04bbfb1052ebfee9db25427d5542e795cac351cd
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 void put_transaction(struct btrfs_transaction *transaction)
37 {
38 WARN_ON(atomic_read(&transaction->use_count) == 0);
39 if (atomic_dec_and_test(&transaction->use_count)) {
40 BUG_ON(!list_empty(&transaction->list));
41 WARN_ON(transaction->delayed_refs.root.rb_node);
42 memset(transaction, 0, sizeof(*transaction));
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54 * either allocate a new transaction or hop into the existing one
55 */
56 static noinline int join_transaction(struct btrfs_root *root, int type)
57 {
58 struct btrfs_transaction *cur_trans;
59 struct btrfs_fs_info *fs_info = root->fs_info;
60
61 spin_lock(&fs_info->trans_lock);
62 loop:
63 /* The file system has been taken offline. No new transactions. */
64 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 spin_unlock(&fs_info->trans_lock);
66 return -EROFS;
67 }
68
69 if (fs_info->trans_no_join) {
70 /*
71 * If we are JOIN_NOLOCK we're already committing a current
72 * transaction, we just need a handle to deal with something
73 * when committing the transaction, such as inode cache and
74 * space cache. It is a special case.
75 */
76 if (type != TRANS_JOIN_NOLOCK) {
77 spin_unlock(&fs_info->trans_lock);
78 return -EBUSY;
79 }
80 }
81
82 cur_trans = fs_info->running_transaction;
83 if (cur_trans) {
84 if (cur_trans->aborted) {
85 spin_unlock(&fs_info->trans_lock);
86 return cur_trans->aborted;
87 }
88 atomic_inc(&cur_trans->use_count);
89 atomic_inc(&cur_trans->num_writers);
90 cur_trans->num_joined++;
91 spin_unlock(&fs_info->trans_lock);
92 return 0;
93 }
94 spin_unlock(&fs_info->trans_lock);
95
96 /*
97 * If we are ATTACH, we just want to catch the current transaction,
98 * and commit it. If there is no transaction, just return ENOENT.
99 */
100 if (type == TRANS_ATTACH)
101 return -ENOENT;
102
103 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
104 if (!cur_trans)
105 return -ENOMEM;
106
107 spin_lock(&fs_info->trans_lock);
108 if (fs_info->running_transaction) {
109 /*
110 * someone started a transaction after we unlocked. Make sure
111 * to redo the trans_no_join checks above
112 */
113 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
114 cur_trans = fs_info->running_transaction;
115 goto loop;
116 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 spin_unlock(&fs_info->trans_lock);
118 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
119 return -EROFS;
120 }
121
122 atomic_set(&cur_trans->num_writers, 1);
123 cur_trans->num_joined = 0;
124 init_waitqueue_head(&cur_trans->writer_wait);
125 init_waitqueue_head(&cur_trans->commit_wait);
126 cur_trans->in_commit = 0;
127 cur_trans->blocked = 0;
128 /*
129 * One for this trans handle, one so it will live on until we
130 * commit the transaction.
131 */
132 atomic_set(&cur_trans->use_count, 2);
133 cur_trans->commit_done = 0;
134 cur_trans->start_time = get_seconds();
135
136 cur_trans->delayed_refs.root = RB_ROOT;
137 cur_trans->delayed_refs.num_entries = 0;
138 cur_trans->delayed_refs.num_heads_ready = 0;
139 cur_trans->delayed_refs.num_heads = 0;
140 cur_trans->delayed_refs.flushing = 0;
141 cur_trans->delayed_refs.run_delayed_start = 0;
142
143 /*
144 * although the tree mod log is per file system and not per transaction,
145 * the log must never go across transaction boundaries.
146 */
147 smp_mb();
148 if (!list_empty(&fs_info->tree_mod_seq_list)) {
149 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
150 "creating a fresh transaction\n");
151 WARN_ON(1);
152 }
153 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
154 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
155 "creating a fresh transaction\n");
156 WARN_ON(1);
157 }
158 atomic_set(&fs_info->tree_mod_seq, 0);
159
160 spin_lock_init(&cur_trans->commit_lock);
161 spin_lock_init(&cur_trans->delayed_refs.lock);
162
163 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
164 list_add_tail(&cur_trans->list, &fs_info->trans_list);
165 extent_io_tree_init(&cur_trans->dirty_pages,
166 fs_info->btree_inode->i_mapping);
167 fs_info->generation++;
168 cur_trans->transid = fs_info->generation;
169 fs_info->running_transaction = cur_trans;
170 cur_trans->aborted = 0;
171 spin_unlock(&fs_info->trans_lock);
172
173 return 0;
174 }
175
176 /*
177 * this does all the record keeping required to make sure that a reference
178 * counted root is properly recorded in a given transaction. This is required
179 * to make sure the old root from before we joined the transaction is deleted
180 * when the transaction commits
181 */
182 static int record_root_in_trans(struct btrfs_trans_handle *trans,
183 struct btrfs_root *root)
184 {
185 if (root->ref_cows && root->last_trans < trans->transid) {
186 WARN_ON(root == root->fs_info->extent_root);
187 WARN_ON(root->commit_root != root->node);
188
189 /*
190 * see below for in_trans_setup usage rules
191 * we have the reloc mutex held now, so there
192 * is only one writer in this function
193 */
194 root->in_trans_setup = 1;
195
196 /* make sure readers find in_trans_setup before
197 * they find our root->last_trans update
198 */
199 smp_wmb();
200
201 spin_lock(&root->fs_info->fs_roots_radix_lock);
202 if (root->last_trans == trans->transid) {
203 spin_unlock(&root->fs_info->fs_roots_radix_lock);
204 return 0;
205 }
206 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
207 (unsigned long)root->root_key.objectid,
208 BTRFS_ROOT_TRANS_TAG);
209 spin_unlock(&root->fs_info->fs_roots_radix_lock);
210 root->last_trans = trans->transid;
211
212 /* this is pretty tricky. We don't want to
213 * take the relocation lock in btrfs_record_root_in_trans
214 * unless we're really doing the first setup for this root in
215 * this transaction.
216 *
217 * Normally we'd use root->last_trans as a flag to decide
218 * if we want to take the expensive mutex.
219 *
220 * But, we have to set root->last_trans before we
221 * init the relocation root, otherwise, we trip over warnings
222 * in ctree.c. The solution used here is to flag ourselves
223 * with root->in_trans_setup. When this is 1, we're still
224 * fixing up the reloc trees and everyone must wait.
225 *
226 * When this is zero, they can trust root->last_trans and fly
227 * through btrfs_record_root_in_trans without having to take the
228 * lock. smp_wmb() makes sure that all the writes above are
229 * done before we pop in the zero below
230 */
231 btrfs_init_reloc_root(trans, root);
232 smp_wmb();
233 root->in_trans_setup = 0;
234 }
235 return 0;
236 }
237
238
239 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
240 struct btrfs_root *root)
241 {
242 if (!root->ref_cows)
243 return 0;
244
245 /*
246 * see record_root_in_trans for comments about in_trans_setup usage
247 * and barriers
248 */
249 smp_rmb();
250 if (root->last_trans == trans->transid &&
251 !root->in_trans_setup)
252 return 0;
253
254 mutex_lock(&root->fs_info->reloc_mutex);
255 record_root_in_trans(trans, root);
256 mutex_unlock(&root->fs_info->reloc_mutex);
257
258 return 0;
259 }
260
261 /* wait for commit against the current transaction to become unblocked
262 * when this is done, it is safe to start a new transaction, but the current
263 * transaction might not be fully on disk.
264 */
265 static void wait_current_trans(struct btrfs_root *root)
266 {
267 struct btrfs_transaction *cur_trans;
268
269 spin_lock(&root->fs_info->trans_lock);
270 cur_trans = root->fs_info->running_transaction;
271 if (cur_trans && cur_trans->blocked) {
272 atomic_inc(&cur_trans->use_count);
273 spin_unlock(&root->fs_info->trans_lock);
274
275 wait_event(root->fs_info->transaction_wait,
276 !cur_trans->blocked);
277 put_transaction(cur_trans);
278 } else {
279 spin_unlock(&root->fs_info->trans_lock);
280 }
281 }
282
283 static int may_wait_transaction(struct btrfs_root *root, int type)
284 {
285 if (root->fs_info->log_root_recovering)
286 return 0;
287
288 if (type == TRANS_USERSPACE)
289 return 1;
290
291 if (type == TRANS_START &&
292 !atomic_read(&root->fs_info->open_ioctl_trans))
293 return 1;
294
295 return 0;
296 }
297
298 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
299 u64 num_items, int type,
300 int noflush)
301 {
302 struct btrfs_trans_handle *h;
303 struct btrfs_transaction *cur_trans;
304 u64 num_bytes = 0;
305 int ret;
306 u64 qgroup_reserved = 0;
307
308 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
309 return ERR_PTR(-EROFS);
310
311 if (current->journal_info) {
312 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
313 h = current->journal_info;
314 h->use_count++;
315 h->orig_rsv = h->block_rsv;
316 h->block_rsv = NULL;
317 goto got_it;
318 }
319
320 /*
321 * Do the reservation before we join the transaction so we can do all
322 * the appropriate flushing if need be.
323 */
324 if (num_items > 0 && root != root->fs_info->chunk_root) {
325 if (root->fs_info->quota_enabled &&
326 is_fstree(root->root_key.objectid)) {
327 qgroup_reserved = num_items * root->leafsize;
328 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
329 if (ret)
330 return ERR_PTR(ret);
331 }
332
333 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
334 if (noflush)
335 ret = btrfs_block_rsv_add_noflush(root,
336 &root->fs_info->trans_block_rsv,
337 num_bytes);
338 else
339 ret = btrfs_block_rsv_add(root,
340 &root->fs_info->trans_block_rsv,
341 num_bytes);
342 if (ret)
343 return ERR_PTR(ret);
344 }
345 again:
346 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
347 if (!h)
348 return ERR_PTR(-ENOMEM);
349
350 /*
351 * If we are JOIN_NOLOCK we're already committing a transaction and
352 * waiting on this guy, so we don't need to do the sb_start_intwrite
353 * because we're already holding a ref. We need this because we could
354 * have raced in and did an fsync() on a file which can kick a commit
355 * and then we deadlock with somebody doing a freeze.
356 *
357 * If we are ATTACH, it means we just want to catch the current
358 * transaction and commit it, so we needn't do sb_start_intwrite().
359 */
360 if (type < TRANS_JOIN_NOLOCK)
361 sb_start_intwrite(root->fs_info->sb);
362
363 if (may_wait_transaction(root, type))
364 wait_current_trans(root);
365
366 do {
367 ret = join_transaction(root, type);
368 if (ret == -EBUSY)
369 wait_current_trans(root);
370 } while (ret == -EBUSY);
371
372 if (ret < 0) {
373 /* We must get the transaction if we are JOIN_NOLOCK. */
374 BUG_ON(type == TRANS_JOIN_NOLOCK);
375
376 if (type < TRANS_JOIN_NOLOCK)
377 sb_end_intwrite(root->fs_info->sb);
378 kmem_cache_free(btrfs_trans_handle_cachep, h);
379 return ERR_PTR(ret);
380 }
381
382 cur_trans = root->fs_info->running_transaction;
383
384 h->transid = cur_trans->transid;
385 h->transaction = cur_trans;
386 h->blocks_used = 0;
387 h->bytes_reserved = 0;
388 h->root = root;
389 h->delayed_ref_updates = 0;
390 h->use_count = 1;
391 h->adding_csums = 0;
392 h->block_rsv = NULL;
393 h->orig_rsv = NULL;
394 h->aborted = 0;
395 h->qgroup_reserved = qgroup_reserved;
396 h->delayed_ref_elem.seq = 0;
397 h->type = type;
398 INIT_LIST_HEAD(&h->qgroup_ref_list);
399 INIT_LIST_HEAD(&h->new_bgs);
400
401 smp_mb();
402 if (cur_trans->blocked && may_wait_transaction(root, type)) {
403 btrfs_commit_transaction(h, root);
404 goto again;
405 }
406
407 if (num_bytes) {
408 trace_btrfs_space_reservation(root->fs_info, "transaction",
409 h->transid, num_bytes, 1);
410 h->block_rsv = &root->fs_info->trans_block_rsv;
411 h->bytes_reserved = num_bytes;
412 }
413
414 got_it:
415 btrfs_record_root_in_trans(h, root);
416
417 if (!current->journal_info && type != TRANS_USERSPACE)
418 current->journal_info = h;
419 return h;
420 }
421
422 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
423 int num_items)
424 {
425 return start_transaction(root, num_items, TRANS_START, 0);
426 }
427
428 struct btrfs_trans_handle *btrfs_start_transaction_noflush(
429 struct btrfs_root *root, int num_items)
430 {
431 return start_transaction(root, num_items, TRANS_START, 1);
432 }
433
434 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
435 {
436 return start_transaction(root, 0, TRANS_JOIN, 0);
437 }
438
439 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
440 {
441 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
442 }
443
444 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
445 {
446 return start_transaction(root, 0, TRANS_USERSPACE, 0);
447 }
448
449 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
450 {
451 return start_transaction(root, 0, TRANS_ATTACH, 0);
452 }
453
454 /* wait for a transaction commit to be fully complete */
455 static noinline void wait_for_commit(struct btrfs_root *root,
456 struct btrfs_transaction *commit)
457 {
458 wait_event(commit->commit_wait, commit->commit_done);
459 }
460
461 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
462 {
463 struct btrfs_transaction *cur_trans = NULL, *t;
464 int ret;
465
466 ret = 0;
467 if (transid) {
468 if (transid <= root->fs_info->last_trans_committed)
469 goto out;
470
471 /* find specified transaction */
472 spin_lock(&root->fs_info->trans_lock);
473 list_for_each_entry(t, &root->fs_info->trans_list, list) {
474 if (t->transid == transid) {
475 cur_trans = t;
476 atomic_inc(&cur_trans->use_count);
477 break;
478 }
479 if (t->transid > transid)
480 break;
481 }
482 spin_unlock(&root->fs_info->trans_lock);
483 ret = -EINVAL;
484 if (!cur_trans)
485 goto out; /* bad transid */
486 } else {
487 /* find newest transaction that is committing | committed */
488 spin_lock(&root->fs_info->trans_lock);
489 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
490 list) {
491 if (t->in_commit) {
492 if (t->commit_done)
493 break;
494 cur_trans = t;
495 atomic_inc(&cur_trans->use_count);
496 break;
497 }
498 }
499 spin_unlock(&root->fs_info->trans_lock);
500 if (!cur_trans)
501 goto out; /* nothing committing|committed */
502 }
503
504 wait_for_commit(root, cur_trans);
505
506 put_transaction(cur_trans);
507 ret = 0;
508 out:
509 return ret;
510 }
511
512 void btrfs_throttle(struct btrfs_root *root)
513 {
514 if (!atomic_read(&root->fs_info->open_ioctl_trans))
515 wait_current_trans(root);
516 }
517
518 static int should_end_transaction(struct btrfs_trans_handle *trans,
519 struct btrfs_root *root)
520 {
521 int ret;
522
523 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
524 return ret ? 1 : 0;
525 }
526
527 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
528 struct btrfs_root *root)
529 {
530 struct btrfs_transaction *cur_trans = trans->transaction;
531 int updates;
532 int err;
533
534 smp_mb();
535 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
536 return 1;
537
538 updates = trans->delayed_ref_updates;
539 trans->delayed_ref_updates = 0;
540 if (updates) {
541 err = btrfs_run_delayed_refs(trans, root, updates);
542 if (err) /* Error code will also eval true */
543 return err;
544 }
545
546 return should_end_transaction(trans, root);
547 }
548
549 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
550 struct btrfs_root *root, int throttle)
551 {
552 struct btrfs_transaction *cur_trans = trans->transaction;
553 struct btrfs_fs_info *info = root->fs_info;
554 int count = 0;
555 int lock = (trans->type != TRANS_JOIN_NOLOCK);
556 int err = 0;
557
558 if (--trans->use_count) {
559 trans->block_rsv = trans->orig_rsv;
560 return 0;
561 }
562
563 /*
564 * do the qgroup accounting as early as possible
565 */
566 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
567
568 btrfs_trans_release_metadata(trans, root);
569 trans->block_rsv = NULL;
570 /*
571 * the same root has to be passed to start_transaction and
572 * end_transaction. Subvolume quota depends on this.
573 */
574 WARN_ON(trans->root != root);
575
576 if (trans->qgroup_reserved) {
577 btrfs_qgroup_free(root, trans->qgroup_reserved);
578 trans->qgroup_reserved = 0;
579 }
580
581 if (!list_empty(&trans->new_bgs))
582 btrfs_create_pending_block_groups(trans, root);
583
584 while (count < 2) {
585 unsigned long cur = trans->delayed_ref_updates;
586 trans->delayed_ref_updates = 0;
587 if (cur &&
588 trans->transaction->delayed_refs.num_heads_ready > 64) {
589 trans->delayed_ref_updates = 0;
590 btrfs_run_delayed_refs(trans, root, cur);
591 } else {
592 break;
593 }
594 count++;
595 }
596 btrfs_trans_release_metadata(trans, root);
597 trans->block_rsv = NULL;
598
599 if (!list_empty(&trans->new_bgs))
600 btrfs_create_pending_block_groups(trans, root);
601
602 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
603 should_end_transaction(trans, root)) {
604 trans->transaction->blocked = 1;
605 smp_wmb();
606 }
607
608 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
609 if (throttle) {
610 /*
611 * We may race with somebody else here so end up having
612 * to call end_transaction on ourselves again, so inc
613 * our use_count.
614 */
615 trans->use_count++;
616 return btrfs_commit_transaction(trans, root);
617 } else {
618 wake_up_process(info->transaction_kthread);
619 }
620 }
621
622 if (trans->type < TRANS_JOIN_NOLOCK)
623 sb_end_intwrite(root->fs_info->sb);
624
625 WARN_ON(cur_trans != info->running_transaction);
626 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
627 atomic_dec(&cur_trans->num_writers);
628
629 smp_mb();
630 if (waitqueue_active(&cur_trans->writer_wait))
631 wake_up(&cur_trans->writer_wait);
632 put_transaction(cur_trans);
633
634 if (current->journal_info == trans)
635 current->journal_info = NULL;
636
637 if (throttle)
638 btrfs_run_delayed_iputs(root);
639
640 if (trans->aborted ||
641 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
642 err = -EIO;
643 }
644 assert_qgroups_uptodate(trans);
645
646 memset(trans, 0, sizeof(*trans));
647 kmem_cache_free(btrfs_trans_handle_cachep, trans);
648 return err;
649 }
650
651 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
652 struct btrfs_root *root)
653 {
654 int ret;
655
656 ret = __btrfs_end_transaction(trans, root, 0);
657 if (ret)
658 return ret;
659 return 0;
660 }
661
662 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
663 struct btrfs_root *root)
664 {
665 int ret;
666
667 ret = __btrfs_end_transaction(trans, root, 1);
668 if (ret)
669 return ret;
670 return 0;
671 }
672
673 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
674 struct btrfs_root *root)
675 {
676 return __btrfs_end_transaction(trans, root, 1);
677 }
678
679 /*
680 * when btree blocks are allocated, they have some corresponding bits set for
681 * them in one of two extent_io trees. This is used to make sure all of
682 * those extents are sent to disk but does not wait on them
683 */
684 int btrfs_write_marked_extents(struct btrfs_root *root,
685 struct extent_io_tree *dirty_pages, int mark)
686 {
687 int err = 0;
688 int werr = 0;
689 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
690 struct extent_state *cached_state = NULL;
691 u64 start = 0;
692 u64 end;
693
694 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
695 mark, &cached_state)) {
696 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
697 mark, &cached_state, GFP_NOFS);
698 cached_state = NULL;
699 err = filemap_fdatawrite_range(mapping, start, end);
700 if (err)
701 werr = err;
702 cond_resched();
703 start = end + 1;
704 }
705 if (err)
706 werr = err;
707 return werr;
708 }
709
710 /*
711 * when btree blocks are allocated, they have some corresponding bits set for
712 * them in one of two extent_io trees. This is used to make sure all of
713 * those extents are on disk for transaction or log commit. We wait
714 * on all the pages and clear them from the dirty pages state tree
715 */
716 int btrfs_wait_marked_extents(struct btrfs_root *root,
717 struct extent_io_tree *dirty_pages, int mark)
718 {
719 int err = 0;
720 int werr = 0;
721 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
722 struct extent_state *cached_state = NULL;
723 u64 start = 0;
724 u64 end;
725
726 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
727 EXTENT_NEED_WAIT, &cached_state)) {
728 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
729 0, 0, &cached_state, GFP_NOFS);
730 err = filemap_fdatawait_range(mapping, start, end);
731 if (err)
732 werr = err;
733 cond_resched();
734 start = end + 1;
735 }
736 if (err)
737 werr = err;
738 return werr;
739 }
740
741 /*
742 * when btree blocks are allocated, they have some corresponding bits set for
743 * them in one of two extent_io trees. This is used to make sure all of
744 * those extents are on disk for transaction or log commit
745 */
746 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
747 struct extent_io_tree *dirty_pages, int mark)
748 {
749 int ret;
750 int ret2;
751
752 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
753 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
754
755 if (ret)
756 return ret;
757 if (ret2)
758 return ret2;
759 return 0;
760 }
761
762 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
763 struct btrfs_root *root)
764 {
765 if (!trans || !trans->transaction) {
766 struct inode *btree_inode;
767 btree_inode = root->fs_info->btree_inode;
768 return filemap_write_and_wait(btree_inode->i_mapping);
769 }
770 return btrfs_write_and_wait_marked_extents(root,
771 &trans->transaction->dirty_pages,
772 EXTENT_DIRTY);
773 }
774
775 /*
776 * this is used to update the root pointer in the tree of tree roots.
777 *
778 * But, in the case of the extent allocation tree, updating the root
779 * pointer may allocate blocks which may change the root of the extent
780 * allocation tree.
781 *
782 * So, this loops and repeats and makes sure the cowonly root didn't
783 * change while the root pointer was being updated in the metadata.
784 */
785 static int update_cowonly_root(struct btrfs_trans_handle *trans,
786 struct btrfs_root *root)
787 {
788 int ret;
789 u64 old_root_bytenr;
790 u64 old_root_used;
791 struct btrfs_root *tree_root = root->fs_info->tree_root;
792
793 old_root_used = btrfs_root_used(&root->root_item);
794 btrfs_write_dirty_block_groups(trans, root);
795
796 while (1) {
797 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
798 if (old_root_bytenr == root->node->start &&
799 old_root_used == btrfs_root_used(&root->root_item))
800 break;
801
802 btrfs_set_root_node(&root->root_item, root->node);
803 ret = btrfs_update_root(trans, tree_root,
804 &root->root_key,
805 &root->root_item);
806 if (ret)
807 return ret;
808
809 old_root_used = btrfs_root_used(&root->root_item);
810 ret = btrfs_write_dirty_block_groups(trans, root);
811 if (ret)
812 return ret;
813 }
814
815 if (root != root->fs_info->extent_root)
816 switch_commit_root(root);
817
818 return 0;
819 }
820
821 /*
822 * update all the cowonly tree roots on disk
823 *
824 * The error handling in this function may not be obvious. Any of the
825 * failures will cause the file system to go offline. We still need
826 * to clean up the delayed refs.
827 */
828 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
829 struct btrfs_root *root)
830 {
831 struct btrfs_fs_info *fs_info = root->fs_info;
832 struct list_head *next;
833 struct extent_buffer *eb;
834 int ret;
835
836 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
837 if (ret)
838 return ret;
839
840 eb = btrfs_lock_root_node(fs_info->tree_root);
841 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
842 0, &eb);
843 btrfs_tree_unlock(eb);
844 free_extent_buffer(eb);
845
846 if (ret)
847 return ret;
848
849 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
850 if (ret)
851 return ret;
852
853 ret = btrfs_run_dev_stats(trans, root->fs_info);
854 BUG_ON(ret);
855
856 ret = btrfs_run_qgroups(trans, root->fs_info);
857 BUG_ON(ret);
858
859 /* run_qgroups might have added some more refs */
860 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
861 BUG_ON(ret);
862
863 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
864 next = fs_info->dirty_cowonly_roots.next;
865 list_del_init(next);
866 root = list_entry(next, struct btrfs_root, dirty_list);
867
868 ret = update_cowonly_root(trans, root);
869 if (ret)
870 return ret;
871 }
872
873 down_write(&fs_info->extent_commit_sem);
874 switch_commit_root(fs_info->extent_root);
875 up_write(&fs_info->extent_commit_sem);
876
877 return 0;
878 }
879
880 /*
881 * dead roots are old snapshots that need to be deleted. This allocates
882 * a dirty root struct and adds it into the list of dead roots that need to
883 * be deleted
884 */
885 int btrfs_add_dead_root(struct btrfs_root *root)
886 {
887 spin_lock(&root->fs_info->trans_lock);
888 list_add(&root->root_list, &root->fs_info->dead_roots);
889 spin_unlock(&root->fs_info->trans_lock);
890 return 0;
891 }
892
893 /*
894 * update all the cowonly tree roots on disk
895 */
896 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
897 struct btrfs_root *root)
898 {
899 struct btrfs_root *gang[8];
900 struct btrfs_fs_info *fs_info = root->fs_info;
901 int i;
902 int ret;
903 int err = 0;
904
905 spin_lock(&fs_info->fs_roots_radix_lock);
906 while (1) {
907 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
908 (void **)gang, 0,
909 ARRAY_SIZE(gang),
910 BTRFS_ROOT_TRANS_TAG);
911 if (ret == 0)
912 break;
913 for (i = 0; i < ret; i++) {
914 root = gang[i];
915 radix_tree_tag_clear(&fs_info->fs_roots_radix,
916 (unsigned long)root->root_key.objectid,
917 BTRFS_ROOT_TRANS_TAG);
918 spin_unlock(&fs_info->fs_roots_radix_lock);
919
920 btrfs_free_log(trans, root);
921 btrfs_update_reloc_root(trans, root);
922 btrfs_orphan_commit_root(trans, root);
923
924 btrfs_save_ino_cache(root, trans);
925
926 /* see comments in should_cow_block() */
927 root->force_cow = 0;
928 smp_wmb();
929
930 if (root->commit_root != root->node) {
931 mutex_lock(&root->fs_commit_mutex);
932 switch_commit_root(root);
933 btrfs_unpin_free_ino(root);
934 mutex_unlock(&root->fs_commit_mutex);
935
936 btrfs_set_root_node(&root->root_item,
937 root->node);
938 }
939
940 err = btrfs_update_root(trans, fs_info->tree_root,
941 &root->root_key,
942 &root->root_item);
943 spin_lock(&fs_info->fs_roots_radix_lock);
944 if (err)
945 break;
946 }
947 }
948 spin_unlock(&fs_info->fs_roots_radix_lock);
949 return err;
950 }
951
952 /*
953 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
954 * otherwise every leaf in the btree is read and defragged.
955 */
956 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
957 {
958 struct btrfs_fs_info *info = root->fs_info;
959 struct btrfs_trans_handle *trans;
960 int ret;
961 unsigned long nr;
962
963 if (xchg(&root->defrag_running, 1))
964 return 0;
965
966 while (1) {
967 trans = btrfs_start_transaction(root, 0);
968 if (IS_ERR(trans))
969 return PTR_ERR(trans);
970
971 ret = btrfs_defrag_leaves(trans, root, cacheonly);
972
973 nr = trans->blocks_used;
974 btrfs_end_transaction(trans, root);
975 btrfs_btree_balance_dirty(info->tree_root, nr);
976 cond_resched();
977
978 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
979 break;
980 }
981 root->defrag_running = 0;
982 return ret;
983 }
984
985 /*
986 * new snapshots need to be created at a very specific time in the
987 * transaction commit. This does the actual creation
988 */
989 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
990 struct btrfs_fs_info *fs_info,
991 struct btrfs_pending_snapshot *pending)
992 {
993 struct btrfs_key key;
994 struct btrfs_root_item *new_root_item;
995 struct btrfs_root *tree_root = fs_info->tree_root;
996 struct btrfs_root *root = pending->root;
997 struct btrfs_root *parent_root;
998 struct btrfs_block_rsv *rsv;
999 struct inode *parent_inode;
1000 struct btrfs_path *path;
1001 struct btrfs_dir_item *dir_item;
1002 struct dentry *parent;
1003 struct dentry *dentry;
1004 struct extent_buffer *tmp;
1005 struct extent_buffer *old;
1006 struct timespec cur_time = CURRENT_TIME;
1007 int ret;
1008 u64 to_reserve = 0;
1009 u64 index = 0;
1010 u64 objectid;
1011 u64 root_flags;
1012 uuid_le new_uuid;
1013
1014 path = btrfs_alloc_path();
1015 if (!path) {
1016 ret = pending->error = -ENOMEM;
1017 goto path_alloc_fail;
1018 }
1019
1020 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1021 if (!new_root_item) {
1022 ret = pending->error = -ENOMEM;
1023 goto root_item_alloc_fail;
1024 }
1025
1026 ret = btrfs_find_free_objectid(tree_root, &objectid);
1027 if (ret) {
1028 pending->error = ret;
1029 goto no_free_objectid;
1030 }
1031
1032 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1033
1034 if (to_reserve > 0) {
1035 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
1036 to_reserve);
1037 if (ret) {
1038 pending->error = ret;
1039 goto no_free_objectid;
1040 }
1041 }
1042
1043 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1044 objectid, pending->inherit);
1045 if (ret) {
1046 pending->error = ret;
1047 goto no_free_objectid;
1048 }
1049
1050 key.objectid = objectid;
1051 key.offset = (u64)-1;
1052 key.type = BTRFS_ROOT_ITEM_KEY;
1053
1054 rsv = trans->block_rsv;
1055 trans->block_rsv = &pending->block_rsv;
1056
1057 dentry = pending->dentry;
1058 parent = dget_parent(dentry);
1059 parent_inode = parent->d_inode;
1060 parent_root = BTRFS_I(parent_inode)->root;
1061 record_root_in_trans(trans, parent_root);
1062
1063 /*
1064 * insert the directory item
1065 */
1066 ret = btrfs_set_inode_index(parent_inode, &index);
1067 BUG_ON(ret); /* -ENOMEM */
1068
1069 /* check if there is a file/dir which has the same name. */
1070 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1071 btrfs_ino(parent_inode),
1072 dentry->d_name.name,
1073 dentry->d_name.len, 0);
1074 if (dir_item != NULL && !IS_ERR(dir_item)) {
1075 pending->error = -EEXIST;
1076 goto fail;
1077 } else if (IS_ERR(dir_item)) {
1078 ret = PTR_ERR(dir_item);
1079 btrfs_abort_transaction(trans, root, ret);
1080 goto fail;
1081 }
1082 btrfs_release_path(path);
1083
1084 /*
1085 * pull in the delayed directory update
1086 * and the delayed inode item
1087 * otherwise we corrupt the FS during
1088 * snapshot
1089 */
1090 ret = btrfs_run_delayed_items(trans, root);
1091 if (ret) { /* Transaction aborted */
1092 btrfs_abort_transaction(trans, root, ret);
1093 goto fail;
1094 }
1095
1096 record_root_in_trans(trans, root);
1097 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1098 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1099 btrfs_check_and_init_root_item(new_root_item);
1100
1101 root_flags = btrfs_root_flags(new_root_item);
1102 if (pending->readonly)
1103 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1104 else
1105 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1106 btrfs_set_root_flags(new_root_item, root_flags);
1107
1108 btrfs_set_root_generation_v2(new_root_item,
1109 trans->transid);
1110 uuid_le_gen(&new_uuid);
1111 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1112 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1113 BTRFS_UUID_SIZE);
1114 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1115 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1116 btrfs_set_root_otransid(new_root_item, trans->transid);
1117 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1118 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1119 btrfs_set_root_stransid(new_root_item, 0);
1120 btrfs_set_root_rtransid(new_root_item, 0);
1121
1122 old = btrfs_lock_root_node(root);
1123 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1124 if (ret) {
1125 btrfs_tree_unlock(old);
1126 free_extent_buffer(old);
1127 btrfs_abort_transaction(trans, root, ret);
1128 goto fail;
1129 }
1130
1131 btrfs_set_lock_blocking(old);
1132
1133 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1134 /* clean up in any case */
1135 btrfs_tree_unlock(old);
1136 free_extent_buffer(old);
1137 if (ret) {
1138 btrfs_abort_transaction(trans, root, ret);
1139 goto fail;
1140 }
1141
1142 /* see comments in should_cow_block() */
1143 root->force_cow = 1;
1144 smp_wmb();
1145
1146 btrfs_set_root_node(new_root_item, tmp);
1147 /* record when the snapshot was created in key.offset */
1148 key.offset = trans->transid;
1149 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1150 btrfs_tree_unlock(tmp);
1151 free_extent_buffer(tmp);
1152 if (ret) {
1153 btrfs_abort_transaction(trans, root, ret);
1154 goto fail;
1155 }
1156
1157 /*
1158 * insert root back/forward references
1159 */
1160 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1161 parent_root->root_key.objectid,
1162 btrfs_ino(parent_inode), index,
1163 dentry->d_name.name, dentry->d_name.len);
1164 if (ret) {
1165 btrfs_abort_transaction(trans, root, ret);
1166 goto fail;
1167 }
1168
1169 key.offset = (u64)-1;
1170 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1171 if (IS_ERR(pending->snap)) {
1172 ret = PTR_ERR(pending->snap);
1173 btrfs_abort_transaction(trans, root, ret);
1174 goto fail;
1175 }
1176
1177 ret = btrfs_reloc_post_snapshot(trans, pending);
1178 if (ret) {
1179 btrfs_abort_transaction(trans, root, ret);
1180 goto fail;
1181 }
1182
1183 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1184 if (ret) {
1185 btrfs_abort_transaction(trans, root, ret);
1186 goto fail;
1187 }
1188
1189 ret = btrfs_insert_dir_item(trans, parent_root,
1190 dentry->d_name.name, dentry->d_name.len,
1191 parent_inode, &key,
1192 BTRFS_FT_DIR, index);
1193 /* We have check then name at the beginning, so it is impossible. */
1194 BUG_ON(ret == -EEXIST);
1195 if (ret) {
1196 btrfs_abort_transaction(trans, root, ret);
1197 goto fail;
1198 }
1199
1200 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1201 dentry->d_name.len * 2);
1202 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1203 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1204 if (ret)
1205 btrfs_abort_transaction(trans, root, ret);
1206 fail:
1207 dput(parent);
1208 trans->block_rsv = rsv;
1209 no_free_objectid:
1210 kfree(new_root_item);
1211 root_item_alloc_fail:
1212 btrfs_free_path(path);
1213 path_alloc_fail:
1214 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1215 return ret;
1216 }
1217
1218 /*
1219 * create all the snapshots we've scheduled for creation
1220 */
1221 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1222 struct btrfs_fs_info *fs_info)
1223 {
1224 struct btrfs_pending_snapshot *pending;
1225 struct list_head *head = &trans->transaction->pending_snapshots;
1226
1227 list_for_each_entry(pending, head, list)
1228 create_pending_snapshot(trans, fs_info, pending);
1229 return 0;
1230 }
1231
1232 static void update_super_roots(struct btrfs_root *root)
1233 {
1234 struct btrfs_root_item *root_item;
1235 struct btrfs_super_block *super;
1236
1237 super = root->fs_info->super_copy;
1238
1239 root_item = &root->fs_info->chunk_root->root_item;
1240 super->chunk_root = root_item->bytenr;
1241 super->chunk_root_generation = root_item->generation;
1242 super->chunk_root_level = root_item->level;
1243
1244 root_item = &root->fs_info->tree_root->root_item;
1245 super->root = root_item->bytenr;
1246 super->generation = root_item->generation;
1247 super->root_level = root_item->level;
1248 if (btrfs_test_opt(root, SPACE_CACHE))
1249 super->cache_generation = root_item->generation;
1250 }
1251
1252 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1253 {
1254 int ret = 0;
1255 spin_lock(&info->trans_lock);
1256 if (info->running_transaction)
1257 ret = info->running_transaction->in_commit;
1258 spin_unlock(&info->trans_lock);
1259 return ret;
1260 }
1261
1262 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1263 {
1264 int ret = 0;
1265 spin_lock(&info->trans_lock);
1266 if (info->running_transaction)
1267 ret = info->running_transaction->blocked;
1268 spin_unlock(&info->trans_lock);
1269 return ret;
1270 }
1271
1272 /*
1273 * wait for the current transaction commit to start and block subsequent
1274 * transaction joins
1275 */
1276 static void wait_current_trans_commit_start(struct btrfs_root *root,
1277 struct btrfs_transaction *trans)
1278 {
1279 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1280 }
1281
1282 /*
1283 * wait for the current transaction to start and then become unblocked.
1284 * caller holds ref.
1285 */
1286 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1287 struct btrfs_transaction *trans)
1288 {
1289 wait_event(root->fs_info->transaction_wait,
1290 trans->commit_done || (trans->in_commit && !trans->blocked));
1291 }
1292
1293 /*
1294 * commit transactions asynchronously. once btrfs_commit_transaction_async
1295 * returns, any subsequent transaction will not be allowed to join.
1296 */
1297 struct btrfs_async_commit {
1298 struct btrfs_trans_handle *newtrans;
1299 struct btrfs_root *root;
1300 struct delayed_work work;
1301 };
1302
1303 static void do_async_commit(struct work_struct *work)
1304 {
1305 struct btrfs_async_commit *ac =
1306 container_of(work, struct btrfs_async_commit, work.work);
1307
1308 /*
1309 * We've got freeze protection passed with the transaction.
1310 * Tell lockdep about it.
1311 */
1312 rwsem_acquire_read(
1313 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1314 0, 1, _THIS_IP_);
1315
1316 current->journal_info = ac->newtrans;
1317
1318 btrfs_commit_transaction(ac->newtrans, ac->root);
1319 kfree(ac);
1320 }
1321
1322 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *root,
1324 int wait_for_unblock)
1325 {
1326 struct btrfs_async_commit *ac;
1327 struct btrfs_transaction *cur_trans;
1328
1329 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1330 if (!ac)
1331 return -ENOMEM;
1332
1333 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1334 ac->root = root;
1335 ac->newtrans = btrfs_join_transaction(root);
1336 if (IS_ERR(ac->newtrans)) {
1337 int err = PTR_ERR(ac->newtrans);
1338 kfree(ac);
1339 return err;
1340 }
1341
1342 /* take transaction reference */
1343 cur_trans = trans->transaction;
1344 atomic_inc(&cur_trans->use_count);
1345
1346 btrfs_end_transaction(trans, root);
1347
1348 /*
1349 * Tell lockdep we've released the freeze rwsem, since the
1350 * async commit thread will be the one to unlock it.
1351 */
1352 rwsem_release(&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1353 1, _THIS_IP_);
1354
1355 schedule_delayed_work(&ac->work, 0);
1356
1357 /* wait for transaction to start and unblock */
1358 if (wait_for_unblock)
1359 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1360 else
1361 wait_current_trans_commit_start(root, cur_trans);
1362
1363 if (current->journal_info == trans)
1364 current->journal_info = NULL;
1365
1366 put_transaction(cur_trans);
1367 return 0;
1368 }
1369
1370
1371 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1372 struct btrfs_root *root, int err)
1373 {
1374 struct btrfs_transaction *cur_trans = trans->transaction;
1375
1376 WARN_ON(trans->use_count > 1);
1377
1378 btrfs_abort_transaction(trans, root, err);
1379
1380 spin_lock(&root->fs_info->trans_lock);
1381 list_del_init(&cur_trans->list);
1382 if (cur_trans == root->fs_info->running_transaction) {
1383 root->fs_info->running_transaction = NULL;
1384 root->fs_info->trans_no_join = 0;
1385 }
1386 spin_unlock(&root->fs_info->trans_lock);
1387
1388 btrfs_cleanup_one_transaction(trans->transaction, root);
1389
1390 put_transaction(cur_trans);
1391 put_transaction(cur_trans);
1392
1393 trace_btrfs_transaction_commit(root);
1394
1395 btrfs_scrub_continue(root);
1396
1397 if (current->journal_info == trans)
1398 current->journal_info = NULL;
1399
1400 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1401 }
1402
1403 /*
1404 * btrfs_transaction state sequence:
1405 * in_commit = 0, blocked = 0 (initial)
1406 * in_commit = 1, blocked = 1
1407 * blocked = 0
1408 * commit_done = 1
1409 */
1410 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1411 struct btrfs_root *root)
1412 {
1413 unsigned long joined = 0;
1414 struct btrfs_transaction *cur_trans = trans->transaction;
1415 struct btrfs_transaction *prev_trans = NULL;
1416 DEFINE_WAIT(wait);
1417 int ret = -EIO;
1418 int should_grow = 0;
1419 unsigned long now = get_seconds();
1420 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1421
1422 btrfs_run_ordered_operations(root, 0);
1423
1424 if (cur_trans->aborted)
1425 goto cleanup_transaction;
1426
1427 /* make a pass through all the delayed refs we have so far
1428 * any runnings procs may add more while we are here
1429 */
1430 ret = btrfs_run_delayed_refs(trans, root, 0);
1431 if (ret)
1432 goto cleanup_transaction;
1433
1434 btrfs_trans_release_metadata(trans, root);
1435 trans->block_rsv = NULL;
1436
1437 cur_trans = trans->transaction;
1438
1439 /*
1440 * set the flushing flag so procs in this transaction have to
1441 * start sending their work down.
1442 */
1443 cur_trans->delayed_refs.flushing = 1;
1444
1445 if (!list_empty(&trans->new_bgs))
1446 btrfs_create_pending_block_groups(trans, root);
1447
1448 ret = btrfs_run_delayed_refs(trans, root, 0);
1449 if (ret)
1450 goto cleanup_transaction;
1451
1452 spin_lock(&cur_trans->commit_lock);
1453 if (cur_trans->in_commit) {
1454 spin_unlock(&cur_trans->commit_lock);
1455 atomic_inc(&cur_trans->use_count);
1456 ret = btrfs_end_transaction(trans, root);
1457
1458 wait_for_commit(root, cur_trans);
1459
1460 put_transaction(cur_trans);
1461
1462 return ret;
1463 }
1464
1465 trans->transaction->in_commit = 1;
1466 trans->transaction->blocked = 1;
1467 spin_unlock(&cur_trans->commit_lock);
1468 wake_up(&root->fs_info->transaction_blocked_wait);
1469
1470 spin_lock(&root->fs_info->trans_lock);
1471 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1472 prev_trans = list_entry(cur_trans->list.prev,
1473 struct btrfs_transaction, list);
1474 if (!prev_trans->commit_done) {
1475 atomic_inc(&prev_trans->use_count);
1476 spin_unlock(&root->fs_info->trans_lock);
1477
1478 wait_for_commit(root, prev_trans);
1479
1480 put_transaction(prev_trans);
1481 } else {
1482 spin_unlock(&root->fs_info->trans_lock);
1483 }
1484 } else {
1485 spin_unlock(&root->fs_info->trans_lock);
1486 }
1487
1488 if (!btrfs_test_opt(root, SSD) &&
1489 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1490 should_grow = 1;
1491
1492 do {
1493 int snap_pending = 0;
1494
1495 joined = cur_trans->num_joined;
1496 if (!list_empty(&trans->transaction->pending_snapshots))
1497 snap_pending = 1;
1498
1499 WARN_ON(cur_trans != trans->transaction);
1500
1501 if (flush_on_commit || snap_pending) {
1502 btrfs_start_delalloc_inodes(root, 1);
1503 btrfs_wait_ordered_extents(root, 1);
1504 }
1505
1506 ret = btrfs_run_delayed_items(trans, root);
1507 if (ret)
1508 goto cleanup_transaction;
1509
1510 /*
1511 * running the delayed items may have added new refs. account
1512 * them now so that they hinder processing of more delayed refs
1513 * as little as possible.
1514 */
1515 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1516
1517 /*
1518 * rename don't use btrfs_join_transaction, so, once we
1519 * set the transaction to blocked above, we aren't going
1520 * to get any new ordered operations. We can safely run
1521 * it here and no for sure that nothing new will be added
1522 * to the list
1523 */
1524 btrfs_run_ordered_operations(root, 1);
1525
1526 prepare_to_wait(&cur_trans->writer_wait, &wait,
1527 TASK_UNINTERRUPTIBLE);
1528
1529 if (atomic_read(&cur_trans->num_writers) > 1)
1530 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1531 else if (should_grow)
1532 schedule_timeout(1);
1533
1534 finish_wait(&cur_trans->writer_wait, &wait);
1535 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1536 (should_grow && cur_trans->num_joined != joined));
1537
1538 /*
1539 * Ok now we need to make sure to block out any other joins while we
1540 * commit the transaction. We could have started a join before setting
1541 * no_join so make sure to wait for num_writers to == 1 again.
1542 */
1543 spin_lock(&root->fs_info->trans_lock);
1544 root->fs_info->trans_no_join = 1;
1545 spin_unlock(&root->fs_info->trans_lock);
1546 wait_event(cur_trans->writer_wait,
1547 atomic_read(&cur_trans->num_writers) == 1);
1548
1549 /*
1550 * the reloc mutex makes sure that we stop
1551 * the balancing code from coming in and moving
1552 * extents around in the middle of the commit
1553 */
1554 mutex_lock(&root->fs_info->reloc_mutex);
1555
1556 /*
1557 * We needn't worry about the delayed items because we will
1558 * deal with them in create_pending_snapshot(), which is the
1559 * core function of the snapshot creation.
1560 */
1561 ret = create_pending_snapshots(trans, root->fs_info);
1562 if (ret) {
1563 mutex_unlock(&root->fs_info->reloc_mutex);
1564 goto cleanup_transaction;
1565 }
1566
1567 /*
1568 * We insert the dir indexes of the snapshots and update the inode
1569 * of the snapshots' parents after the snapshot creation, so there
1570 * are some delayed items which are not dealt with. Now deal with
1571 * them.
1572 *
1573 * We needn't worry that this operation will corrupt the snapshots,
1574 * because all the tree which are snapshoted will be forced to COW
1575 * the nodes and leaves.
1576 */
1577 ret = btrfs_run_delayed_items(trans, root);
1578 if (ret) {
1579 mutex_unlock(&root->fs_info->reloc_mutex);
1580 goto cleanup_transaction;
1581 }
1582
1583 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1584 if (ret) {
1585 mutex_unlock(&root->fs_info->reloc_mutex);
1586 goto cleanup_transaction;
1587 }
1588
1589 /*
1590 * make sure none of the code above managed to slip in a
1591 * delayed item
1592 */
1593 btrfs_assert_delayed_root_empty(root);
1594
1595 WARN_ON(cur_trans != trans->transaction);
1596
1597 btrfs_scrub_pause(root);
1598 /* btrfs_commit_tree_roots is responsible for getting the
1599 * various roots consistent with each other. Every pointer
1600 * in the tree of tree roots has to point to the most up to date
1601 * root for every subvolume and other tree. So, we have to keep
1602 * the tree logging code from jumping in and changing any
1603 * of the trees.
1604 *
1605 * At this point in the commit, there can't be any tree-log
1606 * writers, but a little lower down we drop the trans mutex
1607 * and let new people in. By holding the tree_log_mutex
1608 * from now until after the super is written, we avoid races
1609 * with the tree-log code.
1610 */
1611 mutex_lock(&root->fs_info->tree_log_mutex);
1612
1613 ret = commit_fs_roots(trans, root);
1614 if (ret) {
1615 mutex_unlock(&root->fs_info->tree_log_mutex);
1616 mutex_unlock(&root->fs_info->reloc_mutex);
1617 goto cleanup_transaction;
1618 }
1619
1620 /* commit_fs_roots gets rid of all the tree log roots, it is now
1621 * safe to free the root of tree log roots
1622 */
1623 btrfs_free_log_root_tree(trans, root->fs_info);
1624
1625 ret = commit_cowonly_roots(trans, root);
1626 if (ret) {
1627 mutex_unlock(&root->fs_info->tree_log_mutex);
1628 mutex_unlock(&root->fs_info->reloc_mutex);
1629 goto cleanup_transaction;
1630 }
1631
1632 btrfs_prepare_extent_commit(trans, root);
1633
1634 cur_trans = root->fs_info->running_transaction;
1635
1636 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1637 root->fs_info->tree_root->node);
1638 switch_commit_root(root->fs_info->tree_root);
1639
1640 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1641 root->fs_info->chunk_root->node);
1642 switch_commit_root(root->fs_info->chunk_root);
1643
1644 assert_qgroups_uptodate(trans);
1645 update_super_roots(root);
1646
1647 if (!root->fs_info->log_root_recovering) {
1648 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1649 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1650 }
1651
1652 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1653 sizeof(*root->fs_info->super_copy));
1654
1655 trans->transaction->blocked = 0;
1656 spin_lock(&root->fs_info->trans_lock);
1657 root->fs_info->running_transaction = NULL;
1658 root->fs_info->trans_no_join = 0;
1659 spin_unlock(&root->fs_info->trans_lock);
1660 mutex_unlock(&root->fs_info->reloc_mutex);
1661
1662 wake_up(&root->fs_info->transaction_wait);
1663
1664 ret = btrfs_write_and_wait_transaction(trans, root);
1665 if (ret) {
1666 btrfs_error(root->fs_info, ret,
1667 "Error while writing out transaction.");
1668 mutex_unlock(&root->fs_info->tree_log_mutex);
1669 goto cleanup_transaction;
1670 }
1671
1672 ret = write_ctree_super(trans, root, 0);
1673 if (ret) {
1674 mutex_unlock(&root->fs_info->tree_log_mutex);
1675 goto cleanup_transaction;
1676 }
1677
1678 /*
1679 * the super is written, we can safely allow the tree-loggers
1680 * to go about their business
1681 */
1682 mutex_unlock(&root->fs_info->tree_log_mutex);
1683
1684 btrfs_finish_extent_commit(trans, root);
1685
1686 cur_trans->commit_done = 1;
1687
1688 root->fs_info->last_trans_committed = cur_trans->transid;
1689
1690 wake_up(&cur_trans->commit_wait);
1691
1692 spin_lock(&root->fs_info->trans_lock);
1693 list_del_init(&cur_trans->list);
1694 spin_unlock(&root->fs_info->trans_lock);
1695
1696 put_transaction(cur_trans);
1697 put_transaction(cur_trans);
1698
1699 if (trans->type < TRANS_JOIN_NOLOCK)
1700 sb_end_intwrite(root->fs_info->sb);
1701
1702 trace_btrfs_transaction_commit(root);
1703
1704 btrfs_scrub_continue(root);
1705
1706 if (current->journal_info == trans)
1707 current->journal_info = NULL;
1708
1709 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1710
1711 if (current != root->fs_info->transaction_kthread)
1712 btrfs_run_delayed_iputs(root);
1713
1714 return ret;
1715
1716 cleanup_transaction:
1717 btrfs_trans_release_metadata(trans, root);
1718 trans->block_rsv = NULL;
1719 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1720 // WARN_ON(1);
1721 if (current->journal_info == trans)
1722 current->journal_info = NULL;
1723 cleanup_transaction(trans, root, ret);
1724
1725 return ret;
1726 }
1727
1728 /*
1729 * interface function to delete all the snapshots we have scheduled for deletion
1730 */
1731 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1732 {
1733 LIST_HEAD(list);
1734 struct btrfs_fs_info *fs_info = root->fs_info;
1735
1736 spin_lock(&fs_info->trans_lock);
1737 list_splice_init(&fs_info->dead_roots, &list);
1738 spin_unlock(&fs_info->trans_lock);
1739
1740 while (!list_empty(&list)) {
1741 int ret;
1742
1743 root = list_entry(list.next, struct btrfs_root, root_list);
1744 list_del(&root->root_list);
1745
1746 btrfs_kill_all_delayed_nodes(root);
1747
1748 if (btrfs_header_backref_rev(root->node) <
1749 BTRFS_MIXED_BACKREF_REV)
1750 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1751 else
1752 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1753 BUG_ON(ret < 0);
1754 }
1755 return 0;
1756 }
This page took 0.074734 seconds and 4 git commands to generate.