btrfs: sync ioctl, handle errors after transaction start
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71
72 static const char *btrfs_decode_error(int errno)
73 {
74 char *errstr = "unknown";
75
76 switch (errno) {
77 case -EIO:
78 errstr = "IO failure";
79 break;
80 case -ENOMEM:
81 errstr = "Out of memory";
82 break;
83 case -EROFS:
84 errstr = "Readonly filesystem";
85 break;
86 case -EEXIST:
87 errstr = "Object already exists";
88 break;
89 case -ENOSPC:
90 errstr = "No space left";
91 break;
92 case -ENOENT:
93 errstr = "No such entry";
94 break;
95 }
96
97 return errstr;
98 }
99
100 static void save_error_info(struct btrfs_fs_info *fs_info)
101 {
102 /*
103 * today we only save the error info into ram. Long term we'll
104 * also send it down to the disk
105 */
106 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
107 }
108
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112 struct super_block *sb = fs_info->sb;
113
114 if (sb->s_flags & MS_RDONLY)
115 return;
116
117 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
118 sb->s_flags |= MS_RDONLY;
119 btrfs_info(fs_info, "forced readonly");
120 /*
121 * Note that a running device replace operation is not
122 * canceled here although there is no way to update
123 * the progress. It would add the risk of a deadlock,
124 * therefore the canceling is ommited. The only penalty
125 * is that some I/O remains active until the procedure
126 * completes. The next time when the filesystem is
127 * mounted writeable again, the device replace
128 * operation continues.
129 */
130 }
131 }
132
133 #ifdef CONFIG_PRINTK
134 /*
135 * __btrfs_std_error decodes expected errors from the caller and
136 * invokes the approciate error response.
137 */
138 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
139 unsigned int line, int errno, const char *fmt, ...)
140 {
141 struct super_block *sb = fs_info->sb;
142 const char *errstr;
143
144 /*
145 * Special case: if the error is EROFS, and we're already
146 * under MS_RDONLY, then it is safe here.
147 */
148 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
149 return;
150
151 errstr = btrfs_decode_error(errno);
152 if (fmt) {
153 struct va_format vaf;
154 va_list args;
155
156 va_start(args, fmt);
157 vaf.fmt = fmt;
158 vaf.va = &args;
159
160 printk(KERN_CRIT
161 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
162 sb->s_id, function, line, errno, errstr, &vaf);
163 va_end(args);
164 } else {
165 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
166 sb->s_id, function, line, errno, errstr);
167 }
168
169 /* Don't go through full error handling during mount */
170 save_error_info(fs_info);
171 if (sb->s_flags & MS_BORN)
172 btrfs_handle_error(fs_info);
173 }
174
175 static const char * const logtypes[] = {
176 "emergency",
177 "alert",
178 "critical",
179 "error",
180 "warning",
181 "notice",
182 "info",
183 "debug",
184 };
185
186 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
187 {
188 struct super_block *sb = fs_info->sb;
189 char lvl[4];
190 struct va_format vaf;
191 va_list args;
192 const char *type = logtypes[4];
193 int kern_level;
194
195 va_start(args, fmt);
196
197 kern_level = printk_get_level(fmt);
198 if (kern_level) {
199 size_t size = printk_skip_level(fmt) - fmt;
200 memcpy(lvl, fmt, size);
201 lvl[size] = '\0';
202 fmt += size;
203 type = logtypes[kern_level - '0'];
204 } else
205 *lvl = '\0';
206
207 vaf.fmt = fmt;
208 vaf.va = &args;
209
210 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
211
212 va_end(args);
213 }
214
215 #else
216
217 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
218 unsigned int line, int errno, const char *fmt, ...)
219 {
220 struct super_block *sb = fs_info->sb;
221
222 /*
223 * Special case: if the error is EROFS, and we're already
224 * under MS_RDONLY, then it is safe here.
225 */
226 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
227 return;
228
229 /* Don't go through full error handling during mount */
230 if (sb->s_flags & MS_BORN) {
231 save_error_info(fs_info);
232 btrfs_handle_error(fs_info);
233 }
234 }
235 #endif
236
237 /*
238 * We only mark the transaction aborted and then set the file system read-only.
239 * This will prevent new transactions from starting or trying to join this
240 * one.
241 *
242 * This means that error recovery at the call site is limited to freeing
243 * any local memory allocations and passing the error code up without
244 * further cleanup. The transaction should complete as it normally would
245 * in the call path but will return -EIO.
246 *
247 * We'll complete the cleanup in btrfs_end_transaction and
248 * btrfs_commit_transaction.
249 */
250 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
251 struct btrfs_root *root, const char *function,
252 unsigned int line, int errno)
253 {
254 /*
255 * Report first abort since mount
256 */
257 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
258 &root->fs_info->fs_state)) {
259 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
260 errno);
261 }
262 trans->aborted = errno;
263 /* Nothing used. The other threads that have joined this
264 * transaction may be able to continue. */
265 if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
266 const char *errstr;
267
268 errstr = btrfs_decode_error(errno);
269 btrfs_warn(root->fs_info,
270 "%s:%d: Aborting unused transaction(%s).",
271 function, line, errstr);
272 return;
273 }
274 ACCESS_ONCE(trans->transaction->aborted) = errno;
275 /* Wake up anybody who may be waiting on this transaction */
276 wake_up(&root->fs_info->transaction_wait);
277 wake_up(&root->fs_info->transaction_blocked_wait);
278 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
279 }
280 /*
281 * __btrfs_panic decodes unexpected, fatal errors from the caller,
282 * issues an alert, and either panics or BUGs, depending on mount options.
283 */
284 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
285 unsigned int line, int errno, const char *fmt, ...)
286 {
287 char *s_id = "<unknown>";
288 const char *errstr;
289 struct va_format vaf = { .fmt = fmt };
290 va_list args;
291
292 if (fs_info)
293 s_id = fs_info->sb->s_id;
294
295 va_start(args, fmt);
296 vaf.va = &args;
297
298 errstr = btrfs_decode_error(errno);
299 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
300 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
301 s_id, function, line, &vaf, errno, errstr);
302
303 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
304 function, line, &vaf, errno, errstr);
305 va_end(args);
306 /* Caller calls BUG() */
307 }
308
309 static void btrfs_put_super(struct super_block *sb)
310 {
311 close_ctree(btrfs_sb(sb)->tree_root);
312 }
313
314 enum {
315 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
316 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
317 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
318 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
319 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
320 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
321 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
322 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
323 Opt_check_integrity, Opt_check_integrity_including_extent_data,
324 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
325 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
326 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
327 Opt_datasum, Opt_treelog, Opt_noinode_cache,
328 Opt_err,
329 };
330
331 static match_table_t tokens = {
332 {Opt_degraded, "degraded"},
333 {Opt_subvol, "subvol=%s"},
334 {Opt_subvolid, "subvolid=%s"},
335 {Opt_device, "device=%s"},
336 {Opt_nodatasum, "nodatasum"},
337 {Opt_datasum, "datasum"},
338 {Opt_nodatacow, "nodatacow"},
339 {Opt_datacow, "datacow"},
340 {Opt_nobarrier, "nobarrier"},
341 {Opt_barrier, "barrier"},
342 {Opt_max_inline, "max_inline=%s"},
343 {Opt_alloc_start, "alloc_start=%s"},
344 {Opt_thread_pool, "thread_pool=%d"},
345 {Opt_compress, "compress"},
346 {Opt_compress_type, "compress=%s"},
347 {Opt_compress_force, "compress-force"},
348 {Opt_compress_force_type, "compress-force=%s"},
349 {Opt_ssd, "ssd"},
350 {Opt_ssd_spread, "ssd_spread"},
351 {Opt_nossd, "nossd"},
352 {Opt_acl, "acl"},
353 {Opt_noacl, "noacl"},
354 {Opt_notreelog, "notreelog"},
355 {Opt_treelog, "treelog"},
356 {Opt_flushoncommit, "flushoncommit"},
357 {Opt_noflushoncommit, "noflushoncommit"},
358 {Opt_ratio, "metadata_ratio=%d"},
359 {Opt_discard, "discard"},
360 {Opt_nodiscard, "nodiscard"},
361 {Opt_space_cache, "space_cache"},
362 {Opt_clear_cache, "clear_cache"},
363 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
364 {Opt_enospc_debug, "enospc_debug"},
365 {Opt_noenospc_debug, "noenospc_debug"},
366 {Opt_subvolrootid, "subvolrootid=%d"},
367 {Opt_defrag, "autodefrag"},
368 {Opt_nodefrag, "noautodefrag"},
369 {Opt_inode_cache, "inode_cache"},
370 {Opt_noinode_cache, "noinode_cache"},
371 {Opt_no_space_cache, "nospace_cache"},
372 {Opt_recovery, "recovery"},
373 {Opt_skip_balance, "skip_balance"},
374 {Opt_check_integrity, "check_int"},
375 {Opt_check_integrity_including_extent_data, "check_int_data"},
376 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
377 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
378 {Opt_fatal_errors, "fatal_errors=%s"},
379 {Opt_commit_interval, "commit=%d"},
380 {Opt_err, NULL},
381 };
382
383 /*
384 * Regular mount options parser. Everything that is needed only when
385 * reading in a new superblock is parsed here.
386 * XXX JDM: This needs to be cleaned up for remount.
387 */
388 int btrfs_parse_options(struct btrfs_root *root, char *options)
389 {
390 struct btrfs_fs_info *info = root->fs_info;
391 substring_t args[MAX_OPT_ARGS];
392 char *p, *num, *orig = NULL;
393 u64 cache_gen;
394 int intarg;
395 int ret = 0;
396 char *compress_type;
397 bool compress_force = false;
398
399 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
400 if (cache_gen)
401 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
402
403 if (!options)
404 goto out;
405
406 /*
407 * strsep changes the string, duplicate it because parse_options
408 * gets called twice
409 */
410 options = kstrdup(options, GFP_NOFS);
411 if (!options)
412 return -ENOMEM;
413
414 orig = options;
415
416 while ((p = strsep(&options, ",")) != NULL) {
417 int token;
418 if (!*p)
419 continue;
420
421 token = match_token(p, tokens, args);
422 switch (token) {
423 case Opt_degraded:
424 btrfs_info(root->fs_info, "allowing degraded mounts");
425 btrfs_set_opt(info->mount_opt, DEGRADED);
426 break;
427 case Opt_subvol:
428 case Opt_subvolid:
429 case Opt_subvolrootid:
430 case Opt_device:
431 /*
432 * These are parsed by btrfs_parse_early_options
433 * and can be happily ignored here.
434 */
435 break;
436 case Opt_nodatasum:
437 btrfs_set_and_info(root, NODATASUM,
438 "setting nodatasum");
439 break;
440 case Opt_datasum:
441 if (btrfs_test_opt(root, NODATASUM)) {
442 if (btrfs_test_opt(root, NODATACOW))
443 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
444 else
445 btrfs_info(root->fs_info, "setting datasum");
446 }
447 btrfs_clear_opt(info->mount_opt, NODATACOW);
448 btrfs_clear_opt(info->mount_opt, NODATASUM);
449 break;
450 case Opt_nodatacow:
451 if (!btrfs_test_opt(root, NODATACOW)) {
452 if (!btrfs_test_opt(root, COMPRESS) ||
453 !btrfs_test_opt(root, FORCE_COMPRESS)) {
454 btrfs_info(root->fs_info,
455 "setting nodatacow, compression disabled");
456 } else {
457 btrfs_info(root->fs_info, "setting nodatacow");
458 }
459 }
460 btrfs_clear_opt(info->mount_opt, COMPRESS);
461 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
462 btrfs_set_opt(info->mount_opt, NODATACOW);
463 btrfs_set_opt(info->mount_opt, NODATASUM);
464 break;
465 case Opt_datacow:
466 btrfs_clear_and_info(root, NODATACOW,
467 "setting datacow");
468 break;
469 case Opt_compress_force:
470 case Opt_compress_force_type:
471 compress_force = true;
472 /* Fallthrough */
473 case Opt_compress:
474 case Opt_compress_type:
475 if (token == Opt_compress ||
476 token == Opt_compress_force ||
477 strcmp(args[0].from, "zlib") == 0) {
478 compress_type = "zlib";
479 info->compress_type = BTRFS_COMPRESS_ZLIB;
480 btrfs_set_opt(info->mount_opt, COMPRESS);
481 btrfs_clear_opt(info->mount_opt, NODATACOW);
482 btrfs_clear_opt(info->mount_opt, NODATASUM);
483 } else if (strcmp(args[0].from, "lzo") == 0) {
484 compress_type = "lzo";
485 info->compress_type = BTRFS_COMPRESS_LZO;
486 btrfs_set_opt(info->mount_opt, COMPRESS);
487 btrfs_clear_opt(info->mount_opt, NODATACOW);
488 btrfs_clear_opt(info->mount_opt, NODATASUM);
489 btrfs_set_fs_incompat(info, COMPRESS_LZO);
490 } else if (strncmp(args[0].from, "no", 2) == 0) {
491 compress_type = "no";
492 btrfs_clear_opt(info->mount_opt, COMPRESS);
493 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
494 compress_force = false;
495 } else {
496 ret = -EINVAL;
497 goto out;
498 }
499
500 if (compress_force) {
501 btrfs_set_and_info(root, FORCE_COMPRESS,
502 "force %s compression",
503 compress_type);
504 } else {
505 if (!btrfs_test_opt(root, COMPRESS))
506 btrfs_info(root->fs_info,
507 "btrfs: use %s compression",
508 compress_type);
509 /*
510 * If we remount from compress-force=xxx to
511 * compress=xxx, we need clear FORCE_COMPRESS
512 * flag, otherwise, there is no way for users
513 * to disable forcible compression separately.
514 */
515 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
516 }
517 break;
518 case Opt_ssd:
519 btrfs_set_and_info(root, SSD,
520 "use ssd allocation scheme");
521 break;
522 case Opt_ssd_spread:
523 btrfs_set_and_info(root, SSD_SPREAD,
524 "use spread ssd allocation scheme");
525 btrfs_set_opt(info->mount_opt, SSD);
526 break;
527 case Opt_nossd:
528 btrfs_set_and_info(root, NOSSD,
529 "not using ssd allocation scheme");
530 btrfs_clear_opt(info->mount_opt, SSD);
531 break;
532 case Opt_barrier:
533 btrfs_clear_and_info(root, NOBARRIER,
534 "turning on barriers");
535 break;
536 case Opt_nobarrier:
537 btrfs_set_and_info(root, NOBARRIER,
538 "turning off barriers");
539 break;
540 case Opt_thread_pool:
541 ret = match_int(&args[0], &intarg);
542 if (ret) {
543 goto out;
544 } else if (intarg > 0) {
545 info->thread_pool_size = intarg;
546 } else {
547 ret = -EINVAL;
548 goto out;
549 }
550 break;
551 case Opt_max_inline:
552 num = match_strdup(&args[0]);
553 if (num) {
554 info->max_inline = memparse(num, NULL);
555 kfree(num);
556
557 if (info->max_inline) {
558 info->max_inline = min_t(u64,
559 info->max_inline,
560 root->sectorsize);
561 }
562 btrfs_info(root->fs_info, "max_inline at %llu",
563 info->max_inline);
564 } else {
565 ret = -ENOMEM;
566 goto out;
567 }
568 break;
569 case Opt_alloc_start:
570 num = match_strdup(&args[0]);
571 if (num) {
572 mutex_lock(&info->chunk_mutex);
573 info->alloc_start = memparse(num, NULL);
574 mutex_unlock(&info->chunk_mutex);
575 kfree(num);
576 btrfs_info(root->fs_info, "allocations start at %llu",
577 info->alloc_start);
578 } else {
579 ret = -ENOMEM;
580 goto out;
581 }
582 break;
583 case Opt_acl:
584 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
585 root->fs_info->sb->s_flags |= MS_POSIXACL;
586 break;
587 #else
588 btrfs_err(root->fs_info,
589 "support for ACL not compiled in!");
590 ret = -EINVAL;
591 goto out;
592 #endif
593 case Opt_noacl:
594 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
595 break;
596 case Opt_notreelog:
597 btrfs_set_and_info(root, NOTREELOG,
598 "disabling tree log");
599 break;
600 case Opt_treelog:
601 btrfs_clear_and_info(root, NOTREELOG,
602 "enabling tree log");
603 break;
604 case Opt_flushoncommit:
605 btrfs_set_and_info(root, FLUSHONCOMMIT,
606 "turning on flush-on-commit");
607 break;
608 case Opt_noflushoncommit:
609 btrfs_clear_and_info(root, FLUSHONCOMMIT,
610 "turning off flush-on-commit");
611 break;
612 case Opt_ratio:
613 ret = match_int(&args[0], &intarg);
614 if (ret) {
615 goto out;
616 } else if (intarg >= 0) {
617 info->metadata_ratio = intarg;
618 btrfs_info(root->fs_info, "metadata ratio %d",
619 info->metadata_ratio);
620 } else {
621 ret = -EINVAL;
622 goto out;
623 }
624 break;
625 case Opt_discard:
626 btrfs_set_and_info(root, DISCARD,
627 "turning on discard");
628 break;
629 case Opt_nodiscard:
630 btrfs_clear_and_info(root, DISCARD,
631 "turning off discard");
632 break;
633 case Opt_space_cache:
634 btrfs_set_and_info(root, SPACE_CACHE,
635 "enabling disk space caching");
636 break;
637 case Opt_rescan_uuid_tree:
638 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
639 break;
640 case Opt_no_space_cache:
641 btrfs_clear_and_info(root, SPACE_CACHE,
642 "disabling disk space caching");
643 break;
644 case Opt_inode_cache:
645 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
646 "enabling inode map caching");
647 break;
648 case Opt_noinode_cache:
649 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
650 "disabling inode map caching");
651 break;
652 case Opt_clear_cache:
653 btrfs_set_and_info(root, CLEAR_CACHE,
654 "force clearing of disk cache");
655 break;
656 case Opt_user_subvol_rm_allowed:
657 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
658 break;
659 case Opt_enospc_debug:
660 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
661 break;
662 case Opt_noenospc_debug:
663 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
664 break;
665 case Opt_defrag:
666 btrfs_set_and_info(root, AUTO_DEFRAG,
667 "enabling auto defrag");
668 break;
669 case Opt_nodefrag:
670 btrfs_clear_and_info(root, AUTO_DEFRAG,
671 "disabling auto defrag");
672 break;
673 case Opt_recovery:
674 btrfs_info(root->fs_info, "enabling auto recovery");
675 btrfs_set_opt(info->mount_opt, RECOVERY);
676 break;
677 case Opt_skip_balance:
678 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
679 break;
680 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
681 case Opt_check_integrity_including_extent_data:
682 btrfs_info(root->fs_info,
683 "enabling check integrity including extent data");
684 btrfs_set_opt(info->mount_opt,
685 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
686 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
687 break;
688 case Opt_check_integrity:
689 btrfs_info(root->fs_info, "enabling check integrity");
690 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
691 break;
692 case Opt_check_integrity_print_mask:
693 ret = match_int(&args[0], &intarg);
694 if (ret) {
695 goto out;
696 } else if (intarg >= 0) {
697 info->check_integrity_print_mask = intarg;
698 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
699 info->check_integrity_print_mask);
700 } else {
701 ret = -EINVAL;
702 goto out;
703 }
704 break;
705 #else
706 case Opt_check_integrity_including_extent_data:
707 case Opt_check_integrity:
708 case Opt_check_integrity_print_mask:
709 btrfs_err(root->fs_info,
710 "support for check_integrity* not compiled in!");
711 ret = -EINVAL;
712 goto out;
713 #endif
714 case Opt_fatal_errors:
715 if (strcmp(args[0].from, "panic") == 0)
716 btrfs_set_opt(info->mount_opt,
717 PANIC_ON_FATAL_ERROR);
718 else if (strcmp(args[0].from, "bug") == 0)
719 btrfs_clear_opt(info->mount_opt,
720 PANIC_ON_FATAL_ERROR);
721 else {
722 ret = -EINVAL;
723 goto out;
724 }
725 break;
726 case Opt_commit_interval:
727 intarg = 0;
728 ret = match_int(&args[0], &intarg);
729 if (ret < 0) {
730 btrfs_err(root->fs_info, "invalid commit interval");
731 ret = -EINVAL;
732 goto out;
733 }
734 if (intarg > 0) {
735 if (intarg > 300) {
736 btrfs_warn(root->fs_info, "excessive commit interval %d",
737 intarg);
738 }
739 info->commit_interval = intarg;
740 } else {
741 btrfs_info(root->fs_info, "using default commit interval %ds",
742 BTRFS_DEFAULT_COMMIT_INTERVAL);
743 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
744 }
745 break;
746 case Opt_err:
747 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
748 ret = -EINVAL;
749 goto out;
750 default:
751 break;
752 }
753 }
754 out:
755 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
756 btrfs_info(root->fs_info, "disk space caching is enabled");
757 kfree(orig);
758 return ret;
759 }
760
761 /*
762 * Parse mount options that are required early in the mount process.
763 *
764 * All other options will be parsed on much later in the mount process and
765 * only when we need to allocate a new super block.
766 */
767 static int btrfs_parse_early_options(const char *options, fmode_t flags,
768 void *holder, char **subvol_name, u64 *subvol_objectid,
769 struct btrfs_fs_devices **fs_devices)
770 {
771 substring_t args[MAX_OPT_ARGS];
772 char *device_name, *opts, *orig, *p;
773 char *num = NULL;
774 int error = 0;
775
776 if (!options)
777 return 0;
778
779 /*
780 * strsep changes the string, duplicate it because parse_options
781 * gets called twice
782 */
783 opts = kstrdup(options, GFP_KERNEL);
784 if (!opts)
785 return -ENOMEM;
786 orig = opts;
787
788 while ((p = strsep(&opts, ",")) != NULL) {
789 int token;
790 if (!*p)
791 continue;
792
793 token = match_token(p, tokens, args);
794 switch (token) {
795 case Opt_subvol:
796 kfree(*subvol_name);
797 *subvol_name = match_strdup(&args[0]);
798 if (!*subvol_name) {
799 error = -ENOMEM;
800 goto out;
801 }
802 break;
803 case Opt_subvolid:
804 num = match_strdup(&args[0]);
805 if (num) {
806 *subvol_objectid = memparse(num, NULL);
807 kfree(num);
808 /* we want the original fs_tree */
809 if (!*subvol_objectid)
810 *subvol_objectid =
811 BTRFS_FS_TREE_OBJECTID;
812 } else {
813 error = -EINVAL;
814 goto out;
815 }
816 break;
817 case Opt_subvolrootid:
818 printk(KERN_WARNING
819 "BTRFS: 'subvolrootid' mount option is deprecated and has "
820 "no effect\n");
821 break;
822 case Opt_device:
823 device_name = match_strdup(&args[0]);
824 if (!device_name) {
825 error = -ENOMEM;
826 goto out;
827 }
828 error = btrfs_scan_one_device(device_name,
829 flags, holder, fs_devices);
830 kfree(device_name);
831 if (error)
832 goto out;
833 break;
834 default:
835 break;
836 }
837 }
838
839 out:
840 kfree(orig);
841 return error;
842 }
843
844 static struct dentry *get_default_root(struct super_block *sb,
845 u64 subvol_objectid)
846 {
847 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
848 struct btrfs_root *root = fs_info->tree_root;
849 struct btrfs_root *new_root;
850 struct btrfs_dir_item *di;
851 struct btrfs_path *path;
852 struct btrfs_key location;
853 struct inode *inode;
854 u64 dir_id;
855 int new = 0;
856
857 /*
858 * We have a specific subvol we want to mount, just setup location and
859 * go look up the root.
860 */
861 if (subvol_objectid) {
862 location.objectid = subvol_objectid;
863 location.type = BTRFS_ROOT_ITEM_KEY;
864 location.offset = (u64)-1;
865 goto find_root;
866 }
867
868 path = btrfs_alloc_path();
869 if (!path)
870 return ERR_PTR(-ENOMEM);
871 path->leave_spinning = 1;
872
873 /*
874 * Find the "default" dir item which points to the root item that we
875 * will mount by default if we haven't been given a specific subvolume
876 * to mount.
877 */
878 dir_id = btrfs_super_root_dir(fs_info->super_copy);
879 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
880 if (IS_ERR(di)) {
881 btrfs_free_path(path);
882 return ERR_CAST(di);
883 }
884 if (!di) {
885 /*
886 * Ok the default dir item isn't there. This is weird since
887 * it's always been there, but don't freak out, just try and
888 * mount to root most subvolume.
889 */
890 btrfs_free_path(path);
891 dir_id = BTRFS_FIRST_FREE_OBJECTID;
892 new_root = fs_info->fs_root;
893 goto setup_root;
894 }
895
896 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
897 btrfs_free_path(path);
898
899 find_root:
900 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
901 if (IS_ERR(new_root))
902 return ERR_CAST(new_root);
903
904 dir_id = btrfs_root_dirid(&new_root->root_item);
905 setup_root:
906 location.objectid = dir_id;
907 location.type = BTRFS_INODE_ITEM_KEY;
908 location.offset = 0;
909
910 inode = btrfs_iget(sb, &location, new_root, &new);
911 if (IS_ERR(inode))
912 return ERR_CAST(inode);
913
914 /*
915 * If we're just mounting the root most subvol put the inode and return
916 * a reference to the dentry. We will have already gotten a reference
917 * to the inode in btrfs_fill_super so we're good to go.
918 */
919 if (!new && sb->s_root->d_inode == inode) {
920 iput(inode);
921 return dget(sb->s_root);
922 }
923
924 return d_obtain_root(inode);
925 }
926
927 static int btrfs_fill_super(struct super_block *sb,
928 struct btrfs_fs_devices *fs_devices,
929 void *data, int silent)
930 {
931 struct inode *inode;
932 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
933 struct btrfs_key key;
934 int err;
935
936 sb->s_maxbytes = MAX_LFS_FILESIZE;
937 sb->s_magic = BTRFS_SUPER_MAGIC;
938 sb->s_op = &btrfs_super_ops;
939 sb->s_d_op = &btrfs_dentry_operations;
940 sb->s_export_op = &btrfs_export_ops;
941 sb->s_xattr = btrfs_xattr_handlers;
942 sb->s_time_gran = 1;
943 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
944 sb->s_flags |= MS_POSIXACL;
945 #endif
946 sb->s_flags |= MS_I_VERSION;
947 err = open_ctree(sb, fs_devices, (char *)data);
948 if (err) {
949 printk(KERN_ERR "BTRFS: open_ctree failed\n");
950 return err;
951 }
952
953 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
954 key.type = BTRFS_INODE_ITEM_KEY;
955 key.offset = 0;
956 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
957 if (IS_ERR(inode)) {
958 err = PTR_ERR(inode);
959 goto fail_close;
960 }
961
962 sb->s_root = d_make_root(inode);
963 if (!sb->s_root) {
964 err = -ENOMEM;
965 goto fail_close;
966 }
967
968 save_mount_options(sb, data);
969 cleancache_init_fs(sb);
970 sb->s_flags |= MS_ACTIVE;
971 return 0;
972
973 fail_close:
974 close_ctree(fs_info->tree_root);
975 return err;
976 }
977
978 int btrfs_sync_fs(struct super_block *sb, int wait)
979 {
980 struct btrfs_trans_handle *trans;
981 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
982 struct btrfs_root *root = fs_info->tree_root;
983
984 trace_btrfs_sync_fs(wait);
985
986 if (!wait) {
987 filemap_flush(fs_info->btree_inode->i_mapping);
988 return 0;
989 }
990
991 btrfs_wait_ordered_roots(fs_info, -1);
992
993 trans = btrfs_attach_transaction_barrier(root);
994 if (IS_ERR(trans)) {
995 /* no transaction, don't bother */
996 if (PTR_ERR(trans) == -ENOENT) {
997 /*
998 * Exit unless we have some pending changes
999 * that need to go through commit
1000 */
1001 if (fs_info->pending_changes == 0)
1002 return 0;
1003 trans = btrfs_start_transaction(root, 0);
1004 }
1005 if (IS_ERR(trans))
1006 return PTR_ERR(trans);
1007 }
1008 return btrfs_commit_transaction(trans, root);
1009 }
1010
1011 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1012 {
1013 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1014 struct btrfs_root *root = info->tree_root;
1015 char *compress_type;
1016
1017 if (btrfs_test_opt(root, DEGRADED))
1018 seq_puts(seq, ",degraded");
1019 if (btrfs_test_opt(root, NODATASUM))
1020 seq_puts(seq, ",nodatasum");
1021 if (btrfs_test_opt(root, NODATACOW))
1022 seq_puts(seq, ",nodatacow");
1023 if (btrfs_test_opt(root, NOBARRIER))
1024 seq_puts(seq, ",nobarrier");
1025 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1026 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1027 if (info->alloc_start != 0)
1028 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1029 if (info->thread_pool_size != min_t(unsigned long,
1030 num_online_cpus() + 2, 8))
1031 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1032 if (btrfs_test_opt(root, COMPRESS)) {
1033 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1034 compress_type = "zlib";
1035 else
1036 compress_type = "lzo";
1037 if (btrfs_test_opt(root, FORCE_COMPRESS))
1038 seq_printf(seq, ",compress-force=%s", compress_type);
1039 else
1040 seq_printf(seq, ",compress=%s", compress_type);
1041 }
1042 if (btrfs_test_opt(root, NOSSD))
1043 seq_puts(seq, ",nossd");
1044 if (btrfs_test_opt(root, SSD_SPREAD))
1045 seq_puts(seq, ",ssd_spread");
1046 else if (btrfs_test_opt(root, SSD))
1047 seq_puts(seq, ",ssd");
1048 if (btrfs_test_opt(root, NOTREELOG))
1049 seq_puts(seq, ",notreelog");
1050 if (btrfs_test_opt(root, FLUSHONCOMMIT))
1051 seq_puts(seq, ",flushoncommit");
1052 if (btrfs_test_opt(root, DISCARD))
1053 seq_puts(seq, ",discard");
1054 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1055 seq_puts(seq, ",noacl");
1056 if (btrfs_test_opt(root, SPACE_CACHE))
1057 seq_puts(seq, ",space_cache");
1058 else
1059 seq_puts(seq, ",nospace_cache");
1060 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1061 seq_puts(seq, ",rescan_uuid_tree");
1062 if (btrfs_test_opt(root, CLEAR_CACHE))
1063 seq_puts(seq, ",clear_cache");
1064 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1065 seq_puts(seq, ",user_subvol_rm_allowed");
1066 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1067 seq_puts(seq, ",enospc_debug");
1068 if (btrfs_test_opt(root, AUTO_DEFRAG))
1069 seq_puts(seq, ",autodefrag");
1070 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1071 seq_puts(seq, ",inode_cache");
1072 if (btrfs_test_opt(root, SKIP_BALANCE))
1073 seq_puts(seq, ",skip_balance");
1074 if (btrfs_test_opt(root, RECOVERY))
1075 seq_puts(seq, ",recovery");
1076 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1077 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1078 seq_puts(seq, ",check_int_data");
1079 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1080 seq_puts(seq, ",check_int");
1081 if (info->check_integrity_print_mask)
1082 seq_printf(seq, ",check_int_print_mask=%d",
1083 info->check_integrity_print_mask);
1084 #endif
1085 if (info->metadata_ratio)
1086 seq_printf(seq, ",metadata_ratio=%d",
1087 info->metadata_ratio);
1088 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1089 seq_puts(seq, ",fatal_errors=panic");
1090 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1091 seq_printf(seq, ",commit=%d", info->commit_interval);
1092 return 0;
1093 }
1094
1095 static int btrfs_test_super(struct super_block *s, void *data)
1096 {
1097 struct btrfs_fs_info *p = data;
1098 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1099
1100 return fs_info->fs_devices == p->fs_devices;
1101 }
1102
1103 static int btrfs_set_super(struct super_block *s, void *data)
1104 {
1105 int err = set_anon_super(s, data);
1106 if (!err)
1107 s->s_fs_info = data;
1108 return err;
1109 }
1110
1111 /*
1112 * subvolumes are identified by ino 256
1113 */
1114 static inline int is_subvolume_inode(struct inode *inode)
1115 {
1116 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1117 return 1;
1118 return 0;
1119 }
1120
1121 /*
1122 * This will strip out the subvol=%s argument for an argument string and add
1123 * subvolid=0 to make sure we get the actual tree root for path walking to the
1124 * subvol we want.
1125 */
1126 static char *setup_root_args(char *args)
1127 {
1128 unsigned len = strlen(args) + 2 + 1;
1129 char *src, *dst, *buf;
1130
1131 /*
1132 * We need the same args as before, but with this substitution:
1133 * s!subvol=[^,]+!subvolid=0!
1134 *
1135 * Since the replacement string is up to 2 bytes longer than the
1136 * original, allocate strlen(args) + 2 + 1 bytes.
1137 */
1138
1139 src = strstr(args, "subvol=");
1140 /* This shouldn't happen, but just in case.. */
1141 if (!src)
1142 return NULL;
1143
1144 buf = dst = kmalloc(len, GFP_NOFS);
1145 if (!buf)
1146 return NULL;
1147
1148 /*
1149 * If the subvol= arg is not at the start of the string,
1150 * copy whatever precedes it into buf.
1151 */
1152 if (src != args) {
1153 *src++ = '\0';
1154 strcpy(buf, args);
1155 dst += strlen(args);
1156 }
1157
1158 strcpy(dst, "subvolid=0");
1159 dst += strlen("subvolid=0");
1160
1161 /*
1162 * If there is a "," after the original subvol=... string,
1163 * copy that suffix into our buffer. Otherwise, we're done.
1164 */
1165 src = strchr(src, ',');
1166 if (src)
1167 strcpy(dst, src);
1168
1169 return buf;
1170 }
1171
1172 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1173 const char *device_name, char *data)
1174 {
1175 struct dentry *root;
1176 struct vfsmount *mnt;
1177 char *newargs;
1178
1179 newargs = setup_root_args(data);
1180 if (!newargs)
1181 return ERR_PTR(-ENOMEM);
1182 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1183 newargs);
1184
1185 if (PTR_RET(mnt) == -EBUSY) {
1186 if (flags & MS_RDONLY) {
1187 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1188 newargs);
1189 } else {
1190 int r;
1191 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1192 newargs);
1193 if (IS_ERR(mnt)) {
1194 kfree(newargs);
1195 return ERR_CAST(mnt);
1196 }
1197
1198 r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1199 if (r < 0) {
1200 /* FIXME: release vfsmount mnt ??*/
1201 kfree(newargs);
1202 return ERR_PTR(r);
1203 }
1204 }
1205 }
1206
1207 kfree(newargs);
1208
1209 if (IS_ERR(mnt))
1210 return ERR_CAST(mnt);
1211
1212 root = mount_subtree(mnt, subvol_name);
1213
1214 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1215 struct super_block *s = root->d_sb;
1216 dput(root);
1217 root = ERR_PTR(-EINVAL);
1218 deactivate_locked_super(s);
1219 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1220 subvol_name);
1221 }
1222
1223 return root;
1224 }
1225
1226 static int parse_security_options(char *orig_opts,
1227 struct security_mnt_opts *sec_opts)
1228 {
1229 char *secdata = NULL;
1230 int ret = 0;
1231
1232 secdata = alloc_secdata();
1233 if (!secdata)
1234 return -ENOMEM;
1235 ret = security_sb_copy_data(orig_opts, secdata);
1236 if (ret) {
1237 free_secdata(secdata);
1238 return ret;
1239 }
1240 ret = security_sb_parse_opts_str(secdata, sec_opts);
1241 free_secdata(secdata);
1242 return ret;
1243 }
1244
1245 static int setup_security_options(struct btrfs_fs_info *fs_info,
1246 struct super_block *sb,
1247 struct security_mnt_opts *sec_opts)
1248 {
1249 int ret = 0;
1250
1251 /*
1252 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1253 * is valid.
1254 */
1255 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1256 if (ret)
1257 return ret;
1258
1259 #ifdef CONFIG_SECURITY
1260 if (!fs_info->security_opts.num_mnt_opts) {
1261 /* first time security setup, copy sec_opts to fs_info */
1262 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1263 } else {
1264 /*
1265 * Since SELinux(the only one supports security_mnt_opts) does
1266 * NOT support changing context during remount/mount same sb,
1267 * This must be the same or part of the same security options,
1268 * just free it.
1269 */
1270 security_free_mnt_opts(sec_opts);
1271 }
1272 #endif
1273 return ret;
1274 }
1275
1276 /*
1277 * Find a superblock for the given device / mount point.
1278 *
1279 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1280 * for multiple device setup. Make sure to keep it in sync.
1281 */
1282 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1283 const char *device_name, void *data)
1284 {
1285 struct block_device *bdev = NULL;
1286 struct super_block *s;
1287 struct dentry *root;
1288 struct btrfs_fs_devices *fs_devices = NULL;
1289 struct btrfs_fs_info *fs_info = NULL;
1290 struct security_mnt_opts new_sec_opts;
1291 fmode_t mode = FMODE_READ;
1292 char *subvol_name = NULL;
1293 u64 subvol_objectid = 0;
1294 int error = 0;
1295
1296 if (!(flags & MS_RDONLY))
1297 mode |= FMODE_WRITE;
1298
1299 error = btrfs_parse_early_options(data, mode, fs_type,
1300 &subvol_name, &subvol_objectid,
1301 &fs_devices);
1302 if (error) {
1303 kfree(subvol_name);
1304 return ERR_PTR(error);
1305 }
1306
1307 if (subvol_name) {
1308 root = mount_subvol(subvol_name, flags, device_name, data);
1309 kfree(subvol_name);
1310 return root;
1311 }
1312
1313 security_init_mnt_opts(&new_sec_opts);
1314 if (data) {
1315 error = parse_security_options(data, &new_sec_opts);
1316 if (error)
1317 return ERR_PTR(error);
1318 }
1319
1320 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1321 if (error)
1322 goto error_sec_opts;
1323
1324 /*
1325 * Setup a dummy root and fs_info for test/set super. This is because
1326 * we don't actually fill this stuff out until open_ctree, but we need
1327 * it for searching for existing supers, so this lets us do that and
1328 * then open_ctree will properly initialize everything later.
1329 */
1330 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1331 if (!fs_info) {
1332 error = -ENOMEM;
1333 goto error_sec_opts;
1334 }
1335
1336 fs_info->fs_devices = fs_devices;
1337
1338 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1339 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1340 security_init_mnt_opts(&fs_info->security_opts);
1341 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1342 error = -ENOMEM;
1343 goto error_fs_info;
1344 }
1345
1346 error = btrfs_open_devices(fs_devices, mode, fs_type);
1347 if (error)
1348 goto error_fs_info;
1349
1350 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1351 error = -EACCES;
1352 goto error_close_devices;
1353 }
1354
1355 bdev = fs_devices->latest_bdev;
1356 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1357 fs_info);
1358 if (IS_ERR(s)) {
1359 error = PTR_ERR(s);
1360 goto error_close_devices;
1361 }
1362
1363 if (s->s_root) {
1364 btrfs_close_devices(fs_devices);
1365 free_fs_info(fs_info);
1366 if ((flags ^ s->s_flags) & MS_RDONLY)
1367 error = -EBUSY;
1368 } else {
1369 char b[BDEVNAME_SIZE];
1370
1371 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1372 btrfs_sb(s)->bdev_holder = fs_type;
1373 error = btrfs_fill_super(s, fs_devices, data,
1374 flags & MS_SILENT ? 1 : 0);
1375 }
1376
1377 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1378 if (IS_ERR(root)) {
1379 deactivate_locked_super(s);
1380 error = PTR_ERR(root);
1381 goto error_sec_opts;
1382 }
1383
1384 fs_info = btrfs_sb(s);
1385 error = setup_security_options(fs_info, s, &new_sec_opts);
1386 if (error) {
1387 dput(root);
1388 deactivate_locked_super(s);
1389 goto error_sec_opts;
1390 }
1391
1392 return root;
1393
1394 error_close_devices:
1395 btrfs_close_devices(fs_devices);
1396 error_fs_info:
1397 free_fs_info(fs_info);
1398 error_sec_opts:
1399 security_free_mnt_opts(&new_sec_opts);
1400 return ERR_PTR(error);
1401 }
1402
1403 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1404 int new_pool_size, int old_pool_size)
1405 {
1406 if (new_pool_size == old_pool_size)
1407 return;
1408
1409 fs_info->thread_pool_size = new_pool_size;
1410
1411 btrfs_info(fs_info, "resize thread pool %d -> %d",
1412 old_pool_size, new_pool_size);
1413
1414 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1415 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1416 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1417 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1418 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1419 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1420 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1421 new_pool_size);
1422 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1423 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1424 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1425 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1426 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1427 new_pool_size);
1428 }
1429
1430 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1431 {
1432 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1433 }
1434
1435 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1436 unsigned long old_opts, int flags)
1437 {
1438 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1439 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1440 (flags & MS_RDONLY))) {
1441 /* wait for any defraggers to finish */
1442 wait_event(fs_info->transaction_wait,
1443 (atomic_read(&fs_info->defrag_running) == 0));
1444 if (flags & MS_RDONLY)
1445 sync_filesystem(fs_info->sb);
1446 }
1447 }
1448
1449 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1450 unsigned long old_opts)
1451 {
1452 /*
1453 * We need cleanup all defragable inodes if the autodefragment is
1454 * close or the fs is R/O.
1455 */
1456 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1457 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1458 (fs_info->sb->s_flags & MS_RDONLY))) {
1459 btrfs_cleanup_defrag_inodes(fs_info);
1460 }
1461
1462 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1463 }
1464
1465 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1466 {
1467 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1468 struct btrfs_root *root = fs_info->tree_root;
1469 unsigned old_flags = sb->s_flags;
1470 unsigned long old_opts = fs_info->mount_opt;
1471 unsigned long old_compress_type = fs_info->compress_type;
1472 u64 old_max_inline = fs_info->max_inline;
1473 u64 old_alloc_start = fs_info->alloc_start;
1474 int old_thread_pool_size = fs_info->thread_pool_size;
1475 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1476 int ret;
1477
1478 sync_filesystem(sb);
1479 btrfs_remount_prepare(fs_info);
1480
1481 if (data) {
1482 struct security_mnt_opts new_sec_opts;
1483
1484 security_init_mnt_opts(&new_sec_opts);
1485 ret = parse_security_options(data, &new_sec_opts);
1486 if (ret)
1487 goto restore;
1488 ret = setup_security_options(fs_info, sb,
1489 &new_sec_opts);
1490 if (ret) {
1491 security_free_mnt_opts(&new_sec_opts);
1492 goto restore;
1493 }
1494 }
1495
1496 ret = btrfs_parse_options(root, data);
1497 if (ret) {
1498 ret = -EINVAL;
1499 goto restore;
1500 }
1501
1502 btrfs_remount_begin(fs_info, old_opts, *flags);
1503 btrfs_resize_thread_pool(fs_info,
1504 fs_info->thread_pool_size, old_thread_pool_size);
1505
1506 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1507 goto out;
1508
1509 if (*flags & MS_RDONLY) {
1510 /*
1511 * this also happens on 'umount -rf' or on shutdown, when
1512 * the filesystem is busy.
1513 */
1514 cancel_work_sync(&fs_info->async_reclaim_work);
1515
1516 /* wait for the uuid_scan task to finish */
1517 down(&fs_info->uuid_tree_rescan_sem);
1518 /* avoid complains from lockdep et al. */
1519 up(&fs_info->uuid_tree_rescan_sem);
1520
1521 sb->s_flags |= MS_RDONLY;
1522
1523 btrfs_dev_replace_suspend_for_unmount(fs_info);
1524 btrfs_scrub_cancel(fs_info);
1525 btrfs_pause_balance(fs_info);
1526
1527 ret = btrfs_commit_super(root);
1528 if (ret)
1529 goto restore;
1530 } else {
1531 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1532 btrfs_err(fs_info,
1533 "Remounting read-write after error is not allowed");
1534 ret = -EINVAL;
1535 goto restore;
1536 }
1537 if (fs_info->fs_devices->rw_devices == 0) {
1538 ret = -EACCES;
1539 goto restore;
1540 }
1541
1542 if (fs_info->fs_devices->missing_devices >
1543 fs_info->num_tolerated_disk_barrier_failures &&
1544 !(*flags & MS_RDONLY)) {
1545 btrfs_warn(fs_info,
1546 "too many missing devices, writeable remount is not allowed");
1547 ret = -EACCES;
1548 goto restore;
1549 }
1550
1551 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1552 ret = -EINVAL;
1553 goto restore;
1554 }
1555
1556 ret = btrfs_cleanup_fs_roots(fs_info);
1557 if (ret)
1558 goto restore;
1559
1560 /* recover relocation */
1561 mutex_lock(&fs_info->cleaner_mutex);
1562 ret = btrfs_recover_relocation(root);
1563 mutex_unlock(&fs_info->cleaner_mutex);
1564 if (ret)
1565 goto restore;
1566
1567 ret = btrfs_resume_balance_async(fs_info);
1568 if (ret)
1569 goto restore;
1570
1571 ret = btrfs_resume_dev_replace_async(fs_info);
1572 if (ret) {
1573 btrfs_warn(fs_info, "failed to resume dev_replace");
1574 goto restore;
1575 }
1576
1577 if (!fs_info->uuid_root) {
1578 btrfs_info(fs_info, "creating UUID tree");
1579 ret = btrfs_create_uuid_tree(fs_info);
1580 if (ret) {
1581 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1582 goto restore;
1583 }
1584 }
1585 sb->s_flags &= ~MS_RDONLY;
1586 }
1587 out:
1588 wake_up_process(fs_info->transaction_kthread);
1589 btrfs_remount_cleanup(fs_info, old_opts);
1590 return 0;
1591
1592 restore:
1593 /* We've hit an error - don't reset MS_RDONLY */
1594 if (sb->s_flags & MS_RDONLY)
1595 old_flags |= MS_RDONLY;
1596 sb->s_flags = old_flags;
1597 fs_info->mount_opt = old_opts;
1598 fs_info->compress_type = old_compress_type;
1599 fs_info->max_inline = old_max_inline;
1600 mutex_lock(&fs_info->chunk_mutex);
1601 fs_info->alloc_start = old_alloc_start;
1602 mutex_unlock(&fs_info->chunk_mutex);
1603 btrfs_resize_thread_pool(fs_info,
1604 old_thread_pool_size, fs_info->thread_pool_size);
1605 fs_info->metadata_ratio = old_metadata_ratio;
1606 btrfs_remount_cleanup(fs_info, old_opts);
1607 return ret;
1608 }
1609
1610 /* Used to sort the devices by max_avail(descending sort) */
1611 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1612 const void *dev_info2)
1613 {
1614 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1615 ((struct btrfs_device_info *)dev_info2)->max_avail)
1616 return -1;
1617 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1618 ((struct btrfs_device_info *)dev_info2)->max_avail)
1619 return 1;
1620 else
1621 return 0;
1622 }
1623
1624 /*
1625 * sort the devices by max_avail, in which max free extent size of each device
1626 * is stored.(Descending Sort)
1627 */
1628 static inline void btrfs_descending_sort_devices(
1629 struct btrfs_device_info *devices,
1630 size_t nr_devices)
1631 {
1632 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1633 btrfs_cmp_device_free_bytes, NULL);
1634 }
1635
1636 /*
1637 * The helper to calc the free space on the devices that can be used to store
1638 * file data.
1639 */
1640 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1641 {
1642 struct btrfs_fs_info *fs_info = root->fs_info;
1643 struct btrfs_device_info *devices_info;
1644 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1645 struct btrfs_device *device;
1646 u64 skip_space;
1647 u64 type;
1648 u64 avail_space;
1649 u64 used_space;
1650 u64 min_stripe_size;
1651 int min_stripes = 1, num_stripes = 1;
1652 int i = 0, nr_devices;
1653 int ret;
1654
1655 /*
1656 * We aren't under the device list lock, so this is racey-ish, but good
1657 * enough for our purposes.
1658 */
1659 nr_devices = fs_info->fs_devices->open_devices;
1660 if (!nr_devices) {
1661 smp_mb();
1662 nr_devices = fs_info->fs_devices->open_devices;
1663 ASSERT(nr_devices);
1664 if (!nr_devices) {
1665 *free_bytes = 0;
1666 return 0;
1667 }
1668 }
1669
1670 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1671 GFP_NOFS);
1672 if (!devices_info)
1673 return -ENOMEM;
1674
1675 /* calc min stripe number for data space alloction */
1676 type = btrfs_get_alloc_profile(root, 1);
1677 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1678 min_stripes = 2;
1679 num_stripes = nr_devices;
1680 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1681 min_stripes = 2;
1682 num_stripes = 2;
1683 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1684 min_stripes = 4;
1685 num_stripes = 4;
1686 }
1687
1688 if (type & BTRFS_BLOCK_GROUP_DUP)
1689 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1690 else
1691 min_stripe_size = BTRFS_STRIPE_LEN;
1692
1693 if (fs_info->alloc_start)
1694 mutex_lock(&fs_devices->device_list_mutex);
1695 rcu_read_lock();
1696 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1697 if (!device->in_fs_metadata || !device->bdev ||
1698 device->is_tgtdev_for_dev_replace)
1699 continue;
1700
1701 if (i >= nr_devices)
1702 break;
1703
1704 avail_space = device->total_bytes - device->bytes_used;
1705
1706 /* align with stripe_len */
1707 do_div(avail_space, BTRFS_STRIPE_LEN);
1708 avail_space *= BTRFS_STRIPE_LEN;
1709
1710 /*
1711 * In order to avoid overwritting the superblock on the drive,
1712 * btrfs starts at an offset of at least 1MB when doing chunk
1713 * allocation.
1714 */
1715 skip_space = 1024 * 1024;
1716
1717 /* user can set the offset in fs_info->alloc_start. */
1718 if (fs_info->alloc_start &&
1719 fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1720 device->total_bytes) {
1721 rcu_read_unlock();
1722 skip_space = max(fs_info->alloc_start, skip_space);
1723
1724 /*
1725 * btrfs can not use the free space in
1726 * [0, skip_space - 1], we must subtract it from the
1727 * total. In order to implement it, we account the used
1728 * space in this range first.
1729 */
1730 ret = btrfs_account_dev_extents_size(device, 0,
1731 skip_space - 1,
1732 &used_space);
1733 if (ret) {
1734 kfree(devices_info);
1735 mutex_unlock(&fs_devices->device_list_mutex);
1736 return ret;
1737 }
1738
1739 rcu_read_lock();
1740
1741 /* calc the free space in [0, skip_space - 1] */
1742 skip_space -= used_space;
1743 }
1744
1745 /*
1746 * we can use the free space in [0, skip_space - 1], subtract
1747 * it from the total.
1748 */
1749 if (avail_space && avail_space >= skip_space)
1750 avail_space -= skip_space;
1751 else
1752 avail_space = 0;
1753
1754 if (avail_space < min_stripe_size)
1755 continue;
1756
1757 devices_info[i].dev = device;
1758 devices_info[i].max_avail = avail_space;
1759
1760 i++;
1761 }
1762 rcu_read_unlock();
1763 if (fs_info->alloc_start)
1764 mutex_unlock(&fs_devices->device_list_mutex);
1765
1766 nr_devices = i;
1767
1768 btrfs_descending_sort_devices(devices_info, nr_devices);
1769
1770 i = nr_devices - 1;
1771 avail_space = 0;
1772 while (nr_devices >= min_stripes) {
1773 if (num_stripes > nr_devices)
1774 num_stripes = nr_devices;
1775
1776 if (devices_info[i].max_avail >= min_stripe_size) {
1777 int j;
1778 u64 alloc_size;
1779
1780 avail_space += devices_info[i].max_avail * num_stripes;
1781 alloc_size = devices_info[i].max_avail;
1782 for (j = i + 1 - num_stripes; j <= i; j++)
1783 devices_info[j].max_avail -= alloc_size;
1784 }
1785 i--;
1786 nr_devices--;
1787 }
1788
1789 kfree(devices_info);
1790 *free_bytes = avail_space;
1791 return 0;
1792 }
1793
1794 /*
1795 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1796 *
1797 * If there's a redundant raid level at DATA block groups, use the respective
1798 * multiplier to scale the sizes.
1799 *
1800 * Unused device space usage is based on simulating the chunk allocator
1801 * algorithm that respects the device sizes, order of allocations and the
1802 * 'alloc_start' value, this is a close approximation of the actual use but
1803 * there are other factors that may change the result (like a new metadata
1804 * chunk).
1805 *
1806 * FIXME: not accurate for mixed block groups, total and free/used are ok,
1807 * available appears slightly larger.
1808 */
1809 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1810 {
1811 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1812 struct btrfs_super_block *disk_super = fs_info->super_copy;
1813 struct list_head *head = &fs_info->space_info;
1814 struct btrfs_space_info *found;
1815 u64 total_used = 0;
1816 u64 total_free_data = 0;
1817 int bits = dentry->d_sb->s_blocksize_bits;
1818 __be32 *fsid = (__be32 *)fs_info->fsid;
1819 unsigned factor = 1;
1820 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1821 int ret;
1822
1823 /*
1824 * holding chunk_muext to avoid allocating new chunks, holding
1825 * device_list_mutex to avoid the device being removed
1826 */
1827 rcu_read_lock();
1828 list_for_each_entry_rcu(found, head, list) {
1829 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1830 int i;
1831
1832 total_free_data += found->disk_total - found->disk_used;
1833 total_free_data -=
1834 btrfs_account_ro_block_groups_free_space(found);
1835
1836 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1837 if (!list_empty(&found->block_groups[i])) {
1838 switch (i) {
1839 case BTRFS_RAID_DUP:
1840 case BTRFS_RAID_RAID1:
1841 case BTRFS_RAID_RAID10:
1842 factor = 2;
1843 }
1844 }
1845 }
1846 }
1847
1848 total_used += found->disk_used;
1849 }
1850
1851 rcu_read_unlock();
1852
1853 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1854 buf->f_blocks >>= bits;
1855 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1856
1857 /* Account global block reserve as used, it's in logical size already */
1858 spin_lock(&block_rsv->lock);
1859 buf->f_bfree -= block_rsv->size >> bits;
1860 spin_unlock(&block_rsv->lock);
1861
1862 buf->f_bavail = div_u64(total_free_data, factor);
1863 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1864 if (ret)
1865 return ret;
1866 buf->f_bavail += div_u64(total_free_data, factor);
1867 buf->f_bavail = buf->f_bavail >> bits;
1868
1869 buf->f_type = BTRFS_SUPER_MAGIC;
1870 buf->f_bsize = dentry->d_sb->s_blocksize;
1871 buf->f_namelen = BTRFS_NAME_LEN;
1872
1873 /* We treat it as constant endianness (it doesn't matter _which_)
1874 because we want the fsid to come out the same whether mounted
1875 on a big-endian or little-endian host */
1876 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1877 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1878 /* Mask in the root object ID too, to disambiguate subvols */
1879 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1880 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1881
1882 return 0;
1883 }
1884
1885 static void btrfs_kill_super(struct super_block *sb)
1886 {
1887 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1888 kill_anon_super(sb);
1889 free_fs_info(fs_info);
1890 }
1891
1892 static struct file_system_type btrfs_fs_type = {
1893 .owner = THIS_MODULE,
1894 .name = "btrfs",
1895 .mount = btrfs_mount,
1896 .kill_sb = btrfs_kill_super,
1897 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
1898 };
1899 MODULE_ALIAS_FS("btrfs");
1900
1901 /*
1902 * used by btrfsctl to scan devices when no FS is mounted
1903 */
1904 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1905 unsigned long arg)
1906 {
1907 struct btrfs_ioctl_vol_args *vol;
1908 struct btrfs_fs_devices *fs_devices;
1909 int ret = -ENOTTY;
1910
1911 if (!capable(CAP_SYS_ADMIN))
1912 return -EPERM;
1913
1914 vol = memdup_user((void __user *)arg, sizeof(*vol));
1915 if (IS_ERR(vol))
1916 return PTR_ERR(vol);
1917
1918 switch (cmd) {
1919 case BTRFS_IOC_SCAN_DEV:
1920 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1921 &btrfs_fs_type, &fs_devices);
1922 break;
1923 case BTRFS_IOC_DEVICES_READY:
1924 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1925 &btrfs_fs_type, &fs_devices);
1926 if (ret)
1927 break;
1928 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1929 break;
1930 }
1931
1932 kfree(vol);
1933 return ret;
1934 }
1935
1936 static int btrfs_freeze(struct super_block *sb)
1937 {
1938 struct btrfs_trans_handle *trans;
1939 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1940
1941 trans = btrfs_attach_transaction_barrier(root);
1942 if (IS_ERR(trans)) {
1943 /* no transaction, don't bother */
1944 if (PTR_ERR(trans) == -ENOENT)
1945 return 0;
1946 return PTR_ERR(trans);
1947 }
1948 return btrfs_commit_transaction(trans, root);
1949 }
1950
1951 static int btrfs_unfreeze(struct super_block *sb)
1952 {
1953 return 0;
1954 }
1955
1956 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1957 {
1958 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1959 struct btrfs_fs_devices *cur_devices;
1960 struct btrfs_device *dev, *first_dev = NULL;
1961 struct list_head *head;
1962 struct rcu_string *name;
1963
1964 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1965 cur_devices = fs_info->fs_devices;
1966 while (cur_devices) {
1967 head = &cur_devices->devices;
1968 list_for_each_entry(dev, head, dev_list) {
1969 if (dev->missing)
1970 continue;
1971 if (!dev->name)
1972 continue;
1973 if (!first_dev || dev->devid < first_dev->devid)
1974 first_dev = dev;
1975 }
1976 cur_devices = cur_devices->seed;
1977 }
1978
1979 if (first_dev) {
1980 rcu_read_lock();
1981 name = rcu_dereference(first_dev->name);
1982 seq_escape(m, name->str, " \t\n\\");
1983 rcu_read_unlock();
1984 } else {
1985 WARN_ON(1);
1986 }
1987 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1988 return 0;
1989 }
1990
1991 static const struct super_operations btrfs_super_ops = {
1992 .drop_inode = btrfs_drop_inode,
1993 .evict_inode = btrfs_evict_inode,
1994 .put_super = btrfs_put_super,
1995 .sync_fs = btrfs_sync_fs,
1996 .show_options = btrfs_show_options,
1997 .show_devname = btrfs_show_devname,
1998 .write_inode = btrfs_write_inode,
1999 .alloc_inode = btrfs_alloc_inode,
2000 .destroy_inode = btrfs_destroy_inode,
2001 .statfs = btrfs_statfs,
2002 .remount_fs = btrfs_remount,
2003 .freeze_fs = btrfs_freeze,
2004 .unfreeze_fs = btrfs_unfreeze,
2005 };
2006
2007 static const struct file_operations btrfs_ctl_fops = {
2008 .unlocked_ioctl = btrfs_control_ioctl,
2009 .compat_ioctl = btrfs_control_ioctl,
2010 .owner = THIS_MODULE,
2011 .llseek = noop_llseek,
2012 };
2013
2014 static struct miscdevice btrfs_misc = {
2015 .minor = BTRFS_MINOR,
2016 .name = "btrfs-control",
2017 .fops = &btrfs_ctl_fops
2018 };
2019
2020 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2021 MODULE_ALIAS("devname:btrfs-control");
2022
2023 static int btrfs_interface_init(void)
2024 {
2025 return misc_register(&btrfs_misc);
2026 }
2027
2028 static void btrfs_interface_exit(void)
2029 {
2030 if (misc_deregister(&btrfs_misc) < 0)
2031 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
2032 }
2033
2034 static void btrfs_print_info(void)
2035 {
2036 printk(KERN_INFO "Btrfs loaded"
2037 #ifdef CONFIG_BTRFS_DEBUG
2038 ", debug=on"
2039 #endif
2040 #ifdef CONFIG_BTRFS_ASSERT
2041 ", assert=on"
2042 #endif
2043 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2044 ", integrity-checker=on"
2045 #endif
2046 "\n");
2047 }
2048
2049 static int btrfs_run_sanity_tests(void)
2050 {
2051 int ret;
2052
2053 ret = btrfs_init_test_fs();
2054 if (ret)
2055 return ret;
2056
2057 ret = btrfs_test_free_space_cache();
2058 if (ret)
2059 goto out;
2060 ret = btrfs_test_extent_buffer_operations();
2061 if (ret)
2062 goto out;
2063 ret = btrfs_test_extent_io();
2064 if (ret)
2065 goto out;
2066 ret = btrfs_test_inodes();
2067 if (ret)
2068 goto out;
2069 ret = btrfs_test_qgroups();
2070 out:
2071 btrfs_destroy_test_fs();
2072 return ret;
2073 }
2074
2075 static int __init init_btrfs_fs(void)
2076 {
2077 int err;
2078
2079 err = btrfs_hash_init();
2080 if (err)
2081 return err;
2082
2083 btrfs_props_init();
2084
2085 err = btrfs_init_sysfs();
2086 if (err)
2087 goto free_hash;
2088
2089 btrfs_init_compress();
2090
2091 err = btrfs_init_cachep();
2092 if (err)
2093 goto free_compress;
2094
2095 err = extent_io_init();
2096 if (err)
2097 goto free_cachep;
2098
2099 err = extent_map_init();
2100 if (err)
2101 goto free_extent_io;
2102
2103 err = ordered_data_init();
2104 if (err)
2105 goto free_extent_map;
2106
2107 err = btrfs_delayed_inode_init();
2108 if (err)
2109 goto free_ordered_data;
2110
2111 err = btrfs_auto_defrag_init();
2112 if (err)
2113 goto free_delayed_inode;
2114
2115 err = btrfs_delayed_ref_init();
2116 if (err)
2117 goto free_auto_defrag;
2118
2119 err = btrfs_prelim_ref_init();
2120 if (err)
2121 goto free_delayed_ref;
2122
2123 err = btrfs_end_io_wq_init();
2124 if (err)
2125 goto free_prelim_ref;
2126
2127 err = btrfs_interface_init();
2128 if (err)
2129 goto free_end_io_wq;
2130
2131 btrfs_init_lockdep();
2132
2133 btrfs_print_info();
2134
2135 err = btrfs_run_sanity_tests();
2136 if (err)
2137 goto unregister_ioctl;
2138
2139 err = register_filesystem(&btrfs_fs_type);
2140 if (err)
2141 goto unregister_ioctl;
2142
2143 return 0;
2144
2145 unregister_ioctl:
2146 btrfs_interface_exit();
2147 free_end_io_wq:
2148 btrfs_end_io_wq_exit();
2149 free_prelim_ref:
2150 btrfs_prelim_ref_exit();
2151 free_delayed_ref:
2152 btrfs_delayed_ref_exit();
2153 free_auto_defrag:
2154 btrfs_auto_defrag_exit();
2155 free_delayed_inode:
2156 btrfs_delayed_inode_exit();
2157 free_ordered_data:
2158 ordered_data_exit();
2159 free_extent_map:
2160 extent_map_exit();
2161 free_extent_io:
2162 extent_io_exit();
2163 free_cachep:
2164 btrfs_destroy_cachep();
2165 free_compress:
2166 btrfs_exit_compress();
2167 btrfs_exit_sysfs();
2168 free_hash:
2169 btrfs_hash_exit();
2170 return err;
2171 }
2172
2173 static void __exit exit_btrfs_fs(void)
2174 {
2175 btrfs_destroy_cachep();
2176 btrfs_delayed_ref_exit();
2177 btrfs_auto_defrag_exit();
2178 btrfs_delayed_inode_exit();
2179 btrfs_prelim_ref_exit();
2180 ordered_data_exit();
2181 extent_map_exit();
2182 extent_io_exit();
2183 btrfs_interface_exit();
2184 btrfs_end_io_wq_exit();
2185 unregister_filesystem(&btrfs_fs_type);
2186 btrfs_exit_sysfs();
2187 btrfs_cleanup_fs_uuids();
2188 btrfs_exit_compress();
2189 btrfs_hash_exit();
2190 }
2191
2192 late_initcall(init_btrfs_fs);
2193 module_exit(exit_btrfs_fs)
2194
2195 MODULE_LICENSE("GPL");
This page took 0.075971 seconds and 5 git commands to generate.