arch: remove direct definitions of KERN_<LEVEL> uses
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 char nbuf[16])
67 {
68 char *errstr = NULL;
69
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 default:
84 if (nbuf) {
85 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 errstr = nbuf;
87 }
88 break;
89 }
90
91 return errstr;
92 }
93
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96 /*
97 * today we only save the error info into ram. Long term we'll
98 * also send it down to the disk
99 */
100 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102
103 /* NOTE:
104 * We move write_super stuff at umount in order to avoid deadlock
105 * for umount hold all lock.
106 */
107 static void save_error_info(struct btrfs_fs_info *fs_info)
108 {
109 __save_error_info(fs_info);
110 }
111
112 /* btrfs handle error by forcing the filesystem readonly */
113 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
114 {
115 struct super_block *sb = fs_info->sb;
116
117 if (sb->s_flags & MS_RDONLY)
118 return;
119
120 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
121 sb->s_flags |= MS_RDONLY;
122 printk(KERN_INFO "btrfs is forced readonly\n");
123 __btrfs_scrub_cancel(fs_info);
124 // WARN_ON(1);
125 }
126 }
127
128 /*
129 * __btrfs_std_error decodes expected errors from the caller and
130 * invokes the approciate error response.
131 */
132 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
133 unsigned int line, int errno, const char *fmt, ...)
134 {
135 struct super_block *sb = fs_info->sb;
136 char nbuf[16];
137 const char *errstr;
138 va_list args;
139 va_start(args, fmt);
140
141 /*
142 * Special case: if the error is EROFS, and we're already
143 * under MS_RDONLY, then it is safe here.
144 */
145 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
146 return;
147
148 errstr = btrfs_decode_error(fs_info, errno, nbuf);
149 if (fmt) {
150 struct va_format vaf = {
151 .fmt = fmt,
152 .va = &args,
153 };
154
155 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
156 sb->s_id, function, line, errstr, &vaf);
157 } else {
158 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
159 sb->s_id, function, line, errstr);
160 }
161
162 /* Don't go through full error handling during mount */
163 if (sb->s_flags & MS_BORN) {
164 save_error_info(fs_info);
165 btrfs_handle_error(fs_info);
166 }
167 va_end(args);
168 }
169
170 const char *logtypes[] = {
171 "emergency",
172 "alert",
173 "critical",
174 "error",
175 "warning",
176 "notice",
177 "info",
178 "debug",
179 };
180
181 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
182 {
183 struct super_block *sb = fs_info->sb;
184 char lvl[4];
185 struct va_format vaf;
186 va_list args;
187 const char *type = logtypes[4];
188
189 va_start(args, fmt);
190
191 if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
192 memcpy(lvl, fmt, 3);
193 lvl[3] = '\0';
194 fmt += 3;
195 type = logtypes[fmt[1] - '0'];
196 } else
197 *lvl = '\0';
198
199 vaf.fmt = fmt;
200 vaf.va = &args;
201 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
202 }
203
204 /*
205 * We only mark the transaction aborted and then set the file system read-only.
206 * This will prevent new transactions from starting or trying to join this
207 * one.
208 *
209 * This means that error recovery at the call site is limited to freeing
210 * any local memory allocations and passing the error code up without
211 * further cleanup. The transaction should complete as it normally would
212 * in the call path but will return -EIO.
213 *
214 * We'll complete the cleanup in btrfs_end_transaction and
215 * btrfs_commit_transaction.
216 */
217 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root, const char *function,
219 unsigned int line, int errno)
220 {
221 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
222 trans->aborted = errno;
223 /* Nothing used. The other threads that have joined this
224 * transaction may be able to continue. */
225 if (!trans->blocks_used) {
226 btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
227 return;
228 }
229 trans->transaction->aborted = errno;
230 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
231 }
232 /*
233 * __btrfs_panic decodes unexpected, fatal errors from the caller,
234 * issues an alert, and either panics or BUGs, depending on mount options.
235 */
236 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
237 unsigned int line, int errno, const char *fmt, ...)
238 {
239 char nbuf[16];
240 char *s_id = "<unknown>";
241 const char *errstr;
242 struct va_format vaf = { .fmt = fmt };
243 va_list args;
244
245 if (fs_info)
246 s_id = fs_info->sb->s_id;
247
248 va_start(args, fmt);
249 vaf.va = &args;
250
251 errstr = btrfs_decode_error(fs_info, errno, nbuf);
252 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
253 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
254 s_id, function, line, &vaf, errstr);
255
256 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
257 s_id, function, line, &vaf, errstr);
258 va_end(args);
259 /* Caller calls BUG() */
260 }
261
262 static void btrfs_put_super(struct super_block *sb)
263 {
264 (void)close_ctree(btrfs_sb(sb)->tree_root);
265 /* FIXME: need to fix VFS to return error? */
266 /* AV: return it _where_? ->put_super() can be triggered by any number
267 * of async events, up to and including delivery of SIGKILL to the
268 * last process that kept it busy. Or segfault in the aforementioned
269 * process... Whom would you report that to?
270 */
271 }
272
273 enum {
274 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
275 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
276 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
277 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
278 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
279 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
280 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
281 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
282 Opt_check_integrity, Opt_check_integrity_including_extent_data,
283 Opt_check_integrity_print_mask, Opt_fatal_errors,
284 Opt_err,
285 };
286
287 static match_table_t tokens = {
288 {Opt_degraded, "degraded"},
289 {Opt_subvol, "subvol=%s"},
290 {Opt_subvolid, "subvolid=%d"},
291 {Opt_device, "device=%s"},
292 {Opt_nodatasum, "nodatasum"},
293 {Opt_nodatacow, "nodatacow"},
294 {Opt_nobarrier, "nobarrier"},
295 {Opt_max_inline, "max_inline=%s"},
296 {Opt_alloc_start, "alloc_start=%s"},
297 {Opt_thread_pool, "thread_pool=%d"},
298 {Opt_compress, "compress"},
299 {Opt_compress_type, "compress=%s"},
300 {Opt_compress_force, "compress-force"},
301 {Opt_compress_force_type, "compress-force=%s"},
302 {Opt_ssd, "ssd"},
303 {Opt_ssd_spread, "ssd_spread"},
304 {Opt_nossd, "nossd"},
305 {Opt_noacl, "noacl"},
306 {Opt_notreelog, "notreelog"},
307 {Opt_flushoncommit, "flushoncommit"},
308 {Opt_ratio, "metadata_ratio=%d"},
309 {Opt_discard, "discard"},
310 {Opt_space_cache, "space_cache"},
311 {Opt_clear_cache, "clear_cache"},
312 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
313 {Opt_enospc_debug, "enospc_debug"},
314 {Opt_subvolrootid, "subvolrootid=%d"},
315 {Opt_defrag, "autodefrag"},
316 {Opt_inode_cache, "inode_cache"},
317 {Opt_no_space_cache, "nospace_cache"},
318 {Opt_recovery, "recovery"},
319 {Opt_skip_balance, "skip_balance"},
320 {Opt_check_integrity, "check_int"},
321 {Opt_check_integrity_including_extent_data, "check_int_data"},
322 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
323 {Opt_fatal_errors, "fatal_errors=%s"},
324 {Opt_err, NULL},
325 };
326
327 /*
328 * Regular mount options parser. Everything that is needed only when
329 * reading in a new superblock is parsed here.
330 * XXX JDM: This needs to be cleaned up for remount.
331 */
332 int btrfs_parse_options(struct btrfs_root *root, char *options)
333 {
334 struct btrfs_fs_info *info = root->fs_info;
335 substring_t args[MAX_OPT_ARGS];
336 char *p, *num, *orig = NULL;
337 u64 cache_gen;
338 int intarg;
339 int ret = 0;
340 char *compress_type;
341 bool compress_force = false;
342
343 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
344 if (cache_gen)
345 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
346
347 if (!options)
348 goto out;
349
350 /*
351 * strsep changes the string, duplicate it because parse_options
352 * gets called twice
353 */
354 options = kstrdup(options, GFP_NOFS);
355 if (!options)
356 return -ENOMEM;
357
358 orig = options;
359
360 while ((p = strsep(&options, ",")) != NULL) {
361 int token;
362 if (!*p)
363 continue;
364
365 token = match_token(p, tokens, args);
366 switch (token) {
367 case Opt_degraded:
368 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
369 btrfs_set_opt(info->mount_opt, DEGRADED);
370 break;
371 case Opt_subvol:
372 case Opt_subvolid:
373 case Opt_subvolrootid:
374 case Opt_device:
375 /*
376 * These are parsed by btrfs_parse_early_options
377 * and can be happily ignored here.
378 */
379 break;
380 case Opt_nodatasum:
381 printk(KERN_INFO "btrfs: setting nodatasum\n");
382 btrfs_set_opt(info->mount_opt, NODATASUM);
383 break;
384 case Opt_nodatacow:
385 printk(KERN_INFO "btrfs: setting nodatacow\n");
386 btrfs_set_opt(info->mount_opt, NODATACOW);
387 btrfs_set_opt(info->mount_opt, NODATASUM);
388 break;
389 case Opt_compress_force:
390 case Opt_compress_force_type:
391 compress_force = true;
392 case Opt_compress:
393 case Opt_compress_type:
394 if (token == Opt_compress ||
395 token == Opt_compress_force ||
396 strcmp(args[0].from, "zlib") == 0) {
397 compress_type = "zlib";
398 info->compress_type = BTRFS_COMPRESS_ZLIB;
399 btrfs_set_opt(info->mount_opt, COMPRESS);
400 } else if (strcmp(args[0].from, "lzo") == 0) {
401 compress_type = "lzo";
402 info->compress_type = BTRFS_COMPRESS_LZO;
403 btrfs_set_opt(info->mount_opt, COMPRESS);
404 btrfs_set_fs_incompat(info, COMPRESS_LZO);
405 } else if (strncmp(args[0].from, "no", 2) == 0) {
406 compress_type = "no";
407 info->compress_type = BTRFS_COMPRESS_NONE;
408 btrfs_clear_opt(info->mount_opt, COMPRESS);
409 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
410 compress_force = false;
411 } else {
412 ret = -EINVAL;
413 goto out;
414 }
415
416 if (compress_force) {
417 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
418 pr_info("btrfs: force %s compression\n",
419 compress_type);
420 } else
421 pr_info("btrfs: use %s compression\n",
422 compress_type);
423 break;
424 case Opt_ssd:
425 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
426 btrfs_set_opt(info->mount_opt, SSD);
427 break;
428 case Opt_ssd_spread:
429 printk(KERN_INFO "btrfs: use spread ssd "
430 "allocation scheme\n");
431 btrfs_set_opt(info->mount_opt, SSD);
432 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
433 break;
434 case Opt_nossd:
435 printk(KERN_INFO "btrfs: not using ssd allocation "
436 "scheme\n");
437 btrfs_set_opt(info->mount_opt, NOSSD);
438 btrfs_clear_opt(info->mount_opt, SSD);
439 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
440 break;
441 case Opt_nobarrier:
442 printk(KERN_INFO "btrfs: turning off barriers\n");
443 btrfs_set_opt(info->mount_opt, NOBARRIER);
444 break;
445 case Opt_thread_pool:
446 intarg = 0;
447 match_int(&args[0], &intarg);
448 if (intarg)
449 info->thread_pool_size = intarg;
450 break;
451 case Opt_max_inline:
452 num = match_strdup(&args[0]);
453 if (num) {
454 info->max_inline = memparse(num, NULL);
455 kfree(num);
456
457 if (info->max_inline) {
458 info->max_inline = max_t(u64,
459 info->max_inline,
460 root->sectorsize);
461 }
462 printk(KERN_INFO "btrfs: max_inline at %llu\n",
463 (unsigned long long)info->max_inline);
464 }
465 break;
466 case Opt_alloc_start:
467 num = match_strdup(&args[0]);
468 if (num) {
469 info->alloc_start = memparse(num, NULL);
470 kfree(num);
471 printk(KERN_INFO
472 "btrfs: allocations start at %llu\n",
473 (unsigned long long)info->alloc_start);
474 }
475 break;
476 case Opt_noacl:
477 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
478 break;
479 case Opt_notreelog:
480 printk(KERN_INFO "btrfs: disabling tree log\n");
481 btrfs_set_opt(info->mount_opt, NOTREELOG);
482 break;
483 case Opt_flushoncommit:
484 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
485 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
486 break;
487 case Opt_ratio:
488 intarg = 0;
489 match_int(&args[0], &intarg);
490 if (intarg) {
491 info->metadata_ratio = intarg;
492 printk(KERN_INFO "btrfs: metadata ratio %d\n",
493 info->metadata_ratio);
494 }
495 break;
496 case Opt_discard:
497 btrfs_set_opt(info->mount_opt, DISCARD);
498 break;
499 case Opt_space_cache:
500 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
501 break;
502 case Opt_no_space_cache:
503 printk(KERN_INFO "btrfs: disabling disk space caching\n");
504 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
505 break;
506 case Opt_inode_cache:
507 printk(KERN_INFO "btrfs: enabling inode map caching\n");
508 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
509 break;
510 case Opt_clear_cache:
511 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
512 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
513 break;
514 case Opt_user_subvol_rm_allowed:
515 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
516 break;
517 case Opt_enospc_debug:
518 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
519 break;
520 case Opt_defrag:
521 printk(KERN_INFO "btrfs: enabling auto defrag");
522 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
523 break;
524 case Opt_recovery:
525 printk(KERN_INFO "btrfs: enabling auto recovery");
526 btrfs_set_opt(info->mount_opt, RECOVERY);
527 break;
528 case Opt_skip_balance:
529 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
530 break;
531 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
532 case Opt_check_integrity_including_extent_data:
533 printk(KERN_INFO "btrfs: enabling check integrity"
534 " including extent data\n");
535 btrfs_set_opt(info->mount_opt,
536 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
537 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
538 break;
539 case Opt_check_integrity:
540 printk(KERN_INFO "btrfs: enabling check integrity\n");
541 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
542 break;
543 case Opt_check_integrity_print_mask:
544 intarg = 0;
545 match_int(&args[0], &intarg);
546 if (intarg) {
547 info->check_integrity_print_mask = intarg;
548 printk(KERN_INFO "btrfs:"
549 " check_integrity_print_mask 0x%x\n",
550 info->check_integrity_print_mask);
551 }
552 break;
553 #else
554 case Opt_check_integrity_including_extent_data:
555 case Opt_check_integrity:
556 case Opt_check_integrity_print_mask:
557 printk(KERN_ERR "btrfs: support for check_integrity*"
558 " not compiled in!\n");
559 ret = -EINVAL;
560 goto out;
561 #endif
562 case Opt_fatal_errors:
563 if (strcmp(args[0].from, "panic") == 0)
564 btrfs_set_opt(info->mount_opt,
565 PANIC_ON_FATAL_ERROR);
566 else if (strcmp(args[0].from, "bug") == 0)
567 btrfs_clear_opt(info->mount_opt,
568 PANIC_ON_FATAL_ERROR);
569 else {
570 ret = -EINVAL;
571 goto out;
572 }
573 break;
574 case Opt_err:
575 printk(KERN_INFO "btrfs: unrecognized mount option "
576 "'%s'\n", p);
577 ret = -EINVAL;
578 goto out;
579 default:
580 break;
581 }
582 }
583 out:
584 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
585 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
586 kfree(orig);
587 return ret;
588 }
589
590 /*
591 * Parse mount options that are required early in the mount process.
592 *
593 * All other options will be parsed on much later in the mount process and
594 * only when we need to allocate a new super block.
595 */
596 static int btrfs_parse_early_options(const char *options, fmode_t flags,
597 void *holder, char **subvol_name, u64 *subvol_objectid,
598 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
599 {
600 substring_t args[MAX_OPT_ARGS];
601 char *device_name, *opts, *orig, *p;
602 int error = 0;
603 int intarg;
604
605 if (!options)
606 return 0;
607
608 /*
609 * strsep changes the string, duplicate it because parse_options
610 * gets called twice
611 */
612 opts = kstrdup(options, GFP_KERNEL);
613 if (!opts)
614 return -ENOMEM;
615 orig = opts;
616
617 while ((p = strsep(&opts, ",")) != NULL) {
618 int token;
619 if (!*p)
620 continue;
621
622 token = match_token(p, tokens, args);
623 switch (token) {
624 case Opt_subvol:
625 kfree(*subvol_name);
626 *subvol_name = match_strdup(&args[0]);
627 break;
628 case Opt_subvolid:
629 intarg = 0;
630 error = match_int(&args[0], &intarg);
631 if (!error) {
632 /* we want the original fs_tree */
633 if (!intarg)
634 *subvol_objectid =
635 BTRFS_FS_TREE_OBJECTID;
636 else
637 *subvol_objectid = intarg;
638 }
639 break;
640 case Opt_subvolrootid:
641 intarg = 0;
642 error = match_int(&args[0], &intarg);
643 if (!error) {
644 /* we want the original fs_tree */
645 if (!intarg)
646 *subvol_rootid =
647 BTRFS_FS_TREE_OBJECTID;
648 else
649 *subvol_rootid = intarg;
650 }
651 break;
652 case Opt_device:
653 device_name = match_strdup(&args[0]);
654 if (!device_name) {
655 error = -ENOMEM;
656 goto out;
657 }
658 error = btrfs_scan_one_device(device_name,
659 flags, holder, fs_devices);
660 kfree(device_name);
661 if (error)
662 goto out;
663 break;
664 default:
665 break;
666 }
667 }
668
669 out:
670 kfree(orig);
671 return error;
672 }
673
674 static struct dentry *get_default_root(struct super_block *sb,
675 u64 subvol_objectid)
676 {
677 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
678 struct btrfs_root *root = fs_info->tree_root;
679 struct btrfs_root *new_root;
680 struct btrfs_dir_item *di;
681 struct btrfs_path *path;
682 struct btrfs_key location;
683 struct inode *inode;
684 u64 dir_id;
685 int new = 0;
686
687 /*
688 * We have a specific subvol we want to mount, just setup location and
689 * go look up the root.
690 */
691 if (subvol_objectid) {
692 location.objectid = subvol_objectid;
693 location.type = BTRFS_ROOT_ITEM_KEY;
694 location.offset = (u64)-1;
695 goto find_root;
696 }
697
698 path = btrfs_alloc_path();
699 if (!path)
700 return ERR_PTR(-ENOMEM);
701 path->leave_spinning = 1;
702
703 /*
704 * Find the "default" dir item which points to the root item that we
705 * will mount by default if we haven't been given a specific subvolume
706 * to mount.
707 */
708 dir_id = btrfs_super_root_dir(fs_info->super_copy);
709 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
710 if (IS_ERR(di)) {
711 btrfs_free_path(path);
712 return ERR_CAST(di);
713 }
714 if (!di) {
715 /*
716 * Ok the default dir item isn't there. This is weird since
717 * it's always been there, but don't freak out, just try and
718 * mount to root most subvolume.
719 */
720 btrfs_free_path(path);
721 dir_id = BTRFS_FIRST_FREE_OBJECTID;
722 new_root = fs_info->fs_root;
723 goto setup_root;
724 }
725
726 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
727 btrfs_free_path(path);
728
729 find_root:
730 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
731 if (IS_ERR(new_root))
732 return ERR_CAST(new_root);
733
734 if (btrfs_root_refs(&new_root->root_item) == 0)
735 return ERR_PTR(-ENOENT);
736
737 dir_id = btrfs_root_dirid(&new_root->root_item);
738 setup_root:
739 location.objectid = dir_id;
740 location.type = BTRFS_INODE_ITEM_KEY;
741 location.offset = 0;
742
743 inode = btrfs_iget(sb, &location, new_root, &new);
744 if (IS_ERR(inode))
745 return ERR_CAST(inode);
746
747 /*
748 * If we're just mounting the root most subvol put the inode and return
749 * a reference to the dentry. We will have already gotten a reference
750 * to the inode in btrfs_fill_super so we're good to go.
751 */
752 if (!new && sb->s_root->d_inode == inode) {
753 iput(inode);
754 return dget(sb->s_root);
755 }
756
757 return d_obtain_alias(inode);
758 }
759
760 static int btrfs_fill_super(struct super_block *sb,
761 struct btrfs_fs_devices *fs_devices,
762 void *data, int silent)
763 {
764 struct inode *inode;
765 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
766 struct btrfs_key key;
767 int err;
768
769 sb->s_maxbytes = MAX_LFS_FILESIZE;
770 sb->s_magic = BTRFS_SUPER_MAGIC;
771 sb->s_op = &btrfs_super_ops;
772 sb->s_d_op = &btrfs_dentry_operations;
773 sb->s_export_op = &btrfs_export_ops;
774 sb->s_xattr = btrfs_xattr_handlers;
775 sb->s_time_gran = 1;
776 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
777 sb->s_flags |= MS_POSIXACL;
778 #endif
779 sb->s_flags |= MS_I_VERSION;
780 err = open_ctree(sb, fs_devices, (char *)data);
781 if (err) {
782 printk("btrfs: open_ctree failed\n");
783 return err;
784 }
785
786 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
787 key.type = BTRFS_INODE_ITEM_KEY;
788 key.offset = 0;
789 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
790 if (IS_ERR(inode)) {
791 err = PTR_ERR(inode);
792 goto fail_close;
793 }
794
795 sb->s_root = d_make_root(inode);
796 if (!sb->s_root) {
797 err = -ENOMEM;
798 goto fail_close;
799 }
800
801 save_mount_options(sb, data);
802 cleancache_init_fs(sb);
803 sb->s_flags |= MS_ACTIVE;
804 return 0;
805
806 fail_close:
807 close_ctree(fs_info->tree_root);
808 return err;
809 }
810
811 int btrfs_sync_fs(struct super_block *sb, int wait)
812 {
813 struct btrfs_trans_handle *trans;
814 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
815 struct btrfs_root *root = fs_info->tree_root;
816 int ret;
817
818 trace_btrfs_sync_fs(wait);
819
820 if (!wait) {
821 filemap_flush(fs_info->btree_inode->i_mapping);
822 return 0;
823 }
824
825 btrfs_wait_ordered_extents(root, 0, 0);
826
827 trans = btrfs_start_transaction(root, 0);
828 if (IS_ERR(trans))
829 return PTR_ERR(trans);
830 ret = btrfs_commit_transaction(trans, root);
831 return ret;
832 }
833
834 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
835 {
836 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
837 struct btrfs_root *root = info->tree_root;
838 char *compress_type;
839
840 if (btrfs_test_opt(root, DEGRADED))
841 seq_puts(seq, ",degraded");
842 if (btrfs_test_opt(root, NODATASUM))
843 seq_puts(seq, ",nodatasum");
844 if (btrfs_test_opt(root, NODATACOW))
845 seq_puts(seq, ",nodatacow");
846 if (btrfs_test_opt(root, NOBARRIER))
847 seq_puts(seq, ",nobarrier");
848 if (info->max_inline != 8192 * 1024)
849 seq_printf(seq, ",max_inline=%llu",
850 (unsigned long long)info->max_inline);
851 if (info->alloc_start != 0)
852 seq_printf(seq, ",alloc_start=%llu",
853 (unsigned long long)info->alloc_start);
854 if (info->thread_pool_size != min_t(unsigned long,
855 num_online_cpus() + 2, 8))
856 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
857 if (btrfs_test_opt(root, COMPRESS)) {
858 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
859 compress_type = "zlib";
860 else
861 compress_type = "lzo";
862 if (btrfs_test_opt(root, FORCE_COMPRESS))
863 seq_printf(seq, ",compress-force=%s", compress_type);
864 else
865 seq_printf(seq, ",compress=%s", compress_type);
866 }
867 if (btrfs_test_opt(root, NOSSD))
868 seq_puts(seq, ",nossd");
869 if (btrfs_test_opt(root, SSD_SPREAD))
870 seq_puts(seq, ",ssd_spread");
871 else if (btrfs_test_opt(root, SSD))
872 seq_puts(seq, ",ssd");
873 if (btrfs_test_opt(root, NOTREELOG))
874 seq_puts(seq, ",notreelog");
875 if (btrfs_test_opt(root, FLUSHONCOMMIT))
876 seq_puts(seq, ",flushoncommit");
877 if (btrfs_test_opt(root, DISCARD))
878 seq_puts(seq, ",discard");
879 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
880 seq_puts(seq, ",noacl");
881 if (btrfs_test_opt(root, SPACE_CACHE))
882 seq_puts(seq, ",space_cache");
883 else
884 seq_puts(seq, ",nospace_cache");
885 if (btrfs_test_opt(root, CLEAR_CACHE))
886 seq_puts(seq, ",clear_cache");
887 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
888 seq_puts(seq, ",user_subvol_rm_allowed");
889 if (btrfs_test_opt(root, ENOSPC_DEBUG))
890 seq_puts(seq, ",enospc_debug");
891 if (btrfs_test_opt(root, AUTO_DEFRAG))
892 seq_puts(seq, ",autodefrag");
893 if (btrfs_test_opt(root, INODE_MAP_CACHE))
894 seq_puts(seq, ",inode_cache");
895 if (btrfs_test_opt(root, SKIP_BALANCE))
896 seq_puts(seq, ",skip_balance");
897 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
898 seq_puts(seq, ",fatal_errors=panic");
899 return 0;
900 }
901
902 static int btrfs_test_super(struct super_block *s, void *data)
903 {
904 struct btrfs_fs_info *p = data;
905 struct btrfs_fs_info *fs_info = btrfs_sb(s);
906
907 return fs_info->fs_devices == p->fs_devices;
908 }
909
910 static int btrfs_set_super(struct super_block *s, void *data)
911 {
912 int err = set_anon_super(s, data);
913 if (!err)
914 s->s_fs_info = data;
915 return err;
916 }
917
918 /*
919 * subvolumes are identified by ino 256
920 */
921 static inline int is_subvolume_inode(struct inode *inode)
922 {
923 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
924 return 1;
925 return 0;
926 }
927
928 /*
929 * This will strip out the subvol=%s argument for an argument string and add
930 * subvolid=0 to make sure we get the actual tree root for path walking to the
931 * subvol we want.
932 */
933 static char *setup_root_args(char *args)
934 {
935 unsigned len = strlen(args) + 2 + 1;
936 char *src, *dst, *buf;
937
938 /*
939 * We need the same args as before, but with this substitution:
940 * s!subvol=[^,]+!subvolid=0!
941 *
942 * Since the replacement string is up to 2 bytes longer than the
943 * original, allocate strlen(args) + 2 + 1 bytes.
944 */
945
946 src = strstr(args, "subvol=");
947 /* This shouldn't happen, but just in case.. */
948 if (!src)
949 return NULL;
950
951 buf = dst = kmalloc(len, GFP_NOFS);
952 if (!buf)
953 return NULL;
954
955 /*
956 * If the subvol= arg is not at the start of the string,
957 * copy whatever precedes it into buf.
958 */
959 if (src != args) {
960 *src++ = '\0';
961 strcpy(buf, args);
962 dst += strlen(args);
963 }
964
965 strcpy(dst, "subvolid=0");
966 dst += strlen("subvolid=0");
967
968 /*
969 * If there is a "," after the original subvol=... string,
970 * copy that suffix into our buffer. Otherwise, we're done.
971 */
972 src = strchr(src, ',');
973 if (src)
974 strcpy(dst, src);
975
976 return buf;
977 }
978
979 static struct dentry *mount_subvol(const char *subvol_name, int flags,
980 const char *device_name, char *data)
981 {
982 struct dentry *root;
983 struct vfsmount *mnt;
984 char *newargs;
985
986 newargs = setup_root_args(data);
987 if (!newargs)
988 return ERR_PTR(-ENOMEM);
989 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
990 newargs);
991 kfree(newargs);
992 if (IS_ERR(mnt))
993 return ERR_CAST(mnt);
994
995 root = mount_subtree(mnt, subvol_name);
996
997 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
998 struct super_block *s = root->d_sb;
999 dput(root);
1000 root = ERR_PTR(-EINVAL);
1001 deactivate_locked_super(s);
1002 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1003 subvol_name);
1004 }
1005
1006 return root;
1007 }
1008
1009 /*
1010 * Find a superblock for the given device / mount point.
1011 *
1012 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1013 * for multiple device setup. Make sure to keep it in sync.
1014 */
1015 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1016 const char *device_name, void *data)
1017 {
1018 struct block_device *bdev = NULL;
1019 struct super_block *s;
1020 struct dentry *root;
1021 struct btrfs_fs_devices *fs_devices = NULL;
1022 struct btrfs_fs_info *fs_info = NULL;
1023 fmode_t mode = FMODE_READ;
1024 char *subvol_name = NULL;
1025 u64 subvol_objectid = 0;
1026 u64 subvol_rootid = 0;
1027 int error = 0;
1028
1029 if (!(flags & MS_RDONLY))
1030 mode |= FMODE_WRITE;
1031
1032 error = btrfs_parse_early_options(data, mode, fs_type,
1033 &subvol_name, &subvol_objectid,
1034 &subvol_rootid, &fs_devices);
1035 if (error) {
1036 kfree(subvol_name);
1037 return ERR_PTR(error);
1038 }
1039
1040 if (subvol_name) {
1041 root = mount_subvol(subvol_name, flags, device_name, data);
1042 kfree(subvol_name);
1043 return root;
1044 }
1045
1046 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1047 if (error)
1048 return ERR_PTR(error);
1049
1050 /*
1051 * Setup a dummy root and fs_info for test/set super. This is because
1052 * we don't actually fill this stuff out until open_ctree, but we need
1053 * it for searching for existing supers, so this lets us do that and
1054 * then open_ctree will properly initialize everything later.
1055 */
1056 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1057 if (!fs_info)
1058 return ERR_PTR(-ENOMEM);
1059
1060 fs_info->fs_devices = fs_devices;
1061
1062 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1063 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1064 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1065 error = -ENOMEM;
1066 goto error_fs_info;
1067 }
1068
1069 error = btrfs_open_devices(fs_devices, mode, fs_type);
1070 if (error)
1071 goto error_fs_info;
1072
1073 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1074 error = -EACCES;
1075 goto error_close_devices;
1076 }
1077
1078 bdev = fs_devices->latest_bdev;
1079 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1080 fs_info);
1081 if (IS_ERR(s)) {
1082 error = PTR_ERR(s);
1083 goto error_close_devices;
1084 }
1085
1086 if (s->s_root) {
1087 btrfs_close_devices(fs_devices);
1088 free_fs_info(fs_info);
1089 if ((flags ^ s->s_flags) & MS_RDONLY)
1090 error = -EBUSY;
1091 } else {
1092 char b[BDEVNAME_SIZE];
1093
1094 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1095 btrfs_sb(s)->bdev_holder = fs_type;
1096 error = btrfs_fill_super(s, fs_devices, data,
1097 flags & MS_SILENT ? 1 : 0);
1098 }
1099
1100 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1101 if (IS_ERR(root))
1102 deactivate_locked_super(s);
1103
1104 return root;
1105
1106 error_close_devices:
1107 btrfs_close_devices(fs_devices);
1108 error_fs_info:
1109 free_fs_info(fs_info);
1110 return ERR_PTR(error);
1111 }
1112
1113 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1114 {
1115 spin_lock_irq(&workers->lock);
1116 workers->max_workers = new_limit;
1117 spin_unlock_irq(&workers->lock);
1118 }
1119
1120 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1121 int new_pool_size, int old_pool_size)
1122 {
1123 if (new_pool_size == old_pool_size)
1124 return;
1125
1126 fs_info->thread_pool_size = new_pool_size;
1127
1128 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1129 old_pool_size, new_pool_size);
1130
1131 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1132 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1133 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1134 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1135 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1136 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1137 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1138 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1139 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1140 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1141 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1142 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1143 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1144 btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1145 }
1146
1147 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1148 {
1149 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1150 struct btrfs_root *root = fs_info->tree_root;
1151 unsigned old_flags = sb->s_flags;
1152 unsigned long old_opts = fs_info->mount_opt;
1153 unsigned long old_compress_type = fs_info->compress_type;
1154 u64 old_max_inline = fs_info->max_inline;
1155 u64 old_alloc_start = fs_info->alloc_start;
1156 int old_thread_pool_size = fs_info->thread_pool_size;
1157 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1158 int ret;
1159
1160 ret = btrfs_parse_options(root, data);
1161 if (ret) {
1162 ret = -EINVAL;
1163 goto restore;
1164 }
1165
1166 btrfs_resize_thread_pool(fs_info,
1167 fs_info->thread_pool_size, old_thread_pool_size);
1168
1169 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1170 return 0;
1171
1172 if (*flags & MS_RDONLY) {
1173 sb->s_flags |= MS_RDONLY;
1174
1175 ret = btrfs_commit_super(root);
1176 if (ret)
1177 goto restore;
1178 } else {
1179 if (fs_info->fs_devices->rw_devices == 0) {
1180 ret = -EACCES;
1181 goto restore;
1182 }
1183
1184 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1185 ret = -EINVAL;
1186 goto restore;
1187 }
1188
1189 ret = btrfs_cleanup_fs_roots(fs_info);
1190 if (ret)
1191 goto restore;
1192
1193 /* recover relocation */
1194 ret = btrfs_recover_relocation(root);
1195 if (ret)
1196 goto restore;
1197
1198 ret = btrfs_resume_balance_async(fs_info);
1199 if (ret)
1200 goto restore;
1201
1202 sb->s_flags &= ~MS_RDONLY;
1203 }
1204
1205 return 0;
1206
1207 restore:
1208 /* We've hit an error - don't reset MS_RDONLY */
1209 if (sb->s_flags & MS_RDONLY)
1210 old_flags |= MS_RDONLY;
1211 sb->s_flags = old_flags;
1212 fs_info->mount_opt = old_opts;
1213 fs_info->compress_type = old_compress_type;
1214 fs_info->max_inline = old_max_inline;
1215 fs_info->alloc_start = old_alloc_start;
1216 btrfs_resize_thread_pool(fs_info,
1217 old_thread_pool_size, fs_info->thread_pool_size);
1218 fs_info->metadata_ratio = old_metadata_ratio;
1219 return ret;
1220 }
1221
1222 /* Used to sort the devices by max_avail(descending sort) */
1223 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1224 const void *dev_info2)
1225 {
1226 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1227 ((struct btrfs_device_info *)dev_info2)->max_avail)
1228 return -1;
1229 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1230 ((struct btrfs_device_info *)dev_info2)->max_avail)
1231 return 1;
1232 else
1233 return 0;
1234 }
1235
1236 /*
1237 * sort the devices by max_avail, in which max free extent size of each device
1238 * is stored.(Descending Sort)
1239 */
1240 static inline void btrfs_descending_sort_devices(
1241 struct btrfs_device_info *devices,
1242 size_t nr_devices)
1243 {
1244 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1245 btrfs_cmp_device_free_bytes, NULL);
1246 }
1247
1248 /*
1249 * The helper to calc the free space on the devices that can be used to store
1250 * file data.
1251 */
1252 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1253 {
1254 struct btrfs_fs_info *fs_info = root->fs_info;
1255 struct btrfs_device_info *devices_info;
1256 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1257 struct btrfs_device *device;
1258 u64 skip_space;
1259 u64 type;
1260 u64 avail_space;
1261 u64 used_space;
1262 u64 min_stripe_size;
1263 int min_stripes = 1, num_stripes = 1;
1264 int i = 0, nr_devices;
1265 int ret;
1266
1267 nr_devices = fs_info->fs_devices->open_devices;
1268 BUG_ON(!nr_devices);
1269
1270 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1271 GFP_NOFS);
1272 if (!devices_info)
1273 return -ENOMEM;
1274
1275 /* calc min stripe number for data space alloction */
1276 type = btrfs_get_alloc_profile(root, 1);
1277 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1278 min_stripes = 2;
1279 num_stripes = nr_devices;
1280 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1281 min_stripes = 2;
1282 num_stripes = 2;
1283 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1284 min_stripes = 4;
1285 num_stripes = 4;
1286 }
1287
1288 if (type & BTRFS_BLOCK_GROUP_DUP)
1289 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1290 else
1291 min_stripe_size = BTRFS_STRIPE_LEN;
1292
1293 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1294 if (!device->in_fs_metadata || !device->bdev)
1295 continue;
1296
1297 avail_space = device->total_bytes - device->bytes_used;
1298
1299 /* align with stripe_len */
1300 do_div(avail_space, BTRFS_STRIPE_LEN);
1301 avail_space *= BTRFS_STRIPE_LEN;
1302
1303 /*
1304 * In order to avoid overwritting the superblock on the drive,
1305 * btrfs starts at an offset of at least 1MB when doing chunk
1306 * allocation.
1307 */
1308 skip_space = 1024 * 1024;
1309
1310 /* user can set the offset in fs_info->alloc_start. */
1311 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1312 device->total_bytes)
1313 skip_space = max(fs_info->alloc_start, skip_space);
1314
1315 /*
1316 * btrfs can not use the free space in [0, skip_space - 1],
1317 * we must subtract it from the total. In order to implement
1318 * it, we account the used space in this range first.
1319 */
1320 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1321 &used_space);
1322 if (ret) {
1323 kfree(devices_info);
1324 return ret;
1325 }
1326
1327 /* calc the free space in [0, skip_space - 1] */
1328 skip_space -= used_space;
1329
1330 /*
1331 * we can use the free space in [0, skip_space - 1], subtract
1332 * it from the total.
1333 */
1334 if (avail_space && avail_space >= skip_space)
1335 avail_space -= skip_space;
1336 else
1337 avail_space = 0;
1338
1339 if (avail_space < min_stripe_size)
1340 continue;
1341
1342 devices_info[i].dev = device;
1343 devices_info[i].max_avail = avail_space;
1344
1345 i++;
1346 }
1347
1348 nr_devices = i;
1349
1350 btrfs_descending_sort_devices(devices_info, nr_devices);
1351
1352 i = nr_devices - 1;
1353 avail_space = 0;
1354 while (nr_devices >= min_stripes) {
1355 if (num_stripes > nr_devices)
1356 num_stripes = nr_devices;
1357
1358 if (devices_info[i].max_avail >= min_stripe_size) {
1359 int j;
1360 u64 alloc_size;
1361
1362 avail_space += devices_info[i].max_avail * num_stripes;
1363 alloc_size = devices_info[i].max_avail;
1364 for (j = i + 1 - num_stripes; j <= i; j++)
1365 devices_info[j].max_avail -= alloc_size;
1366 }
1367 i--;
1368 nr_devices--;
1369 }
1370
1371 kfree(devices_info);
1372 *free_bytes = avail_space;
1373 return 0;
1374 }
1375
1376 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1377 {
1378 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1379 struct btrfs_super_block *disk_super = fs_info->super_copy;
1380 struct list_head *head = &fs_info->space_info;
1381 struct btrfs_space_info *found;
1382 u64 total_used = 0;
1383 u64 total_free_data = 0;
1384 int bits = dentry->d_sb->s_blocksize_bits;
1385 __be32 *fsid = (__be32 *)fs_info->fsid;
1386 int ret;
1387
1388 /* holding chunk_muext to avoid allocating new chunks */
1389 mutex_lock(&fs_info->chunk_mutex);
1390 rcu_read_lock();
1391 list_for_each_entry_rcu(found, head, list) {
1392 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1393 total_free_data += found->disk_total - found->disk_used;
1394 total_free_data -=
1395 btrfs_account_ro_block_groups_free_space(found);
1396 }
1397
1398 total_used += found->disk_used;
1399 }
1400 rcu_read_unlock();
1401
1402 buf->f_namelen = BTRFS_NAME_LEN;
1403 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1404 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1405 buf->f_bsize = dentry->d_sb->s_blocksize;
1406 buf->f_type = BTRFS_SUPER_MAGIC;
1407 buf->f_bavail = total_free_data;
1408 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1409 if (ret) {
1410 mutex_unlock(&fs_info->chunk_mutex);
1411 return ret;
1412 }
1413 buf->f_bavail += total_free_data;
1414 buf->f_bavail = buf->f_bavail >> bits;
1415 mutex_unlock(&fs_info->chunk_mutex);
1416
1417 /* We treat it as constant endianness (it doesn't matter _which_)
1418 because we want the fsid to come out the same whether mounted
1419 on a big-endian or little-endian host */
1420 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1421 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1422 /* Mask in the root object ID too, to disambiguate subvols */
1423 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1424 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1425
1426 return 0;
1427 }
1428
1429 static void btrfs_kill_super(struct super_block *sb)
1430 {
1431 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1432 kill_anon_super(sb);
1433 free_fs_info(fs_info);
1434 }
1435
1436 static struct file_system_type btrfs_fs_type = {
1437 .owner = THIS_MODULE,
1438 .name = "btrfs",
1439 .mount = btrfs_mount,
1440 .kill_sb = btrfs_kill_super,
1441 .fs_flags = FS_REQUIRES_DEV,
1442 };
1443
1444 /*
1445 * used by btrfsctl to scan devices when no FS is mounted
1446 */
1447 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1448 unsigned long arg)
1449 {
1450 struct btrfs_ioctl_vol_args *vol;
1451 struct btrfs_fs_devices *fs_devices;
1452 int ret = -ENOTTY;
1453
1454 if (!capable(CAP_SYS_ADMIN))
1455 return -EPERM;
1456
1457 vol = memdup_user((void __user *)arg, sizeof(*vol));
1458 if (IS_ERR(vol))
1459 return PTR_ERR(vol);
1460
1461 switch (cmd) {
1462 case BTRFS_IOC_SCAN_DEV:
1463 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1464 &btrfs_fs_type, &fs_devices);
1465 break;
1466 case BTRFS_IOC_DEVICES_READY:
1467 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1468 &btrfs_fs_type, &fs_devices);
1469 if (ret)
1470 break;
1471 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1472 break;
1473 }
1474
1475 kfree(vol);
1476 return ret;
1477 }
1478
1479 static int btrfs_freeze(struct super_block *sb)
1480 {
1481 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1482 mutex_lock(&fs_info->transaction_kthread_mutex);
1483 mutex_lock(&fs_info->cleaner_mutex);
1484 return 0;
1485 }
1486
1487 static int btrfs_unfreeze(struct super_block *sb)
1488 {
1489 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1490 mutex_unlock(&fs_info->cleaner_mutex);
1491 mutex_unlock(&fs_info->transaction_kthread_mutex);
1492 return 0;
1493 }
1494
1495 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1496 {
1497 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1498 struct btrfs_fs_devices *cur_devices;
1499 struct btrfs_device *dev, *first_dev = NULL;
1500 struct list_head *head;
1501 struct rcu_string *name;
1502
1503 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1504 cur_devices = fs_info->fs_devices;
1505 while (cur_devices) {
1506 head = &cur_devices->devices;
1507 list_for_each_entry(dev, head, dev_list) {
1508 if (!first_dev || dev->devid < first_dev->devid)
1509 first_dev = dev;
1510 }
1511 cur_devices = cur_devices->seed;
1512 }
1513
1514 if (first_dev) {
1515 rcu_read_lock();
1516 name = rcu_dereference(first_dev->name);
1517 seq_escape(m, name->str, " \t\n\\");
1518 rcu_read_unlock();
1519 } else {
1520 WARN_ON(1);
1521 }
1522 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1523 return 0;
1524 }
1525
1526 static const struct super_operations btrfs_super_ops = {
1527 .drop_inode = btrfs_drop_inode,
1528 .evict_inode = btrfs_evict_inode,
1529 .put_super = btrfs_put_super,
1530 .sync_fs = btrfs_sync_fs,
1531 .show_options = btrfs_show_options,
1532 .show_devname = btrfs_show_devname,
1533 .write_inode = btrfs_write_inode,
1534 .alloc_inode = btrfs_alloc_inode,
1535 .destroy_inode = btrfs_destroy_inode,
1536 .statfs = btrfs_statfs,
1537 .remount_fs = btrfs_remount,
1538 .freeze_fs = btrfs_freeze,
1539 .unfreeze_fs = btrfs_unfreeze,
1540 };
1541
1542 static const struct file_operations btrfs_ctl_fops = {
1543 .unlocked_ioctl = btrfs_control_ioctl,
1544 .compat_ioctl = btrfs_control_ioctl,
1545 .owner = THIS_MODULE,
1546 .llseek = noop_llseek,
1547 };
1548
1549 static struct miscdevice btrfs_misc = {
1550 .minor = BTRFS_MINOR,
1551 .name = "btrfs-control",
1552 .fops = &btrfs_ctl_fops
1553 };
1554
1555 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1556 MODULE_ALIAS("devname:btrfs-control");
1557
1558 static int btrfs_interface_init(void)
1559 {
1560 return misc_register(&btrfs_misc);
1561 }
1562
1563 static void btrfs_interface_exit(void)
1564 {
1565 if (misc_deregister(&btrfs_misc) < 0)
1566 printk(KERN_INFO "misc_deregister failed for control device");
1567 }
1568
1569 static int __init init_btrfs_fs(void)
1570 {
1571 int err;
1572
1573 err = btrfs_init_sysfs();
1574 if (err)
1575 return err;
1576
1577 btrfs_init_compress();
1578
1579 err = btrfs_init_cachep();
1580 if (err)
1581 goto free_compress;
1582
1583 err = extent_io_init();
1584 if (err)
1585 goto free_cachep;
1586
1587 err = extent_map_init();
1588 if (err)
1589 goto free_extent_io;
1590
1591 err = btrfs_delayed_inode_init();
1592 if (err)
1593 goto free_extent_map;
1594
1595 err = btrfs_interface_init();
1596 if (err)
1597 goto free_delayed_inode;
1598
1599 err = register_filesystem(&btrfs_fs_type);
1600 if (err)
1601 goto unregister_ioctl;
1602
1603 btrfs_init_lockdep();
1604
1605 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1606 return 0;
1607
1608 unregister_ioctl:
1609 btrfs_interface_exit();
1610 free_delayed_inode:
1611 btrfs_delayed_inode_exit();
1612 free_extent_map:
1613 extent_map_exit();
1614 free_extent_io:
1615 extent_io_exit();
1616 free_cachep:
1617 btrfs_destroy_cachep();
1618 free_compress:
1619 btrfs_exit_compress();
1620 btrfs_exit_sysfs();
1621 return err;
1622 }
1623
1624 static void __exit exit_btrfs_fs(void)
1625 {
1626 btrfs_destroy_cachep();
1627 btrfs_delayed_inode_exit();
1628 extent_map_exit();
1629 extent_io_exit();
1630 btrfs_interface_exit();
1631 unregister_filesystem(&btrfs_fs_type);
1632 btrfs_exit_sysfs();
1633 btrfs_cleanup_fs_uuids();
1634 btrfs_exit_compress();
1635 }
1636
1637 module_init(init_btrfs_fs)
1638 module_exit(exit_btrfs_fs)
1639
1640 MODULE_LICENSE("GPL");
This page took 0.0724 seconds and 6 git commands to generate.