Btrfs: fix data space leak fix
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34 WARN_ON(transaction->use_count == 0);
35 transaction->use_count--;
36 if (transaction->use_count == 0) {
37 list_del_init(&transaction->list);
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
40 }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
47 }
48
49 /*
50 * either allocate a new transaction or hop into the existing one
51 */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54 struct btrfs_transaction *cur_trans;
55 cur_trans = root->fs_info->running_transaction;
56 if (!cur_trans) {
57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 GFP_NOFS);
59 BUG_ON(!cur_trans);
60 root->fs_info->generation++;
61 cur_trans->num_writers = 1;
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->blocked = 0;
68 cur_trans->use_count = 1;
69 cur_trans->commit_done = 0;
70 cur_trans->start_time = get_seconds();
71
72 cur_trans->delayed_refs.root.rb_node = NULL;
73 cur_trans->delayed_refs.num_entries = 0;
74 cur_trans->delayed_refs.num_heads_ready = 0;
75 cur_trans->delayed_refs.num_heads = 0;
76 cur_trans->delayed_refs.flushing = 0;
77 cur_trans->delayed_refs.run_delayed_start = 0;
78 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 extent_io_tree_init(&cur_trans->dirty_pages,
83 root->fs_info->btree_inode->i_mapping,
84 GFP_NOFS);
85 spin_lock(&root->fs_info->new_trans_lock);
86 root->fs_info->running_transaction = cur_trans;
87 spin_unlock(&root->fs_info->new_trans_lock);
88 } else {
89 cur_trans->num_writers++;
90 cur_trans->num_joined++;
91 }
92
93 return 0;
94 }
95
96 /*
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
101 */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root)
104 {
105 if (root->ref_cows && root->last_trans < trans->transid) {
106 WARN_ON(root == root->fs_info->extent_root);
107 WARN_ON(root->commit_root != root->node);
108
109 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110 (unsigned long)root->root_key.objectid,
111 BTRFS_ROOT_TRANS_TAG);
112 root->last_trans = trans->transid;
113 btrfs_init_reloc_root(trans, root);
114 }
115 return 0;
116 }
117
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119 struct btrfs_root *root)
120 {
121 if (!root->ref_cows)
122 return 0;
123
124 mutex_lock(&root->fs_info->trans_mutex);
125 if (root->last_trans == trans->transid) {
126 mutex_unlock(&root->fs_info->trans_mutex);
127 return 0;
128 }
129
130 record_root_in_trans(trans, root);
131 mutex_unlock(&root->fs_info->trans_mutex);
132 return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
138 */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141 struct btrfs_transaction *cur_trans;
142
143 cur_trans = root->fs_info->running_transaction;
144 if (cur_trans && cur_trans->blocked) {
145 DEFINE_WAIT(wait);
146 cur_trans->use_count++;
147 while (1) {
148 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 TASK_UNINTERRUPTIBLE);
150 if (cur_trans->blocked) {
151 mutex_unlock(&root->fs_info->trans_mutex);
152 schedule();
153 mutex_lock(&root->fs_info->trans_mutex);
154 finish_wait(&root->fs_info->transaction_wait,
155 &wait);
156 } else {
157 finish_wait(&root->fs_info->transaction_wait,
158 &wait);
159 break;
160 }
161 }
162 put_transaction(cur_trans);
163 }
164 }
165
166 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
167 int num_blocks, int wait)
168 {
169 struct btrfs_trans_handle *h =
170 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
171 int ret;
172
173 mutex_lock(&root->fs_info->trans_mutex);
174 if (!root->fs_info->log_root_recovering &&
175 ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
176 wait_current_trans(root);
177 ret = join_transaction(root);
178 BUG_ON(ret);
179
180 h->transid = root->fs_info->running_transaction->transid;
181 h->transaction = root->fs_info->running_transaction;
182 h->blocks_reserved = num_blocks;
183 h->blocks_used = 0;
184 h->block_group = 0;
185 h->alloc_exclude_nr = 0;
186 h->alloc_exclude_start = 0;
187 h->delayed_ref_updates = 0;
188
189 if (!current->journal_info)
190 current->journal_info = h;
191
192 root->fs_info->running_transaction->use_count++;
193 record_root_in_trans(h, root);
194 mutex_unlock(&root->fs_info->trans_mutex);
195 return h;
196 }
197
198 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
199 int num_blocks)
200 {
201 return start_transaction(root, num_blocks, 1);
202 }
203 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
204 int num_blocks)
205 {
206 return start_transaction(root, num_blocks, 0);
207 }
208
209 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
210 int num_blocks)
211 {
212 return start_transaction(r, num_blocks, 2);
213 }
214
215 /* wait for a transaction commit to be fully complete */
216 static noinline int wait_for_commit(struct btrfs_root *root,
217 struct btrfs_transaction *commit)
218 {
219 DEFINE_WAIT(wait);
220 mutex_lock(&root->fs_info->trans_mutex);
221 while (!commit->commit_done) {
222 prepare_to_wait(&commit->commit_wait, &wait,
223 TASK_UNINTERRUPTIBLE);
224 if (commit->commit_done)
225 break;
226 mutex_unlock(&root->fs_info->trans_mutex);
227 schedule();
228 mutex_lock(&root->fs_info->trans_mutex);
229 }
230 mutex_unlock(&root->fs_info->trans_mutex);
231 finish_wait(&commit->commit_wait, &wait);
232 return 0;
233 }
234
235 #if 0
236 /*
237 * rate limit against the drop_snapshot code. This helps to slow down new
238 * operations if the drop_snapshot code isn't able to keep up.
239 */
240 static void throttle_on_drops(struct btrfs_root *root)
241 {
242 struct btrfs_fs_info *info = root->fs_info;
243 int harder_count = 0;
244
245 harder:
246 if (atomic_read(&info->throttles)) {
247 DEFINE_WAIT(wait);
248 int thr;
249 thr = atomic_read(&info->throttle_gen);
250
251 do {
252 prepare_to_wait(&info->transaction_throttle,
253 &wait, TASK_UNINTERRUPTIBLE);
254 if (!atomic_read(&info->throttles)) {
255 finish_wait(&info->transaction_throttle, &wait);
256 break;
257 }
258 schedule();
259 finish_wait(&info->transaction_throttle, &wait);
260 } while (thr == atomic_read(&info->throttle_gen));
261 harder_count++;
262
263 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
264 harder_count < 2)
265 goto harder;
266
267 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
268 harder_count < 10)
269 goto harder;
270
271 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
272 harder_count < 20)
273 goto harder;
274 }
275 }
276 #endif
277
278 void btrfs_throttle(struct btrfs_root *root)
279 {
280 mutex_lock(&root->fs_info->trans_mutex);
281 if (!root->fs_info->open_ioctl_trans)
282 wait_current_trans(root);
283 mutex_unlock(&root->fs_info->trans_mutex);
284 }
285
286 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
287 struct btrfs_root *root, int throttle)
288 {
289 struct btrfs_transaction *cur_trans;
290 struct btrfs_fs_info *info = root->fs_info;
291 int count = 0;
292
293 while (count < 4) {
294 unsigned long cur = trans->delayed_ref_updates;
295 trans->delayed_ref_updates = 0;
296 if (cur &&
297 trans->transaction->delayed_refs.num_heads_ready > 64) {
298 trans->delayed_ref_updates = 0;
299
300 /*
301 * do a full flush if the transaction is trying
302 * to close
303 */
304 if (trans->transaction->delayed_refs.flushing)
305 cur = 0;
306 btrfs_run_delayed_refs(trans, root, cur);
307 } else {
308 break;
309 }
310 count++;
311 }
312
313 mutex_lock(&info->trans_mutex);
314 cur_trans = info->running_transaction;
315 WARN_ON(cur_trans != trans->transaction);
316 WARN_ON(cur_trans->num_writers < 1);
317 cur_trans->num_writers--;
318
319 if (waitqueue_active(&cur_trans->writer_wait))
320 wake_up(&cur_trans->writer_wait);
321 put_transaction(cur_trans);
322 mutex_unlock(&info->trans_mutex);
323
324 if (current->journal_info == trans)
325 current->journal_info = NULL;
326 memset(trans, 0, sizeof(*trans));
327 kmem_cache_free(btrfs_trans_handle_cachep, trans);
328
329 return 0;
330 }
331
332 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
333 struct btrfs_root *root)
334 {
335 return __btrfs_end_transaction(trans, root, 0);
336 }
337
338 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
339 struct btrfs_root *root)
340 {
341 return __btrfs_end_transaction(trans, root, 1);
342 }
343
344 /*
345 * when btree blocks are allocated, they have some corresponding bits set for
346 * them in one of two extent_io trees. This is used to make sure all of
347 * those extents are on disk for transaction or log commit
348 */
349 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
350 struct extent_io_tree *dirty_pages)
351 {
352 int ret;
353 int err = 0;
354 int werr = 0;
355 struct page *page;
356 struct inode *btree_inode = root->fs_info->btree_inode;
357 u64 start = 0;
358 u64 end;
359 unsigned long index;
360
361 while (1) {
362 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
363 EXTENT_DIRTY);
364 if (ret)
365 break;
366 while (start <= end) {
367 cond_resched();
368
369 index = start >> PAGE_CACHE_SHIFT;
370 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
371 page = find_get_page(btree_inode->i_mapping, index);
372 if (!page)
373 continue;
374
375 btree_lock_page_hook(page);
376 if (!page->mapping) {
377 unlock_page(page);
378 page_cache_release(page);
379 continue;
380 }
381
382 if (PageWriteback(page)) {
383 if (PageDirty(page))
384 wait_on_page_writeback(page);
385 else {
386 unlock_page(page);
387 page_cache_release(page);
388 continue;
389 }
390 }
391 err = write_one_page(page, 0);
392 if (err)
393 werr = err;
394 page_cache_release(page);
395 }
396 }
397 while (1) {
398 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
399 EXTENT_DIRTY);
400 if (ret)
401 break;
402
403 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
404 while (start <= end) {
405 index = start >> PAGE_CACHE_SHIFT;
406 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
407 page = find_get_page(btree_inode->i_mapping, index);
408 if (!page)
409 continue;
410 if (PageDirty(page)) {
411 btree_lock_page_hook(page);
412 wait_on_page_writeback(page);
413 err = write_one_page(page, 0);
414 if (err)
415 werr = err;
416 }
417 wait_on_page_writeback(page);
418 page_cache_release(page);
419 cond_resched();
420 }
421 }
422 if (err)
423 werr = err;
424 return werr;
425 }
426
427 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
428 struct btrfs_root *root)
429 {
430 if (!trans || !trans->transaction) {
431 struct inode *btree_inode;
432 btree_inode = root->fs_info->btree_inode;
433 return filemap_write_and_wait(btree_inode->i_mapping);
434 }
435 return btrfs_write_and_wait_marked_extents(root,
436 &trans->transaction->dirty_pages);
437 }
438
439 /*
440 * this is used to update the root pointer in the tree of tree roots.
441 *
442 * But, in the case of the extent allocation tree, updating the root
443 * pointer may allocate blocks which may change the root of the extent
444 * allocation tree.
445 *
446 * So, this loops and repeats and makes sure the cowonly root didn't
447 * change while the root pointer was being updated in the metadata.
448 */
449 static int update_cowonly_root(struct btrfs_trans_handle *trans,
450 struct btrfs_root *root)
451 {
452 int ret;
453 u64 old_root_bytenr;
454 struct btrfs_root *tree_root = root->fs_info->tree_root;
455
456 btrfs_write_dirty_block_groups(trans, root);
457
458 while (1) {
459 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
460 if (old_root_bytenr == root->node->start)
461 break;
462
463 btrfs_set_root_node(&root->root_item, root->node);
464 ret = btrfs_update_root(trans, tree_root,
465 &root->root_key,
466 &root->root_item);
467 BUG_ON(ret);
468
469 ret = btrfs_write_dirty_block_groups(trans, root);
470 BUG_ON(ret);
471 }
472
473 if (root != root->fs_info->extent_root)
474 switch_commit_root(root);
475
476 return 0;
477 }
478
479 /*
480 * update all the cowonly tree roots on disk
481 */
482 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
483 struct btrfs_root *root)
484 {
485 struct btrfs_fs_info *fs_info = root->fs_info;
486 struct list_head *next;
487 struct extent_buffer *eb;
488 int ret;
489
490 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
491 BUG_ON(ret);
492
493 eb = btrfs_lock_root_node(fs_info->tree_root);
494 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
495 btrfs_tree_unlock(eb);
496 free_extent_buffer(eb);
497
498 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
499 BUG_ON(ret);
500
501 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
502 next = fs_info->dirty_cowonly_roots.next;
503 list_del_init(next);
504 root = list_entry(next, struct btrfs_root, dirty_list);
505
506 update_cowonly_root(trans, root);
507 }
508
509 down_write(&fs_info->extent_commit_sem);
510 switch_commit_root(fs_info->extent_root);
511 up_write(&fs_info->extent_commit_sem);
512
513 return 0;
514 }
515
516 /*
517 * dead roots are old snapshots that need to be deleted. This allocates
518 * a dirty root struct and adds it into the list of dead roots that need to
519 * be deleted
520 */
521 int btrfs_add_dead_root(struct btrfs_root *root)
522 {
523 mutex_lock(&root->fs_info->trans_mutex);
524 list_add(&root->root_list, &root->fs_info->dead_roots);
525 mutex_unlock(&root->fs_info->trans_mutex);
526 return 0;
527 }
528
529 /*
530 * update all the cowonly tree roots on disk
531 */
532 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
533 struct btrfs_root *root)
534 {
535 struct btrfs_root *gang[8];
536 struct btrfs_fs_info *fs_info = root->fs_info;
537 int i;
538 int ret;
539 int err = 0;
540
541 while (1) {
542 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
543 (void **)gang, 0,
544 ARRAY_SIZE(gang),
545 BTRFS_ROOT_TRANS_TAG);
546 if (ret == 0)
547 break;
548 for (i = 0; i < ret; i++) {
549 root = gang[i];
550 radix_tree_tag_clear(&fs_info->fs_roots_radix,
551 (unsigned long)root->root_key.objectid,
552 BTRFS_ROOT_TRANS_TAG);
553
554 btrfs_free_log(trans, root);
555 btrfs_update_reloc_root(trans, root);
556
557 if (root->commit_root != root->node) {
558 switch_commit_root(root);
559 btrfs_set_root_node(&root->root_item,
560 root->node);
561 }
562
563 err = btrfs_update_root(trans, fs_info->tree_root,
564 &root->root_key,
565 &root->root_item);
566 if (err)
567 break;
568 }
569 }
570 return err;
571 }
572
573 /*
574 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
575 * otherwise every leaf in the btree is read and defragged.
576 */
577 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
578 {
579 struct btrfs_fs_info *info = root->fs_info;
580 int ret;
581 struct btrfs_trans_handle *trans;
582 unsigned long nr;
583
584 smp_mb();
585 if (root->defrag_running)
586 return 0;
587 trans = btrfs_start_transaction(root, 1);
588 while (1) {
589 root->defrag_running = 1;
590 ret = btrfs_defrag_leaves(trans, root, cacheonly);
591 nr = trans->blocks_used;
592 btrfs_end_transaction(trans, root);
593 btrfs_btree_balance_dirty(info->tree_root, nr);
594 cond_resched();
595
596 trans = btrfs_start_transaction(root, 1);
597 if (root->fs_info->closing || ret != -EAGAIN)
598 break;
599 }
600 root->defrag_running = 0;
601 smp_mb();
602 btrfs_end_transaction(trans, root);
603 return 0;
604 }
605
606 #if 0
607 /*
608 * when dropping snapshots, we generate a ton of delayed refs, and it makes
609 * sense not to join the transaction while it is trying to flush the current
610 * queue of delayed refs out.
611 *
612 * This is used by the drop snapshot code only
613 */
614 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
615 {
616 DEFINE_WAIT(wait);
617
618 mutex_lock(&info->trans_mutex);
619 while (info->running_transaction &&
620 info->running_transaction->delayed_refs.flushing) {
621 prepare_to_wait(&info->transaction_wait, &wait,
622 TASK_UNINTERRUPTIBLE);
623 mutex_unlock(&info->trans_mutex);
624
625 schedule();
626
627 mutex_lock(&info->trans_mutex);
628 finish_wait(&info->transaction_wait, &wait);
629 }
630 mutex_unlock(&info->trans_mutex);
631 return 0;
632 }
633
634 /*
635 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
636 * all of them
637 */
638 int btrfs_drop_dead_root(struct btrfs_root *root)
639 {
640 struct btrfs_trans_handle *trans;
641 struct btrfs_root *tree_root = root->fs_info->tree_root;
642 unsigned long nr;
643 int ret;
644
645 while (1) {
646 /*
647 * we don't want to jump in and create a bunch of
648 * delayed refs if the transaction is starting to close
649 */
650 wait_transaction_pre_flush(tree_root->fs_info);
651 trans = btrfs_start_transaction(tree_root, 1);
652
653 /*
654 * we've joined a transaction, make sure it isn't
655 * closing right now
656 */
657 if (trans->transaction->delayed_refs.flushing) {
658 btrfs_end_transaction(trans, tree_root);
659 continue;
660 }
661
662 ret = btrfs_drop_snapshot(trans, root);
663 if (ret != -EAGAIN)
664 break;
665
666 ret = btrfs_update_root(trans, tree_root,
667 &root->root_key,
668 &root->root_item);
669 if (ret)
670 break;
671
672 nr = trans->blocks_used;
673 ret = btrfs_end_transaction(trans, tree_root);
674 BUG_ON(ret);
675
676 btrfs_btree_balance_dirty(tree_root, nr);
677 cond_resched();
678 }
679 BUG_ON(ret);
680
681 ret = btrfs_del_root(trans, tree_root, &root->root_key);
682 BUG_ON(ret);
683
684 nr = trans->blocks_used;
685 ret = btrfs_end_transaction(trans, tree_root);
686 BUG_ON(ret);
687
688 free_extent_buffer(root->node);
689 free_extent_buffer(root->commit_root);
690 kfree(root);
691
692 btrfs_btree_balance_dirty(tree_root, nr);
693 return ret;
694 }
695 #endif
696
697 /*
698 * new snapshots need to be created at a very specific time in the
699 * transaction commit. This does the actual creation
700 */
701 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
702 struct btrfs_fs_info *fs_info,
703 struct btrfs_pending_snapshot *pending)
704 {
705 struct btrfs_key key;
706 struct btrfs_root_item *new_root_item;
707 struct btrfs_root *tree_root = fs_info->tree_root;
708 struct btrfs_root *root = pending->root;
709 struct extent_buffer *tmp;
710 struct extent_buffer *old;
711 int ret;
712 u64 objectid;
713
714 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
715 if (!new_root_item) {
716 ret = -ENOMEM;
717 goto fail;
718 }
719 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
720 if (ret)
721 goto fail;
722
723 record_root_in_trans(trans, root);
724 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
725 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
726
727 key.objectid = objectid;
728 /* record when the snapshot was created in key.offset */
729 key.offset = trans->transid;
730 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
731
732 old = btrfs_lock_root_node(root);
733 btrfs_cow_block(trans, root, old, NULL, 0, &old);
734 btrfs_set_lock_blocking(old);
735
736 btrfs_copy_root(trans, root, old, &tmp, objectid);
737 btrfs_tree_unlock(old);
738 free_extent_buffer(old);
739
740 btrfs_set_root_node(new_root_item, tmp);
741 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
742 new_root_item);
743 btrfs_tree_unlock(tmp);
744 free_extent_buffer(tmp);
745 if (ret)
746 goto fail;
747
748 key.offset = (u64)-1;
749 memcpy(&pending->root_key, &key, sizeof(key));
750 fail:
751 kfree(new_root_item);
752 btrfs_unreserve_metadata_space(root, 6);
753 return ret;
754 }
755
756 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
757 struct btrfs_pending_snapshot *pending)
758 {
759 int ret;
760 int namelen;
761 u64 index = 0;
762 struct btrfs_trans_handle *trans;
763 struct inode *parent_inode;
764 struct inode *inode;
765 struct btrfs_root *parent_root;
766
767 parent_inode = pending->dentry->d_parent->d_inode;
768 parent_root = BTRFS_I(parent_inode)->root;
769 trans = btrfs_join_transaction(parent_root, 1);
770
771 /*
772 * insert the directory item
773 */
774 namelen = strlen(pending->name);
775 ret = btrfs_set_inode_index(parent_inode, &index);
776 ret = btrfs_insert_dir_item(trans, parent_root,
777 pending->name, namelen,
778 parent_inode->i_ino,
779 &pending->root_key, BTRFS_FT_DIR, index);
780
781 if (ret)
782 goto fail;
783
784 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
785 ret = btrfs_update_inode(trans, parent_root, parent_inode);
786 BUG_ON(ret);
787
788 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
789 pending->root_key.objectid,
790 parent_root->root_key.objectid,
791 parent_inode->i_ino, index, pending->name,
792 namelen);
793
794 BUG_ON(ret);
795
796 inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
797 d_instantiate(pending->dentry, inode);
798 fail:
799 btrfs_end_transaction(trans, fs_info->fs_root);
800 return ret;
801 }
802
803 /*
804 * create all the snapshots we've scheduled for creation
805 */
806 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
807 struct btrfs_fs_info *fs_info)
808 {
809 struct btrfs_pending_snapshot *pending;
810 struct list_head *head = &trans->transaction->pending_snapshots;
811 int ret;
812
813 list_for_each_entry(pending, head, list) {
814 ret = create_pending_snapshot(trans, fs_info, pending);
815 BUG_ON(ret);
816 }
817 return 0;
818 }
819
820 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
821 struct btrfs_fs_info *fs_info)
822 {
823 struct btrfs_pending_snapshot *pending;
824 struct list_head *head = &trans->transaction->pending_snapshots;
825 int ret;
826
827 while (!list_empty(head)) {
828 pending = list_entry(head->next,
829 struct btrfs_pending_snapshot, list);
830 ret = finish_pending_snapshot(fs_info, pending);
831 BUG_ON(ret);
832 list_del(&pending->list);
833 kfree(pending->name);
834 kfree(pending);
835 }
836 return 0;
837 }
838
839 static void update_super_roots(struct btrfs_root *root)
840 {
841 struct btrfs_root_item *root_item;
842 struct btrfs_super_block *super;
843
844 super = &root->fs_info->super_copy;
845
846 root_item = &root->fs_info->chunk_root->root_item;
847 super->chunk_root = root_item->bytenr;
848 super->chunk_root_generation = root_item->generation;
849 super->chunk_root_level = root_item->level;
850
851 root_item = &root->fs_info->tree_root->root_item;
852 super->root = root_item->bytenr;
853 super->generation = root_item->generation;
854 super->root_level = root_item->level;
855 }
856
857 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
858 {
859 int ret = 0;
860 spin_lock(&info->new_trans_lock);
861 if (info->running_transaction)
862 ret = info->running_transaction->in_commit;
863 spin_unlock(&info->new_trans_lock);
864 return ret;
865 }
866
867 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
868 struct btrfs_root *root)
869 {
870 unsigned long joined = 0;
871 unsigned long timeout = 1;
872 struct btrfs_transaction *cur_trans;
873 struct btrfs_transaction *prev_trans = NULL;
874 DEFINE_WAIT(wait);
875 int ret;
876 int should_grow = 0;
877 unsigned long now = get_seconds();
878 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
879
880 btrfs_run_ordered_operations(root, 0);
881
882 /* make a pass through all the delayed refs we have so far
883 * any runnings procs may add more while we are here
884 */
885 ret = btrfs_run_delayed_refs(trans, root, 0);
886 BUG_ON(ret);
887
888 cur_trans = trans->transaction;
889 /*
890 * set the flushing flag so procs in this transaction have to
891 * start sending their work down.
892 */
893 cur_trans->delayed_refs.flushing = 1;
894
895 ret = btrfs_run_delayed_refs(trans, root, 0);
896 BUG_ON(ret);
897
898 mutex_lock(&root->fs_info->trans_mutex);
899 if (cur_trans->in_commit) {
900 cur_trans->use_count++;
901 mutex_unlock(&root->fs_info->trans_mutex);
902 btrfs_end_transaction(trans, root);
903
904 ret = wait_for_commit(root, cur_trans);
905 BUG_ON(ret);
906
907 mutex_lock(&root->fs_info->trans_mutex);
908 put_transaction(cur_trans);
909 mutex_unlock(&root->fs_info->trans_mutex);
910
911 return 0;
912 }
913
914 trans->transaction->in_commit = 1;
915 trans->transaction->blocked = 1;
916 if (cur_trans->list.prev != &root->fs_info->trans_list) {
917 prev_trans = list_entry(cur_trans->list.prev,
918 struct btrfs_transaction, list);
919 if (!prev_trans->commit_done) {
920 prev_trans->use_count++;
921 mutex_unlock(&root->fs_info->trans_mutex);
922
923 wait_for_commit(root, prev_trans);
924
925 mutex_lock(&root->fs_info->trans_mutex);
926 put_transaction(prev_trans);
927 }
928 }
929
930 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
931 should_grow = 1;
932
933 do {
934 int snap_pending = 0;
935 joined = cur_trans->num_joined;
936 if (!list_empty(&trans->transaction->pending_snapshots))
937 snap_pending = 1;
938
939 WARN_ON(cur_trans != trans->transaction);
940 prepare_to_wait(&cur_trans->writer_wait, &wait,
941 TASK_UNINTERRUPTIBLE);
942
943 if (cur_trans->num_writers > 1)
944 timeout = MAX_SCHEDULE_TIMEOUT;
945 else if (should_grow)
946 timeout = 1;
947
948 mutex_unlock(&root->fs_info->trans_mutex);
949
950 if (flush_on_commit) {
951 btrfs_start_delalloc_inodes(root);
952 ret = btrfs_wait_ordered_extents(root, 0);
953 BUG_ON(ret);
954 } else if (snap_pending) {
955 ret = btrfs_wait_ordered_extents(root, 1);
956 BUG_ON(ret);
957 }
958
959 /*
960 * rename don't use btrfs_join_transaction, so, once we
961 * set the transaction to blocked above, we aren't going
962 * to get any new ordered operations. We can safely run
963 * it here and no for sure that nothing new will be added
964 * to the list
965 */
966 btrfs_run_ordered_operations(root, 1);
967
968 smp_mb();
969 if (cur_trans->num_writers > 1 || should_grow)
970 schedule_timeout(timeout);
971
972 mutex_lock(&root->fs_info->trans_mutex);
973 finish_wait(&cur_trans->writer_wait, &wait);
974 } while (cur_trans->num_writers > 1 ||
975 (should_grow && cur_trans->num_joined != joined));
976
977 ret = create_pending_snapshots(trans, root->fs_info);
978 BUG_ON(ret);
979
980 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
981 BUG_ON(ret);
982
983 WARN_ON(cur_trans != trans->transaction);
984
985 /* btrfs_commit_tree_roots is responsible for getting the
986 * various roots consistent with each other. Every pointer
987 * in the tree of tree roots has to point to the most up to date
988 * root for every subvolume and other tree. So, we have to keep
989 * the tree logging code from jumping in and changing any
990 * of the trees.
991 *
992 * At this point in the commit, there can't be any tree-log
993 * writers, but a little lower down we drop the trans mutex
994 * and let new people in. By holding the tree_log_mutex
995 * from now until after the super is written, we avoid races
996 * with the tree-log code.
997 */
998 mutex_lock(&root->fs_info->tree_log_mutex);
999
1000 ret = commit_fs_roots(trans, root);
1001 BUG_ON(ret);
1002
1003 /* commit_fs_roots gets rid of all the tree log roots, it is now
1004 * safe to free the root of tree log roots
1005 */
1006 btrfs_free_log_root_tree(trans, root->fs_info);
1007
1008 ret = commit_cowonly_roots(trans, root);
1009 BUG_ON(ret);
1010
1011 btrfs_prepare_extent_commit(trans, root);
1012
1013 cur_trans = root->fs_info->running_transaction;
1014 spin_lock(&root->fs_info->new_trans_lock);
1015 root->fs_info->running_transaction = NULL;
1016 spin_unlock(&root->fs_info->new_trans_lock);
1017
1018 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1019 root->fs_info->tree_root->node);
1020 switch_commit_root(root->fs_info->tree_root);
1021
1022 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1023 root->fs_info->chunk_root->node);
1024 switch_commit_root(root->fs_info->chunk_root);
1025
1026 update_super_roots(root);
1027
1028 if (!root->fs_info->log_root_recovering) {
1029 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1030 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1031 }
1032
1033 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1034 sizeof(root->fs_info->super_copy));
1035
1036 trans->transaction->blocked = 0;
1037
1038 wake_up(&root->fs_info->transaction_wait);
1039
1040 mutex_unlock(&root->fs_info->trans_mutex);
1041 ret = btrfs_write_and_wait_transaction(trans, root);
1042 BUG_ON(ret);
1043 write_ctree_super(trans, root, 0);
1044
1045 /*
1046 * the super is written, we can safely allow the tree-loggers
1047 * to go about their business
1048 */
1049 mutex_unlock(&root->fs_info->tree_log_mutex);
1050
1051 btrfs_finish_extent_commit(trans, root);
1052
1053 /* do the directory inserts of any pending snapshot creations */
1054 finish_pending_snapshots(trans, root->fs_info);
1055
1056 mutex_lock(&root->fs_info->trans_mutex);
1057
1058 cur_trans->commit_done = 1;
1059
1060 root->fs_info->last_trans_committed = cur_trans->transid;
1061
1062 wake_up(&cur_trans->commit_wait);
1063
1064 put_transaction(cur_trans);
1065 put_transaction(cur_trans);
1066
1067 mutex_unlock(&root->fs_info->trans_mutex);
1068
1069 if (current->journal_info == trans)
1070 current->journal_info = NULL;
1071
1072 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1073 return ret;
1074 }
1075
1076 /*
1077 * interface function to delete all the snapshots we have scheduled for deletion
1078 */
1079 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1080 {
1081 LIST_HEAD(list);
1082 struct btrfs_fs_info *fs_info = root->fs_info;
1083
1084 mutex_lock(&fs_info->trans_mutex);
1085 list_splice_init(&fs_info->dead_roots, &list);
1086 mutex_unlock(&fs_info->trans_mutex);
1087
1088 while (!list_empty(&list)) {
1089 root = list_entry(list.next, struct btrfs_root, root_list);
1090 list_del(&root->root_list);
1091
1092 if (btrfs_header_backref_rev(root->node) <
1093 BTRFS_MIXED_BACKREF_REV)
1094 btrfs_drop_snapshot(root, 0);
1095 else
1096 btrfs_drop_snapshot(root, 1);
1097 }
1098 return 0;
1099 }
This page took 0.094821 seconds and 5 git commands to generate.