btrfs: remove stale newlines from log messages
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68
69 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70
71 static const char *btrfs_decode_error(int errno)
72 {
73 char *errstr = "unknown";
74
75 switch (errno) {
76 case -EIO:
77 errstr = "IO failure";
78 break;
79 case -ENOMEM:
80 errstr = "Out of memory";
81 break;
82 case -EROFS:
83 errstr = "Readonly filesystem";
84 break;
85 case -EEXIST:
86 errstr = "Object already exists";
87 break;
88 case -ENOSPC:
89 errstr = "No space left";
90 break;
91 case -ENOENT:
92 errstr = "No such entry";
93 break;
94 }
95
96 return errstr;
97 }
98
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101 /*
102 * today we only save the error info into ram. Long term we'll
103 * also send it down to the disk
104 */
105 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111 struct super_block *sb = fs_info->sb;
112
113 if (sb->s_flags & MS_RDONLY)
114 return;
115
116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117 sb->s_flags |= MS_RDONLY;
118 btrfs_info(fs_info, "forced readonly");
119 /*
120 * Note that a running device replace operation is not
121 * canceled here although there is no way to update
122 * the progress. It would add the risk of a deadlock,
123 * therefore the canceling is ommited. The only penalty
124 * is that some I/O remains active until the procedure
125 * completes. The next time when the filesystem is
126 * mounted writeable again, the device replace
127 * operation continues.
128 */
129 }
130 }
131
132 #ifdef CONFIG_PRINTK
133 /*
134 * __btrfs_std_error decodes expected errors from the caller and
135 * invokes the approciate error response.
136 */
137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
138 unsigned int line, int errno, const char *fmt, ...)
139 {
140 struct super_block *sb = fs_info->sb;
141 const char *errstr;
142
143 /*
144 * Special case: if the error is EROFS, and we're already
145 * under MS_RDONLY, then it is safe here.
146 */
147 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
148 return;
149
150 errstr = btrfs_decode_error(errno);
151 if (fmt) {
152 struct va_format vaf;
153 va_list args;
154
155 va_start(args, fmt);
156 vaf.fmt = fmt;
157 vaf.va = &args;
158
159 printk(KERN_CRIT
160 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
161 sb->s_id, function, line, errno, errstr, &vaf);
162 va_end(args);
163 } else {
164 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
165 sb->s_id, function, line, errno, errstr);
166 }
167
168 /* Don't go through full error handling during mount */
169 save_error_info(fs_info);
170 if (sb->s_flags & MS_BORN)
171 btrfs_handle_error(fs_info);
172 }
173
174 static const char * const logtypes[] = {
175 "emergency",
176 "alert",
177 "critical",
178 "error",
179 "warning",
180 "notice",
181 "info",
182 "debug",
183 };
184
185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
186 {
187 struct super_block *sb = fs_info->sb;
188 char lvl[4];
189 struct va_format vaf;
190 va_list args;
191 const char *type = logtypes[4];
192 int kern_level;
193
194 va_start(args, fmt);
195
196 kern_level = printk_get_level(fmt);
197 if (kern_level) {
198 size_t size = printk_skip_level(fmt) - fmt;
199 memcpy(lvl, fmt, size);
200 lvl[size] = '\0';
201 fmt += size;
202 type = logtypes[kern_level - '0'];
203 } else
204 *lvl = '\0';
205
206 vaf.fmt = fmt;
207 vaf.va = &args;
208
209 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
210
211 va_end(args);
212 }
213
214 #else
215
216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
217 unsigned int line, int errno, const char *fmt, ...)
218 {
219 struct super_block *sb = fs_info->sb;
220
221 /*
222 * Special case: if the error is EROFS, and we're already
223 * under MS_RDONLY, then it is safe here.
224 */
225 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
226 return;
227
228 /* Don't go through full error handling during mount */
229 if (sb->s_flags & MS_BORN) {
230 save_error_info(fs_info);
231 btrfs_handle_error(fs_info);
232 }
233 }
234 #endif
235
236 /*
237 * We only mark the transaction aborted and then set the file system read-only.
238 * This will prevent new transactions from starting or trying to join this
239 * one.
240 *
241 * This means that error recovery at the call site is limited to freeing
242 * any local memory allocations and passing the error code up without
243 * further cleanup. The transaction should complete as it normally would
244 * in the call path but will return -EIO.
245 *
246 * We'll complete the cleanup in btrfs_end_transaction and
247 * btrfs_commit_transaction.
248 */
249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
250 struct btrfs_root *root, const char *function,
251 unsigned int line, int errno)
252 {
253 /*
254 * Report first abort since mount
255 */
256 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
257 &root->fs_info->fs_state)) {
258 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
259 errno);
260 }
261 trans->aborted = errno;
262 /* Nothing used. The other threads that have joined this
263 * transaction may be able to continue. */
264 if (!trans->blocks_used) {
265 const char *errstr;
266
267 errstr = btrfs_decode_error(errno);
268 btrfs_warn(root->fs_info,
269 "%s:%d: Aborting unused transaction(%s).",
270 function, line, errstr);
271 return;
272 }
273 ACCESS_ONCE(trans->transaction->aborted) = errno;
274 /* Wake up anybody who may be waiting on this transaction */
275 wake_up(&root->fs_info->transaction_wait);
276 wake_up(&root->fs_info->transaction_blocked_wait);
277 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
278 }
279 /*
280 * __btrfs_panic decodes unexpected, fatal errors from the caller,
281 * issues an alert, and either panics or BUGs, depending on mount options.
282 */
283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
284 unsigned int line, int errno, const char *fmt, ...)
285 {
286 char *s_id = "<unknown>";
287 const char *errstr;
288 struct va_format vaf = { .fmt = fmt };
289 va_list args;
290
291 if (fs_info)
292 s_id = fs_info->sb->s_id;
293
294 va_start(args, fmt);
295 vaf.va = &args;
296
297 errstr = btrfs_decode_error(errno);
298 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
299 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
300 s_id, function, line, &vaf, errno, errstr);
301
302 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
303 function, line, &vaf, errno, errstr);
304 va_end(args);
305 /* Caller calls BUG() */
306 }
307
308 static void btrfs_put_super(struct super_block *sb)
309 {
310 (void)close_ctree(btrfs_sb(sb)->tree_root);
311 /* FIXME: need to fix VFS to return error? */
312 /* AV: return it _where_? ->put_super() can be triggered by any number
313 * of async events, up to and including delivery of SIGKILL to the
314 * last process that kept it busy. Or segfault in the aforementioned
315 * process... Whom would you report that to?
316 */
317 }
318
319 enum {
320 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
321 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
322 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
323 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
324 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
325 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
326 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
327 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
328 Opt_check_integrity, Opt_check_integrity_including_extent_data,
329 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
330 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
331 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
332 Opt_datasum, Opt_treelog, Opt_noinode_cache,
333 Opt_err,
334 };
335
336 static match_table_t tokens = {
337 {Opt_degraded, "degraded"},
338 {Opt_subvol, "subvol=%s"},
339 {Opt_subvolid, "subvolid=%s"},
340 {Opt_device, "device=%s"},
341 {Opt_nodatasum, "nodatasum"},
342 {Opt_datasum, "datasum"},
343 {Opt_nodatacow, "nodatacow"},
344 {Opt_datacow, "datacow"},
345 {Opt_nobarrier, "nobarrier"},
346 {Opt_barrier, "barrier"},
347 {Opt_max_inline, "max_inline=%s"},
348 {Opt_alloc_start, "alloc_start=%s"},
349 {Opt_thread_pool, "thread_pool=%d"},
350 {Opt_compress, "compress"},
351 {Opt_compress_type, "compress=%s"},
352 {Opt_compress_force, "compress-force"},
353 {Opt_compress_force_type, "compress-force=%s"},
354 {Opt_ssd, "ssd"},
355 {Opt_ssd_spread, "ssd_spread"},
356 {Opt_nossd, "nossd"},
357 {Opt_acl, "acl"},
358 {Opt_noacl, "noacl"},
359 {Opt_notreelog, "notreelog"},
360 {Opt_treelog, "treelog"},
361 {Opt_flushoncommit, "flushoncommit"},
362 {Opt_noflushoncommit, "noflushoncommit"},
363 {Opt_ratio, "metadata_ratio=%d"},
364 {Opt_discard, "discard"},
365 {Opt_nodiscard, "nodiscard"},
366 {Opt_space_cache, "space_cache"},
367 {Opt_clear_cache, "clear_cache"},
368 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369 {Opt_enospc_debug, "enospc_debug"},
370 {Opt_noenospc_debug, "noenospc_debug"},
371 {Opt_subvolrootid, "subvolrootid=%d"},
372 {Opt_defrag, "autodefrag"},
373 {Opt_nodefrag, "noautodefrag"},
374 {Opt_inode_cache, "inode_cache"},
375 {Opt_noinode_cache, "noinode_cache"},
376 {Opt_no_space_cache, "nospace_cache"},
377 {Opt_recovery, "recovery"},
378 {Opt_skip_balance, "skip_balance"},
379 {Opt_check_integrity, "check_int"},
380 {Opt_check_integrity_including_extent_data, "check_int_data"},
381 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 {Opt_fatal_errors, "fatal_errors=%s"},
384 {Opt_commit_interval, "commit=%d"},
385 {Opt_err, NULL},
386 };
387
388 /*
389 * Regular mount options parser. Everything that is needed only when
390 * reading in a new superblock is parsed here.
391 * XXX JDM: This needs to be cleaned up for remount.
392 */
393 int btrfs_parse_options(struct btrfs_root *root, char *options)
394 {
395 struct btrfs_fs_info *info = root->fs_info;
396 substring_t args[MAX_OPT_ARGS];
397 char *p, *num, *orig = NULL;
398 u64 cache_gen;
399 int intarg;
400 int ret = 0;
401 char *compress_type;
402 bool compress_force = false;
403 bool compress = false;
404
405 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
406 if (cache_gen)
407 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
408
409 if (!options)
410 goto out;
411
412 /*
413 * strsep changes the string, duplicate it because parse_options
414 * gets called twice
415 */
416 options = kstrdup(options, GFP_NOFS);
417 if (!options)
418 return -ENOMEM;
419
420 orig = options;
421
422 while ((p = strsep(&options, ",")) != NULL) {
423 int token;
424 if (!*p)
425 continue;
426
427 token = match_token(p, tokens, args);
428 switch (token) {
429 case Opt_degraded:
430 btrfs_info(root->fs_info, "allowing degraded mounts");
431 btrfs_set_opt(info->mount_opt, DEGRADED);
432 break;
433 case Opt_subvol:
434 case Opt_subvolid:
435 case Opt_subvolrootid:
436 case Opt_device:
437 /*
438 * These are parsed by btrfs_parse_early_options
439 * and can be happily ignored here.
440 */
441 break;
442 case Opt_nodatasum:
443 btrfs_set_and_info(root, NODATASUM,
444 "setting nodatasum");
445 break;
446 case Opt_datasum:
447 if (btrfs_test_opt(root, NODATASUM)) {
448 if (btrfs_test_opt(root, NODATACOW))
449 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
450 else
451 btrfs_info(root->fs_info, "setting datasum");
452 }
453 btrfs_clear_opt(info->mount_opt, NODATACOW);
454 btrfs_clear_opt(info->mount_opt, NODATASUM);
455 break;
456 case Opt_nodatacow:
457 if (!btrfs_test_opt(root, NODATACOW)) {
458 if (!btrfs_test_opt(root, COMPRESS) ||
459 !btrfs_test_opt(root, FORCE_COMPRESS)) {
460 btrfs_info(root->fs_info,
461 "setting nodatacow, compression disabled");
462 } else {
463 btrfs_info(root->fs_info, "setting nodatacow");
464 }
465 }
466 btrfs_clear_opt(info->mount_opt, COMPRESS);
467 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
468 btrfs_set_opt(info->mount_opt, NODATACOW);
469 btrfs_set_opt(info->mount_opt, NODATASUM);
470 break;
471 case Opt_datacow:
472 btrfs_clear_and_info(root, NODATACOW,
473 "setting datacow");
474 break;
475 case Opt_compress_force:
476 case Opt_compress_force_type:
477 compress_force = true;
478 /* Fallthrough */
479 case Opt_compress:
480 case Opt_compress_type:
481 compress = true;
482 if (token == Opt_compress ||
483 token == Opt_compress_force ||
484 strcmp(args[0].from, "zlib") == 0) {
485 compress_type = "zlib";
486 info->compress_type = BTRFS_COMPRESS_ZLIB;
487 btrfs_set_opt(info->mount_opt, COMPRESS);
488 btrfs_clear_opt(info->mount_opt, NODATACOW);
489 btrfs_clear_opt(info->mount_opt, NODATASUM);
490 } else if (strcmp(args[0].from, "lzo") == 0) {
491 compress_type = "lzo";
492 info->compress_type = BTRFS_COMPRESS_LZO;
493 btrfs_set_opt(info->mount_opt, COMPRESS);
494 btrfs_clear_opt(info->mount_opt, NODATACOW);
495 btrfs_clear_opt(info->mount_opt, NODATASUM);
496 btrfs_set_fs_incompat(info, COMPRESS_LZO);
497 } else if (strncmp(args[0].from, "no", 2) == 0) {
498 compress_type = "no";
499 btrfs_clear_opt(info->mount_opt, COMPRESS);
500 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
501 compress_force = false;
502 } else {
503 ret = -EINVAL;
504 goto out;
505 }
506
507 if (compress_force) {
508 btrfs_set_and_info(root, FORCE_COMPRESS,
509 "force %s compression",
510 compress_type);
511 } else if (compress) {
512 if (!btrfs_test_opt(root, COMPRESS))
513 btrfs_info(root->fs_info,
514 "btrfs: use %s compression",
515 compress_type);
516 }
517 break;
518 case Opt_ssd:
519 btrfs_set_and_info(root, SSD,
520 "use ssd allocation scheme");
521 break;
522 case Opt_ssd_spread:
523 btrfs_set_and_info(root, SSD_SPREAD,
524 "use spread ssd allocation scheme");
525 break;
526 case Opt_nossd:
527 btrfs_clear_and_info(root, NOSSD,
528 "not using ssd allocation scheme");
529 btrfs_clear_opt(info->mount_opt, SSD);
530 break;
531 case Opt_barrier:
532 btrfs_clear_and_info(root, NOBARRIER,
533 "turning on barriers");
534 break;
535 case Opt_nobarrier:
536 btrfs_set_and_info(root, NOBARRIER,
537 "turning off barriers");
538 break;
539 case Opt_thread_pool:
540 ret = match_int(&args[0], &intarg);
541 if (ret) {
542 goto out;
543 } else if (intarg > 0) {
544 info->thread_pool_size = intarg;
545 } else {
546 ret = -EINVAL;
547 goto out;
548 }
549 break;
550 case Opt_max_inline:
551 num = match_strdup(&args[0]);
552 if (num) {
553 info->max_inline = memparse(num, NULL);
554 kfree(num);
555
556 if (info->max_inline) {
557 info->max_inline = min_t(u64,
558 info->max_inline,
559 root->sectorsize);
560 }
561 btrfs_info(root->fs_info, "max_inline at %llu",
562 info->max_inline);
563 } else {
564 ret = -ENOMEM;
565 goto out;
566 }
567 break;
568 case Opt_alloc_start:
569 num = match_strdup(&args[0]);
570 if (num) {
571 mutex_lock(&info->chunk_mutex);
572 info->alloc_start = memparse(num, NULL);
573 mutex_unlock(&info->chunk_mutex);
574 kfree(num);
575 btrfs_info(root->fs_info, "allocations start at %llu",
576 info->alloc_start);
577 } else {
578 ret = -ENOMEM;
579 goto out;
580 }
581 break;
582 case Opt_acl:
583 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
584 root->fs_info->sb->s_flags |= MS_POSIXACL;
585 break;
586 #else
587 btrfs_err(root->fs_info,
588 "support for ACL not compiled in!");
589 ret = -EINVAL;
590 goto out;
591 #endif
592 case Opt_noacl:
593 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
594 break;
595 case Opt_notreelog:
596 btrfs_set_and_info(root, NOTREELOG,
597 "disabling tree log");
598 break;
599 case Opt_treelog:
600 btrfs_clear_and_info(root, NOTREELOG,
601 "enabling tree log");
602 break;
603 case Opt_flushoncommit:
604 btrfs_set_and_info(root, FLUSHONCOMMIT,
605 "turning on flush-on-commit");
606 break;
607 case Opt_noflushoncommit:
608 btrfs_clear_and_info(root, FLUSHONCOMMIT,
609 "turning off flush-on-commit");
610 break;
611 case Opt_ratio:
612 ret = match_int(&args[0], &intarg);
613 if (ret) {
614 goto out;
615 } else if (intarg >= 0) {
616 info->metadata_ratio = intarg;
617 btrfs_info(root->fs_info, "metadata ratio %d",
618 info->metadata_ratio);
619 } else {
620 ret = -EINVAL;
621 goto out;
622 }
623 break;
624 case Opt_discard:
625 btrfs_set_and_info(root, DISCARD,
626 "turning on discard");
627 break;
628 case Opt_nodiscard:
629 btrfs_clear_and_info(root, DISCARD,
630 "turning off discard");
631 break;
632 case Opt_space_cache:
633 btrfs_set_and_info(root, SPACE_CACHE,
634 "enabling disk space caching");
635 break;
636 case Opt_rescan_uuid_tree:
637 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
638 break;
639 case Opt_no_space_cache:
640 btrfs_clear_and_info(root, SPACE_CACHE,
641 "disabling disk space caching");
642 break;
643 case Opt_inode_cache:
644 btrfs_set_and_info(root, CHANGE_INODE_CACHE,
645 "enabling inode map caching");
646 break;
647 case Opt_noinode_cache:
648 btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
649 "disabling inode map caching");
650 break;
651 case Opt_clear_cache:
652 btrfs_set_and_info(root, CLEAR_CACHE,
653 "force clearing of disk cache");
654 break;
655 case Opt_user_subvol_rm_allowed:
656 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
657 break;
658 case Opt_enospc_debug:
659 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
660 break;
661 case Opt_noenospc_debug:
662 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
663 break;
664 case Opt_defrag:
665 btrfs_set_and_info(root, AUTO_DEFRAG,
666 "enabling auto defrag");
667 break;
668 case Opt_nodefrag:
669 btrfs_clear_and_info(root, AUTO_DEFRAG,
670 "disabling auto defrag");
671 break;
672 case Opt_recovery:
673 btrfs_info(root->fs_info, "enabling auto recovery");
674 btrfs_set_opt(info->mount_opt, RECOVERY);
675 break;
676 case Opt_skip_balance:
677 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
678 break;
679 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
680 case Opt_check_integrity_including_extent_data:
681 btrfs_info(root->fs_info,
682 "enabling check integrity including extent data");
683 btrfs_set_opt(info->mount_opt,
684 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
685 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
686 break;
687 case Opt_check_integrity:
688 btrfs_info(root->fs_info, "enabling check integrity");
689 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
690 break;
691 case Opt_check_integrity_print_mask:
692 ret = match_int(&args[0], &intarg);
693 if (ret) {
694 goto out;
695 } else if (intarg >= 0) {
696 info->check_integrity_print_mask = intarg;
697 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
698 info->check_integrity_print_mask);
699 } else {
700 ret = -EINVAL;
701 goto out;
702 }
703 break;
704 #else
705 case Opt_check_integrity_including_extent_data:
706 case Opt_check_integrity:
707 case Opt_check_integrity_print_mask:
708 btrfs_err(root->fs_info,
709 "support for check_integrity* not compiled in!");
710 ret = -EINVAL;
711 goto out;
712 #endif
713 case Opt_fatal_errors:
714 if (strcmp(args[0].from, "panic") == 0)
715 btrfs_set_opt(info->mount_opt,
716 PANIC_ON_FATAL_ERROR);
717 else if (strcmp(args[0].from, "bug") == 0)
718 btrfs_clear_opt(info->mount_opt,
719 PANIC_ON_FATAL_ERROR);
720 else {
721 ret = -EINVAL;
722 goto out;
723 }
724 break;
725 case Opt_commit_interval:
726 intarg = 0;
727 ret = match_int(&args[0], &intarg);
728 if (ret < 0) {
729 btrfs_err(root->fs_info, "invalid commit interval");
730 ret = -EINVAL;
731 goto out;
732 }
733 if (intarg > 0) {
734 if (intarg > 300) {
735 btrfs_warn(root->fs_info, "excessive commit interval %d",
736 intarg);
737 }
738 info->commit_interval = intarg;
739 } else {
740 btrfs_info(root->fs_info, "using default commit interval %ds",
741 BTRFS_DEFAULT_COMMIT_INTERVAL);
742 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
743 }
744 break;
745 case Opt_err:
746 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
747 ret = -EINVAL;
748 goto out;
749 default:
750 break;
751 }
752 }
753 out:
754 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
755 btrfs_info(root->fs_info, "disk space caching is enabled");
756 kfree(orig);
757 return ret;
758 }
759
760 /*
761 * Parse mount options that are required early in the mount process.
762 *
763 * All other options will be parsed on much later in the mount process and
764 * only when we need to allocate a new super block.
765 */
766 static int btrfs_parse_early_options(const char *options, fmode_t flags,
767 void *holder, char **subvol_name, u64 *subvol_objectid,
768 struct btrfs_fs_devices **fs_devices)
769 {
770 substring_t args[MAX_OPT_ARGS];
771 char *device_name, *opts, *orig, *p;
772 char *num = NULL;
773 int error = 0;
774
775 if (!options)
776 return 0;
777
778 /*
779 * strsep changes the string, duplicate it because parse_options
780 * gets called twice
781 */
782 opts = kstrdup(options, GFP_KERNEL);
783 if (!opts)
784 return -ENOMEM;
785 orig = opts;
786
787 while ((p = strsep(&opts, ",")) != NULL) {
788 int token;
789 if (!*p)
790 continue;
791
792 token = match_token(p, tokens, args);
793 switch (token) {
794 case Opt_subvol:
795 kfree(*subvol_name);
796 *subvol_name = match_strdup(&args[0]);
797 if (!*subvol_name) {
798 error = -ENOMEM;
799 goto out;
800 }
801 break;
802 case Opt_subvolid:
803 num = match_strdup(&args[0]);
804 if (num) {
805 *subvol_objectid = memparse(num, NULL);
806 kfree(num);
807 /* we want the original fs_tree */
808 if (!*subvol_objectid)
809 *subvol_objectid =
810 BTRFS_FS_TREE_OBJECTID;
811 } else {
812 error = -EINVAL;
813 goto out;
814 }
815 break;
816 case Opt_subvolrootid:
817 printk(KERN_WARNING
818 "BTRFS: 'subvolrootid' mount option is deprecated and has "
819 "no effect\n");
820 break;
821 case Opt_device:
822 device_name = match_strdup(&args[0]);
823 if (!device_name) {
824 error = -ENOMEM;
825 goto out;
826 }
827 error = btrfs_scan_one_device(device_name,
828 flags, holder, fs_devices);
829 kfree(device_name);
830 if (error)
831 goto out;
832 break;
833 default:
834 break;
835 }
836 }
837
838 out:
839 kfree(orig);
840 return error;
841 }
842
843 static struct dentry *get_default_root(struct super_block *sb,
844 u64 subvol_objectid)
845 {
846 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
847 struct btrfs_root *root = fs_info->tree_root;
848 struct btrfs_root *new_root;
849 struct btrfs_dir_item *di;
850 struct btrfs_path *path;
851 struct btrfs_key location;
852 struct inode *inode;
853 struct dentry *dentry;
854 u64 dir_id;
855 int new = 0;
856
857 /*
858 * We have a specific subvol we want to mount, just setup location and
859 * go look up the root.
860 */
861 if (subvol_objectid) {
862 location.objectid = subvol_objectid;
863 location.type = BTRFS_ROOT_ITEM_KEY;
864 location.offset = (u64)-1;
865 goto find_root;
866 }
867
868 path = btrfs_alloc_path();
869 if (!path)
870 return ERR_PTR(-ENOMEM);
871 path->leave_spinning = 1;
872
873 /*
874 * Find the "default" dir item which points to the root item that we
875 * will mount by default if we haven't been given a specific subvolume
876 * to mount.
877 */
878 dir_id = btrfs_super_root_dir(fs_info->super_copy);
879 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
880 if (IS_ERR(di)) {
881 btrfs_free_path(path);
882 return ERR_CAST(di);
883 }
884 if (!di) {
885 /*
886 * Ok the default dir item isn't there. This is weird since
887 * it's always been there, but don't freak out, just try and
888 * mount to root most subvolume.
889 */
890 btrfs_free_path(path);
891 dir_id = BTRFS_FIRST_FREE_OBJECTID;
892 new_root = fs_info->fs_root;
893 goto setup_root;
894 }
895
896 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
897 btrfs_free_path(path);
898
899 find_root:
900 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
901 if (IS_ERR(new_root))
902 return ERR_CAST(new_root);
903
904 dir_id = btrfs_root_dirid(&new_root->root_item);
905 setup_root:
906 location.objectid = dir_id;
907 location.type = BTRFS_INODE_ITEM_KEY;
908 location.offset = 0;
909
910 inode = btrfs_iget(sb, &location, new_root, &new);
911 if (IS_ERR(inode))
912 return ERR_CAST(inode);
913
914 /*
915 * If we're just mounting the root most subvol put the inode and return
916 * a reference to the dentry. We will have already gotten a reference
917 * to the inode in btrfs_fill_super so we're good to go.
918 */
919 if (!new && sb->s_root->d_inode == inode) {
920 iput(inode);
921 return dget(sb->s_root);
922 }
923
924 dentry = d_obtain_alias(inode);
925 if (!IS_ERR(dentry)) {
926 spin_lock(&dentry->d_lock);
927 dentry->d_flags &= ~DCACHE_DISCONNECTED;
928 spin_unlock(&dentry->d_lock);
929 }
930 return dentry;
931 }
932
933 static int btrfs_fill_super(struct super_block *sb,
934 struct btrfs_fs_devices *fs_devices,
935 void *data, int silent)
936 {
937 struct inode *inode;
938 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
939 struct btrfs_key key;
940 int err;
941
942 sb->s_maxbytes = MAX_LFS_FILESIZE;
943 sb->s_magic = BTRFS_SUPER_MAGIC;
944 sb->s_op = &btrfs_super_ops;
945 sb->s_d_op = &btrfs_dentry_operations;
946 sb->s_export_op = &btrfs_export_ops;
947 sb->s_xattr = btrfs_xattr_handlers;
948 sb->s_time_gran = 1;
949 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
950 sb->s_flags |= MS_POSIXACL;
951 #endif
952 sb->s_flags |= MS_I_VERSION;
953 err = open_ctree(sb, fs_devices, (char *)data);
954 if (err) {
955 printk(KERN_ERR "BTRFS: open_ctree failed\n");
956 return err;
957 }
958
959 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
960 key.type = BTRFS_INODE_ITEM_KEY;
961 key.offset = 0;
962 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
963 if (IS_ERR(inode)) {
964 err = PTR_ERR(inode);
965 goto fail_close;
966 }
967
968 sb->s_root = d_make_root(inode);
969 if (!sb->s_root) {
970 err = -ENOMEM;
971 goto fail_close;
972 }
973
974 save_mount_options(sb, data);
975 cleancache_init_fs(sb);
976 sb->s_flags |= MS_ACTIVE;
977 return 0;
978
979 fail_close:
980 close_ctree(fs_info->tree_root);
981 return err;
982 }
983
984 int btrfs_sync_fs(struct super_block *sb, int wait)
985 {
986 struct btrfs_trans_handle *trans;
987 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
988 struct btrfs_root *root = fs_info->tree_root;
989
990 trace_btrfs_sync_fs(wait);
991
992 if (!wait) {
993 filemap_flush(fs_info->btree_inode->i_mapping);
994 return 0;
995 }
996
997 btrfs_wait_ordered_roots(fs_info, -1);
998
999 trans = btrfs_attach_transaction_barrier(root);
1000 if (IS_ERR(trans)) {
1001 /* no transaction, don't bother */
1002 if (PTR_ERR(trans) == -ENOENT)
1003 return 0;
1004 return PTR_ERR(trans);
1005 }
1006 return btrfs_commit_transaction(trans, root);
1007 }
1008
1009 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1010 {
1011 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1012 struct btrfs_root *root = info->tree_root;
1013 char *compress_type;
1014
1015 if (btrfs_test_opt(root, DEGRADED))
1016 seq_puts(seq, ",degraded");
1017 if (btrfs_test_opt(root, NODATASUM))
1018 seq_puts(seq, ",nodatasum");
1019 if (btrfs_test_opt(root, NODATACOW))
1020 seq_puts(seq, ",nodatacow");
1021 if (btrfs_test_opt(root, NOBARRIER))
1022 seq_puts(seq, ",nobarrier");
1023 if (info->max_inline != 8192 * 1024)
1024 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1025 if (info->alloc_start != 0)
1026 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1027 if (info->thread_pool_size != min_t(unsigned long,
1028 num_online_cpus() + 2, 8))
1029 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1030 if (btrfs_test_opt(root, COMPRESS)) {
1031 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1032 compress_type = "zlib";
1033 else
1034 compress_type = "lzo";
1035 if (btrfs_test_opt(root, FORCE_COMPRESS))
1036 seq_printf(seq, ",compress-force=%s", compress_type);
1037 else
1038 seq_printf(seq, ",compress=%s", compress_type);
1039 }
1040 if (btrfs_test_opt(root, NOSSD))
1041 seq_puts(seq, ",nossd");
1042 if (btrfs_test_opt(root, SSD_SPREAD))
1043 seq_puts(seq, ",ssd_spread");
1044 else if (btrfs_test_opt(root, SSD))
1045 seq_puts(seq, ",ssd");
1046 if (btrfs_test_opt(root, NOTREELOG))
1047 seq_puts(seq, ",notreelog");
1048 if (btrfs_test_opt(root, FLUSHONCOMMIT))
1049 seq_puts(seq, ",flushoncommit");
1050 if (btrfs_test_opt(root, DISCARD))
1051 seq_puts(seq, ",discard");
1052 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1053 seq_puts(seq, ",noacl");
1054 if (btrfs_test_opt(root, SPACE_CACHE))
1055 seq_puts(seq, ",space_cache");
1056 else
1057 seq_puts(seq, ",nospace_cache");
1058 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1059 seq_puts(seq, ",rescan_uuid_tree");
1060 if (btrfs_test_opt(root, CLEAR_CACHE))
1061 seq_puts(seq, ",clear_cache");
1062 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1063 seq_puts(seq, ",user_subvol_rm_allowed");
1064 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1065 seq_puts(seq, ",enospc_debug");
1066 if (btrfs_test_opt(root, AUTO_DEFRAG))
1067 seq_puts(seq, ",autodefrag");
1068 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1069 seq_puts(seq, ",inode_cache");
1070 if (btrfs_test_opt(root, SKIP_BALANCE))
1071 seq_puts(seq, ",skip_balance");
1072 if (btrfs_test_opt(root, RECOVERY))
1073 seq_puts(seq, ",recovery");
1074 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1075 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1076 seq_puts(seq, ",check_int_data");
1077 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1078 seq_puts(seq, ",check_int");
1079 if (info->check_integrity_print_mask)
1080 seq_printf(seq, ",check_int_print_mask=%d",
1081 info->check_integrity_print_mask);
1082 #endif
1083 if (info->metadata_ratio)
1084 seq_printf(seq, ",metadata_ratio=%d",
1085 info->metadata_ratio);
1086 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1087 seq_puts(seq, ",fatal_errors=panic");
1088 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1089 seq_printf(seq, ",commit=%d", info->commit_interval);
1090 return 0;
1091 }
1092
1093 static int btrfs_test_super(struct super_block *s, void *data)
1094 {
1095 struct btrfs_fs_info *p = data;
1096 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1097
1098 return fs_info->fs_devices == p->fs_devices;
1099 }
1100
1101 static int btrfs_set_super(struct super_block *s, void *data)
1102 {
1103 int err = set_anon_super(s, data);
1104 if (!err)
1105 s->s_fs_info = data;
1106 return err;
1107 }
1108
1109 /*
1110 * subvolumes are identified by ino 256
1111 */
1112 static inline int is_subvolume_inode(struct inode *inode)
1113 {
1114 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1115 return 1;
1116 return 0;
1117 }
1118
1119 /*
1120 * This will strip out the subvol=%s argument for an argument string and add
1121 * subvolid=0 to make sure we get the actual tree root for path walking to the
1122 * subvol we want.
1123 */
1124 static char *setup_root_args(char *args)
1125 {
1126 unsigned len = strlen(args) + 2 + 1;
1127 char *src, *dst, *buf;
1128
1129 /*
1130 * We need the same args as before, but with this substitution:
1131 * s!subvol=[^,]+!subvolid=0!
1132 *
1133 * Since the replacement string is up to 2 bytes longer than the
1134 * original, allocate strlen(args) + 2 + 1 bytes.
1135 */
1136
1137 src = strstr(args, "subvol=");
1138 /* This shouldn't happen, but just in case.. */
1139 if (!src)
1140 return NULL;
1141
1142 buf = dst = kmalloc(len, GFP_NOFS);
1143 if (!buf)
1144 return NULL;
1145
1146 /*
1147 * If the subvol= arg is not at the start of the string,
1148 * copy whatever precedes it into buf.
1149 */
1150 if (src != args) {
1151 *src++ = '\0';
1152 strcpy(buf, args);
1153 dst += strlen(args);
1154 }
1155
1156 strcpy(dst, "subvolid=0");
1157 dst += strlen("subvolid=0");
1158
1159 /*
1160 * If there is a "," after the original subvol=... string,
1161 * copy that suffix into our buffer. Otherwise, we're done.
1162 */
1163 src = strchr(src, ',');
1164 if (src)
1165 strcpy(dst, src);
1166
1167 return buf;
1168 }
1169
1170 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1171 const char *device_name, char *data)
1172 {
1173 struct dentry *root;
1174 struct vfsmount *mnt;
1175 char *newargs;
1176
1177 newargs = setup_root_args(data);
1178 if (!newargs)
1179 return ERR_PTR(-ENOMEM);
1180 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1181 newargs);
1182
1183 if (PTR_RET(mnt) == -EBUSY) {
1184 if (flags & MS_RDONLY) {
1185 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1186 newargs);
1187 } else {
1188 int r;
1189 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1190 newargs);
1191 if (IS_ERR(mnt)) {
1192 kfree(newargs);
1193 return ERR_CAST(mnt);
1194 }
1195
1196 r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1197 if (r < 0) {
1198 /* FIXME: release vfsmount mnt ??*/
1199 kfree(newargs);
1200 return ERR_PTR(r);
1201 }
1202 }
1203 }
1204
1205 kfree(newargs);
1206
1207 if (IS_ERR(mnt))
1208 return ERR_CAST(mnt);
1209
1210 root = mount_subtree(mnt, subvol_name);
1211
1212 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1213 struct super_block *s = root->d_sb;
1214 dput(root);
1215 root = ERR_PTR(-EINVAL);
1216 deactivate_locked_super(s);
1217 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1218 subvol_name);
1219 }
1220
1221 return root;
1222 }
1223
1224 /*
1225 * Find a superblock for the given device / mount point.
1226 *
1227 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1228 * for multiple device setup. Make sure to keep it in sync.
1229 */
1230 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1231 const char *device_name, void *data)
1232 {
1233 struct block_device *bdev = NULL;
1234 struct super_block *s;
1235 struct dentry *root;
1236 struct btrfs_fs_devices *fs_devices = NULL;
1237 struct btrfs_fs_info *fs_info = NULL;
1238 fmode_t mode = FMODE_READ;
1239 char *subvol_name = NULL;
1240 u64 subvol_objectid = 0;
1241 int error = 0;
1242
1243 if (!(flags & MS_RDONLY))
1244 mode |= FMODE_WRITE;
1245
1246 error = btrfs_parse_early_options(data, mode, fs_type,
1247 &subvol_name, &subvol_objectid,
1248 &fs_devices);
1249 if (error) {
1250 kfree(subvol_name);
1251 return ERR_PTR(error);
1252 }
1253
1254 if (subvol_name) {
1255 root = mount_subvol(subvol_name, flags, device_name, data);
1256 kfree(subvol_name);
1257 return root;
1258 }
1259
1260 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1261 if (error)
1262 return ERR_PTR(error);
1263
1264 /*
1265 * Setup a dummy root and fs_info for test/set super. This is because
1266 * we don't actually fill this stuff out until open_ctree, but we need
1267 * it for searching for existing supers, so this lets us do that and
1268 * then open_ctree will properly initialize everything later.
1269 */
1270 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1271 if (!fs_info)
1272 return ERR_PTR(-ENOMEM);
1273
1274 fs_info->fs_devices = fs_devices;
1275
1276 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1277 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1278 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1279 error = -ENOMEM;
1280 goto error_fs_info;
1281 }
1282
1283 error = btrfs_open_devices(fs_devices, mode, fs_type);
1284 if (error)
1285 goto error_fs_info;
1286
1287 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1288 error = -EACCES;
1289 goto error_close_devices;
1290 }
1291
1292 bdev = fs_devices->latest_bdev;
1293 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1294 fs_info);
1295 if (IS_ERR(s)) {
1296 error = PTR_ERR(s);
1297 goto error_close_devices;
1298 }
1299
1300 if (s->s_root) {
1301 btrfs_close_devices(fs_devices);
1302 free_fs_info(fs_info);
1303 if ((flags ^ s->s_flags) & MS_RDONLY)
1304 error = -EBUSY;
1305 } else {
1306 char b[BDEVNAME_SIZE];
1307
1308 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1309 btrfs_sb(s)->bdev_holder = fs_type;
1310 error = btrfs_fill_super(s, fs_devices, data,
1311 flags & MS_SILENT ? 1 : 0);
1312 }
1313
1314 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1315 if (IS_ERR(root))
1316 deactivate_locked_super(s);
1317
1318 return root;
1319
1320 error_close_devices:
1321 btrfs_close_devices(fs_devices);
1322 error_fs_info:
1323 free_fs_info(fs_info);
1324 return ERR_PTR(error);
1325 }
1326
1327 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1328 int new_pool_size, int old_pool_size)
1329 {
1330 if (new_pool_size == old_pool_size)
1331 return;
1332
1333 fs_info->thread_pool_size = new_pool_size;
1334
1335 btrfs_info(fs_info, "resize thread pool %d -> %d",
1336 old_pool_size, new_pool_size);
1337
1338 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1339 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1340 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1341 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1342 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1343 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1344 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1345 new_pool_size);
1346 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1347 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1348 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1349 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1350 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1351 new_pool_size);
1352 }
1353
1354 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1355 {
1356 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1357 }
1358
1359 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1360 unsigned long old_opts, int flags)
1361 {
1362 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1363 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1364 (flags & MS_RDONLY))) {
1365 /* wait for any defraggers to finish */
1366 wait_event(fs_info->transaction_wait,
1367 (atomic_read(&fs_info->defrag_running) == 0));
1368 if (flags & MS_RDONLY)
1369 sync_filesystem(fs_info->sb);
1370 }
1371 }
1372
1373 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1374 unsigned long old_opts)
1375 {
1376 /*
1377 * We need cleanup all defragable inodes if the autodefragment is
1378 * close or the fs is R/O.
1379 */
1380 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1381 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1382 (fs_info->sb->s_flags & MS_RDONLY))) {
1383 btrfs_cleanup_defrag_inodes(fs_info);
1384 }
1385
1386 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1387 }
1388
1389 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1390 {
1391 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1392 struct btrfs_root *root = fs_info->tree_root;
1393 unsigned old_flags = sb->s_flags;
1394 unsigned long old_opts = fs_info->mount_opt;
1395 unsigned long old_compress_type = fs_info->compress_type;
1396 u64 old_max_inline = fs_info->max_inline;
1397 u64 old_alloc_start = fs_info->alloc_start;
1398 int old_thread_pool_size = fs_info->thread_pool_size;
1399 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1400 int ret;
1401
1402 sync_filesystem(sb);
1403 btrfs_remount_prepare(fs_info);
1404
1405 ret = btrfs_parse_options(root, data);
1406 if (ret) {
1407 ret = -EINVAL;
1408 goto restore;
1409 }
1410
1411 btrfs_remount_begin(fs_info, old_opts, *flags);
1412 btrfs_resize_thread_pool(fs_info,
1413 fs_info->thread_pool_size, old_thread_pool_size);
1414
1415 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1416 goto out;
1417
1418 if (*flags & MS_RDONLY) {
1419 /*
1420 * this also happens on 'umount -rf' or on shutdown, when
1421 * the filesystem is busy.
1422 */
1423 cancel_work_sync(&fs_info->async_reclaim_work);
1424
1425 /* wait for the uuid_scan task to finish */
1426 down(&fs_info->uuid_tree_rescan_sem);
1427 /* avoid complains from lockdep et al. */
1428 up(&fs_info->uuid_tree_rescan_sem);
1429
1430 sb->s_flags |= MS_RDONLY;
1431
1432 btrfs_dev_replace_suspend_for_unmount(fs_info);
1433 btrfs_scrub_cancel(fs_info);
1434 btrfs_pause_balance(fs_info);
1435
1436 ret = btrfs_commit_super(root);
1437 if (ret)
1438 goto restore;
1439 } else {
1440 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1441 btrfs_err(fs_info,
1442 "Remounting read-write after error is not allowed");
1443 ret = -EINVAL;
1444 goto restore;
1445 }
1446 if (fs_info->fs_devices->rw_devices == 0) {
1447 ret = -EACCES;
1448 goto restore;
1449 }
1450
1451 if (fs_info->fs_devices->missing_devices >
1452 fs_info->num_tolerated_disk_barrier_failures &&
1453 !(*flags & MS_RDONLY)) {
1454 btrfs_warn(fs_info,
1455 "too many missing devices, writeable remount is not allowed");
1456 ret = -EACCES;
1457 goto restore;
1458 }
1459
1460 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1461 ret = -EINVAL;
1462 goto restore;
1463 }
1464
1465 ret = btrfs_cleanup_fs_roots(fs_info);
1466 if (ret)
1467 goto restore;
1468
1469 /* recover relocation */
1470 ret = btrfs_recover_relocation(root);
1471 if (ret)
1472 goto restore;
1473
1474 ret = btrfs_resume_balance_async(fs_info);
1475 if (ret)
1476 goto restore;
1477
1478 ret = btrfs_resume_dev_replace_async(fs_info);
1479 if (ret) {
1480 btrfs_warn(fs_info, "failed to resume dev_replace");
1481 goto restore;
1482 }
1483
1484 if (!fs_info->uuid_root) {
1485 btrfs_info(fs_info, "creating UUID tree");
1486 ret = btrfs_create_uuid_tree(fs_info);
1487 if (ret) {
1488 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1489 goto restore;
1490 }
1491 }
1492 sb->s_flags &= ~MS_RDONLY;
1493 }
1494 out:
1495 wake_up_process(fs_info->transaction_kthread);
1496 btrfs_remount_cleanup(fs_info, old_opts);
1497 return 0;
1498
1499 restore:
1500 /* We've hit an error - don't reset MS_RDONLY */
1501 if (sb->s_flags & MS_RDONLY)
1502 old_flags |= MS_RDONLY;
1503 sb->s_flags = old_flags;
1504 fs_info->mount_opt = old_opts;
1505 fs_info->compress_type = old_compress_type;
1506 fs_info->max_inline = old_max_inline;
1507 mutex_lock(&fs_info->chunk_mutex);
1508 fs_info->alloc_start = old_alloc_start;
1509 mutex_unlock(&fs_info->chunk_mutex);
1510 btrfs_resize_thread_pool(fs_info,
1511 old_thread_pool_size, fs_info->thread_pool_size);
1512 fs_info->metadata_ratio = old_metadata_ratio;
1513 btrfs_remount_cleanup(fs_info, old_opts);
1514 return ret;
1515 }
1516
1517 /* Used to sort the devices by max_avail(descending sort) */
1518 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1519 const void *dev_info2)
1520 {
1521 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1522 ((struct btrfs_device_info *)dev_info2)->max_avail)
1523 return -1;
1524 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1525 ((struct btrfs_device_info *)dev_info2)->max_avail)
1526 return 1;
1527 else
1528 return 0;
1529 }
1530
1531 /*
1532 * sort the devices by max_avail, in which max free extent size of each device
1533 * is stored.(Descending Sort)
1534 */
1535 static inline void btrfs_descending_sort_devices(
1536 struct btrfs_device_info *devices,
1537 size_t nr_devices)
1538 {
1539 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1540 btrfs_cmp_device_free_bytes, NULL);
1541 }
1542
1543 /*
1544 * The helper to calc the free space on the devices that can be used to store
1545 * file data.
1546 */
1547 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1548 {
1549 struct btrfs_fs_info *fs_info = root->fs_info;
1550 struct btrfs_device_info *devices_info;
1551 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1552 struct btrfs_device *device;
1553 u64 skip_space;
1554 u64 type;
1555 u64 avail_space;
1556 u64 used_space;
1557 u64 min_stripe_size;
1558 int min_stripes = 1, num_stripes = 1;
1559 int i = 0, nr_devices;
1560 int ret;
1561
1562 nr_devices = fs_info->fs_devices->open_devices;
1563 BUG_ON(!nr_devices);
1564
1565 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1566 GFP_NOFS);
1567 if (!devices_info)
1568 return -ENOMEM;
1569
1570 /* calc min stripe number for data space alloction */
1571 type = btrfs_get_alloc_profile(root, 1);
1572 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1573 min_stripes = 2;
1574 num_stripes = nr_devices;
1575 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1576 min_stripes = 2;
1577 num_stripes = 2;
1578 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1579 min_stripes = 4;
1580 num_stripes = 4;
1581 }
1582
1583 if (type & BTRFS_BLOCK_GROUP_DUP)
1584 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1585 else
1586 min_stripe_size = BTRFS_STRIPE_LEN;
1587
1588 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1589 if (!device->in_fs_metadata || !device->bdev ||
1590 device->is_tgtdev_for_dev_replace)
1591 continue;
1592
1593 avail_space = device->total_bytes - device->bytes_used;
1594
1595 /* align with stripe_len */
1596 do_div(avail_space, BTRFS_STRIPE_LEN);
1597 avail_space *= BTRFS_STRIPE_LEN;
1598
1599 /*
1600 * In order to avoid overwritting the superblock on the drive,
1601 * btrfs starts at an offset of at least 1MB when doing chunk
1602 * allocation.
1603 */
1604 skip_space = 1024 * 1024;
1605
1606 /* user can set the offset in fs_info->alloc_start. */
1607 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1608 device->total_bytes)
1609 skip_space = max(fs_info->alloc_start, skip_space);
1610
1611 /*
1612 * btrfs can not use the free space in [0, skip_space - 1],
1613 * we must subtract it from the total. In order to implement
1614 * it, we account the used space in this range first.
1615 */
1616 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1617 &used_space);
1618 if (ret) {
1619 kfree(devices_info);
1620 return ret;
1621 }
1622
1623 /* calc the free space in [0, skip_space - 1] */
1624 skip_space -= used_space;
1625
1626 /*
1627 * we can use the free space in [0, skip_space - 1], subtract
1628 * it from the total.
1629 */
1630 if (avail_space && avail_space >= skip_space)
1631 avail_space -= skip_space;
1632 else
1633 avail_space = 0;
1634
1635 if (avail_space < min_stripe_size)
1636 continue;
1637
1638 devices_info[i].dev = device;
1639 devices_info[i].max_avail = avail_space;
1640
1641 i++;
1642 }
1643
1644 nr_devices = i;
1645
1646 btrfs_descending_sort_devices(devices_info, nr_devices);
1647
1648 i = nr_devices - 1;
1649 avail_space = 0;
1650 while (nr_devices >= min_stripes) {
1651 if (num_stripes > nr_devices)
1652 num_stripes = nr_devices;
1653
1654 if (devices_info[i].max_avail >= min_stripe_size) {
1655 int j;
1656 u64 alloc_size;
1657
1658 avail_space += devices_info[i].max_avail * num_stripes;
1659 alloc_size = devices_info[i].max_avail;
1660 for (j = i + 1 - num_stripes; j <= i; j++)
1661 devices_info[j].max_avail -= alloc_size;
1662 }
1663 i--;
1664 nr_devices--;
1665 }
1666
1667 kfree(devices_info);
1668 *free_bytes = avail_space;
1669 return 0;
1670 }
1671
1672 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1673 {
1674 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1675 struct btrfs_super_block *disk_super = fs_info->super_copy;
1676 struct list_head *head = &fs_info->space_info;
1677 struct btrfs_space_info *found;
1678 u64 total_used = 0;
1679 u64 total_free_data = 0;
1680 int bits = dentry->d_sb->s_blocksize_bits;
1681 __be32 *fsid = (__be32 *)fs_info->fsid;
1682 int ret;
1683
1684 /* holding chunk_muext to avoid allocating new chunks */
1685 mutex_lock(&fs_info->chunk_mutex);
1686 rcu_read_lock();
1687 list_for_each_entry_rcu(found, head, list) {
1688 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1689 total_free_data += found->disk_total - found->disk_used;
1690 total_free_data -=
1691 btrfs_account_ro_block_groups_free_space(found);
1692 }
1693
1694 total_used += found->disk_used;
1695 }
1696 rcu_read_unlock();
1697
1698 buf->f_namelen = BTRFS_NAME_LEN;
1699 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1700 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1701 buf->f_bsize = dentry->d_sb->s_blocksize;
1702 buf->f_type = BTRFS_SUPER_MAGIC;
1703 buf->f_bavail = total_free_data;
1704 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1705 if (ret) {
1706 mutex_unlock(&fs_info->chunk_mutex);
1707 return ret;
1708 }
1709 buf->f_bavail += total_free_data;
1710 buf->f_bavail = buf->f_bavail >> bits;
1711 mutex_unlock(&fs_info->chunk_mutex);
1712
1713 /* We treat it as constant endianness (it doesn't matter _which_)
1714 because we want the fsid to come out the same whether mounted
1715 on a big-endian or little-endian host */
1716 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1717 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1718 /* Mask in the root object ID too, to disambiguate subvols */
1719 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1720 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1721
1722 return 0;
1723 }
1724
1725 static void btrfs_kill_super(struct super_block *sb)
1726 {
1727 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1728 kill_anon_super(sb);
1729 free_fs_info(fs_info);
1730 }
1731
1732 static struct file_system_type btrfs_fs_type = {
1733 .owner = THIS_MODULE,
1734 .name = "btrfs",
1735 .mount = btrfs_mount,
1736 .kill_sb = btrfs_kill_super,
1737 .fs_flags = FS_REQUIRES_DEV,
1738 };
1739 MODULE_ALIAS_FS("btrfs");
1740
1741 /*
1742 * used by btrfsctl to scan devices when no FS is mounted
1743 */
1744 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1745 unsigned long arg)
1746 {
1747 struct btrfs_ioctl_vol_args *vol;
1748 struct btrfs_fs_devices *fs_devices;
1749 int ret = -ENOTTY;
1750
1751 if (!capable(CAP_SYS_ADMIN))
1752 return -EPERM;
1753
1754 vol = memdup_user((void __user *)arg, sizeof(*vol));
1755 if (IS_ERR(vol))
1756 return PTR_ERR(vol);
1757
1758 switch (cmd) {
1759 case BTRFS_IOC_SCAN_DEV:
1760 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1761 &btrfs_fs_type, &fs_devices);
1762 break;
1763 case BTRFS_IOC_DEVICES_READY:
1764 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1765 &btrfs_fs_type, &fs_devices);
1766 if (ret)
1767 break;
1768 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1769 break;
1770 }
1771
1772 kfree(vol);
1773 return ret;
1774 }
1775
1776 static int btrfs_freeze(struct super_block *sb)
1777 {
1778 struct btrfs_trans_handle *trans;
1779 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1780
1781 trans = btrfs_attach_transaction_barrier(root);
1782 if (IS_ERR(trans)) {
1783 /* no transaction, don't bother */
1784 if (PTR_ERR(trans) == -ENOENT)
1785 return 0;
1786 return PTR_ERR(trans);
1787 }
1788 return btrfs_commit_transaction(trans, root);
1789 }
1790
1791 static int btrfs_unfreeze(struct super_block *sb)
1792 {
1793 return 0;
1794 }
1795
1796 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1797 {
1798 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1799 struct btrfs_fs_devices *cur_devices;
1800 struct btrfs_device *dev, *first_dev = NULL;
1801 struct list_head *head;
1802 struct rcu_string *name;
1803
1804 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1805 cur_devices = fs_info->fs_devices;
1806 while (cur_devices) {
1807 head = &cur_devices->devices;
1808 list_for_each_entry(dev, head, dev_list) {
1809 if (dev->missing)
1810 continue;
1811 if (!first_dev || dev->devid < first_dev->devid)
1812 first_dev = dev;
1813 }
1814 cur_devices = cur_devices->seed;
1815 }
1816
1817 if (first_dev) {
1818 rcu_read_lock();
1819 name = rcu_dereference(first_dev->name);
1820 seq_escape(m, name->str, " \t\n\\");
1821 rcu_read_unlock();
1822 } else {
1823 WARN_ON(1);
1824 }
1825 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1826 return 0;
1827 }
1828
1829 static const struct super_operations btrfs_super_ops = {
1830 .drop_inode = btrfs_drop_inode,
1831 .evict_inode = btrfs_evict_inode,
1832 .put_super = btrfs_put_super,
1833 .sync_fs = btrfs_sync_fs,
1834 .show_options = btrfs_show_options,
1835 .show_devname = btrfs_show_devname,
1836 .write_inode = btrfs_write_inode,
1837 .alloc_inode = btrfs_alloc_inode,
1838 .destroy_inode = btrfs_destroy_inode,
1839 .statfs = btrfs_statfs,
1840 .remount_fs = btrfs_remount,
1841 .freeze_fs = btrfs_freeze,
1842 .unfreeze_fs = btrfs_unfreeze,
1843 };
1844
1845 static const struct file_operations btrfs_ctl_fops = {
1846 .unlocked_ioctl = btrfs_control_ioctl,
1847 .compat_ioctl = btrfs_control_ioctl,
1848 .owner = THIS_MODULE,
1849 .llseek = noop_llseek,
1850 };
1851
1852 static struct miscdevice btrfs_misc = {
1853 .minor = BTRFS_MINOR,
1854 .name = "btrfs-control",
1855 .fops = &btrfs_ctl_fops
1856 };
1857
1858 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1859 MODULE_ALIAS("devname:btrfs-control");
1860
1861 static int btrfs_interface_init(void)
1862 {
1863 return misc_register(&btrfs_misc);
1864 }
1865
1866 static void btrfs_interface_exit(void)
1867 {
1868 if (misc_deregister(&btrfs_misc) < 0)
1869 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1870 }
1871
1872 static void btrfs_print_info(void)
1873 {
1874 printk(KERN_INFO "Btrfs loaded"
1875 #ifdef CONFIG_BTRFS_DEBUG
1876 ", debug=on"
1877 #endif
1878 #ifdef CONFIG_BTRFS_ASSERT
1879 ", assert=on"
1880 #endif
1881 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1882 ", integrity-checker=on"
1883 #endif
1884 "\n");
1885 }
1886
1887 static int btrfs_run_sanity_tests(void)
1888 {
1889 int ret;
1890
1891 ret = btrfs_init_test_fs();
1892 if (ret)
1893 return ret;
1894
1895 ret = btrfs_test_free_space_cache();
1896 if (ret)
1897 goto out;
1898 ret = btrfs_test_extent_buffer_operations();
1899 if (ret)
1900 goto out;
1901 ret = btrfs_test_extent_io();
1902 if (ret)
1903 goto out;
1904 ret = btrfs_test_inodes();
1905 if (ret)
1906 goto out;
1907 ret = btrfs_test_qgroups();
1908 out:
1909 btrfs_destroy_test_fs();
1910 return ret;
1911 }
1912
1913 static int __init init_btrfs_fs(void)
1914 {
1915 int err;
1916
1917 err = btrfs_hash_init();
1918 if (err)
1919 return err;
1920
1921 btrfs_props_init();
1922
1923 err = btrfs_init_sysfs();
1924 if (err)
1925 goto free_hash;
1926
1927 btrfs_init_compress();
1928
1929 err = btrfs_init_cachep();
1930 if (err)
1931 goto free_compress;
1932
1933 err = extent_io_init();
1934 if (err)
1935 goto free_cachep;
1936
1937 err = extent_map_init();
1938 if (err)
1939 goto free_extent_io;
1940
1941 err = ordered_data_init();
1942 if (err)
1943 goto free_extent_map;
1944
1945 err = btrfs_delayed_inode_init();
1946 if (err)
1947 goto free_ordered_data;
1948
1949 err = btrfs_auto_defrag_init();
1950 if (err)
1951 goto free_delayed_inode;
1952
1953 err = btrfs_delayed_ref_init();
1954 if (err)
1955 goto free_auto_defrag;
1956
1957 err = btrfs_prelim_ref_init();
1958 if (err)
1959 goto free_prelim_ref;
1960
1961 err = btrfs_interface_init();
1962 if (err)
1963 goto free_delayed_ref;
1964
1965 btrfs_init_lockdep();
1966
1967 btrfs_print_info();
1968
1969 err = btrfs_run_sanity_tests();
1970 if (err)
1971 goto unregister_ioctl;
1972
1973 err = register_filesystem(&btrfs_fs_type);
1974 if (err)
1975 goto unregister_ioctl;
1976
1977 return 0;
1978
1979 unregister_ioctl:
1980 btrfs_interface_exit();
1981 free_prelim_ref:
1982 btrfs_prelim_ref_exit();
1983 free_delayed_ref:
1984 btrfs_delayed_ref_exit();
1985 free_auto_defrag:
1986 btrfs_auto_defrag_exit();
1987 free_delayed_inode:
1988 btrfs_delayed_inode_exit();
1989 free_ordered_data:
1990 ordered_data_exit();
1991 free_extent_map:
1992 extent_map_exit();
1993 free_extent_io:
1994 extent_io_exit();
1995 free_cachep:
1996 btrfs_destroy_cachep();
1997 free_compress:
1998 btrfs_exit_compress();
1999 btrfs_exit_sysfs();
2000 free_hash:
2001 btrfs_hash_exit();
2002 return err;
2003 }
2004
2005 static void __exit exit_btrfs_fs(void)
2006 {
2007 btrfs_destroy_cachep();
2008 btrfs_delayed_ref_exit();
2009 btrfs_auto_defrag_exit();
2010 btrfs_delayed_inode_exit();
2011 btrfs_prelim_ref_exit();
2012 ordered_data_exit();
2013 extent_map_exit();
2014 extent_io_exit();
2015 btrfs_interface_exit();
2016 unregister_filesystem(&btrfs_fs_type);
2017 btrfs_exit_sysfs();
2018 btrfs_cleanup_fs_uuids();
2019 btrfs_exit_compress();
2020 btrfs_hash_exit();
2021 }
2022
2023 late_initcall(init_btrfs_fs);
2024 module_exit(exit_btrfs_fs)
2025
2026 MODULE_LICENSE("GPL");
This page took 0.108773 seconds and 6 git commands to generate.