = i + 1 - num_stripes; j <= i; j++)
1797 devices_info[j].max_avail -= alloc_size;
1798 }
1799 i--;
1800 nr_devices--;
1801 }
1802
1803 kfree(devices_info);
1804 *free_bytes = avail_space;
1805 return 0;
1806 }
1807
1808 /*
1809 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1810 *
1811 * If there's a redundant raid level at DATA block groups, use the respective
1812 * multiplier to scale the sizes.
1813 *
1814 * Unused device space usage is based on simulating the chunk allocator
1815 * algorithm that respects the device sizes, order of allocations and the
1816 * 'alloc_start' value, this is a close approximation of the actual use but
1817 * there are other factors that may change the result (like a new metadata
1818 * chunk).
1819 *
1820 * FIXME: not accurate for mixed block groups, total and free/used are ok,
1821 * available appears slightly larger.
1822 */
1823 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1824 {
1825 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1826 struct btrfs_super_block *disk_super = fs_info->super_copy;
1827 struct list_head *head = &fs_info->space_info;
1828 struct btrfs_space_info *found;
1829 u64 total_used = 0;
1830 u64 total_free_data = 0;
1831 int bits = dentry->d_sb->s_blocksize_bits;
1832 __be32 *fsid = (__be32 *)fs_info->fsid;
1833 unsigned factor = 1;
1834 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1835 int ret;
1836
1837 /*
1838 * holding chunk_muext to avoid allocating new chunks, holding
1839 * device_list_mutex to avoid the device being removed
1840 */
1841 rcu_read_lock();
1842 list_for_each_entry_rcu(found, head, list) {
1843 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1844 int i;
1845
1846 total_free_data += found->disk_total - found->disk_used;
1847 total_free_data -=
1848 btrfs_account_ro_block_groups_free_space(found);
1849
1850 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1851 if (!list_empty(&found->block_groups[i])) {
1852 switch (i) {
1853 case BTRFS_RAID_DUP:
1854 case BTRFS_RAID_RAID1:
1855 case BTRFS_RAID_RAID10:
1856 factor = 2;
1857 }
1858 }
1859 }
1860 }
1861
1862 total_used += found->disk_used;
1863 }
1864
1865 rcu_read_unlock();
1866
1867 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1868 buf->f_blocks >>= bits;
1869 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1870
1871 /* Account global block reserve as used, it's in logical size already */
1872 spin_lock(&block_rsv->lock);
1873 buf->f_bfree -= block_rsv->size >> bits;
1874 spin_unlock(&block_rsv->lock);
1875
1876 buf->f_bavail = div_u64(total_free_data, factor);
1877 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1878 if (ret)
1879 return ret;
1880 buf->f_bavail += div_u64(total_free_data, factor);
1881 buf->f_bavail = buf->f_bavail >> bits;
1882
1883 buf->f_type = BTRFS_SUPER_MAGIC;
1884 buf->f_bsize = dentry->d_sb->s_blocksize;
1885 buf->f_namelen = BTRFS_NAME_LEN;
1886
1887 /* We treat it as constant endianness (it doesn't matter _which_)
1888 because we want the fsid to come out the same whether mounted
1889 on a big-endian or little-endian host */
1890 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1891 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1892 /* Mask in the root object ID too, to disambiguate subvols */
1893 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
1894 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
1895
1896 return 0;
1897 }
1898
1899 static void btrfs_kill_super(struct super_block *sb)
1900 {
1901 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1902 kill_anon_super(sb);
1903 free_fs_info(fs_info);
1904 }
1905
1906 static struct file_system_type btrfs_fs_type = {
1907 .owner = THIS_MODULE,
1908 .name = "btrfs",
1909 .mount = btrfs_mount,
1910 .kill_sb = btrfs_kill_super,
1911 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
1912 };
1913 MODULE_ALIAS_FS("btrfs");
1914
1915 static int btrfs_control_open(struct inode *inode, struct file *file)
1916 {
1917 /*
1918 * The control file's private_data is used to hold the
1919 * transaction when it is started and is used to keep
1920 * track of whether a transaction is already in progress.
1921 */
1922 file->private_data = NULL;
1923 return 0;
1924 }
1925
1926 /*
1927 * used by btrfsctl to scan devices when no FS is mounted
1928 */
1929 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1930 unsigned long arg)
1931 {
1932 struct btrfs_ioctl_vol_args *vol;
1933 struct btrfs_fs_devices *fs_devices;
1934 int ret = -ENOTTY;
1935
1936 if (!capable(CAP_SYS_ADMIN))
1937 return -EPERM;
1938
1939 vol = memdup_user((void __user *)arg, sizeof(*vol));
1940 if (IS_ERR(vol))
1941 return PTR_ERR(vol);
1942
1943 switch (cmd) {
1944 case BTRFS_IOC_SCAN_DEV:
1945 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1946 &btrfs_fs_type, &fs_devices);
1947 break;
1948 case BTRFS_IOC_DEVICES_READY:
1949 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1950 &btrfs_fs_type, &fs_devices);
1951 if (ret)
1952 break;
1953 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1954 break;
1955 }
1956
1957 kfree(vol);
1958 return ret;
1959 }
1960
1961 static int btrfs_freeze(struct super_block *sb)
1962 {
1963 struct btrfs_trans_handle *trans;
1964 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1965
1966 trans = btrfs_attach_transaction_barrier(root);
1967 if (IS_ERR(trans)) {
1968 /* no transaction, don't bother */
1969 if (PTR_ERR(trans) == -ENOENT)
1970 return 0;
1971 return PTR_ERR(trans);
1972 }
1973 return btrfs_commit_transaction(trans, root);
1974 }
1975
1976 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1977 {
1978 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1979 struct btrfs_fs_devices *cur_devices;
1980 struct btrfs_device *dev, *first_dev = NULL;
1981 struct list_head *head;
1982 struct rcu_string *name;
1983
1984 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1985 cur_devices = fs_info->fs_devices;
1986 while (cur_devices) {
1987 head = &cur_devices->devices;
1988 list_for_each_entry(dev, head, dev_list) {
1989 if (dev->missing)
1990 continue;
1991 if (!dev->name)
1992 continue;
1993 if (!first_dev || dev->devid < first_dev->devid)
1994 first_dev = dev;
1995 }
1996 cur_devices = cur_devices->seed;
1997 }
1998
1999 if (first_dev) {
2000 rcu_read_lock();
2001 name = rcu_dereference(first_dev->name);
2002 seq_escape(m, name->str, " \t\n\\");
2003 rcu_read_unlock();
2004 } else {
2005 WARN_ON(1);
2006 }
2007 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2008 return 0;
2009 }
2010
2011 static const struct super_operations btrfs_super_ops = {
2012 .drop_inode = btrfs_drop_inode,
2013 .evict_inode = btrfs_evict_inode,
2014 .put_super = btrfs_put_super,
2015 .sync_fs = btrfs_sync_fs,
2016 .show_options = btrfs_show_options,
2017 .show_devname = btrfs_show_devname,
2018 .write_inode = btrfs_write_inode,
2019 .alloc_inode = btrfs_alloc_inode,
2020 .destroy_inode = btrfs_destroy_inode,
2021 .statfs = btrfs_statfs,
2022 .remount_fs = btrfs_remount,
2023 .freeze_fs = btrfs_freeze,
2024 };
2025
2026 static const struct file_operations btrfs_ctl_fops = {
2027 .open = btrfs_control_open,
2028 .unlocked_ioctl = btrfs_control_ioctl,
2029 .compat_ioctl = btrfs_control_ioctl,
2030 .owner = THIS_MODULE,
2031 .llseek = noop_llseek,
2032 };
2033
2034 static struct miscdevice btrfs_misc = {
2035 .minor = BTRFS_MINOR,
2036 .name = "btrfs-control",
2037 .fops = &btrfs_ctl_fops
2038 };
2039
2040 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2041 MODULE_ALIAS("devname:btrfs-control");
2042
2043 static int btrfs_interface_init(void)
2044 {
2045 return misc_register(&btrfs_misc);
2046 }
2047
2048 static void btrfs_interface_exit(void)
2049 {
2050 if (misc_deregister(&btrfs_misc) < 0)
2051 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
2052 }
2053
2054 static void btrfs_print_info(void)
2055 {
2056 printk(KERN_INFO "Btrfs loaded"
2057 #ifdef CONFIG_BTRFS_DEBUG
2058 ", debug=on"
2059 #endif
2060 #ifdef CONFIG_BTRFS_ASSERT
2061 ", assert=on"
2062 #endif
2063 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2064 ", integrity-checker=on"
2065 #endif
2066 "\n");
2067 }
2068
2069 static int btrfs_run_sanity_tests(void)
2070 {
2071 int ret;
2072
2073 ret = btrfs_init_test_fs();
2074 if (ret)
2075 return ret;
2076
2077 ret = btrfs_test_free_space_cache();
2078 if (ret)
2079 goto out;
2080 ret = btrfs_test_extent_buffer_operations();
2081 if (ret)
2082 goto out;
2083 ret = btrfs_test_extent_io();
2084 if (ret)
2085 goto out;
2086 ret = btrfs_test_inodes();
2087 if (ret)
2088 goto out;
2089 ret = btrfs_test_qgroups();
2090 out:
2091 btrfs_destroy_test_fs();
2092 return ret;
2093 }
2094
2095 static int __init init_btrfs_fs(void)
2096 {
2097 int err;
2098
2099 err = btrfs_hash_init();
2100 if (err)
2101 return err;
2102
2103 btrfs_props_init();
2104
2105 err = btrfs_init_sysfs();
2106 if (err)
2107 goto free_hash;
2108
2109 btrfs_init_compress();
2110
2111 err = btrfs_init_cachep();
2112 if (err)
2113 goto free_compress;
2114
2115 err = extent_io_init();
2116 if (err)
2117 goto free_cachep;
2118
2119 err = extent_map_init();
2120 if (err)
2121 goto free_extent_io;
2122
2123 err = ordered_data_init();
2124 if (err)
2125 goto free_extent_map;
2126
2127 err = btrfs_delayed_inode_init();
2128 if (err)
2129 goto free_ordered_data;
2130
2131 err = btrfs_auto_defrag_init();
2132 if (err)
2133 goto free_delayed_inode;
2134
2135 err = btrfs_delayed_ref_init();
2136 if (err)
2137 goto free_auto_defrag;
2138
2139 err = btrfs_prelim_ref_init();
2140 if (err)
2141 goto free_delayed_ref;
2142
2143 err = btrfs_end_io_wq_init();
2144 if (err)
2145 goto free_prelim_ref;
2146
2147 err = btrfs_interface_init();
2148 if (err)
2149 goto free_end_io_wq;
2150
2151 btrfs_init_lockdep();
2152
2153 btrfs_print_info();
2154
2155 err = btrfs_run_sanity_tests();
2156 if (err)
2157 goto unregister_ioctl;
2158
2159 err = register_filesystem(&btrfs_fs_type);
2160 if (err)
2161 goto unregister_ioctl;
2162
2163 return 0;
2164
2165 unregister_ioctl:
2166 btrfs_interface_exit();
2167 free_end_io_wq:
2168 btrfs_end_io_wq_exit();
2169 free_prelim_ref:
2170 btrfs_prelim_ref_exit();
2171 free_delayed_ref:
2172 btrfs_delayed_ref_exit();
2173 free_auto_defrag:
2174 btrfs_auto_defrag_exit();
2175 free_delayed_inode:
2176 btrfs_delayed_inode_exit();
2177 free_ordered_data:
2178 ordered_data_exit();
2179 free_extent_map:
2180 extent_map_exit();
2181 free_extent_io:
2182 extent_io_exit();
2183 free_cachep:
2184 btrfs_destroy_cachep();
2185 free_compress:
2186 btrfs_exit_compress();
2187 btrfs_exit_sysfs();
2188 free_hash:
2189 btrfs_hash_exit();
2190 return err;
2191 }
2192
2193 static void __exit exit_btrfs_fs(void)
2194 {
2195 btrfs_destroy_cachep();
2196 btrfs_delayed_ref_exit();
2197 btrfs_auto_defrag_exit();
2198 btrfs_delayed_inode_exit();
2199 btrfs_prelim_ref_exit();
2200 ordered_data_exit();
2201 extent_map_exit();
2202 extent_io_exit();
2203 btrfs_interface_exit();
2204 btrfs_end_io_wq_exit();
2205 unregister_filesystem(&btrfs_fs_type);
2206 btrfs_exit_sysfs();
2207 btrfs_cleanup_fs_uuids();
2208 btrfs_exit_compress();
2209 btrfs_hash_exit();
2210 }
2211
2212 late_initcall(init_btrfs_fs);
2213 module_exit(exit_btrfs_fs)
2214
2215 MODULE_LICENSE("GPL");
This page took 0.078204 seconds and 5 git commands to generate.