Btrfs: add missing free_extent_buffer
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 while (!RB_EMPTY_ROOT(&tree->state)) {
86 struct rb_node *node;
87 struct extent_state *state;
88
89 node = rb_first(&tree->state);
90 state = rb_entry(node, struct extent_state, rb_node);
91 rb_erase(&state->rb_node, &tree->state);
92 RB_CLEAR_NODE(&state->rb_node);
93 /*
94 * btree io trees aren't supposed to have tasks waiting for
95 * changes in the flags of extent states ever.
96 */
97 ASSERT(!waitqueue_active(&state->wq));
98 free_extent_state(state);
99
100 cond_resched_lock(&tree->lock);
101 }
102 spin_unlock(&tree->lock);
103 }
104
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 struct btrfs_fs_info *fs_info)
107 {
108 struct btrfs_root *root, *tmp;
109
110 down_write(&fs_info->commit_root_sem);
111 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 dirty_list) {
113 list_del_init(&root->dirty_list);
114 free_extent_buffer(root->commit_root);
115 root->commit_root = btrfs_root_node(root);
116 if (is_fstree(root->objectid))
117 btrfs_unpin_free_ino(root);
118 clear_btree_io_tree(&root->dirty_log_pages);
119 }
120 up_write(&fs_info->commit_root_sem);
121 }
122
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 unsigned int type)
125 {
126 if (type & TRANS_EXTWRITERS)
127 atomic_inc(&trans->num_extwriters);
128 }
129
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 unsigned int type)
132 {
133 if (type & TRANS_EXTWRITERS)
134 atomic_dec(&trans->num_extwriters);
135 }
136
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 unsigned int type)
139 {
140 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 return atomic_read(&trans->num_extwriters);
146 }
147
148 /*
149 * either allocate a new transaction or hop into the existing one
150 */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 struct btrfs_transaction *cur_trans;
154 struct btrfs_fs_info *fs_info = root->fs_info;
155
156 spin_lock(&fs_info->trans_lock);
157 loop:
158 /* The file system has been taken offline. No new transactions. */
159 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 spin_unlock(&fs_info->trans_lock);
161 return -EROFS;
162 }
163
164 cur_trans = fs_info->running_transaction;
165 if (cur_trans) {
166 if (cur_trans->aborted) {
167 spin_unlock(&fs_info->trans_lock);
168 return cur_trans->aborted;
169 }
170 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 spin_unlock(&fs_info->trans_lock);
172 return -EBUSY;
173 }
174 atomic_inc(&cur_trans->use_count);
175 atomic_inc(&cur_trans->num_writers);
176 extwriter_counter_inc(cur_trans, type);
177 spin_unlock(&fs_info->trans_lock);
178 return 0;
179 }
180 spin_unlock(&fs_info->trans_lock);
181
182 /*
183 * If we are ATTACH, we just want to catch the current transaction,
184 * and commit it. If there is no transaction, just return ENOENT.
185 */
186 if (type == TRANS_ATTACH)
187 return -ENOENT;
188
189 /*
190 * JOIN_NOLOCK only happens during the transaction commit, so
191 * it is impossible that ->running_transaction is NULL
192 */
193 BUG_ON(type == TRANS_JOIN_NOLOCK);
194
195 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 if (!cur_trans)
197 return -ENOMEM;
198
199 spin_lock(&fs_info->trans_lock);
200 if (fs_info->running_transaction) {
201 /*
202 * someone started a transaction after we unlocked. Make sure
203 * to redo the checks above
204 */
205 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 goto loop;
207 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 spin_unlock(&fs_info->trans_lock);
209 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 return -EROFS;
211 }
212
213 atomic_set(&cur_trans->num_writers, 1);
214 extwriter_counter_init(cur_trans, type);
215 init_waitqueue_head(&cur_trans->writer_wait);
216 init_waitqueue_head(&cur_trans->commit_wait);
217 cur_trans->state = TRANS_STATE_RUNNING;
218 /*
219 * One for this trans handle, one so it will live on until we
220 * commit the transaction.
221 */
222 atomic_set(&cur_trans->use_count, 2);
223 cur_trans->have_free_bgs = 0;
224 cur_trans->start_time = get_seconds();
225 cur_trans->dirty_bg_run = 0;
226
227 cur_trans->delayed_refs.href_root = RB_ROOT;
228 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
229 cur_trans->delayed_refs.num_heads_ready = 0;
230 cur_trans->delayed_refs.pending_csums = 0;
231 cur_trans->delayed_refs.num_heads = 0;
232 cur_trans->delayed_refs.flushing = 0;
233 cur_trans->delayed_refs.run_delayed_start = 0;
234
235 /*
236 * although the tree mod log is per file system and not per transaction,
237 * the log must never go across transaction boundaries.
238 */
239 smp_mb();
240 if (!list_empty(&fs_info->tree_mod_seq_list))
241 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
242 "creating a fresh transaction\n");
243 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
244 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
245 "creating a fresh transaction\n");
246 atomic64_set(&fs_info->tree_mod_seq, 0);
247
248 spin_lock_init(&cur_trans->delayed_refs.lock);
249
250 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
251 INIT_LIST_HEAD(&cur_trans->pending_chunks);
252 INIT_LIST_HEAD(&cur_trans->switch_commits);
253 INIT_LIST_HEAD(&cur_trans->pending_ordered);
254 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
255 INIT_LIST_HEAD(&cur_trans->io_bgs);
256 mutex_init(&cur_trans->cache_write_mutex);
257 cur_trans->num_dirty_bgs = 0;
258 spin_lock_init(&cur_trans->dirty_bgs_lock);
259 list_add_tail(&cur_trans->list, &fs_info->trans_list);
260 extent_io_tree_init(&cur_trans->dirty_pages,
261 fs_info->btree_inode->i_mapping);
262 fs_info->generation++;
263 cur_trans->transid = fs_info->generation;
264 fs_info->running_transaction = cur_trans;
265 cur_trans->aborted = 0;
266 spin_unlock(&fs_info->trans_lock);
267
268 return 0;
269 }
270
271 /*
272 * this does all the record keeping required to make sure that a reference
273 * counted root is properly recorded in a given transaction. This is required
274 * to make sure the old root from before we joined the transaction is deleted
275 * when the transaction commits
276 */
277 static int record_root_in_trans(struct btrfs_trans_handle *trans,
278 struct btrfs_root *root)
279 {
280 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
281 root->last_trans < trans->transid) {
282 WARN_ON(root == root->fs_info->extent_root);
283 WARN_ON(root->commit_root != root->node);
284
285 /*
286 * see below for IN_TRANS_SETUP usage rules
287 * we have the reloc mutex held now, so there
288 * is only one writer in this function
289 */
290 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
291
292 /* make sure readers find IN_TRANS_SETUP before
293 * they find our root->last_trans update
294 */
295 smp_wmb();
296
297 spin_lock(&root->fs_info->fs_roots_radix_lock);
298 if (root->last_trans == trans->transid) {
299 spin_unlock(&root->fs_info->fs_roots_radix_lock);
300 return 0;
301 }
302 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
303 (unsigned long)root->root_key.objectid,
304 BTRFS_ROOT_TRANS_TAG);
305 spin_unlock(&root->fs_info->fs_roots_radix_lock);
306 root->last_trans = trans->transid;
307
308 /* this is pretty tricky. We don't want to
309 * take the relocation lock in btrfs_record_root_in_trans
310 * unless we're really doing the first setup for this root in
311 * this transaction.
312 *
313 * Normally we'd use root->last_trans as a flag to decide
314 * if we want to take the expensive mutex.
315 *
316 * But, we have to set root->last_trans before we
317 * init the relocation root, otherwise, we trip over warnings
318 * in ctree.c. The solution used here is to flag ourselves
319 * with root IN_TRANS_SETUP. When this is 1, we're still
320 * fixing up the reloc trees and everyone must wait.
321 *
322 * When this is zero, they can trust root->last_trans and fly
323 * through btrfs_record_root_in_trans without having to take the
324 * lock. smp_wmb() makes sure that all the writes above are
325 * done before we pop in the zero below
326 */
327 btrfs_init_reloc_root(trans, root);
328 smp_mb__before_atomic();
329 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330 }
331 return 0;
332 }
333
334
335 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
336 struct btrfs_root *root)
337 {
338 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
339 return 0;
340
341 /*
342 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
343 * and barriers
344 */
345 smp_rmb();
346 if (root->last_trans == trans->transid &&
347 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
348 return 0;
349
350 mutex_lock(&root->fs_info->reloc_mutex);
351 record_root_in_trans(trans, root);
352 mutex_unlock(&root->fs_info->reloc_mutex);
353
354 return 0;
355 }
356
357 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
358 {
359 return (trans->state >= TRANS_STATE_BLOCKED &&
360 trans->state < TRANS_STATE_UNBLOCKED &&
361 !trans->aborted);
362 }
363
364 /* wait for commit against the current transaction to become unblocked
365 * when this is done, it is safe to start a new transaction, but the current
366 * transaction might not be fully on disk.
367 */
368 static void wait_current_trans(struct btrfs_root *root)
369 {
370 struct btrfs_transaction *cur_trans;
371
372 spin_lock(&root->fs_info->trans_lock);
373 cur_trans = root->fs_info->running_transaction;
374 if (cur_trans && is_transaction_blocked(cur_trans)) {
375 atomic_inc(&cur_trans->use_count);
376 spin_unlock(&root->fs_info->trans_lock);
377
378 wait_event(root->fs_info->transaction_wait,
379 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
380 cur_trans->aborted);
381 btrfs_put_transaction(cur_trans);
382 } else {
383 spin_unlock(&root->fs_info->trans_lock);
384 }
385 }
386
387 static int may_wait_transaction(struct btrfs_root *root, int type)
388 {
389 if (root->fs_info->log_root_recovering)
390 return 0;
391
392 if (type == TRANS_USERSPACE)
393 return 1;
394
395 if (type == TRANS_START &&
396 !atomic_read(&root->fs_info->open_ioctl_trans))
397 return 1;
398
399 return 0;
400 }
401
402 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
403 {
404 if (!root->fs_info->reloc_ctl ||
405 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
406 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
407 root->reloc_root)
408 return false;
409
410 return true;
411 }
412
413 static struct btrfs_trans_handle *
414 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
415 enum btrfs_reserve_flush_enum flush)
416 {
417 struct btrfs_trans_handle *h;
418 struct btrfs_transaction *cur_trans;
419 u64 num_bytes = 0;
420 u64 qgroup_reserved = 0;
421 bool reloc_reserved = false;
422 int ret;
423
424 /* Send isn't supposed to start transactions. */
425 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
426
427 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
428 return ERR_PTR(-EROFS);
429
430 if (current->journal_info) {
431 WARN_ON(type & TRANS_EXTWRITERS);
432 h = current->journal_info;
433 h->use_count++;
434 WARN_ON(h->use_count > 2);
435 h->orig_rsv = h->block_rsv;
436 h->block_rsv = NULL;
437 goto got_it;
438 }
439
440 /*
441 * Do the reservation before we join the transaction so we can do all
442 * the appropriate flushing if need be.
443 */
444 if (num_items > 0 && root != root->fs_info->chunk_root) {
445 if (root->fs_info->quota_enabled &&
446 is_fstree(root->root_key.objectid)) {
447 qgroup_reserved = num_items * root->nodesize;
448 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
449 if (ret)
450 return ERR_PTR(ret);
451 }
452
453 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
454 /*
455 * Do the reservation for the relocation root creation
456 */
457 if (need_reserve_reloc_root(root)) {
458 num_bytes += root->nodesize;
459 reloc_reserved = true;
460 }
461
462 ret = btrfs_block_rsv_add(root,
463 &root->fs_info->trans_block_rsv,
464 num_bytes, flush);
465 if (ret)
466 goto reserve_fail;
467 }
468 again:
469 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
470 if (!h) {
471 ret = -ENOMEM;
472 goto alloc_fail;
473 }
474
475 /*
476 * If we are JOIN_NOLOCK we're already committing a transaction and
477 * waiting on this guy, so we don't need to do the sb_start_intwrite
478 * because we're already holding a ref. We need this because we could
479 * have raced in and did an fsync() on a file which can kick a commit
480 * and then we deadlock with somebody doing a freeze.
481 *
482 * If we are ATTACH, it means we just want to catch the current
483 * transaction and commit it, so we needn't do sb_start_intwrite().
484 */
485 if (type & __TRANS_FREEZABLE)
486 sb_start_intwrite(root->fs_info->sb);
487
488 if (may_wait_transaction(root, type))
489 wait_current_trans(root);
490
491 do {
492 ret = join_transaction(root, type);
493 if (ret == -EBUSY) {
494 wait_current_trans(root);
495 if (unlikely(type == TRANS_ATTACH))
496 ret = -ENOENT;
497 }
498 } while (ret == -EBUSY);
499
500 if (ret < 0) {
501 /* We must get the transaction if we are JOIN_NOLOCK. */
502 BUG_ON(type == TRANS_JOIN_NOLOCK);
503 goto join_fail;
504 }
505
506 cur_trans = root->fs_info->running_transaction;
507
508 h->transid = cur_trans->transid;
509 h->transaction = cur_trans;
510 h->blocks_used = 0;
511 h->bytes_reserved = 0;
512 h->chunk_bytes_reserved = 0;
513 h->root = root;
514 h->delayed_ref_updates = 0;
515 h->use_count = 1;
516 h->adding_csums = 0;
517 h->block_rsv = NULL;
518 h->orig_rsv = NULL;
519 h->aborted = 0;
520 h->qgroup_reserved = 0;
521 h->delayed_ref_elem.seq = 0;
522 h->type = type;
523 h->allocating_chunk = false;
524 h->reloc_reserved = false;
525 h->sync = false;
526 INIT_LIST_HEAD(&h->qgroup_ref_list);
527 INIT_LIST_HEAD(&h->new_bgs);
528 INIT_LIST_HEAD(&h->ordered);
529
530 smp_mb();
531 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
532 may_wait_transaction(root, type)) {
533 current->journal_info = h;
534 btrfs_commit_transaction(h, root);
535 goto again;
536 }
537
538 if (num_bytes) {
539 trace_btrfs_space_reservation(root->fs_info, "transaction",
540 h->transid, num_bytes, 1);
541 h->block_rsv = &root->fs_info->trans_block_rsv;
542 h->bytes_reserved = num_bytes;
543 h->reloc_reserved = reloc_reserved;
544 }
545 h->qgroup_reserved = qgroup_reserved;
546
547 got_it:
548 btrfs_record_root_in_trans(h, root);
549
550 if (!current->journal_info && type != TRANS_USERSPACE)
551 current->journal_info = h;
552 return h;
553
554 join_fail:
555 if (type & __TRANS_FREEZABLE)
556 sb_end_intwrite(root->fs_info->sb);
557 kmem_cache_free(btrfs_trans_handle_cachep, h);
558 alloc_fail:
559 if (num_bytes)
560 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
561 num_bytes);
562 reserve_fail:
563 if (qgroup_reserved)
564 btrfs_qgroup_free(root, qgroup_reserved);
565 return ERR_PTR(ret);
566 }
567
568 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
569 int num_items)
570 {
571 return start_transaction(root, num_items, TRANS_START,
572 BTRFS_RESERVE_FLUSH_ALL);
573 }
574
575 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
576 struct btrfs_root *root, int num_items)
577 {
578 return start_transaction(root, num_items, TRANS_START,
579 BTRFS_RESERVE_FLUSH_LIMIT);
580 }
581
582 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
583 {
584 return start_transaction(root, 0, TRANS_JOIN, 0);
585 }
586
587 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
588 {
589 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
590 }
591
592 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
593 {
594 return start_transaction(root, 0, TRANS_USERSPACE, 0);
595 }
596
597 /*
598 * btrfs_attach_transaction() - catch the running transaction
599 *
600 * It is used when we want to commit the current the transaction, but
601 * don't want to start a new one.
602 *
603 * Note: If this function return -ENOENT, it just means there is no
604 * running transaction. But it is possible that the inactive transaction
605 * is still in the memory, not fully on disk. If you hope there is no
606 * inactive transaction in the fs when -ENOENT is returned, you should
607 * invoke
608 * btrfs_attach_transaction_barrier()
609 */
610 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
611 {
612 return start_transaction(root, 0, TRANS_ATTACH, 0);
613 }
614
615 /*
616 * btrfs_attach_transaction_barrier() - catch the running transaction
617 *
618 * It is similar to the above function, the differentia is this one
619 * will wait for all the inactive transactions until they fully
620 * complete.
621 */
622 struct btrfs_trans_handle *
623 btrfs_attach_transaction_barrier(struct btrfs_root *root)
624 {
625 struct btrfs_trans_handle *trans;
626
627 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
628 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
629 btrfs_wait_for_commit(root, 0);
630
631 return trans;
632 }
633
634 /* wait for a transaction commit to be fully complete */
635 static noinline void wait_for_commit(struct btrfs_root *root,
636 struct btrfs_transaction *commit)
637 {
638 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
639 }
640
641 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
642 {
643 struct btrfs_transaction *cur_trans = NULL, *t;
644 int ret = 0;
645
646 if (transid) {
647 if (transid <= root->fs_info->last_trans_committed)
648 goto out;
649
650 /* find specified transaction */
651 spin_lock(&root->fs_info->trans_lock);
652 list_for_each_entry(t, &root->fs_info->trans_list, list) {
653 if (t->transid == transid) {
654 cur_trans = t;
655 atomic_inc(&cur_trans->use_count);
656 ret = 0;
657 break;
658 }
659 if (t->transid > transid) {
660 ret = 0;
661 break;
662 }
663 }
664 spin_unlock(&root->fs_info->trans_lock);
665
666 /*
667 * The specified transaction doesn't exist, or we
668 * raced with btrfs_commit_transaction
669 */
670 if (!cur_trans) {
671 if (transid > root->fs_info->last_trans_committed)
672 ret = -EINVAL;
673 goto out;
674 }
675 } else {
676 /* find newest transaction that is committing | committed */
677 spin_lock(&root->fs_info->trans_lock);
678 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
679 list) {
680 if (t->state >= TRANS_STATE_COMMIT_START) {
681 if (t->state == TRANS_STATE_COMPLETED)
682 break;
683 cur_trans = t;
684 atomic_inc(&cur_trans->use_count);
685 break;
686 }
687 }
688 spin_unlock(&root->fs_info->trans_lock);
689 if (!cur_trans)
690 goto out; /* nothing committing|committed */
691 }
692
693 wait_for_commit(root, cur_trans);
694 btrfs_put_transaction(cur_trans);
695 out:
696 return ret;
697 }
698
699 void btrfs_throttle(struct btrfs_root *root)
700 {
701 if (!atomic_read(&root->fs_info->open_ioctl_trans))
702 wait_current_trans(root);
703 }
704
705 static int should_end_transaction(struct btrfs_trans_handle *trans,
706 struct btrfs_root *root)
707 {
708 if (root->fs_info->global_block_rsv.space_info->full &&
709 btrfs_check_space_for_delayed_refs(trans, root))
710 return 1;
711
712 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
713 }
714
715 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
716 struct btrfs_root *root)
717 {
718 struct btrfs_transaction *cur_trans = trans->transaction;
719 int updates;
720 int err;
721
722 smp_mb();
723 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
724 cur_trans->delayed_refs.flushing)
725 return 1;
726
727 updates = trans->delayed_ref_updates;
728 trans->delayed_ref_updates = 0;
729 if (updates) {
730 err = btrfs_run_delayed_refs(trans, root, updates * 2);
731 if (err) /* Error code will also eval true */
732 return err;
733 }
734
735 return should_end_transaction(trans, root);
736 }
737
738 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
739 struct btrfs_root *root, int throttle)
740 {
741 struct btrfs_transaction *cur_trans = trans->transaction;
742 struct btrfs_fs_info *info = root->fs_info;
743 unsigned long cur = trans->delayed_ref_updates;
744 int lock = (trans->type != TRANS_JOIN_NOLOCK);
745 int err = 0;
746 int must_run_delayed_refs = 0;
747
748 if (trans->use_count > 1) {
749 trans->use_count--;
750 trans->block_rsv = trans->orig_rsv;
751 return 0;
752 }
753
754 btrfs_trans_release_metadata(trans, root);
755 trans->block_rsv = NULL;
756
757 if (!list_empty(&trans->new_bgs))
758 btrfs_create_pending_block_groups(trans, root);
759
760 if (!list_empty(&trans->ordered)) {
761 spin_lock(&info->trans_lock);
762 list_splice(&trans->ordered, &cur_trans->pending_ordered);
763 spin_unlock(&info->trans_lock);
764 }
765
766 trans->delayed_ref_updates = 0;
767 if (!trans->sync) {
768 must_run_delayed_refs =
769 btrfs_should_throttle_delayed_refs(trans, root);
770 cur = max_t(unsigned long, cur, 32);
771
772 /*
773 * don't make the caller wait if they are from a NOLOCK
774 * or ATTACH transaction, it will deadlock with commit
775 */
776 if (must_run_delayed_refs == 1 &&
777 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
778 must_run_delayed_refs = 2;
779 }
780
781 if (trans->qgroup_reserved) {
782 /*
783 * the same root has to be passed here between start_transaction
784 * and end_transaction. Subvolume quota depends on this.
785 */
786 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
787 trans->qgroup_reserved = 0;
788 }
789
790 btrfs_trans_release_metadata(trans, root);
791 trans->block_rsv = NULL;
792
793 if (!list_empty(&trans->new_bgs))
794 btrfs_create_pending_block_groups(trans, root);
795
796 btrfs_trans_release_chunk_metadata(trans);
797
798 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
799 should_end_transaction(trans, root) &&
800 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
801 spin_lock(&info->trans_lock);
802 if (cur_trans->state == TRANS_STATE_RUNNING)
803 cur_trans->state = TRANS_STATE_BLOCKED;
804 spin_unlock(&info->trans_lock);
805 }
806
807 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
808 if (throttle)
809 return btrfs_commit_transaction(trans, root);
810 else
811 wake_up_process(info->transaction_kthread);
812 }
813
814 if (trans->type & __TRANS_FREEZABLE)
815 sb_end_intwrite(root->fs_info->sb);
816
817 WARN_ON(cur_trans != info->running_transaction);
818 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
819 atomic_dec(&cur_trans->num_writers);
820 extwriter_counter_dec(cur_trans, trans->type);
821
822 smp_mb();
823 if (waitqueue_active(&cur_trans->writer_wait))
824 wake_up(&cur_trans->writer_wait);
825 btrfs_put_transaction(cur_trans);
826
827 if (current->journal_info == trans)
828 current->journal_info = NULL;
829
830 if (throttle)
831 btrfs_run_delayed_iputs(root);
832
833 if (trans->aborted ||
834 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
835 wake_up_process(info->transaction_kthread);
836 err = -EIO;
837 }
838 assert_qgroups_uptodate(trans);
839
840 kmem_cache_free(btrfs_trans_handle_cachep, trans);
841 if (must_run_delayed_refs) {
842 btrfs_async_run_delayed_refs(root, cur,
843 must_run_delayed_refs == 1);
844 }
845 return err;
846 }
847
848 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
849 struct btrfs_root *root)
850 {
851 return __btrfs_end_transaction(trans, root, 0);
852 }
853
854 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
855 struct btrfs_root *root)
856 {
857 return __btrfs_end_transaction(trans, root, 1);
858 }
859
860 /*
861 * when btree blocks are allocated, they have some corresponding bits set for
862 * them in one of two extent_io trees. This is used to make sure all of
863 * those extents are sent to disk but does not wait on them
864 */
865 int btrfs_write_marked_extents(struct btrfs_root *root,
866 struct extent_io_tree *dirty_pages, int mark)
867 {
868 int err = 0;
869 int werr = 0;
870 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
871 struct extent_state *cached_state = NULL;
872 u64 start = 0;
873 u64 end;
874
875 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
876 mark, &cached_state)) {
877 bool wait_writeback = false;
878
879 err = convert_extent_bit(dirty_pages, start, end,
880 EXTENT_NEED_WAIT,
881 mark, &cached_state, GFP_NOFS);
882 /*
883 * convert_extent_bit can return -ENOMEM, which is most of the
884 * time a temporary error. So when it happens, ignore the error
885 * and wait for writeback of this range to finish - because we
886 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
887 * to btrfs_wait_marked_extents() would not know that writeback
888 * for this range started and therefore wouldn't wait for it to
889 * finish - we don't want to commit a superblock that points to
890 * btree nodes/leafs for which writeback hasn't finished yet
891 * (and without errors).
892 * We cleanup any entries left in the io tree when committing
893 * the transaction (through clear_btree_io_tree()).
894 */
895 if (err == -ENOMEM) {
896 err = 0;
897 wait_writeback = true;
898 }
899 if (!err)
900 err = filemap_fdatawrite_range(mapping, start, end);
901 if (err)
902 werr = err;
903 else if (wait_writeback)
904 werr = filemap_fdatawait_range(mapping, start, end);
905 free_extent_state(cached_state);
906 cached_state = NULL;
907 cond_resched();
908 start = end + 1;
909 }
910 return werr;
911 }
912
913 /*
914 * when btree blocks are allocated, they have some corresponding bits set for
915 * them in one of two extent_io trees. This is used to make sure all of
916 * those extents are on disk for transaction or log commit. We wait
917 * on all the pages and clear them from the dirty pages state tree
918 */
919 int btrfs_wait_marked_extents(struct btrfs_root *root,
920 struct extent_io_tree *dirty_pages, int mark)
921 {
922 int err = 0;
923 int werr = 0;
924 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
925 struct extent_state *cached_state = NULL;
926 u64 start = 0;
927 u64 end;
928 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
929 bool errors = false;
930
931 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
932 EXTENT_NEED_WAIT, &cached_state)) {
933 /*
934 * Ignore -ENOMEM errors returned by clear_extent_bit().
935 * When committing the transaction, we'll remove any entries
936 * left in the io tree. For a log commit, we don't remove them
937 * after committing the log because the tree can be accessed
938 * concurrently - we do it only at transaction commit time when
939 * it's safe to do it (through clear_btree_io_tree()).
940 */
941 err = clear_extent_bit(dirty_pages, start, end,
942 EXTENT_NEED_WAIT,
943 0, 0, &cached_state, GFP_NOFS);
944 if (err == -ENOMEM)
945 err = 0;
946 if (!err)
947 err = filemap_fdatawait_range(mapping, start, end);
948 if (err)
949 werr = err;
950 free_extent_state(cached_state);
951 cached_state = NULL;
952 cond_resched();
953 start = end + 1;
954 }
955 if (err)
956 werr = err;
957
958 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
959 if ((mark & EXTENT_DIRTY) &&
960 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
961 &btree_ino->runtime_flags))
962 errors = true;
963
964 if ((mark & EXTENT_NEW) &&
965 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
966 &btree_ino->runtime_flags))
967 errors = true;
968 } else {
969 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
970 &btree_ino->runtime_flags))
971 errors = true;
972 }
973
974 if (errors && !werr)
975 werr = -EIO;
976
977 return werr;
978 }
979
980 /*
981 * when btree blocks are allocated, they have some corresponding bits set for
982 * them in one of two extent_io trees. This is used to make sure all of
983 * those extents are on disk for transaction or log commit
984 */
985 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
986 struct extent_io_tree *dirty_pages, int mark)
987 {
988 int ret;
989 int ret2;
990 struct blk_plug plug;
991
992 blk_start_plug(&plug);
993 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
994 blk_finish_plug(&plug);
995 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
996
997 if (ret)
998 return ret;
999 if (ret2)
1000 return ret2;
1001 return 0;
1002 }
1003
1004 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1005 struct btrfs_root *root)
1006 {
1007 int ret;
1008
1009 ret = btrfs_write_and_wait_marked_extents(root,
1010 &trans->transaction->dirty_pages,
1011 EXTENT_DIRTY);
1012 clear_btree_io_tree(&trans->transaction->dirty_pages);
1013
1014 return ret;
1015 }
1016
1017 /*
1018 * this is used to update the root pointer in the tree of tree roots.
1019 *
1020 * But, in the case of the extent allocation tree, updating the root
1021 * pointer may allocate blocks which may change the root of the extent
1022 * allocation tree.
1023 *
1024 * So, this loops and repeats and makes sure the cowonly root didn't
1025 * change while the root pointer was being updated in the metadata.
1026 */
1027 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1028 struct btrfs_root *root)
1029 {
1030 int ret;
1031 u64 old_root_bytenr;
1032 u64 old_root_used;
1033 struct btrfs_root *tree_root = root->fs_info->tree_root;
1034
1035 old_root_used = btrfs_root_used(&root->root_item);
1036
1037 while (1) {
1038 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1039 if (old_root_bytenr == root->node->start &&
1040 old_root_used == btrfs_root_used(&root->root_item))
1041 break;
1042
1043 btrfs_set_root_node(&root->root_item, root->node);
1044 ret = btrfs_update_root(trans, tree_root,
1045 &root->root_key,
1046 &root->root_item);
1047 if (ret)
1048 return ret;
1049
1050 old_root_used = btrfs_root_used(&root->root_item);
1051 }
1052
1053 return 0;
1054 }
1055
1056 /*
1057 * update all the cowonly tree roots on disk
1058 *
1059 * The error handling in this function may not be obvious. Any of the
1060 * failures will cause the file system to go offline. We still need
1061 * to clean up the delayed refs.
1062 */
1063 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1064 struct btrfs_root *root)
1065 {
1066 struct btrfs_fs_info *fs_info = root->fs_info;
1067 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1068 struct list_head *io_bgs = &trans->transaction->io_bgs;
1069 struct list_head *next;
1070 struct extent_buffer *eb;
1071 int ret;
1072
1073 eb = btrfs_lock_root_node(fs_info->tree_root);
1074 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1075 0, &eb);
1076 btrfs_tree_unlock(eb);
1077 free_extent_buffer(eb);
1078
1079 if (ret)
1080 return ret;
1081
1082 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1083 if (ret)
1084 return ret;
1085
1086 ret = btrfs_run_dev_stats(trans, root->fs_info);
1087 if (ret)
1088 return ret;
1089 ret = btrfs_run_dev_replace(trans, root->fs_info);
1090 if (ret)
1091 return ret;
1092 ret = btrfs_run_qgroups(trans, root->fs_info);
1093 if (ret)
1094 return ret;
1095
1096 ret = btrfs_setup_space_cache(trans, root);
1097 if (ret)
1098 return ret;
1099
1100 /* run_qgroups might have added some more refs */
1101 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1102 if (ret)
1103 return ret;
1104 again:
1105 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1106 next = fs_info->dirty_cowonly_roots.next;
1107 list_del_init(next);
1108 root = list_entry(next, struct btrfs_root, dirty_list);
1109 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1110
1111 if (root != fs_info->extent_root)
1112 list_add_tail(&root->dirty_list,
1113 &trans->transaction->switch_commits);
1114 ret = update_cowonly_root(trans, root);
1115 if (ret)
1116 return ret;
1117 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1118 if (ret)
1119 return ret;
1120 }
1121
1122 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1123 ret = btrfs_write_dirty_block_groups(trans, root);
1124 if (ret)
1125 return ret;
1126 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1127 if (ret)
1128 return ret;
1129 }
1130
1131 if (!list_empty(&fs_info->dirty_cowonly_roots))
1132 goto again;
1133
1134 list_add_tail(&fs_info->extent_root->dirty_list,
1135 &trans->transaction->switch_commits);
1136 btrfs_after_dev_replace_commit(fs_info);
1137
1138 return 0;
1139 }
1140
1141 /*
1142 * dead roots are old snapshots that need to be deleted. This allocates
1143 * a dirty root struct and adds it into the list of dead roots that need to
1144 * be deleted
1145 */
1146 void btrfs_add_dead_root(struct btrfs_root *root)
1147 {
1148 spin_lock(&root->fs_info->trans_lock);
1149 if (list_empty(&root->root_list))
1150 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1151 spin_unlock(&root->fs_info->trans_lock);
1152 }
1153
1154 /*
1155 * update all the cowonly tree roots on disk
1156 */
1157 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root)
1159 {
1160 struct btrfs_root *gang[8];
1161 struct btrfs_fs_info *fs_info = root->fs_info;
1162 int i;
1163 int ret;
1164 int err = 0;
1165
1166 spin_lock(&fs_info->fs_roots_radix_lock);
1167 while (1) {
1168 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1169 (void **)gang, 0,
1170 ARRAY_SIZE(gang),
1171 BTRFS_ROOT_TRANS_TAG);
1172 if (ret == 0)
1173 break;
1174 for (i = 0; i < ret; i++) {
1175 root = gang[i];
1176 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1177 (unsigned long)root->root_key.objectid,
1178 BTRFS_ROOT_TRANS_TAG);
1179 spin_unlock(&fs_info->fs_roots_radix_lock);
1180
1181 btrfs_free_log(trans, root);
1182 btrfs_update_reloc_root(trans, root);
1183 btrfs_orphan_commit_root(trans, root);
1184
1185 btrfs_save_ino_cache(root, trans);
1186
1187 /* see comments in should_cow_block() */
1188 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1189 smp_mb__after_atomic();
1190
1191 if (root->commit_root != root->node) {
1192 list_add_tail(&root->dirty_list,
1193 &trans->transaction->switch_commits);
1194 btrfs_set_root_node(&root->root_item,
1195 root->node);
1196 }
1197
1198 err = btrfs_update_root(trans, fs_info->tree_root,
1199 &root->root_key,
1200 &root->root_item);
1201 spin_lock(&fs_info->fs_roots_radix_lock);
1202 if (err)
1203 break;
1204 }
1205 }
1206 spin_unlock(&fs_info->fs_roots_radix_lock);
1207 return err;
1208 }
1209
1210 /*
1211 * defrag a given btree.
1212 * Every leaf in the btree is read and defragged.
1213 */
1214 int btrfs_defrag_root(struct btrfs_root *root)
1215 {
1216 struct btrfs_fs_info *info = root->fs_info;
1217 struct btrfs_trans_handle *trans;
1218 int ret;
1219
1220 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1221 return 0;
1222
1223 while (1) {
1224 trans = btrfs_start_transaction(root, 0);
1225 if (IS_ERR(trans))
1226 return PTR_ERR(trans);
1227
1228 ret = btrfs_defrag_leaves(trans, root);
1229
1230 btrfs_end_transaction(trans, root);
1231 btrfs_btree_balance_dirty(info->tree_root);
1232 cond_resched();
1233
1234 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1235 break;
1236
1237 if (btrfs_defrag_cancelled(root->fs_info)) {
1238 pr_debug("BTRFS: defrag_root cancelled\n");
1239 ret = -EAGAIN;
1240 break;
1241 }
1242 }
1243 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1244 return ret;
1245 }
1246
1247 /*
1248 * new snapshots need to be created at a very specific time in the
1249 * transaction commit. This does the actual creation.
1250 *
1251 * Note:
1252 * If the error which may affect the commitment of the current transaction
1253 * happens, we should return the error number. If the error which just affect
1254 * the creation of the pending snapshots, just return 0.
1255 */
1256 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1257 struct btrfs_fs_info *fs_info,
1258 struct btrfs_pending_snapshot *pending)
1259 {
1260 struct btrfs_key key;
1261 struct btrfs_root_item *new_root_item;
1262 struct btrfs_root *tree_root = fs_info->tree_root;
1263 struct btrfs_root *root = pending->root;
1264 struct btrfs_root *parent_root;
1265 struct btrfs_block_rsv *rsv;
1266 struct inode *parent_inode;
1267 struct btrfs_path *path;
1268 struct btrfs_dir_item *dir_item;
1269 struct dentry *dentry;
1270 struct extent_buffer *tmp;
1271 struct extent_buffer *old;
1272 struct timespec cur_time = CURRENT_TIME;
1273 int ret = 0;
1274 u64 to_reserve = 0;
1275 u64 index = 0;
1276 u64 objectid;
1277 u64 root_flags;
1278 uuid_le new_uuid;
1279
1280 path = btrfs_alloc_path();
1281 if (!path) {
1282 pending->error = -ENOMEM;
1283 return 0;
1284 }
1285
1286 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1287 if (!new_root_item) {
1288 pending->error = -ENOMEM;
1289 goto root_item_alloc_fail;
1290 }
1291
1292 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1293 if (pending->error)
1294 goto no_free_objectid;
1295
1296 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1297
1298 if (to_reserve > 0) {
1299 pending->error = btrfs_block_rsv_add(root,
1300 &pending->block_rsv,
1301 to_reserve,
1302 BTRFS_RESERVE_NO_FLUSH);
1303 if (pending->error)
1304 goto no_free_objectid;
1305 }
1306
1307 key.objectid = objectid;
1308 key.offset = (u64)-1;
1309 key.type = BTRFS_ROOT_ITEM_KEY;
1310
1311 rsv = trans->block_rsv;
1312 trans->block_rsv = &pending->block_rsv;
1313 trans->bytes_reserved = trans->block_rsv->reserved;
1314
1315 dentry = pending->dentry;
1316 parent_inode = pending->dir;
1317 parent_root = BTRFS_I(parent_inode)->root;
1318 record_root_in_trans(trans, parent_root);
1319
1320 /*
1321 * insert the directory item
1322 */
1323 ret = btrfs_set_inode_index(parent_inode, &index);
1324 BUG_ON(ret); /* -ENOMEM */
1325
1326 /* check if there is a file/dir which has the same name. */
1327 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1328 btrfs_ino(parent_inode),
1329 dentry->d_name.name,
1330 dentry->d_name.len, 0);
1331 if (dir_item != NULL && !IS_ERR(dir_item)) {
1332 pending->error = -EEXIST;
1333 goto dir_item_existed;
1334 } else if (IS_ERR(dir_item)) {
1335 ret = PTR_ERR(dir_item);
1336 btrfs_abort_transaction(trans, root, ret);
1337 goto fail;
1338 }
1339 btrfs_release_path(path);
1340
1341 /*
1342 * pull in the delayed directory update
1343 * and the delayed inode item
1344 * otherwise we corrupt the FS during
1345 * snapshot
1346 */
1347 ret = btrfs_run_delayed_items(trans, root);
1348 if (ret) { /* Transaction aborted */
1349 btrfs_abort_transaction(trans, root, ret);
1350 goto fail;
1351 }
1352
1353 record_root_in_trans(trans, root);
1354 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1355 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1356 btrfs_check_and_init_root_item(new_root_item);
1357
1358 root_flags = btrfs_root_flags(new_root_item);
1359 if (pending->readonly)
1360 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1361 else
1362 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1363 btrfs_set_root_flags(new_root_item, root_flags);
1364
1365 btrfs_set_root_generation_v2(new_root_item,
1366 trans->transid);
1367 uuid_le_gen(&new_uuid);
1368 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1369 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1370 BTRFS_UUID_SIZE);
1371 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1372 memset(new_root_item->received_uuid, 0,
1373 sizeof(new_root_item->received_uuid));
1374 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1375 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1376 btrfs_set_root_stransid(new_root_item, 0);
1377 btrfs_set_root_rtransid(new_root_item, 0);
1378 }
1379 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1380 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1381 btrfs_set_root_otransid(new_root_item, trans->transid);
1382
1383 old = btrfs_lock_root_node(root);
1384 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1385 if (ret) {
1386 btrfs_tree_unlock(old);
1387 free_extent_buffer(old);
1388 btrfs_abort_transaction(trans, root, ret);
1389 goto fail;
1390 }
1391
1392 btrfs_set_lock_blocking(old);
1393
1394 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1395 /* clean up in any case */
1396 btrfs_tree_unlock(old);
1397 free_extent_buffer(old);
1398 if (ret) {
1399 btrfs_abort_transaction(trans, root, ret);
1400 goto fail;
1401 }
1402
1403 /*
1404 * We need to flush delayed refs in order to make sure all of our quota
1405 * operations have been done before we call btrfs_qgroup_inherit.
1406 */
1407 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1408 if (ret) {
1409 btrfs_abort_transaction(trans, root, ret);
1410 goto fail;
1411 }
1412
1413 ret = btrfs_qgroup_inherit(trans, fs_info,
1414 root->root_key.objectid,
1415 objectid, pending->inherit);
1416 if (ret) {
1417 btrfs_abort_transaction(trans, root, ret);
1418 goto fail;
1419 }
1420
1421 /* see comments in should_cow_block() */
1422 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1423 smp_wmb();
1424
1425 btrfs_set_root_node(new_root_item, tmp);
1426 /* record when the snapshot was created in key.offset */
1427 key.offset = trans->transid;
1428 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1429 btrfs_tree_unlock(tmp);
1430 free_extent_buffer(tmp);
1431 if (ret) {
1432 btrfs_abort_transaction(trans, root, ret);
1433 goto fail;
1434 }
1435
1436 /*
1437 * insert root back/forward references
1438 */
1439 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1440 parent_root->root_key.objectid,
1441 btrfs_ino(parent_inode), index,
1442 dentry->d_name.name, dentry->d_name.len);
1443 if (ret) {
1444 btrfs_abort_transaction(trans, root, ret);
1445 goto fail;
1446 }
1447
1448 key.offset = (u64)-1;
1449 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1450 if (IS_ERR(pending->snap)) {
1451 ret = PTR_ERR(pending->snap);
1452 btrfs_abort_transaction(trans, root, ret);
1453 goto fail;
1454 }
1455
1456 ret = btrfs_reloc_post_snapshot(trans, pending);
1457 if (ret) {
1458 btrfs_abort_transaction(trans, root, ret);
1459 goto fail;
1460 }
1461
1462 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1463 if (ret) {
1464 btrfs_abort_transaction(trans, root, ret);
1465 goto fail;
1466 }
1467
1468 ret = btrfs_insert_dir_item(trans, parent_root,
1469 dentry->d_name.name, dentry->d_name.len,
1470 parent_inode, &key,
1471 BTRFS_FT_DIR, index);
1472 /* We have check then name at the beginning, so it is impossible. */
1473 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1474 if (ret) {
1475 btrfs_abort_transaction(trans, root, ret);
1476 goto fail;
1477 }
1478
1479 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1480 dentry->d_name.len * 2);
1481 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1482 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1483 if (ret) {
1484 btrfs_abort_transaction(trans, root, ret);
1485 goto fail;
1486 }
1487 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1488 BTRFS_UUID_KEY_SUBVOL, objectid);
1489 if (ret) {
1490 btrfs_abort_transaction(trans, root, ret);
1491 goto fail;
1492 }
1493 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1494 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1495 new_root_item->received_uuid,
1496 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1497 objectid);
1498 if (ret && ret != -EEXIST) {
1499 btrfs_abort_transaction(trans, root, ret);
1500 goto fail;
1501 }
1502 }
1503 fail:
1504 pending->error = ret;
1505 dir_item_existed:
1506 trans->block_rsv = rsv;
1507 trans->bytes_reserved = 0;
1508 no_free_objectid:
1509 kfree(new_root_item);
1510 root_item_alloc_fail:
1511 btrfs_free_path(path);
1512 return ret;
1513 }
1514
1515 /*
1516 * create all the snapshots we've scheduled for creation
1517 */
1518 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1519 struct btrfs_fs_info *fs_info)
1520 {
1521 struct btrfs_pending_snapshot *pending, *next;
1522 struct list_head *head = &trans->transaction->pending_snapshots;
1523 int ret = 0;
1524
1525 list_for_each_entry_safe(pending, next, head, list) {
1526 list_del(&pending->list);
1527 ret = create_pending_snapshot(trans, fs_info, pending);
1528 if (ret)
1529 break;
1530 }
1531 return ret;
1532 }
1533
1534 static void update_super_roots(struct btrfs_root *root)
1535 {
1536 struct btrfs_root_item *root_item;
1537 struct btrfs_super_block *super;
1538
1539 super = root->fs_info->super_copy;
1540
1541 root_item = &root->fs_info->chunk_root->root_item;
1542 super->chunk_root = root_item->bytenr;
1543 super->chunk_root_generation = root_item->generation;
1544 super->chunk_root_level = root_item->level;
1545
1546 root_item = &root->fs_info->tree_root->root_item;
1547 super->root = root_item->bytenr;
1548 super->generation = root_item->generation;
1549 super->root_level = root_item->level;
1550 if (btrfs_test_opt(root, SPACE_CACHE))
1551 super->cache_generation = root_item->generation;
1552 if (root->fs_info->update_uuid_tree_gen)
1553 super->uuid_tree_generation = root_item->generation;
1554 }
1555
1556 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1557 {
1558 struct btrfs_transaction *trans;
1559 int ret = 0;
1560
1561 spin_lock(&info->trans_lock);
1562 trans = info->running_transaction;
1563 if (trans)
1564 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1565 spin_unlock(&info->trans_lock);
1566 return ret;
1567 }
1568
1569 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1570 {
1571 struct btrfs_transaction *trans;
1572 int ret = 0;
1573
1574 spin_lock(&info->trans_lock);
1575 trans = info->running_transaction;
1576 if (trans)
1577 ret = is_transaction_blocked(trans);
1578 spin_unlock(&info->trans_lock);
1579 return ret;
1580 }
1581
1582 /*
1583 * wait for the current transaction commit to start and block subsequent
1584 * transaction joins
1585 */
1586 static void wait_current_trans_commit_start(struct btrfs_root *root,
1587 struct btrfs_transaction *trans)
1588 {
1589 wait_event(root->fs_info->transaction_blocked_wait,
1590 trans->state >= TRANS_STATE_COMMIT_START ||
1591 trans->aborted);
1592 }
1593
1594 /*
1595 * wait for the current transaction to start and then become unblocked.
1596 * caller holds ref.
1597 */
1598 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1599 struct btrfs_transaction *trans)
1600 {
1601 wait_event(root->fs_info->transaction_wait,
1602 trans->state >= TRANS_STATE_UNBLOCKED ||
1603 trans->aborted);
1604 }
1605
1606 /*
1607 * commit transactions asynchronously. once btrfs_commit_transaction_async
1608 * returns, any subsequent transaction will not be allowed to join.
1609 */
1610 struct btrfs_async_commit {
1611 struct btrfs_trans_handle *newtrans;
1612 struct btrfs_root *root;
1613 struct work_struct work;
1614 };
1615
1616 static void do_async_commit(struct work_struct *work)
1617 {
1618 struct btrfs_async_commit *ac =
1619 container_of(work, struct btrfs_async_commit, work);
1620
1621 /*
1622 * We've got freeze protection passed with the transaction.
1623 * Tell lockdep about it.
1624 */
1625 if (ac->newtrans->type & __TRANS_FREEZABLE)
1626 rwsem_acquire_read(
1627 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1628 0, 1, _THIS_IP_);
1629
1630 current->journal_info = ac->newtrans;
1631
1632 btrfs_commit_transaction(ac->newtrans, ac->root);
1633 kfree(ac);
1634 }
1635
1636 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1637 struct btrfs_root *root,
1638 int wait_for_unblock)
1639 {
1640 struct btrfs_async_commit *ac;
1641 struct btrfs_transaction *cur_trans;
1642
1643 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1644 if (!ac)
1645 return -ENOMEM;
1646
1647 INIT_WORK(&ac->work, do_async_commit);
1648 ac->root = root;
1649 ac->newtrans = btrfs_join_transaction(root);
1650 if (IS_ERR(ac->newtrans)) {
1651 int err = PTR_ERR(ac->newtrans);
1652 kfree(ac);
1653 return err;
1654 }
1655
1656 /* take transaction reference */
1657 cur_trans = trans->transaction;
1658 atomic_inc(&cur_trans->use_count);
1659
1660 btrfs_end_transaction(trans, root);
1661
1662 /*
1663 * Tell lockdep we've released the freeze rwsem, since the
1664 * async commit thread will be the one to unlock it.
1665 */
1666 if (ac->newtrans->type & __TRANS_FREEZABLE)
1667 rwsem_release(
1668 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1669 1, _THIS_IP_);
1670
1671 schedule_work(&ac->work);
1672
1673 /* wait for transaction to start and unblock */
1674 if (wait_for_unblock)
1675 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1676 else
1677 wait_current_trans_commit_start(root, cur_trans);
1678
1679 if (current->journal_info == trans)
1680 current->journal_info = NULL;
1681
1682 btrfs_put_transaction(cur_trans);
1683 return 0;
1684 }
1685
1686
1687 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1688 struct btrfs_root *root, int err)
1689 {
1690 struct btrfs_transaction *cur_trans = trans->transaction;
1691 DEFINE_WAIT(wait);
1692
1693 WARN_ON(trans->use_count > 1);
1694
1695 btrfs_abort_transaction(trans, root, err);
1696
1697 spin_lock(&root->fs_info->trans_lock);
1698
1699 /*
1700 * If the transaction is removed from the list, it means this
1701 * transaction has been committed successfully, so it is impossible
1702 * to call the cleanup function.
1703 */
1704 BUG_ON(list_empty(&cur_trans->list));
1705
1706 list_del_init(&cur_trans->list);
1707 if (cur_trans == root->fs_info->running_transaction) {
1708 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1709 spin_unlock(&root->fs_info->trans_lock);
1710 wait_event(cur_trans->writer_wait,
1711 atomic_read(&cur_trans->num_writers) == 1);
1712
1713 spin_lock(&root->fs_info->trans_lock);
1714 }
1715 spin_unlock(&root->fs_info->trans_lock);
1716
1717 btrfs_cleanup_one_transaction(trans->transaction, root);
1718
1719 spin_lock(&root->fs_info->trans_lock);
1720 if (cur_trans == root->fs_info->running_transaction)
1721 root->fs_info->running_transaction = NULL;
1722 spin_unlock(&root->fs_info->trans_lock);
1723
1724 if (trans->type & __TRANS_FREEZABLE)
1725 sb_end_intwrite(root->fs_info->sb);
1726 btrfs_put_transaction(cur_trans);
1727 btrfs_put_transaction(cur_trans);
1728
1729 trace_btrfs_transaction_commit(root);
1730
1731 if (current->journal_info == trans)
1732 current->journal_info = NULL;
1733 btrfs_scrub_cancel(root->fs_info);
1734
1735 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1736 }
1737
1738 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1739 {
1740 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1741 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1742 return 0;
1743 }
1744
1745 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1746 {
1747 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1748 btrfs_wait_ordered_roots(fs_info, -1);
1749 }
1750
1751 static inline void
1752 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1753 struct btrfs_fs_info *fs_info)
1754 {
1755 struct btrfs_ordered_extent *ordered;
1756
1757 spin_lock(&fs_info->trans_lock);
1758 while (!list_empty(&cur_trans->pending_ordered)) {
1759 ordered = list_first_entry(&cur_trans->pending_ordered,
1760 struct btrfs_ordered_extent,
1761 trans_list);
1762 list_del_init(&ordered->trans_list);
1763 spin_unlock(&fs_info->trans_lock);
1764
1765 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1766 &ordered->flags));
1767 btrfs_put_ordered_extent(ordered);
1768 spin_lock(&fs_info->trans_lock);
1769 }
1770 spin_unlock(&fs_info->trans_lock);
1771 }
1772
1773 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1774 struct btrfs_root *root)
1775 {
1776 struct btrfs_transaction *cur_trans = trans->transaction;
1777 struct btrfs_transaction *prev_trans = NULL;
1778 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1779 int ret;
1780
1781 /* Stop the commit early if ->aborted is set */
1782 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1783 ret = cur_trans->aborted;
1784 btrfs_end_transaction(trans, root);
1785 return ret;
1786 }
1787
1788 /* make a pass through all the delayed refs we have so far
1789 * any runnings procs may add more while we are here
1790 */
1791 ret = btrfs_run_delayed_refs(trans, root, 0);
1792 if (ret) {
1793 btrfs_end_transaction(trans, root);
1794 return ret;
1795 }
1796
1797 btrfs_trans_release_metadata(trans, root);
1798 trans->block_rsv = NULL;
1799 if (trans->qgroup_reserved) {
1800 btrfs_qgroup_free(root, trans->qgroup_reserved);
1801 trans->qgroup_reserved = 0;
1802 }
1803
1804 cur_trans = trans->transaction;
1805
1806 /*
1807 * set the flushing flag so procs in this transaction have to
1808 * start sending their work down.
1809 */
1810 cur_trans->delayed_refs.flushing = 1;
1811 smp_wmb();
1812
1813 if (!list_empty(&trans->new_bgs))
1814 btrfs_create_pending_block_groups(trans, root);
1815
1816 ret = btrfs_run_delayed_refs(trans, root, 0);
1817 if (ret) {
1818 btrfs_end_transaction(trans, root);
1819 return ret;
1820 }
1821
1822 if (!cur_trans->dirty_bg_run) {
1823 int run_it = 0;
1824
1825 /* this mutex is also taken before trying to set
1826 * block groups readonly. We need to make sure
1827 * that nobody has set a block group readonly
1828 * after a extents from that block group have been
1829 * allocated for cache files. btrfs_set_block_group_ro
1830 * will wait for the transaction to commit if it
1831 * finds dirty_bg_run = 1
1832 *
1833 * The dirty_bg_run flag is also used to make sure only
1834 * one process starts all the block group IO. It wouldn't
1835 * hurt to have more than one go through, but there's no
1836 * real advantage to it either.
1837 */
1838 mutex_lock(&root->fs_info->ro_block_group_mutex);
1839 if (!cur_trans->dirty_bg_run) {
1840 run_it = 1;
1841 cur_trans->dirty_bg_run = 1;
1842 }
1843 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1844
1845 if (run_it)
1846 ret = btrfs_start_dirty_block_groups(trans, root);
1847 }
1848 if (ret) {
1849 btrfs_end_transaction(trans, root);
1850 return ret;
1851 }
1852
1853 spin_lock(&root->fs_info->trans_lock);
1854 list_splice(&trans->ordered, &cur_trans->pending_ordered);
1855 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1856 spin_unlock(&root->fs_info->trans_lock);
1857 atomic_inc(&cur_trans->use_count);
1858 ret = btrfs_end_transaction(trans, root);
1859
1860 wait_for_commit(root, cur_trans);
1861
1862 if (unlikely(cur_trans->aborted))
1863 ret = cur_trans->aborted;
1864
1865 btrfs_put_transaction(cur_trans);
1866
1867 return ret;
1868 }
1869
1870 cur_trans->state = TRANS_STATE_COMMIT_START;
1871 wake_up(&root->fs_info->transaction_blocked_wait);
1872
1873 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1874 prev_trans = list_entry(cur_trans->list.prev,
1875 struct btrfs_transaction, list);
1876 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1877 atomic_inc(&prev_trans->use_count);
1878 spin_unlock(&root->fs_info->trans_lock);
1879
1880 wait_for_commit(root, prev_trans);
1881
1882 btrfs_put_transaction(prev_trans);
1883 } else {
1884 spin_unlock(&root->fs_info->trans_lock);
1885 }
1886 } else {
1887 spin_unlock(&root->fs_info->trans_lock);
1888 }
1889
1890 extwriter_counter_dec(cur_trans, trans->type);
1891
1892 ret = btrfs_start_delalloc_flush(root->fs_info);
1893 if (ret)
1894 goto cleanup_transaction;
1895
1896 ret = btrfs_run_delayed_items(trans, root);
1897 if (ret)
1898 goto cleanup_transaction;
1899
1900 wait_event(cur_trans->writer_wait,
1901 extwriter_counter_read(cur_trans) == 0);
1902
1903 /* some pending stuffs might be added after the previous flush. */
1904 ret = btrfs_run_delayed_items(trans, root);
1905 if (ret)
1906 goto cleanup_transaction;
1907
1908 btrfs_wait_delalloc_flush(root->fs_info);
1909
1910 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1911
1912 btrfs_scrub_pause(root);
1913 /*
1914 * Ok now we need to make sure to block out any other joins while we
1915 * commit the transaction. We could have started a join before setting
1916 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1917 */
1918 spin_lock(&root->fs_info->trans_lock);
1919 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1920 spin_unlock(&root->fs_info->trans_lock);
1921 wait_event(cur_trans->writer_wait,
1922 atomic_read(&cur_trans->num_writers) == 1);
1923
1924 /* ->aborted might be set after the previous check, so check it */
1925 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1926 ret = cur_trans->aborted;
1927 goto scrub_continue;
1928 }
1929 /*
1930 * the reloc mutex makes sure that we stop
1931 * the balancing code from coming in and moving
1932 * extents around in the middle of the commit
1933 */
1934 mutex_lock(&root->fs_info->reloc_mutex);
1935
1936 /*
1937 * We needn't worry about the delayed items because we will
1938 * deal with them in create_pending_snapshot(), which is the
1939 * core function of the snapshot creation.
1940 */
1941 ret = create_pending_snapshots(trans, root->fs_info);
1942 if (ret) {
1943 mutex_unlock(&root->fs_info->reloc_mutex);
1944 goto scrub_continue;
1945 }
1946
1947 /*
1948 * We insert the dir indexes of the snapshots and update the inode
1949 * of the snapshots' parents after the snapshot creation, so there
1950 * are some delayed items which are not dealt with. Now deal with
1951 * them.
1952 *
1953 * We needn't worry that this operation will corrupt the snapshots,
1954 * because all the tree which are snapshoted will be forced to COW
1955 * the nodes and leaves.
1956 */
1957 ret = btrfs_run_delayed_items(trans, root);
1958 if (ret) {
1959 mutex_unlock(&root->fs_info->reloc_mutex);
1960 goto scrub_continue;
1961 }
1962
1963 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1964 if (ret) {
1965 mutex_unlock(&root->fs_info->reloc_mutex);
1966 goto scrub_continue;
1967 }
1968
1969 /*
1970 * make sure none of the code above managed to slip in a
1971 * delayed item
1972 */
1973 btrfs_assert_delayed_root_empty(root);
1974
1975 WARN_ON(cur_trans != trans->transaction);
1976
1977 /* btrfs_commit_tree_roots is responsible for getting the
1978 * various roots consistent with each other. Every pointer
1979 * in the tree of tree roots has to point to the most up to date
1980 * root for every subvolume and other tree. So, we have to keep
1981 * the tree logging code from jumping in and changing any
1982 * of the trees.
1983 *
1984 * At this point in the commit, there can't be any tree-log
1985 * writers, but a little lower down we drop the trans mutex
1986 * and let new people in. By holding the tree_log_mutex
1987 * from now until after the super is written, we avoid races
1988 * with the tree-log code.
1989 */
1990 mutex_lock(&root->fs_info->tree_log_mutex);
1991
1992 ret = commit_fs_roots(trans, root);
1993 if (ret) {
1994 mutex_unlock(&root->fs_info->tree_log_mutex);
1995 mutex_unlock(&root->fs_info->reloc_mutex);
1996 goto scrub_continue;
1997 }
1998
1999 /*
2000 * Since the transaction is done, we can apply the pending changes
2001 * before the next transaction.
2002 */
2003 btrfs_apply_pending_changes(root->fs_info);
2004
2005 /* commit_fs_roots gets rid of all the tree log roots, it is now
2006 * safe to free the root of tree log roots
2007 */
2008 btrfs_free_log_root_tree(trans, root->fs_info);
2009
2010 ret = commit_cowonly_roots(trans, root);
2011 if (ret) {
2012 mutex_unlock(&root->fs_info->tree_log_mutex);
2013 mutex_unlock(&root->fs_info->reloc_mutex);
2014 goto scrub_continue;
2015 }
2016
2017 /*
2018 * The tasks which save the space cache and inode cache may also
2019 * update ->aborted, check it.
2020 */
2021 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2022 ret = cur_trans->aborted;
2023 mutex_unlock(&root->fs_info->tree_log_mutex);
2024 mutex_unlock(&root->fs_info->reloc_mutex);
2025 goto scrub_continue;
2026 }
2027
2028 btrfs_prepare_extent_commit(trans, root);
2029
2030 cur_trans = root->fs_info->running_transaction;
2031
2032 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2033 root->fs_info->tree_root->node);
2034 list_add_tail(&root->fs_info->tree_root->dirty_list,
2035 &cur_trans->switch_commits);
2036
2037 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2038 root->fs_info->chunk_root->node);
2039 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2040 &cur_trans->switch_commits);
2041
2042 switch_commit_roots(cur_trans, root->fs_info);
2043
2044 assert_qgroups_uptodate(trans);
2045 ASSERT(list_empty(&cur_trans->dirty_bgs));
2046 ASSERT(list_empty(&cur_trans->io_bgs));
2047 update_super_roots(root);
2048
2049 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2050 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2051 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2052 sizeof(*root->fs_info->super_copy));
2053
2054 btrfs_update_commit_device_size(root->fs_info);
2055 btrfs_update_commit_device_bytes_used(root, cur_trans);
2056
2057 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2058 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2059
2060 btrfs_trans_release_chunk_metadata(trans);
2061
2062 spin_lock(&root->fs_info->trans_lock);
2063 cur_trans->state = TRANS_STATE_UNBLOCKED;
2064 root->fs_info->running_transaction = NULL;
2065 spin_unlock(&root->fs_info->trans_lock);
2066 mutex_unlock(&root->fs_info->reloc_mutex);
2067
2068 wake_up(&root->fs_info->transaction_wait);
2069
2070 ret = btrfs_write_and_wait_transaction(trans, root);
2071 if (ret) {
2072 btrfs_error(root->fs_info, ret,
2073 "Error while writing out transaction");
2074 mutex_unlock(&root->fs_info->tree_log_mutex);
2075 goto scrub_continue;
2076 }
2077
2078 ret = write_ctree_super(trans, root, 0);
2079 if (ret) {
2080 mutex_unlock(&root->fs_info->tree_log_mutex);
2081 goto scrub_continue;
2082 }
2083
2084 /*
2085 * the super is written, we can safely allow the tree-loggers
2086 * to go about their business
2087 */
2088 mutex_unlock(&root->fs_info->tree_log_mutex);
2089
2090 btrfs_finish_extent_commit(trans, root);
2091
2092 if (cur_trans->have_free_bgs)
2093 btrfs_clear_space_info_full(root->fs_info);
2094
2095 root->fs_info->last_trans_committed = cur_trans->transid;
2096 /*
2097 * We needn't acquire the lock here because there is no other task
2098 * which can change it.
2099 */
2100 cur_trans->state = TRANS_STATE_COMPLETED;
2101 wake_up(&cur_trans->commit_wait);
2102
2103 spin_lock(&root->fs_info->trans_lock);
2104 list_del_init(&cur_trans->list);
2105 spin_unlock(&root->fs_info->trans_lock);
2106
2107 btrfs_put_transaction(cur_trans);
2108 btrfs_put_transaction(cur_trans);
2109
2110 if (trans->type & __TRANS_FREEZABLE)
2111 sb_end_intwrite(root->fs_info->sb);
2112
2113 trace_btrfs_transaction_commit(root);
2114
2115 btrfs_scrub_continue(root);
2116
2117 if (current->journal_info == trans)
2118 current->journal_info = NULL;
2119
2120 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2121
2122 if (current != root->fs_info->transaction_kthread)
2123 btrfs_run_delayed_iputs(root);
2124
2125 return ret;
2126
2127 scrub_continue:
2128 btrfs_scrub_continue(root);
2129 cleanup_transaction:
2130 btrfs_trans_release_metadata(trans, root);
2131 btrfs_trans_release_chunk_metadata(trans);
2132 trans->block_rsv = NULL;
2133 if (trans->qgroup_reserved) {
2134 btrfs_qgroup_free(root, trans->qgroup_reserved);
2135 trans->qgroup_reserved = 0;
2136 }
2137 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2138 if (current->journal_info == trans)
2139 current->journal_info = NULL;
2140 cleanup_transaction(trans, root, ret);
2141
2142 return ret;
2143 }
2144
2145 /*
2146 * return < 0 if error
2147 * 0 if there are no more dead_roots at the time of call
2148 * 1 there are more to be processed, call me again
2149 *
2150 * The return value indicates there are certainly more snapshots to delete, but
2151 * if there comes a new one during processing, it may return 0. We don't mind,
2152 * because btrfs_commit_super will poke cleaner thread and it will process it a
2153 * few seconds later.
2154 */
2155 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2156 {
2157 int ret;
2158 struct btrfs_fs_info *fs_info = root->fs_info;
2159
2160 spin_lock(&fs_info->trans_lock);
2161 if (list_empty(&fs_info->dead_roots)) {
2162 spin_unlock(&fs_info->trans_lock);
2163 return 0;
2164 }
2165 root = list_first_entry(&fs_info->dead_roots,
2166 struct btrfs_root, root_list);
2167 list_del_init(&root->root_list);
2168 spin_unlock(&fs_info->trans_lock);
2169
2170 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2171
2172 btrfs_kill_all_delayed_nodes(root);
2173
2174 if (btrfs_header_backref_rev(root->node) <
2175 BTRFS_MIXED_BACKREF_REV)
2176 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2177 else
2178 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2179
2180 return (ret < 0) ? 0 : 1;
2181 }
2182
2183 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2184 {
2185 unsigned long prev;
2186 unsigned long bit;
2187
2188 prev = xchg(&fs_info->pending_changes, 0);
2189 if (!prev)
2190 return;
2191
2192 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2193 if (prev & bit)
2194 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2195 prev &= ~bit;
2196
2197 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2198 if (prev & bit)
2199 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2200 prev &= ~bit;
2201
2202 bit = 1 << BTRFS_PENDING_COMMIT;
2203 if (prev & bit)
2204 btrfs_debug(fs_info, "pending commit done");
2205 prev &= ~bit;
2206
2207 if (prev)
2208 btrfs_warn(fs_info,
2209 "unknown pending changes left 0x%lx, ignoring", prev);
2210 }
This page took 0.075769 seconds and 5 git commands to generate.