Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac80211
[deliverable/linux.git] / fs / btrfs / super.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66 char nbuf[16])
67 {
68 char *errstr = NULL;
69
70 switch (errno) {
71 case -EIO:
72 errstr = "IO failure";
73 break;
74 case -ENOMEM:
75 errstr = "Out of memory";
76 break;
77 case -EROFS:
78 errstr = "Readonly filesystem";
79 break;
80 case -EEXIST:
81 errstr = "Object already exists";
82 break;
83 default:
84 if (nbuf) {
85 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86 errstr = nbuf;
87 }
88 break;
89 }
90
91 return errstr;
92 }
93
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96 /*
97 * today we only save the error info into ram. Long term we'll
98 * also send it down to the disk
99 */
100 fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102
103 /* NOTE:
104 * We move write_super stuff at umount in order to avoid deadlock
105 * for umount hold all lock.
106 */
107 static void save_error_info(struct btrfs_fs_info *fs_info)
108 {
109 __save_error_info(fs_info);
110 }
111
112 /* btrfs handle error by forcing the filesystem readonly */
113 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
114 {
115 struct super_block *sb = fs_info->sb;
116
117 if (sb->s_flags & MS_RDONLY)
118 return;
119
120 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
121 sb->s_flags |= MS_RDONLY;
122 printk(KERN_INFO "btrfs is forced readonly\n");
123 __btrfs_scrub_cancel(fs_info);
124 // WARN_ON(1);
125 }
126 }
127
128 #ifdef CONFIG_PRINTK
129 /*
130 * __btrfs_std_error decodes expected errors from the caller and
131 * invokes the approciate error response.
132 */
133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134 unsigned int line, int errno, const char *fmt, ...)
135 {
136 struct super_block *sb = fs_info->sb;
137 char nbuf[16];
138 const char *errstr;
139 va_list args;
140 va_start(args, fmt);
141
142 /*
143 * Special case: if the error is EROFS, and we're already
144 * under MS_RDONLY, then it is safe here.
145 */
146 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
147 return;
148
149 errstr = btrfs_decode_error(fs_info, errno, nbuf);
150 if (fmt) {
151 struct va_format vaf = {
152 .fmt = fmt,
153 .va = &args,
154 };
155
156 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
157 sb->s_id, function, line, errstr, &vaf);
158 } else {
159 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
160 sb->s_id, function, line, errstr);
161 }
162
163 /* Don't go through full error handling during mount */
164 if (sb->s_flags & MS_BORN) {
165 save_error_info(fs_info);
166 btrfs_handle_error(fs_info);
167 }
168 va_end(args);
169 }
170
171 static const char * const logtypes[] = {
172 "emergency",
173 "alert",
174 "critical",
175 "error",
176 "warning",
177 "notice",
178 "info",
179 "debug",
180 };
181
182 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
183 {
184 struct super_block *sb = fs_info->sb;
185 char lvl[4];
186 struct va_format vaf;
187 va_list args;
188 const char *type = logtypes[4];
189 int kern_level;
190
191 va_start(args, fmt);
192
193 kern_level = printk_get_level(fmt);
194 if (kern_level) {
195 size_t size = printk_skip_level(fmt) - fmt;
196 memcpy(lvl, fmt, size);
197 lvl[size] = '\0';
198 fmt += size;
199 type = logtypes[kern_level - '0'];
200 } else
201 *lvl = '\0';
202
203 vaf.fmt = fmt;
204 vaf.va = &args;
205
206 printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
207
208 va_end(args);
209 }
210
211 #else
212
213 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
214 unsigned int line, int errno, const char *fmt, ...)
215 {
216 struct super_block *sb = fs_info->sb;
217
218 /*
219 * Special case: if the error is EROFS, and we're already
220 * under MS_RDONLY, then it is safe here.
221 */
222 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
223 return;
224
225 /* Don't go through full error handling during mount */
226 if (sb->s_flags & MS_BORN) {
227 save_error_info(fs_info);
228 btrfs_handle_error(fs_info);
229 }
230 }
231 #endif
232
233 /*
234 * We only mark the transaction aborted and then set the file system read-only.
235 * This will prevent new transactions from starting or trying to join this
236 * one.
237 *
238 * This means that error recovery at the call site is limited to freeing
239 * any local memory allocations and passing the error code up without
240 * further cleanup. The transaction should complete as it normally would
241 * in the call path but will return -EIO.
242 *
243 * We'll complete the cleanup in btrfs_end_transaction and
244 * btrfs_commit_transaction.
245 */
246 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
247 struct btrfs_root *root, const char *function,
248 unsigned int line, int errno)
249 {
250 WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
251 trans->aborted = errno;
252 /* Nothing used. The other threads that have joined this
253 * transaction may be able to continue. */
254 if (!trans->blocks_used) {
255 btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
256 return;
257 }
258 trans->transaction->aborted = errno;
259 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
260 }
261 /*
262 * __btrfs_panic decodes unexpected, fatal errors from the caller,
263 * issues an alert, and either panics or BUGs, depending on mount options.
264 */
265 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
266 unsigned int line, int errno, const char *fmt, ...)
267 {
268 char nbuf[16];
269 char *s_id = "<unknown>";
270 const char *errstr;
271 struct va_format vaf = { .fmt = fmt };
272 va_list args;
273
274 if (fs_info)
275 s_id = fs_info->sb->s_id;
276
277 va_start(args, fmt);
278 vaf.va = &args;
279
280 errstr = btrfs_decode_error(fs_info, errno, nbuf);
281 if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
282 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
283 s_id, function, line, &vaf, errstr);
284
285 printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
286 s_id, function, line, &vaf, errstr);
287 va_end(args);
288 /* Caller calls BUG() */
289 }
290
291 static void btrfs_put_super(struct super_block *sb)
292 {
293 (void)close_ctree(btrfs_sb(sb)->tree_root);
294 /* FIXME: need to fix VFS to return error? */
295 /* AV: return it _where_? ->put_super() can be triggered by any number
296 * of async events, up to and including delivery of SIGKILL to the
297 * last process that kept it busy. Or segfault in the aforementioned
298 * process... Whom would you report that to?
299 */
300 }
301
302 enum {
303 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
304 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
305 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
306 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
307 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
308 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
309 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
310 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
311 Opt_check_integrity, Opt_check_integrity_including_extent_data,
312 Opt_check_integrity_print_mask, Opt_fatal_errors,
313 Opt_err,
314 };
315
316 static match_table_t tokens = {
317 {Opt_degraded, "degraded"},
318 {Opt_subvol, "subvol=%s"},
319 {Opt_subvolid, "subvolid=%d"},
320 {Opt_device, "device=%s"},
321 {Opt_nodatasum, "nodatasum"},
322 {Opt_nodatacow, "nodatacow"},
323 {Opt_nobarrier, "nobarrier"},
324 {Opt_max_inline, "max_inline=%s"},
325 {Opt_alloc_start, "alloc_start=%s"},
326 {Opt_thread_pool, "thread_pool=%d"},
327 {Opt_compress, "compress"},
328 {Opt_compress_type, "compress=%s"},
329 {Opt_compress_force, "compress-force"},
330 {Opt_compress_force_type, "compress-force=%s"},
331 {Opt_ssd, "ssd"},
332 {Opt_ssd_spread, "ssd_spread"},
333 {Opt_nossd, "nossd"},
334 {Opt_noacl, "noacl"},
335 {Opt_notreelog, "notreelog"},
336 {Opt_flushoncommit, "flushoncommit"},
337 {Opt_ratio, "metadata_ratio=%d"},
338 {Opt_discard, "discard"},
339 {Opt_space_cache, "space_cache"},
340 {Opt_clear_cache, "clear_cache"},
341 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
342 {Opt_enospc_debug, "enospc_debug"},
343 {Opt_subvolrootid, "subvolrootid=%d"},
344 {Opt_defrag, "autodefrag"},
345 {Opt_inode_cache, "inode_cache"},
346 {Opt_no_space_cache, "nospace_cache"},
347 {Opt_recovery, "recovery"},
348 {Opt_skip_balance, "skip_balance"},
349 {Opt_check_integrity, "check_int"},
350 {Opt_check_integrity_including_extent_data, "check_int_data"},
351 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
352 {Opt_fatal_errors, "fatal_errors=%s"},
353 {Opt_err, NULL},
354 };
355
356 /*
357 * Regular mount options parser. Everything that is needed only when
358 * reading in a new superblock is parsed here.
359 * XXX JDM: This needs to be cleaned up for remount.
360 */
361 int btrfs_parse_options(struct btrfs_root *root, char *options)
362 {
363 struct btrfs_fs_info *info = root->fs_info;
364 substring_t args[MAX_OPT_ARGS];
365 char *p, *num, *orig = NULL;
366 u64 cache_gen;
367 int intarg;
368 int ret = 0;
369 char *compress_type;
370 bool compress_force = false;
371
372 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
373 if (cache_gen)
374 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
375
376 if (!options)
377 goto out;
378
379 /*
380 * strsep changes the string, duplicate it because parse_options
381 * gets called twice
382 */
383 options = kstrdup(options, GFP_NOFS);
384 if (!options)
385 return -ENOMEM;
386
387 orig = options;
388
389 while ((p = strsep(&options, ",")) != NULL) {
390 int token;
391 if (!*p)
392 continue;
393
394 token = match_token(p, tokens, args);
395 switch (token) {
396 case Opt_degraded:
397 printk(KERN_INFO "btrfs: allowing degraded mounts\n");
398 btrfs_set_opt(info->mount_opt, DEGRADED);
399 break;
400 case Opt_subvol:
401 case Opt_subvolid:
402 case Opt_subvolrootid:
403 case Opt_device:
404 /*
405 * These are parsed by btrfs_parse_early_options
406 * and can be happily ignored here.
407 */
408 break;
409 case Opt_nodatasum:
410 printk(KERN_INFO "btrfs: setting nodatasum\n");
411 btrfs_set_opt(info->mount_opt, NODATASUM);
412 break;
413 case Opt_nodatacow:
414 printk(KERN_INFO "btrfs: setting nodatacow\n");
415 btrfs_set_opt(info->mount_opt, NODATACOW);
416 btrfs_set_opt(info->mount_opt, NODATASUM);
417 break;
418 case Opt_compress_force:
419 case Opt_compress_force_type:
420 compress_force = true;
421 case Opt_compress:
422 case Opt_compress_type:
423 if (token == Opt_compress ||
424 token == Opt_compress_force ||
425 strcmp(args[0].from, "zlib") == 0) {
426 compress_type = "zlib";
427 info->compress_type = BTRFS_COMPRESS_ZLIB;
428 btrfs_set_opt(info->mount_opt, COMPRESS);
429 } else if (strcmp(args[0].from, "lzo") == 0) {
430 compress_type = "lzo";
431 info->compress_type = BTRFS_COMPRESS_LZO;
432 btrfs_set_opt(info->mount_opt, COMPRESS);
433 btrfs_set_fs_incompat(info, COMPRESS_LZO);
434 } else if (strncmp(args[0].from, "no", 2) == 0) {
435 compress_type = "no";
436 info->compress_type = BTRFS_COMPRESS_NONE;
437 btrfs_clear_opt(info->mount_opt, COMPRESS);
438 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
439 compress_force = false;
440 } else {
441 ret = -EINVAL;
442 goto out;
443 }
444
445 if (compress_force) {
446 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
447 pr_info("btrfs: force %s compression\n",
448 compress_type);
449 } else
450 pr_info("btrfs: use %s compression\n",
451 compress_type);
452 break;
453 case Opt_ssd:
454 printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
455 btrfs_set_opt(info->mount_opt, SSD);
456 break;
457 case Opt_ssd_spread:
458 printk(KERN_INFO "btrfs: use spread ssd "
459 "allocation scheme\n");
460 btrfs_set_opt(info->mount_opt, SSD);
461 btrfs_set_opt(info->mount_opt, SSD_SPREAD);
462 break;
463 case Opt_nossd:
464 printk(KERN_INFO "btrfs: not using ssd allocation "
465 "scheme\n");
466 btrfs_set_opt(info->mount_opt, NOSSD);
467 btrfs_clear_opt(info->mount_opt, SSD);
468 btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
469 break;
470 case Opt_nobarrier:
471 printk(KERN_INFO "btrfs: turning off barriers\n");
472 btrfs_set_opt(info->mount_opt, NOBARRIER);
473 break;
474 case Opt_thread_pool:
475 intarg = 0;
476 match_int(&args[0], &intarg);
477 if (intarg)
478 info->thread_pool_size = intarg;
479 break;
480 case Opt_max_inline:
481 num = match_strdup(&args[0]);
482 if (num) {
483 info->max_inline = memparse(num, NULL);
484 kfree(num);
485
486 if (info->max_inline) {
487 info->max_inline = max_t(u64,
488 info->max_inline,
489 root->sectorsize);
490 }
491 printk(KERN_INFO "btrfs: max_inline at %llu\n",
492 (unsigned long long)info->max_inline);
493 }
494 break;
495 case Opt_alloc_start:
496 num = match_strdup(&args[0]);
497 if (num) {
498 info->alloc_start = memparse(num, NULL);
499 kfree(num);
500 printk(KERN_INFO
501 "btrfs: allocations start at %llu\n",
502 (unsigned long long)info->alloc_start);
503 }
504 break;
505 case Opt_noacl:
506 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
507 break;
508 case Opt_notreelog:
509 printk(KERN_INFO "btrfs: disabling tree log\n");
510 btrfs_set_opt(info->mount_opt, NOTREELOG);
511 break;
512 case Opt_flushoncommit:
513 printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
514 btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
515 break;
516 case Opt_ratio:
517 intarg = 0;
518 match_int(&args[0], &intarg);
519 if (intarg) {
520 info->metadata_ratio = intarg;
521 printk(KERN_INFO "btrfs: metadata ratio %d\n",
522 info->metadata_ratio);
523 }
524 break;
525 case Opt_discard:
526 btrfs_set_opt(info->mount_opt, DISCARD);
527 break;
528 case Opt_space_cache:
529 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
530 break;
531 case Opt_no_space_cache:
532 printk(KERN_INFO "btrfs: disabling disk space caching\n");
533 btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
534 break;
535 case Opt_inode_cache:
536 printk(KERN_INFO "btrfs: enabling inode map caching\n");
537 btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
538 break;
539 case Opt_clear_cache:
540 printk(KERN_INFO "btrfs: force clearing of disk cache\n");
541 btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
542 break;
543 case Opt_user_subvol_rm_allowed:
544 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
545 break;
546 case Opt_enospc_debug:
547 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
548 break;
549 case Opt_defrag:
550 printk(KERN_INFO "btrfs: enabling auto defrag");
551 btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
552 break;
553 case Opt_recovery:
554 printk(KERN_INFO "btrfs: enabling auto recovery");
555 btrfs_set_opt(info->mount_opt, RECOVERY);
556 break;
557 case Opt_skip_balance:
558 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
559 break;
560 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
561 case Opt_check_integrity_including_extent_data:
562 printk(KERN_INFO "btrfs: enabling check integrity"
563 " including extent data\n");
564 btrfs_set_opt(info->mount_opt,
565 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
566 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
567 break;
568 case Opt_check_integrity:
569 printk(KERN_INFO "btrfs: enabling check integrity\n");
570 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
571 break;
572 case Opt_check_integrity_print_mask:
573 intarg = 0;
574 match_int(&args[0], &intarg);
575 if (intarg) {
576 info->check_integrity_print_mask = intarg;
577 printk(KERN_INFO "btrfs:"
578 " check_integrity_print_mask 0x%x\n",
579 info->check_integrity_print_mask);
580 }
581 break;
582 #else
583 case Opt_check_integrity_including_extent_data:
584 case Opt_check_integrity:
585 case Opt_check_integrity_print_mask:
586 printk(KERN_ERR "btrfs: support for check_integrity*"
587 " not compiled in!\n");
588 ret = -EINVAL;
589 goto out;
590 #endif
591 case Opt_fatal_errors:
592 if (strcmp(args[0].from, "panic") == 0)
593 btrfs_set_opt(info->mount_opt,
594 PANIC_ON_FATAL_ERROR);
595 else if (strcmp(args[0].from, "bug") == 0)
596 btrfs_clear_opt(info->mount_opt,
597 PANIC_ON_FATAL_ERROR);
598 else {
599 ret = -EINVAL;
600 goto out;
601 }
602 break;
603 case Opt_err:
604 printk(KERN_INFO "btrfs: unrecognized mount option "
605 "'%s'\n", p);
606 ret = -EINVAL;
607 goto out;
608 default:
609 break;
610 }
611 }
612 out:
613 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
614 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
615 kfree(orig);
616 return ret;
617 }
618
619 /*
620 * Parse mount options that are required early in the mount process.
621 *
622 * All other options will be parsed on much later in the mount process and
623 * only when we need to allocate a new super block.
624 */
625 static int btrfs_parse_early_options(const char *options, fmode_t flags,
626 void *holder, char **subvol_name, u64 *subvol_objectid,
627 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
628 {
629 substring_t args[MAX_OPT_ARGS];
630 char *device_name, *opts, *orig, *p;
631 int error = 0;
632 int intarg;
633
634 if (!options)
635 return 0;
636
637 /*
638 * strsep changes the string, duplicate it because parse_options
639 * gets called twice
640 */
641 opts = kstrdup(options, GFP_KERNEL);
642 if (!opts)
643 return -ENOMEM;
644 orig = opts;
645
646 while ((p = strsep(&opts, ",")) != NULL) {
647 int token;
648 if (!*p)
649 continue;
650
651 token = match_token(p, tokens, args);
652 switch (token) {
653 case Opt_subvol:
654 kfree(*subvol_name);
655 *subvol_name = match_strdup(&args[0]);
656 break;
657 case Opt_subvolid:
658 intarg = 0;
659 error = match_int(&args[0], &intarg);
660 if (!error) {
661 /* we want the original fs_tree */
662 if (!intarg)
663 *subvol_objectid =
664 BTRFS_FS_TREE_OBJECTID;
665 else
666 *subvol_objectid = intarg;
667 }
668 break;
669 case Opt_subvolrootid:
670 intarg = 0;
671 error = match_int(&args[0], &intarg);
672 if (!error) {
673 /* we want the original fs_tree */
674 if (!intarg)
675 *subvol_rootid =
676 BTRFS_FS_TREE_OBJECTID;
677 else
678 *subvol_rootid = intarg;
679 }
680 break;
681 case Opt_device:
682 device_name = match_strdup(&args[0]);
683 if (!device_name) {
684 error = -ENOMEM;
685 goto out;
686 }
687 error = btrfs_scan_one_device(device_name,
688 flags, holder, fs_devices);
689 kfree(device_name);
690 if (error)
691 goto out;
692 break;
693 default:
694 break;
695 }
696 }
697
698 out:
699 kfree(orig);
700 return error;
701 }
702
703 static struct dentry *get_default_root(struct super_block *sb,
704 u64 subvol_objectid)
705 {
706 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
707 struct btrfs_root *root = fs_info->tree_root;
708 struct btrfs_root *new_root;
709 struct btrfs_dir_item *di;
710 struct btrfs_path *path;
711 struct btrfs_key location;
712 struct inode *inode;
713 u64 dir_id;
714 int new = 0;
715
716 /*
717 * We have a specific subvol we want to mount, just setup location and
718 * go look up the root.
719 */
720 if (subvol_objectid) {
721 location.objectid = subvol_objectid;
722 location.type = BTRFS_ROOT_ITEM_KEY;
723 location.offset = (u64)-1;
724 goto find_root;
725 }
726
727 path = btrfs_alloc_path();
728 if (!path)
729 return ERR_PTR(-ENOMEM);
730 path->leave_spinning = 1;
731
732 /*
733 * Find the "default" dir item which points to the root item that we
734 * will mount by default if we haven't been given a specific subvolume
735 * to mount.
736 */
737 dir_id = btrfs_super_root_dir(fs_info->super_copy);
738 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
739 if (IS_ERR(di)) {
740 btrfs_free_path(path);
741 return ERR_CAST(di);
742 }
743 if (!di) {
744 /*
745 * Ok the default dir item isn't there. This is weird since
746 * it's always been there, but don't freak out, just try and
747 * mount to root most subvolume.
748 */
749 btrfs_free_path(path);
750 dir_id = BTRFS_FIRST_FREE_OBJECTID;
751 new_root = fs_info->fs_root;
752 goto setup_root;
753 }
754
755 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
756 btrfs_free_path(path);
757
758 find_root:
759 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
760 if (IS_ERR(new_root))
761 return ERR_CAST(new_root);
762
763 if (btrfs_root_refs(&new_root->root_item) == 0)
764 return ERR_PTR(-ENOENT);
765
766 dir_id = btrfs_root_dirid(&new_root->root_item);
767 setup_root:
768 location.objectid = dir_id;
769 location.type = BTRFS_INODE_ITEM_KEY;
770 location.offset = 0;
771
772 inode = btrfs_iget(sb, &location, new_root, &new);
773 if (IS_ERR(inode))
774 return ERR_CAST(inode);
775
776 /*
777 * If we're just mounting the root most subvol put the inode and return
778 * a reference to the dentry. We will have already gotten a reference
779 * to the inode in btrfs_fill_super so we're good to go.
780 */
781 if (!new && sb->s_root->d_inode == inode) {
782 iput(inode);
783 return dget(sb->s_root);
784 }
785
786 return d_obtain_alias(inode);
787 }
788
789 static int btrfs_fill_super(struct super_block *sb,
790 struct btrfs_fs_devices *fs_devices,
791 void *data, int silent)
792 {
793 struct inode *inode;
794 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
795 struct btrfs_key key;
796 int err;
797
798 sb->s_maxbytes = MAX_LFS_FILESIZE;
799 sb->s_magic = BTRFS_SUPER_MAGIC;
800 sb->s_op = &btrfs_super_ops;
801 sb->s_d_op = &btrfs_dentry_operations;
802 sb->s_export_op = &btrfs_export_ops;
803 sb->s_xattr = btrfs_xattr_handlers;
804 sb->s_time_gran = 1;
805 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
806 sb->s_flags |= MS_POSIXACL;
807 #endif
808 sb->s_flags |= MS_I_VERSION;
809 err = open_ctree(sb, fs_devices, (char *)data);
810 if (err) {
811 printk("btrfs: open_ctree failed\n");
812 return err;
813 }
814
815 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
816 key.type = BTRFS_INODE_ITEM_KEY;
817 key.offset = 0;
818 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
819 if (IS_ERR(inode)) {
820 err = PTR_ERR(inode);
821 goto fail_close;
822 }
823
824 sb->s_root = d_make_root(inode);
825 if (!sb->s_root) {
826 err = -ENOMEM;
827 goto fail_close;
828 }
829
830 save_mount_options(sb, data);
831 cleancache_init_fs(sb);
832 sb->s_flags |= MS_ACTIVE;
833 return 0;
834
835 fail_close:
836 close_ctree(fs_info->tree_root);
837 return err;
838 }
839
840 int btrfs_sync_fs(struct super_block *sb, int wait)
841 {
842 struct btrfs_trans_handle *trans;
843 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
844 struct btrfs_root *root = fs_info->tree_root;
845 int ret;
846
847 trace_btrfs_sync_fs(wait);
848
849 if (!wait) {
850 filemap_flush(fs_info->btree_inode->i_mapping);
851 return 0;
852 }
853
854 btrfs_wait_ordered_extents(root, 0, 0);
855
856 trans = btrfs_start_transaction(root, 0);
857 if (IS_ERR(trans))
858 return PTR_ERR(trans);
859 ret = btrfs_commit_transaction(trans, root);
860 return ret;
861 }
862
863 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
864 {
865 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
866 struct btrfs_root *root = info->tree_root;
867 char *compress_type;
868
869 if (btrfs_test_opt(root, DEGRADED))
870 seq_puts(seq, ",degraded");
871 if (btrfs_test_opt(root, NODATASUM))
872 seq_puts(seq, ",nodatasum");
873 if (btrfs_test_opt(root, NODATACOW))
874 seq_puts(seq, ",nodatacow");
875 if (btrfs_test_opt(root, NOBARRIER))
876 seq_puts(seq, ",nobarrier");
877 if (info->max_inline != 8192 * 1024)
878 seq_printf(seq, ",max_inline=%llu",
879 (unsigned long long)info->max_inline);
880 if (info->alloc_start != 0)
881 seq_printf(seq, ",alloc_start=%llu",
882 (unsigned long long)info->alloc_start);
883 if (info->thread_pool_size != min_t(unsigned long,
884 num_online_cpus() + 2, 8))
885 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
886 if (btrfs_test_opt(root, COMPRESS)) {
887 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
888 compress_type = "zlib";
889 else
890 compress_type = "lzo";
891 if (btrfs_test_opt(root, FORCE_COMPRESS))
892 seq_printf(seq, ",compress-force=%s", compress_type);
893 else
894 seq_printf(seq, ",compress=%s", compress_type);
895 }
896 if (btrfs_test_opt(root, NOSSD))
897 seq_puts(seq, ",nossd");
898 if (btrfs_test_opt(root, SSD_SPREAD))
899 seq_puts(seq, ",ssd_spread");
900 else if (btrfs_test_opt(root, SSD))
901 seq_puts(seq, ",ssd");
902 if (btrfs_test_opt(root, NOTREELOG))
903 seq_puts(seq, ",notreelog");
904 if (btrfs_test_opt(root, FLUSHONCOMMIT))
905 seq_puts(seq, ",flushoncommit");
906 if (btrfs_test_opt(root, DISCARD))
907 seq_puts(seq, ",discard");
908 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
909 seq_puts(seq, ",noacl");
910 if (btrfs_test_opt(root, SPACE_CACHE))
911 seq_puts(seq, ",space_cache");
912 else
913 seq_puts(seq, ",nospace_cache");
914 if (btrfs_test_opt(root, CLEAR_CACHE))
915 seq_puts(seq, ",clear_cache");
916 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
917 seq_puts(seq, ",user_subvol_rm_allowed");
918 if (btrfs_test_opt(root, ENOSPC_DEBUG))
919 seq_puts(seq, ",enospc_debug");
920 if (btrfs_test_opt(root, AUTO_DEFRAG))
921 seq_puts(seq, ",autodefrag");
922 if (btrfs_test_opt(root, INODE_MAP_CACHE))
923 seq_puts(seq, ",inode_cache");
924 if (btrfs_test_opt(root, SKIP_BALANCE))
925 seq_puts(seq, ",skip_balance");
926 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
927 seq_puts(seq, ",fatal_errors=panic");
928 return 0;
929 }
930
931 static int btrfs_test_super(struct super_block *s, void *data)
932 {
933 struct btrfs_fs_info *p = data;
934 struct btrfs_fs_info *fs_info = btrfs_sb(s);
935
936 return fs_info->fs_devices == p->fs_devices;
937 }
938
939 static int btrfs_set_super(struct super_block *s, void *data)
940 {
941 int err = set_anon_super(s, data);
942 if (!err)
943 s->s_fs_info = data;
944 return err;
945 }
946
947 /*
948 * subvolumes are identified by ino 256
949 */
950 static inline int is_subvolume_inode(struct inode *inode)
951 {
952 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
953 return 1;
954 return 0;
955 }
956
957 /*
958 * This will strip out the subvol=%s argument for an argument string and add
959 * subvolid=0 to make sure we get the actual tree root for path walking to the
960 * subvol we want.
961 */
962 static char *setup_root_args(char *args)
963 {
964 unsigned len = strlen(args) + 2 + 1;
965 char *src, *dst, *buf;
966
967 /*
968 * We need the same args as before, but with this substitution:
969 * s!subvol=[^,]+!subvolid=0!
970 *
971 * Since the replacement string is up to 2 bytes longer than the
972 * original, allocate strlen(args) + 2 + 1 bytes.
973 */
974
975 src = strstr(args, "subvol=");
976 /* This shouldn't happen, but just in case.. */
977 if (!src)
978 return NULL;
979
980 buf = dst = kmalloc(len, GFP_NOFS);
981 if (!buf)
982 return NULL;
983
984 /*
985 * If the subvol= arg is not at the start of the string,
986 * copy whatever precedes it into buf.
987 */
988 if (src != args) {
989 *src++ = '\0';
990 strcpy(buf, args);
991 dst += strlen(args);
992 }
993
994 strcpy(dst, "subvolid=0");
995 dst += strlen("subvolid=0");
996
997 /*
998 * If there is a "," after the original subvol=... string,
999 * copy that suffix into our buffer. Otherwise, we're done.
1000 */
1001 src = strchr(src, ',');
1002 if (src)
1003 strcpy(dst, src);
1004
1005 return buf;
1006 }
1007
1008 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1009 const char *device_name, char *data)
1010 {
1011 struct dentry *root;
1012 struct vfsmount *mnt;
1013 char *newargs;
1014
1015 newargs = setup_root_args(data);
1016 if (!newargs)
1017 return ERR_PTR(-ENOMEM);
1018 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1019 newargs);
1020 kfree(newargs);
1021 if (IS_ERR(mnt))
1022 return ERR_CAST(mnt);
1023
1024 root = mount_subtree(mnt, subvol_name);
1025
1026 if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1027 struct super_block *s = root->d_sb;
1028 dput(root);
1029 root = ERR_PTR(-EINVAL);
1030 deactivate_locked_super(s);
1031 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1032 subvol_name);
1033 }
1034
1035 return root;
1036 }
1037
1038 /*
1039 * Find a superblock for the given device / mount point.
1040 *
1041 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1042 * for multiple device setup. Make sure to keep it in sync.
1043 */
1044 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1045 const char *device_name, void *data)
1046 {
1047 struct block_device *bdev = NULL;
1048 struct super_block *s;
1049 struct dentry *root;
1050 struct btrfs_fs_devices *fs_devices = NULL;
1051 struct btrfs_fs_info *fs_info = NULL;
1052 fmode_t mode = FMODE_READ;
1053 char *subvol_name = NULL;
1054 u64 subvol_objectid = 0;
1055 u64 subvol_rootid = 0;
1056 int error = 0;
1057
1058 if (!(flags & MS_RDONLY))
1059 mode |= FMODE_WRITE;
1060
1061 error = btrfs_parse_early_options(data, mode, fs_type,
1062 &subvol_name, &subvol_objectid,
1063 &subvol_rootid, &fs_devices);
1064 if (error) {
1065 kfree(subvol_name);
1066 return ERR_PTR(error);
1067 }
1068
1069 if (subvol_name) {
1070 root = mount_subvol(subvol_name, flags, device_name, data);
1071 kfree(subvol_name);
1072 return root;
1073 }
1074
1075 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1076 if (error)
1077 return ERR_PTR(error);
1078
1079 /*
1080 * Setup a dummy root and fs_info for test/set super. This is because
1081 * we don't actually fill this stuff out until open_ctree, but we need
1082 * it for searching for existing supers, so this lets us do that and
1083 * then open_ctree will properly initialize everything later.
1084 */
1085 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1086 if (!fs_info)
1087 return ERR_PTR(-ENOMEM);
1088
1089 fs_info->fs_devices = fs_devices;
1090
1091 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1092 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1093 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1094 error = -ENOMEM;
1095 goto error_fs_info;
1096 }
1097
1098 error = btrfs_open_devices(fs_devices, mode, fs_type);
1099 if (error)
1100 goto error_fs_info;
1101
1102 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1103 error = -EACCES;
1104 goto error_close_devices;
1105 }
1106
1107 bdev = fs_devices->latest_bdev;
1108 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1109 fs_info);
1110 if (IS_ERR(s)) {
1111 error = PTR_ERR(s);
1112 goto error_close_devices;
1113 }
1114
1115 if (s->s_root) {
1116 btrfs_close_devices(fs_devices);
1117 free_fs_info(fs_info);
1118 if ((flags ^ s->s_flags) & MS_RDONLY)
1119 error = -EBUSY;
1120 } else {
1121 char b[BDEVNAME_SIZE];
1122
1123 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1124 btrfs_sb(s)->bdev_holder = fs_type;
1125 error = btrfs_fill_super(s, fs_devices, data,
1126 flags & MS_SILENT ? 1 : 0);
1127 }
1128
1129 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1130 if (IS_ERR(root))
1131 deactivate_locked_super(s);
1132
1133 return root;
1134
1135 error_close_devices:
1136 btrfs_close_devices(fs_devices);
1137 error_fs_info:
1138 free_fs_info(fs_info);
1139 return ERR_PTR(error);
1140 }
1141
1142 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1143 {
1144 spin_lock_irq(&workers->lock);
1145 workers->max_workers = new_limit;
1146 spin_unlock_irq(&workers->lock);
1147 }
1148
1149 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1150 int new_pool_size, int old_pool_size)
1151 {
1152 if (new_pool_size == old_pool_size)
1153 return;
1154
1155 fs_info->thread_pool_size = new_pool_size;
1156
1157 printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1158 old_pool_size, new_pool_size);
1159
1160 btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1161 btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1162 btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1163 btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1164 btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1165 btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1166 btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1167 btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1168 btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1169 btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1170 btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1171 btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1172 btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1173 btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1174 }
1175
1176 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1177 {
1178 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1179 struct btrfs_root *root = fs_info->tree_root;
1180 unsigned old_flags = sb->s_flags;
1181 unsigned long old_opts = fs_info->mount_opt;
1182 unsigned long old_compress_type = fs_info->compress_type;
1183 u64 old_max_inline = fs_info->max_inline;
1184 u64 old_alloc_start = fs_info->alloc_start;
1185 int old_thread_pool_size = fs_info->thread_pool_size;
1186 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1187 int ret;
1188
1189 ret = btrfs_parse_options(root, data);
1190 if (ret) {
1191 ret = -EINVAL;
1192 goto restore;
1193 }
1194
1195 btrfs_resize_thread_pool(fs_info,
1196 fs_info->thread_pool_size, old_thread_pool_size);
1197
1198 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1199 return 0;
1200
1201 if (*flags & MS_RDONLY) {
1202 sb->s_flags |= MS_RDONLY;
1203
1204 ret = btrfs_commit_super(root);
1205 if (ret)
1206 goto restore;
1207 } else {
1208 if (fs_info->fs_devices->rw_devices == 0) {
1209 ret = -EACCES;
1210 goto restore;
1211 }
1212
1213 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1214 ret = -EINVAL;
1215 goto restore;
1216 }
1217
1218 ret = btrfs_cleanup_fs_roots(fs_info);
1219 if (ret)
1220 goto restore;
1221
1222 /* recover relocation */
1223 ret = btrfs_recover_relocation(root);
1224 if (ret)
1225 goto restore;
1226
1227 ret = btrfs_resume_balance_async(fs_info);
1228 if (ret)
1229 goto restore;
1230
1231 sb->s_flags &= ~MS_RDONLY;
1232 }
1233
1234 return 0;
1235
1236 restore:
1237 /* We've hit an error - don't reset MS_RDONLY */
1238 if (sb->s_flags & MS_RDONLY)
1239 old_flags |= MS_RDONLY;
1240 sb->s_flags = old_flags;
1241 fs_info->mount_opt = old_opts;
1242 fs_info->compress_type = old_compress_type;
1243 fs_info->max_inline = old_max_inline;
1244 fs_info->alloc_start = old_alloc_start;
1245 btrfs_resize_thread_pool(fs_info,
1246 old_thread_pool_size, fs_info->thread_pool_size);
1247 fs_info->metadata_ratio = old_metadata_ratio;
1248 return ret;
1249 }
1250
1251 /* Used to sort the devices by max_avail(descending sort) */
1252 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1253 const void *dev_info2)
1254 {
1255 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1256 ((struct btrfs_device_info *)dev_info2)->max_avail)
1257 return -1;
1258 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1259 ((struct btrfs_device_info *)dev_info2)->max_avail)
1260 return 1;
1261 else
1262 return 0;
1263 }
1264
1265 /*
1266 * sort the devices by max_avail, in which max free extent size of each device
1267 * is stored.(Descending Sort)
1268 */
1269 static inline void btrfs_descending_sort_devices(
1270 struct btrfs_device_info *devices,
1271 size_t nr_devices)
1272 {
1273 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1274 btrfs_cmp_device_free_bytes, NULL);
1275 }
1276
1277 /*
1278 * The helper to calc the free space on the devices that can be used to store
1279 * file data.
1280 */
1281 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1282 {
1283 struct btrfs_fs_info *fs_info = root->fs_info;
1284 struct btrfs_device_info *devices_info;
1285 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1286 struct btrfs_device *device;
1287 u64 skip_space;
1288 u64 type;
1289 u64 avail_space;
1290 u64 used_space;
1291 u64 min_stripe_size;
1292 int min_stripes = 1, num_stripes = 1;
1293 int i = 0, nr_devices;
1294 int ret;
1295
1296 nr_devices = fs_info->fs_devices->open_devices;
1297 BUG_ON(!nr_devices);
1298
1299 devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1300 GFP_NOFS);
1301 if (!devices_info)
1302 return -ENOMEM;
1303
1304 /* calc min stripe number for data space alloction */
1305 type = btrfs_get_alloc_profile(root, 1);
1306 if (type & BTRFS_BLOCK_GROUP_RAID0) {
1307 min_stripes = 2;
1308 num_stripes = nr_devices;
1309 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1310 min_stripes = 2;
1311 num_stripes = 2;
1312 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1313 min_stripes = 4;
1314 num_stripes = 4;
1315 }
1316
1317 if (type & BTRFS_BLOCK_GROUP_DUP)
1318 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1319 else
1320 min_stripe_size = BTRFS_STRIPE_LEN;
1321
1322 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1323 if (!device->in_fs_metadata || !device->bdev)
1324 continue;
1325
1326 avail_space = device->total_bytes - device->bytes_used;
1327
1328 /* align with stripe_len */
1329 do_div(avail_space, BTRFS_STRIPE_LEN);
1330 avail_space *= BTRFS_STRIPE_LEN;
1331
1332 /*
1333 * In order to avoid overwritting the superblock on the drive,
1334 * btrfs starts at an offset of at least 1MB when doing chunk
1335 * allocation.
1336 */
1337 skip_space = 1024 * 1024;
1338
1339 /* user can set the offset in fs_info->alloc_start. */
1340 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1341 device->total_bytes)
1342 skip_space = max(fs_info->alloc_start, skip_space);
1343
1344 /*
1345 * btrfs can not use the free space in [0, skip_space - 1],
1346 * we must subtract it from the total. In order to implement
1347 * it, we account the used space in this range first.
1348 */
1349 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1350 &used_space);
1351 if (ret) {
1352 kfree(devices_info);
1353 return ret;
1354 }
1355
1356 /* calc the free space in [0, skip_space - 1] */
1357 skip_space -= used_space;
1358
1359 /*
1360 * we can use the free space in [0, skip_space - 1], subtract
1361 * it from the total.
1362 */
1363 if (avail_space && avail_space >= skip_space)
1364 avail_space -= skip_space;
1365 else
1366 avail_space = 0;
1367
1368 if (avail_space < min_stripe_size)
1369 continue;
1370
1371 devices_info[i].dev = device;
1372 devices_info[i].max_avail = avail_space;
1373
1374 i++;
1375 }
1376
1377 nr_devices = i;
1378
1379 btrfs_descending_sort_devices(devices_info, nr_devices);
1380
1381 i = nr_devices - 1;
1382 avail_space = 0;
1383 while (nr_devices >= min_stripes) {
1384 if (num_stripes > nr_devices)
1385 num_stripes = nr_devices;
1386
1387 if (devices_info[i].max_avail >= min_stripe_size) {
1388 int j;
1389 u64 alloc_size;
1390
1391 avail_space += devices_info[i].max_avail * num_stripes;
1392 alloc_size = devices_info[i].max_avail;
1393 for (j = i + 1 - num_stripes; j <= i; j++)
1394 devices_info[j].max_avail -= alloc_size;
1395 }
1396 i--;
1397 nr_devices--;
1398 }
1399
1400 kfree(devices_info);
1401 *free_bytes = avail_space;
1402 return 0;
1403 }
1404
1405 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1406 {
1407 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1408 struct btrfs_super_block *disk_super = fs_info->super_copy;
1409 struct list_head *head = &fs_info->space_info;
1410 struct btrfs_space_info *found;
1411 u64 total_used = 0;
1412 u64 total_free_data = 0;
1413 int bits = dentry->d_sb->s_blocksize_bits;
1414 __be32 *fsid = (__be32 *)fs_info->fsid;
1415 int ret;
1416
1417 /* holding chunk_muext to avoid allocating new chunks */
1418 mutex_lock(&fs_info->chunk_mutex);
1419 rcu_read_lock();
1420 list_for_each_entry_rcu(found, head, list) {
1421 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1422 total_free_data += found->disk_total - found->disk_used;
1423 total_free_data -=
1424 btrfs_account_ro_block_groups_free_space(found);
1425 }
1426
1427 total_used += found->disk_used;
1428 }
1429 rcu_read_unlock();
1430
1431 buf->f_namelen = BTRFS_NAME_LEN;
1432 buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1433 buf->f_bfree = buf->f_blocks - (total_used >> bits);
1434 buf->f_bsize = dentry->d_sb->s_blocksize;
1435 buf->f_type = BTRFS_SUPER_MAGIC;
1436 buf->f_bavail = total_free_data;
1437 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1438 if (ret) {
1439 mutex_unlock(&fs_info->chunk_mutex);
1440 return ret;
1441 }
1442 buf->f_bavail += total_free_data;
1443 buf->f_bavail = buf->f_bavail >> bits;
1444 mutex_unlock(&fs_info->chunk_mutex);
1445
1446 /* We treat it as constant endianness (it doesn't matter _which_)
1447 because we want the fsid to come out the same whether mounted
1448 on a big-endian or little-endian host */
1449 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1450 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1451 /* Mask in the root object ID too, to disambiguate subvols */
1452 buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1453 buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1454
1455 return 0;
1456 }
1457
1458 static void btrfs_kill_super(struct super_block *sb)
1459 {
1460 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1461 kill_anon_super(sb);
1462 free_fs_info(fs_info);
1463 }
1464
1465 static struct file_system_type btrfs_fs_type = {
1466 .owner = THIS_MODULE,
1467 .name = "btrfs",
1468 .mount = btrfs_mount,
1469 .kill_sb = btrfs_kill_super,
1470 .fs_flags = FS_REQUIRES_DEV,
1471 };
1472
1473 /*
1474 * used by btrfsctl to scan devices when no FS is mounted
1475 */
1476 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1477 unsigned long arg)
1478 {
1479 struct btrfs_ioctl_vol_args *vol;
1480 struct btrfs_fs_devices *fs_devices;
1481 int ret = -ENOTTY;
1482
1483 if (!capable(CAP_SYS_ADMIN))
1484 return -EPERM;
1485
1486 vol = memdup_user((void __user *)arg, sizeof(*vol));
1487 if (IS_ERR(vol))
1488 return PTR_ERR(vol);
1489
1490 switch (cmd) {
1491 case BTRFS_IOC_SCAN_DEV:
1492 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1493 &btrfs_fs_type, &fs_devices);
1494 break;
1495 case BTRFS_IOC_DEVICES_READY:
1496 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1497 &btrfs_fs_type, &fs_devices);
1498 if (ret)
1499 break;
1500 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1501 break;
1502 }
1503
1504 kfree(vol);
1505 return ret;
1506 }
1507
1508 static int btrfs_freeze(struct super_block *sb)
1509 {
1510 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1511 mutex_lock(&fs_info->transaction_kthread_mutex);
1512 mutex_lock(&fs_info->cleaner_mutex);
1513 return 0;
1514 }
1515
1516 static int btrfs_unfreeze(struct super_block *sb)
1517 {
1518 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1519 mutex_unlock(&fs_info->cleaner_mutex);
1520 mutex_unlock(&fs_info->transaction_kthread_mutex);
1521 return 0;
1522 }
1523
1524 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1525 {
1526 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1527 struct btrfs_fs_devices *cur_devices;
1528 struct btrfs_device *dev, *first_dev = NULL;
1529 struct list_head *head;
1530 struct rcu_string *name;
1531
1532 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1533 cur_devices = fs_info->fs_devices;
1534 while (cur_devices) {
1535 head = &cur_devices->devices;
1536 list_for_each_entry(dev, head, dev_list) {
1537 if (!first_dev || dev->devid < first_dev->devid)
1538 first_dev = dev;
1539 }
1540 cur_devices = cur_devices->seed;
1541 }
1542
1543 if (first_dev) {
1544 rcu_read_lock();
1545 name = rcu_dereference(first_dev->name);
1546 seq_escape(m, name->str, " \t\n\\");
1547 rcu_read_unlock();
1548 } else {
1549 WARN_ON(1);
1550 }
1551 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1552 return 0;
1553 }
1554
1555 static const struct super_operations btrfs_super_ops = {
1556 .drop_inode = btrfs_drop_inode,
1557 .evict_inode = btrfs_evict_inode,
1558 .put_super = btrfs_put_super,
1559 .sync_fs = btrfs_sync_fs,
1560 .show_options = btrfs_show_options,
1561 .show_devname = btrfs_show_devname,
1562 .write_inode = btrfs_write_inode,
1563 .alloc_inode = btrfs_alloc_inode,
1564 .destroy_inode = btrfs_destroy_inode,
1565 .statfs = btrfs_statfs,
1566 .remount_fs = btrfs_remount,
1567 .freeze_fs = btrfs_freeze,
1568 .unfreeze_fs = btrfs_unfreeze,
1569 };
1570
1571 static const struct file_operations btrfs_ctl_fops = {
1572 .unlocked_ioctl = btrfs_control_ioctl,
1573 .compat_ioctl = btrfs_control_ioctl,
1574 .owner = THIS_MODULE,
1575 .llseek = noop_llseek,
1576 };
1577
1578 static struct miscdevice btrfs_misc = {
1579 .minor = BTRFS_MINOR,
1580 .name = "btrfs-control",
1581 .fops = &btrfs_ctl_fops
1582 };
1583
1584 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1585 MODULE_ALIAS("devname:btrfs-control");
1586
1587 static int btrfs_interface_init(void)
1588 {
1589 return misc_register(&btrfs_misc);
1590 }
1591
1592 static void btrfs_interface_exit(void)
1593 {
1594 if (misc_deregister(&btrfs_misc) < 0)
1595 printk(KERN_INFO "misc_deregister failed for control device");
1596 }
1597
1598 static int __init init_btrfs_fs(void)
1599 {
1600 int err;
1601
1602 err = btrfs_init_sysfs();
1603 if (err)
1604 return err;
1605
1606 btrfs_init_compress();
1607
1608 err = btrfs_init_cachep();
1609 if (err)
1610 goto free_compress;
1611
1612 err = extent_io_init();
1613 if (err)
1614 goto free_cachep;
1615
1616 err = extent_map_init();
1617 if (err)
1618 goto free_extent_io;
1619
1620 err = btrfs_delayed_inode_init();
1621 if (err)
1622 goto free_extent_map;
1623
1624 err = btrfs_interface_init();
1625 if (err)
1626 goto free_delayed_inode;
1627
1628 err = register_filesystem(&btrfs_fs_type);
1629 if (err)
1630 goto unregister_ioctl;
1631
1632 btrfs_init_lockdep();
1633
1634 printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1635 return 0;
1636
1637 unregister_ioctl:
1638 btrfs_interface_exit();
1639 free_delayed_inode:
1640 btrfs_delayed_inode_exit();
1641 free_extent_map:
1642 extent_map_exit();
1643 free_extent_io:
1644 extent_io_exit();
1645 free_cachep:
1646 btrfs_destroy_cachep();
1647 free_compress:
1648 btrfs_exit_compress();
1649 btrfs_exit_sysfs();
1650 return err;
1651 }
1652
1653 static void __exit exit_btrfs_fs(void)
1654 {
1655 btrfs_destroy_cachep();
1656 btrfs_delayed_inode_exit();
1657 extent_map_exit();
1658 extent_io_exit();
1659 btrfs_interface_exit();
1660 unregister_filesystem(&btrfs_fs_type);
1661 btrfs_exit_sysfs();
1662 btrfs_cleanup_fs_uuids();
1663 btrfs_exit_compress();
1664 }
1665
1666 module_init(init_btrfs_fs)
1667 module_exit(exit_btrfs_fs)
1668
1669 MODULE_LICENSE("GPL");
This page took 0.088031 seconds and 6 git commands to generate.