Btrfs: change how we indicate we're adding csums
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 #include "volumes.h"
32
33 #define BTRFS_ROOT_TRANS_TAG 0
34
35 void put_transaction(struct btrfs_transaction *transaction)
36 {
37 WARN_ON(atomic_read(&transaction->use_count) == 0);
38 if (atomic_dec_and_test(&transaction->use_count)) {
39 BUG_ON(!list_empty(&transaction->list));
40 WARN_ON(transaction->delayed_refs.root.rb_node);
41 WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
42 memset(transaction, 0, sizeof(*transaction));
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54 * either allocate a new transaction or hop into the existing one
55 */
56 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 {
58 struct btrfs_transaction *cur_trans;
59 struct btrfs_fs_info *fs_info = root->fs_info;
60
61 spin_lock(&fs_info->trans_lock);
62 loop:
63 /* The file system has been taken offline. No new transactions. */
64 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 spin_unlock(&fs_info->trans_lock);
66 return -EROFS;
67 }
68
69 if (fs_info->trans_no_join) {
70 if (!nofail) {
71 spin_unlock(&fs_info->trans_lock);
72 return -EBUSY;
73 }
74 }
75
76 cur_trans = fs_info->running_transaction;
77 if (cur_trans) {
78 if (cur_trans->aborted) {
79 spin_unlock(&fs_info->trans_lock);
80 return cur_trans->aborted;
81 }
82 atomic_inc(&cur_trans->use_count);
83 atomic_inc(&cur_trans->num_writers);
84 cur_trans->num_joined++;
85 spin_unlock(&fs_info->trans_lock);
86 return 0;
87 }
88 spin_unlock(&fs_info->trans_lock);
89
90 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
91 if (!cur_trans)
92 return -ENOMEM;
93
94 spin_lock(&fs_info->trans_lock);
95 if (fs_info->running_transaction) {
96 /*
97 * someone started a transaction after we unlocked. Make sure
98 * to redo the trans_no_join checks above
99 */
100 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
101 cur_trans = fs_info->running_transaction;
102 goto loop;
103 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
104 spin_unlock(&fs_info->trans_lock);
105 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
106 return -EROFS;
107 }
108
109 atomic_set(&cur_trans->num_writers, 1);
110 cur_trans->num_joined = 0;
111 init_waitqueue_head(&cur_trans->writer_wait);
112 init_waitqueue_head(&cur_trans->commit_wait);
113 cur_trans->in_commit = 0;
114 cur_trans->blocked = 0;
115 /*
116 * One for this trans handle, one so it will live on until we
117 * commit the transaction.
118 */
119 atomic_set(&cur_trans->use_count, 2);
120 cur_trans->commit_done = 0;
121 cur_trans->start_time = get_seconds();
122
123 cur_trans->delayed_refs.root = RB_ROOT;
124 cur_trans->delayed_refs.num_entries = 0;
125 cur_trans->delayed_refs.num_heads_ready = 0;
126 cur_trans->delayed_refs.num_heads = 0;
127 cur_trans->delayed_refs.flushing = 0;
128 cur_trans->delayed_refs.run_delayed_start = 0;
129 cur_trans->delayed_refs.seq = 1;
130
131 /*
132 * although the tree mod log is per file system and not per transaction,
133 * the log must never go across transaction boundaries.
134 */
135 smp_mb();
136 if (!list_empty(&fs_info->tree_mod_seq_list)) {
137 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
138 "creating a fresh transaction\n");
139 WARN_ON(1);
140 }
141 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
142 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
143 "creating a fresh transaction\n");
144 WARN_ON(1);
145 }
146 atomic_set(&fs_info->tree_mod_seq, 0);
147
148 init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
149 spin_lock_init(&cur_trans->commit_lock);
150 spin_lock_init(&cur_trans->delayed_refs.lock);
151 INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
152
153 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
154 list_add_tail(&cur_trans->list, &fs_info->trans_list);
155 extent_io_tree_init(&cur_trans->dirty_pages,
156 fs_info->btree_inode->i_mapping);
157 fs_info->generation++;
158 cur_trans->transid = fs_info->generation;
159 fs_info->running_transaction = cur_trans;
160 cur_trans->aborted = 0;
161 spin_unlock(&fs_info->trans_lock);
162
163 return 0;
164 }
165
166 /*
167 * this does all the record keeping required to make sure that a reference
168 * counted root is properly recorded in a given transaction. This is required
169 * to make sure the old root from before we joined the transaction is deleted
170 * when the transaction commits
171 */
172 static int record_root_in_trans(struct btrfs_trans_handle *trans,
173 struct btrfs_root *root)
174 {
175 if (root->ref_cows && root->last_trans < trans->transid) {
176 WARN_ON(root == root->fs_info->extent_root);
177 WARN_ON(root->commit_root != root->node);
178
179 /*
180 * see below for in_trans_setup usage rules
181 * we have the reloc mutex held now, so there
182 * is only one writer in this function
183 */
184 root->in_trans_setup = 1;
185
186 /* make sure readers find in_trans_setup before
187 * they find our root->last_trans update
188 */
189 smp_wmb();
190
191 spin_lock(&root->fs_info->fs_roots_radix_lock);
192 if (root->last_trans == trans->transid) {
193 spin_unlock(&root->fs_info->fs_roots_radix_lock);
194 return 0;
195 }
196 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
197 (unsigned long)root->root_key.objectid,
198 BTRFS_ROOT_TRANS_TAG);
199 spin_unlock(&root->fs_info->fs_roots_radix_lock);
200 root->last_trans = trans->transid;
201
202 /* this is pretty tricky. We don't want to
203 * take the relocation lock in btrfs_record_root_in_trans
204 * unless we're really doing the first setup for this root in
205 * this transaction.
206 *
207 * Normally we'd use root->last_trans as a flag to decide
208 * if we want to take the expensive mutex.
209 *
210 * But, we have to set root->last_trans before we
211 * init the relocation root, otherwise, we trip over warnings
212 * in ctree.c. The solution used here is to flag ourselves
213 * with root->in_trans_setup. When this is 1, we're still
214 * fixing up the reloc trees and everyone must wait.
215 *
216 * When this is zero, they can trust root->last_trans and fly
217 * through btrfs_record_root_in_trans without having to take the
218 * lock. smp_wmb() makes sure that all the writes above are
219 * done before we pop in the zero below
220 */
221 btrfs_init_reloc_root(trans, root);
222 smp_wmb();
223 root->in_trans_setup = 0;
224 }
225 return 0;
226 }
227
228
229 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
230 struct btrfs_root *root)
231 {
232 if (!root->ref_cows)
233 return 0;
234
235 /*
236 * see record_root_in_trans for comments about in_trans_setup usage
237 * and barriers
238 */
239 smp_rmb();
240 if (root->last_trans == trans->transid &&
241 !root->in_trans_setup)
242 return 0;
243
244 mutex_lock(&root->fs_info->reloc_mutex);
245 record_root_in_trans(trans, root);
246 mutex_unlock(&root->fs_info->reloc_mutex);
247
248 return 0;
249 }
250
251 /* wait for commit against the current transaction to become unblocked
252 * when this is done, it is safe to start a new transaction, but the current
253 * transaction might not be fully on disk.
254 */
255 static void wait_current_trans(struct btrfs_root *root)
256 {
257 struct btrfs_transaction *cur_trans;
258
259 spin_lock(&root->fs_info->trans_lock);
260 cur_trans = root->fs_info->running_transaction;
261 if (cur_trans && cur_trans->blocked) {
262 atomic_inc(&cur_trans->use_count);
263 spin_unlock(&root->fs_info->trans_lock);
264
265 wait_event(root->fs_info->transaction_wait,
266 !cur_trans->blocked);
267 put_transaction(cur_trans);
268 } else {
269 spin_unlock(&root->fs_info->trans_lock);
270 }
271 }
272
273 enum btrfs_trans_type {
274 TRANS_START,
275 TRANS_JOIN,
276 TRANS_USERSPACE,
277 TRANS_JOIN_NOLOCK,
278 };
279
280 static int may_wait_transaction(struct btrfs_root *root, int type)
281 {
282 if (root->fs_info->log_root_recovering)
283 return 0;
284
285 if (type == TRANS_USERSPACE)
286 return 1;
287
288 if (type == TRANS_START &&
289 !atomic_read(&root->fs_info->open_ioctl_trans))
290 return 1;
291
292 return 0;
293 }
294
295 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
296 u64 num_items, int type)
297 {
298 struct btrfs_trans_handle *h;
299 struct btrfs_transaction *cur_trans;
300 u64 num_bytes = 0;
301 int ret;
302
303 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
304 return ERR_PTR(-EROFS);
305
306 if (current->journal_info) {
307 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
308 h = current->journal_info;
309 h->use_count++;
310 h->orig_rsv = h->block_rsv;
311 h->block_rsv = NULL;
312 goto got_it;
313 }
314
315 /*
316 * Do the reservation before we join the transaction so we can do all
317 * the appropriate flushing if need be.
318 */
319 if (num_items > 0 && root != root->fs_info->chunk_root) {
320 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
321 ret = btrfs_block_rsv_add(root,
322 &root->fs_info->trans_block_rsv,
323 num_bytes);
324 if (ret)
325 return ERR_PTR(ret);
326 }
327 again:
328 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
329 if (!h)
330 return ERR_PTR(-ENOMEM);
331
332 if (may_wait_transaction(root, type))
333 wait_current_trans(root);
334
335 do {
336 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
337 if (ret == -EBUSY)
338 wait_current_trans(root);
339 } while (ret == -EBUSY);
340
341 if (ret < 0) {
342 kmem_cache_free(btrfs_trans_handle_cachep, h);
343 return ERR_PTR(ret);
344 }
345
346 cur_trans = root->fs_info->running_transaction;
347
348 h->transid = cur_trans->transid;
349 h->transaction = cur_trans;
350 h->blocks_used = 0;
351 h->bytes_reserved = 0;
352 h->delayed_ref_updates = 0;
353 h->use_count = 1;
354 h->adding_csums = 0;
355 h->block_rsv = NULL;
356 h->orig_rsv = NULL;
357 h->aborted = 0;
358
359 smp_mb();
360 if (cur_trans->blocked && may_wait_transaction(root, type)) {
361 btrfs_commit_transaction(h, root);
362 goto again;
363 }
364
365 if (num_bytes) {
366 trace_btrfs_space_reservation(root->fs_info, "transaction",
367 h->transid, num_bytes, 1);
368 h->block_rsv = &root->fs_info->trans_block_rsv;
369 h->bytes_reserved = num_bytes;
370 }
371
372 got_it:
373 btrfs_record_root_in_trans(h, root);
374
375 if (!current->journal_info && type != TRANS_USERSPACE)
376 current->journal_info = h;
377 return h;
378 }
379
380 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
381 int num_items)
382 {
383 return start_transaction(root, num_items, TRANS_START);
384 }
385 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
386 {
387 return start_transaction(root, 0, TRANS_JOIN);
388 }
389
390 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
391 {
392 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
393 }
394
395 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
396 {
397 return start_transaction(root, 0, TRANS_USERSPACE);
398 }
399
400 /* wait for a transaction commit to be fully complete */
401 static noinline void wait_for_commit(struct btrfs_root *root,
402 struct btrfs_transaction *commit)
403 {
404 wait_event(commit->commit_wait, commit->commit_done);
405 }
406
407 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
408 {
409 struct btrfs_transaction *cur_trans = NULL, *t;
410 int ret;
411
412 ret = 0;
413 if (transid) {
414 if (transid <= root->fs_info->last_trans_committed)
415 goto out;
416
417 /* find specified transaction */
418 spin_lock(&root->fs_info->trans_lock);
419 list_for_each_entry(t, &root->fs_info->trans_list, list) {
420 if (t->transid == transid) {
421 cur_trans = t;
422 atomic_inc(&cur_trans->use_count);
423 break;
424 }
425 if (t->transid > transid)
426 break;
427 }
428 spin_unlock(&root->fs_info->trans_lock);
429 ret = -EINVAL;
430 if (!cur_trans)
431 goto out; /* bad transid */
432 } else {
433 /* find newest transaction that is committing | committed */
434 spin_lock(&root->fs_info->trans_lock);
435 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
436 list) {
437 if (t->in_commit) {
438 if (t->commit_done)
439 break;
440 cur_trans = t;
441 atomic_inc(&cur_trans->use_count);
442 break;
443 }
444 }
445 spin_unlock(&root->fs_info->trans_lock);
446 if (!cur_trans)
447 goto out; /* nothing committing|committed */
448 }
449
450 wait_for_commit(root, cur_trans);
451
452 put_transaction(cur_trans);
453 ret = 0;
454 out:
455 return ret;
456 }
457
458 void btrfs_throttle(struct btrfs_root *root)
459 {
460 if (!atomic_read(&root->fs_info->open_ioctl_trans))
461 wait_current_trans(root);
462 }
463
464 static int should_end_transaction(struct btrfs_trans_handle *trans,
465 struct btrfs_root *root)
466 {
467 int ret;
468
469 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
470 return ret ? 1 : 0;
471 }
472
473 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
474 struct btrfs_root *root)
475 {
476 struct btrfs_transaction *cur_trans = trans->transaction;
477 int updates;
478 int err;
479
480 smp_mb();
481 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
482 return 1;
483
484 updates = trans->delayed_ref_updates;
485 trans->delayed_ref_updates = 0;
486 if (updates) {
487 err = btrfs_run_delayed_refs(trans, root, updates);
488 if (err) /* Error code will also eval true */
489 return err;
490 }
491
492 return should_end_transaction(trans, root);
493 }
494
495 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
496 struct btrfs_root *root, int throttle, int lock)
497 {
498 struct btrfs_transaction *cur_trans = trans->transaction;
499 struct btrfs_fs_info *info = root->fs_info;
500 int count = 0;
501 int err = 0;
502
503 if (--trans->use_count) {
504 trans->block_rsv = trans->orig_rsv;
505 return 0;
506 }
507
508 while (count < 2) {
509 unsigned long cur = trans->delayed_ref_updates;
510 trans->delayed_ref_updates = 0;
511 if (cur &&
512 trans->transaction->delayed_refs.num_heads_ready > 64) {
513 trans->delayed_ref_updates = 0;
514 btrfs_run_delayed_refs(trans, root, cur);
515 } else {
516 break;
517 }
518 count++;
519 }
520 btrfs_trans_release_metadata(trans, root);
521 trans->block_rsv = NULL;
522
523 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
524 should_end_transaction(trans, root)) {
525 trans->transaction->blocked = 1;
526 smp_wmb();
527 }
528
529 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
530 if (throttle) {
531 /*
532 * We may race with somebody else here so end up having
533 * to call end_transaction on ourselves again, so inc
534 * our use_count.
535 */
536 trans->use_count++;
537 return btrfs_commit_transaction(trans, root);
538 } else {
539 wake_up_process(info->transaction_kthread);
540 }
541 }
542
543 WARN_ON(cur_trans != info->running_transaction);
544 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
545 atomic_dec(&cur_trans->num_writers);
546
547 smp_mb();
548 if (waitqueue_active(&cur_trans->writer_wait))
549 wake_up(&cur_trans->writer_wait);
550 put_transaction(cur_trans);
551
552 if (current->journal_info == trans)
553 current->journal_info = NULL;
554
555 if (throttle)
556 btrfs_run_delayed_iputs(root);
557
558 if (trans->aborted ||
559 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
560 err = -EIO;
561 }
562
563 memset(trans, 0, sizeof(*trans));
564 kmem_cache_free(btrfs_trans_handle_cachep, trans);
565 return err;
566 }
567
568 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
569 struct btrfs_root *root)
570 {
571 int ret;
572
573 ret = __btrfs_end_transaction(trans, root, 0, 1);
574 if (ret)
575 return ret;
576 return 0;
577 }
578
579 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
580 struct btrfs_root *root)
581 {
582 int ret;
583
584 ret = __btrfs_end_transaction(trans, root, 1, 1);
585 if (ret)
586 return ret;
587 return 0;
588 }
589
590 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
591 struct btrfs_root *root)
592 {
593 int ret;
594
595 ret = __btrfs_end_transaction(trans, root, 0, 0);
596 if (ret)
597 return ret;
598 return 0;
599 }
600
601 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
602 struct btrfs_root *root)
603 {
604 return __btrfs_end_transaction(trans, root, 1, 1);
605 }
606
607 /*
608 * when btree blocks are allocated, they have some corresponding bits set for
609 * them in one of two extent_io trees. This is used to make sure all of
610 * those extents are sent to disk but does not wait on them
611 */
612 int btrfs_write_marked_extents(struct btrfs_root *root,
613 struct extent_io_tree *dirty_pages, int mark)
614 {
615 int err = 0;
616 int werr = 0;
617 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
618 u64 start = 0;
619 u64 end;
620
621 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
622 mark)) {
623 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
624 GFP_NOFS);
625 err = filemap_fdatawrite_range(mapping, start, end);
626 if (err)
627 werr = err;
628 cond_resched();
629 start = end + 1;
630 }
631 if (err)
632 werr = err;
633 return werr;
634 }
635
636 /*
637 * when btree blocks are allocated, they have some corresponding bits set for
638 * them in one of two extent_io trees. This is used to make sure all of
639 * those extents are on disk for transaction or log commit. We wait
640 * on all the pages and clear them from the dirty pages state tree
641 */
642 int btrfs_wait_marked_extents(struct btrfs_root *root,
643 struct extent_io_tree *dirty_pages, int mark)
644 {
645 int err = 0;
646 int werr = 0;
647 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
648 u64 start = 0;
649 u64 end;
650
651 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
652 EXTENT_NEED_WAIT)) {
653 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
654 err = filemap_fdatawait_range(mapping, start, end);
655 if (err)
656 werr = err;
657 cond_resched();
658 start = end + 1;
659 }
660 if (err)
661 werr = err;
662 return werr;
663 }
664
665 /*
666 * when btree blocks are allocated, they have some corresponding bits set for
667 * them in one of two extent_io trees. This is used to make sure all of
668 * those extents are on disk for transaction or log commit
669 */
670 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
671 struct extent_io_tree *dirty_pages, int mark)
672 {
673 int ret;
674 int ret2;
675
676 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
677 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
678
679 if (ret)
680 return ret;
681 if (ret2)
682 return ret2;
683 return 0;
684 }
685
686 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
687 struct btrfs_root *root)
688 {
689 if (!trans || !trans->transaction) {
690 struct inode *btree_inode;
691 btree_inode = root->fs_info->btree_inode;
692 return filemap_write_and_wait(btree_inode->i_mapping);
693 }
694 return btrfs_write_and_wait_marked_extents(root,
695 &trans->transaction->dirty_pages,
696 EXTENT_DIRTY);
697 }
698
699 /*
700 * this is used to update the root pointer in the tree of tree roots.
701 *
702 * But, in the case of the extent allocation tree, updating the root
703 * pointer may allocate blocks which may change the root of the extent
704 * allocation tree.
705 *
706 * So, this loops and repeats and makes sure the cowonly root didn't
707 * change while the root pointer was being updated in the metadata.
708 */
709 static int update_cowonly_root(struct btrfs_trans_handle *trans,
710 struct btrfs_root *root)
711 {
712 int ret;
713 u64 old_root_bytenr;
714 u64 old_root_used;
715 struct btrfs_root *tree_root = root->fs_info->tree_root;
716
717 old_root_used = btrfs_root_used(&root->root_item);
718 btrfs_write_dirty_block_groups(trans, root);
719
720 while (1) {
721 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
722 if (old_root_bytenr == root->node->start &&
723 old_root_used == btrfs_root_used(&root->root_item))
724 break;
725
726 btrfs_set_root_node(&root->root_item, root->node);
727 ret = btrfs_update_root(trans, tree_root,
728 &root->root_key,
729 &root->root_item);
730 if (ret)
731 return ret;
732
733 old_root_used = btrfs_root_used(&root->root_item);
734 ret = btrfs_write_dirty_block_groups(trans, root);
735 if (ret)
736 return ret;
737 }
738
739 if (root != root->fs_info->extent_root)
740 switch_commit_root(root);
741
742 return 0;
743 }
744
745 /*
746 * update all the cowonly tree roots on disk
747 *
748 * The error handling in this function may not be obvious. Any of the
749 * failures will cause the file system to go offline. We still need
750 * to clean up the delayed refs.
751 */
752 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
753 struct btrfs_root *root)
754 {
755 struct btrfs_fs_info *fs_info = root->fs_info;
756 struct list_head *next;
757 struct extent_buffer *eb;
758 int ret;
759
760 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
761 if (ret)
762 return ret;
763
764 eb = btrfs_lock_root_node(fs_info->tree_root);
765 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
766 0, &eb);
767 btrfs_tree_unlock(eb);
768 free_extent_buffer(eb);
769
770 if (ret)
771 return ret;
772
773 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
774 if (ret)
775 return ret;
776
777 ret = btrfs_run_dev_stats(trans, root->fs_info);
778 BUG_ON(ret);
779
780 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
781 next = fs_info->dirty_cowonly_roots.next;
782 list_del_init(next);
783 root = list_entry(next, struct btrfs_root, dirty_list);
784
785 ret = update_cowonly_root(trans, root);
786 if (ret)
787 return ret;
788 }
789
790 down_write(&fs_info->extent_commit_sem);
791 switch_commit_root(fs_info->extent_root);
792 up_write(&fs_info->extent_commit_sem);
793
794 return 0;
795 }
796
797 /*
798 * dead roots are old snapshots that need to be deleted. This allocates
799 * a dirty root struct and adds it into the list of dead roots that need to
800 * be deleted
801 */
802 int btrfs_add_dead_root(struct btrfs_root *root)
803 {
804 spin_lock(&root->fs_info->trans_lock);
805 list_add(&root->root_list, &root->fs_info->dead_roots);
806 spin_unlock(&root->fs_info->trans_lock);
807 return 0;
808 }
809
810 /*
811 * update all the cowonly tree roots on disk
812 */
813 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
814 struct btrfs_root *root)
815 {
816 struct btrfs_root *gang[8];
817 struct btrfs_fs_info *fs_info = root->fs_info;
818 int i;
819 int ret;
820 int err = 0;
821
822 spin_lock(&fs_info->fs_roots_radix_lock);
823 while (1) {
824 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
825 (void **)gang, 0,
826 ARRAY_SIZE(gang),
827 BTRFS_ROOT_TRANS_TAG);
828 if (ret == 0)
829 break;
830 for (i = 0; i < ret; i++) {
831 root = gang[i];
832 radix_tree_tag_clear(&fs_info->fs_roots_radix,
833 (unsigned long)root->root_key.objectid,
834 BTRFS_ROOT_TRANS_TAG);
835 spin_unlock(&fs_info->fs_roots_radix_lock);
836
837 btrfs_free_log(trans, root);
838 btrfs_update_reloc_root(trans, root);
839 btrfs_orphan_commit_root(trans, root);
840
841 btrfs_save_ino_cache(root, trans);
842
843 /* see comments in should_cow_block() */
844 root->force_cow = 0;
845 smp_wmb();
846
847 if (root->commit_root != root->node) {
848 mutex_lock(&root->fs_commit_mutex);
849 switch_commit_root(root);
850 btrfs_unpin_free_ino(root);
851 mutex_unlock(&root->fs_commit_mutex);
852
853 btrfs_set_root_node(&root->root_item,
854 root->node);
855 }
856
857 err = btrfs_update_root(trans, fs_info->tree_root,
858 &root->root_key,
859 &root->root_item);
860 spin_lock(&fs_info->fs_roots_radix_lock);
861 if (err)
862 break;
863 }
864 }
865 spin_unlock(&fs_info->fs_roots_radix_lock);
866 return err;
867 }
868
869 /*
870 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
871 * otherwise every leaf in the btree is read and defragged.
872 */
873 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
874 {
875 struct btrfs_fs_info *info = root->fs_info;
876 struct btrfs_trans_handle *trans;
877 int ret;
878 unsigned long nr;
879
880 if (xchg(&root->defrag_running, 1))
881 return 0;
882
883 while (1) {
884 trans = btrfs_start_transaction(root, 0);
885 if (IS_ERR(trans))
886 return PTR_ERR(trans);
887
888 ret = btrfs_defrag_leaves(trans, root, cacheonly);
889
890 nr = trans->blocks_used;
891 btrfs_end_transaction(trans, root);
892 btrfs_btree_balance_dirty(info->tree_root, nr);
893 cond_resched();
894
895 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
896 break;
897 }
898 root->defrag_running = 0;
899 return ret;
900 }
901
902 /*
903 * new snapshots need to be created at a very specific time in the
904 * transaction commit. This does the actual creation
905 */
906 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
907 struct btrfs_fs_info *fs_info,
908 struct btrfs_pending_snapshot *pending)
909 {
910 struct btrfs_key key;
911 struct btrfs_root_item *new_root_item;
912 struct btrfs_root *tree_root = fs_info->tree_root;
913 struct btrfs_root *root = pending->root;
914 struct btrfs_root *parent_root;
915 struct btrfs_block_rsv *rsv;
916 struct inode *parent_inode;
917 struct dentry *parent;
918 struct dentry *dentry;
919 struct extent_buffer *tmp;
920 struct extent_buffer *old;
921 int ret;
922 u64 to_reserve = 0;
923 u64 index = 0;
924 u64 objectid;
925 u64 root_flags;
926
927 rsv = trans->block_rsv;
928
929 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
930 if (!new_root_item) {
931 ret = pending->error = -ENOMEM;
932 goto fail;
933 }
934
935 ret = btrfs_find_free_objectid(tree_root, &objectid);
936 if (ret) {
937 pending->error = ret;
938 goto fail;
939 }
940
941 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
942
943 if (to_reserve > 0) {
944 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
945 to_reserve);
946 if (ret) {
947 pending->error = ret;
948 goto fail;
949 }
950 }
951
952 key.objectid = objectid;
953 key.offset = (u64)-1;
954 key.type = BTRFS_ROOT_ITEM_KEY;
955
956 trans->block_rsv = &pending->block_rsv;
957
958 dentry = pending->dentry;
959 parent = dget_parent(dentry);
960 parent_inode = parent->d_inode;
961 parent_root = BTRFS_I(parent_inode)->root;
962 record_root_in_trans(trans, parent_root);
963
964 /*
965 * insert the directory item
966 */
967 ret = btrfs_set_inode_index(parent_inode, &index);
968 BUG_ON(ret); /* -ENOMEM */
969 ret = btrfs_insert_dir_item(trans, parent_root,
970 dentry->d_name.name, dentry->d_name.len,
971 parent_inode, &key,
972 BTRFS_FT_DIR, index);
973 if (ret == -EEXIST) {
974 pending->error = -EEXIST;
975 dput(parent);
976 goto fail;
977 } else if (ret) {
978 goto abort_trans_dput;
979 }
980
981 btrfs_i_size_write(parent_inode, parent_inode->i_size +
982 dentry->d_name.len * 2);
983 ret = btrfs_update_inode(trans, parent_root, parent_inode);
984 if (ret)
985 goto abort_trans_dput;
986
987 /*
988 * pull in the delayed directory update
989 * and the delayed inode item
990 * otherwise we corrupt the FS during
991 * snapshot
992 */
993 ret = btrfs_run_delayed_items(trans, root);
994 if (ret) { /* Transaction aborted */
995 dput(parent);
996 goto fail;
997 }
998
999 record_root_in_trans(trans, root);
1000 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1001 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1002 btrfs_check_and_init_root_item(new_root_item);
1003
1004 root_flags = btrfs_root_flags(new_root_item);
1005 if (pending->readonly)
1006 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1007 else
1008 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1009 btrfs_set_root_flags(new_root_item, root_flags);
1010
1011 old = btrfs_lock_root_node(root);
1012 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1013 if (ret) {
1014 btrfs_tree_unlock(old);
1015 free_extent_buffer(old);
1016 goto abort_trans_dput;
1017 }
1018
1019 btrfs_set_lock_blocking(old);
1020
1021 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1022 /* clean up in any case */
1023 btrfs_tree_unlock(old);
1024 free_extent_buffer(old);
1025 if (ret)
1026 goto abort_trans_dput;
1027
1028 /* see comments in should_cow_block() */
1029 root->force_cow = 1;
1030 smp_wmb();
1031
1032 btrfs_set_root_node(new_root_item, tmp);
1033 /* record when the snapshot was created in key.offset */
1034 key.offset = trans->transid;
1035 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1036 btrfs_tree_unlock(tmp);
1037 free_extent_buffer(tmp);
1038 if (ret)
1039 goto abort_trans_dput;
1040
1041 /*
1042 * insert root back/forward references
1043 */
1044 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1045 parent_root->root_key.objectid,
1046 btrfs_ino(parent_inode), index,
1047 dentry->d_name.name, dentry->d_name.len);
1048 dput(parent);
1049 if (ret)
1050 goto fail;
1051
1052 key.offset = (u64)-1;
1053 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1054 if (IS_ERR(pending->snap)) {
1055 ret = PTR_ERR(pending->snap);
1056 goto abort_trans;
1057 }
1058
1059 ret = btrfs_reloc_post_snapshot(trans, pending);
1060 if (ret)
1061 goto abort_trans;
1062 ret = 0;
1063 fail:
1064 kfree(new_root_item);
1065 trans->block_rsv = rsv;
1066 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1067 return ret;
1068
1069 abort_trans_dput:
1070 dput(parent);
1071 abort_trans:
1072 btrfs_abort_transaction(trans, root, ret);
1073 goto fail;
1074 }
1075
1076 /*
1077 * create all the snapshots we've scheduled for creation
1078 */
1079 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1080 struct btrfs_fs_info *fs_info)
1081 {
1082 struct btrfs_pending_snapshot *pending;
1083 struct list_head *head = &trans->transaction->pending_snapshots;
1084
1085 list_for_each_entry(pending, head, list)
1086 create_pending_snapshot(trans, fs_info, pending);
1087 return 0;
1088 }
1089
1090 static void update_super_roots(struct btrfs_root *root)
1091 {
1092 struct btrfs_root_item *root_item;
1093 struct btrfs_super_block *super;
1094
1095 super = root->fs_info->super_copy;
1096
1097 root_item = &root->fs_info->chunk_root->root_item;
1098 super->chunk_root = root_item->bytenr;
1099 super->chunk_root_generation = root_item->generation;
1100 super->chunk_root_level = root_item->level;
1101
1102 root_item = &root->fs_info->tree_root->root_item;
1103 super->root = root_item->bytenr;
1104 super->generation = root_item->generation;
1105 super->root_level = root_item->level;
1106 if (btrfs_test_opt(root, SPACE_CACHE))
1107 super->cache_generation = root_item->generation;
1108 }
1109
1110 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1111 {
1112 int ret = 0;
1113 spin_lock(&info->trans_lock);
1114 if (info->running_transaction)
1115 ret = info->running_transaction->in_commit;
1116 spin_unlock(&info->trans_lock);
1117 return ret;
1118 }
1119
1120 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1121 {
1122 int ret = 0;
1123 spin_lock(&info->trans_lock);
1124 if (info->running_transaction)
1125 ret = info->running_transaction->blocked;
1126 spin_unlock(&info->trans_lock);
1127 return ret;
1128 }
1129
1130 /*
1131 * wait for the current transaction commit to start and block subsequent
1132 * transaction joins
1133 */
1134 static void wait_current_trans_commit_start(struct btrfs_root *root,
1135 struct btrfs_transaction *trans)
1136 {
1137 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1138 }
1139
1140 /*
1141 * wait for the current transaction to start and then become unblocked.
1142 * caller holds ref.
1143 */
1144 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1145 struct btrfs_transaction *trans)
1146 {
1147 wait_event(root->fs_info->transaction_wait,
1148 trans->commit_done || (trans->in_commit && !trans->blocked));
1149 }
1150
1151 /*
1152 * commit transactions asynchronously. once btrfs_commit_transaction_async
1153 * returns, any subsequent transaction will not be allowed to join.
1154 */
1155 struct btrfs_async_commit {
1156 struct btrfs_trans_handle *newtrans;
1157 struct btrfs_root *root;
1158 struct delayed_work work;
1159 };
1160
1161 static void do_async_commit(struct work_struct *work)
1162 {
1163 struct btrfs_async_commit *ac =
1164 container_of(work, struct btrfs_async_commit, work.work);
1165
1166 btrfs_commit_transaction(ac->newtrans, ac->root);
1167 kfree(ac);
1168 }
1169
1170 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1171 struct btrfs_root *root,
1172 int wait_for_unblock)
1173 {
1174 struct btrfs_async_commit *ac;
1175 struct btrfs_transaction *cur_trans;
1176
1177 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1178 if (!ac)
1179 return -ENOMEM;
1180
1181 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1182 ac->root = root;
1183 ac->newtrans = btrfs_join_transaction(root);
1184 if (IS_ERR(ac->newtrans)) {
1185 int err = PTR_ERR(ac->newtrans);
1186 kfree(ac);
1187 return err;
1188 }
1189
1190 /* take transaction reference */
1191 cur_trans = trans->transaction;
1192 atomic_inc(&cur_trans->use_count);
1193
1194 btrfs_end_transaction(trans, root);
1195 schedule_delayed_work(&ac->work, 0);
1196
1197 /* wait for transaction to start and unblock */
1198 if (wait_for_unblock)
1199 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1200 else
1201 wait_current_trans_commit_start(root, cur_trans);
1202
1203 if (current->journal_info == trans)
1204 current->journal_info = NULL;
1205
1206 put_transaction(cur_trans);
1207 return 0;
1208 }
1209
1210
1211 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1212 struct btrfs_root *root, int err)
1213 {
1214 struct btrfs_transaction *cur_trans = trans->transaction;
1215
1216 WARN_ON(trans->use_count > 1);
1217
1218 btrfs_abort_transaction(trans, root, err);
1219
1220 spin_lock(&root->fs_info->trans_lock);
1221 list_del_init(&cur_trans->list);
1222 if (cur_trans == root->fs_info->running_transaction) {
1223 root->fs_info->running_transaction = NULL;
1224 root->fs_info->trans_no_join = 0;
1225 }
1226 spin_unlock(&root->fs_info->trans_lock);
1227
1228 btrfs_cleanup_one_transaction(trans->transaction, root);
1229
1230 put_transaction(cur_trans);
1231 put_transaction(cur_trans);
1232
1233 trace_btrfs_transaction_commit(root);
1234
1235 btrfs_scrub_continue(root);
1236
1237 if (current->journal_info == trans)
1238 current->journal_info = NULL;
1239
1240 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1241 }
1242
1243 /*
1244 * btrfs_transaction state sequence:
1245 * in_commit = 0, blocked = 0 (initial)
1246 * in_commit = 1, blocked = 1
1247 * blocked = 0
1248 * commit_done = 1
1249 */
1250 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1251 struct btrfs_root *root)
1252 {
1253 unsigned long joined = 0;
1254 struct btrfs_transaction *cur_trans = trans->transaction;
1255 struct btrfs_transaction *prev_trans = NULL;
1256 DEFINE_WAIT(wait);
1257 int ret = -EIO;
1258 int should_grow = 0;
1259 unsigned long now = get_seconds();
1260 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1261
1262 btrfs_run_ordered_operations(root, 0);
1263
1264 if (cur_trans->aborted)
1265 goto cleanup_transaction;
1266
1267 /* make a pass through all the delayed refs we have so far
1268 * any runnings procs may add more while we are here
1269 */
1270 ret = btrfs_run_delayed_refs(trans, root, 0);
1271 if (ret)
1272 goto cleanup_transaction;
1273
1274 btrfs_trans_release_metadata(trans, root);
1275 trans->block_rsv = NULL;
1276
1277 cur_trans = trans->transaction;
1278
1279 /*
1280 * set the flushing flag so procs in this transaction have to
1281 * start sending their work down.
1282 */
1283 cur_trans->delayed_refs.flushing = 1;
1284
1285 ret = btrfs_run_delayed_refs(trans, root, 0);
1286 if (ret)
1287 goto cleanup_transaction;
1288
1289 spin_lock(&cur_trans->commit_lock);
1290 if (cur_trans->in_commit) {
1291 spin_unlock(&cur_trans->commit_lock);
1292 atomic_inc(&cur_trans->use_count);
1293 ret = btrfs_end_transaction(trans, root);
1294
1295 wait_for_commit(root, cur_trans);
1296
1297 put_transaction(cur_trans);
1298
1299 return ret;
1300 }
1301
1302 trans->transaction->in_commit = 1;
1303 trans->transaction->blocked = 1;
1304 spin_unlock(&cur_trans->commit_lock);
1305 wake_up(&root->fs_info->transaction_blocked_wait);
1306
1307 spin_lock(&root->fs_info->trans_lock);
1308 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1309 prev_trans = list_entry(cur_trans->list.prev,
1310 struct btrfs_transaction, list);
1311 if (!prev_trans->commit_done) {
1312 atomic_inc(&prev_trans->use_count);
1313 spin_unlock(&root->fs_info->trans_lock);
1314
1315 wait_for_commit(root, prev_trans);
1316
1317 put_transaction(prev_trans);
1318 } else {
1319 spin_unlock(&root->fs_info->trans_lock);
1320 }
1321 } else {
1322 spin_unlock(&root->fs_info->trans_lock);
1323 }
1324
1325 if (!btrfs_test_opt(root, SSD) &&
1326 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1327 should_grow = 1;
1328
1329 do {
1330 int snap_pending = 0;
1331
1332 joined = cur_trans->num_joined;
1333 if (!list_empty(&trans->transaction->pending_snapshots))
1334 snap_pending = 1;
1335
1336 WARN_ON(cur_trans != trans->transaction);
1337
1338 if (flush_on_commit || snap_pending) {
1339 btrfs_start_delalloc_inodes(root, 1);
1340 btrfs_wait_ordered_extents(root, 0, 1);
1341 }
1342
1343 ret = btrfs_run_delayed_items(trans, root);
1344 if (ret)
1345 goto cleanup_transaction;
1346
1347 /*
1348 * rename don't use btrfs_join_transaction, so, once we
1349 * set the transaction to blocked above, we aren't going
1350 * to get any new ordered operations. We can safely run
1351 * it here and no for sure that nothing new will be added
1352 * to the list
1353 */
1354 btrfs_run_ordered_operations(root, 1);
1355
1356 prepare_to_wait(&cur_trans->writer_wait, &wait,
1357 TASK_UNINTERRUPTIBLE);
1358
1359 if (atomic_read(&cur_trans->num_writers) > 1)
1360 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1361 else if (should_grow)
1362 schedule_timeout(1);
1363
1364 finish_wait(&cur_trans->writer_wait, &wait);
1365 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1366 (should_grow && cur_trans->num_joined != joined));
1367
1368 /*
1369 * Ok now we need to make sure to block out any other joins while we
1370 * commit the transaction. We could have started a join before setting
1371 * no_join so make sure to wait for num_writers to == 1 again.
1372 */
1373 spin_lock(&root->fs_info->trans_lock);
1374 root->fs_info->trans_no_join = 1;
1375 spin_unlock(&root->fs_info->trans_lock);
1376 wait_event(cur_trans->writer_wait,
1377 atomic_read(&cur_trans->num_writers) == 1);
1378
1379 /*
1380 * the reloc mutex makes sure that we stop
1381 * the balancing code from coming in and moving
1382 * extents around in the middle of the commit
1383 */
1384 mutex_lock(&root->fs_info->reloc_mutex);
1385
1386 ret = btrfs_run_delayed_items(trans, root);
1387 if (ret) {
1388 mutex_unlock(&root->fs_info->reloc_mutex);
1389 goto cleanup_transaction;
1390 }
1391
1392 ret = create_pending_snapshots(trans, root->fs_info);
1393 if (ret) {
1394 mutex_unlock(&root->fs_info->reloc_mutex);
1395 goto cleanup_transaction;
1396 }
1397
1398 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1399 if (ret) {
1400 mutex_unlock(&root->fs_info->reloc_mutex);
1401 goto cleanup_transaction;
1402 }
1403
1404 /*
1405 * make sure none of the code above managed to slip in a
1406 * delayed item
1407 */
1408 btrfs_assert_delayed_root_empty(root);
1409
1410 WARN_ON(cur_trans != trans->transaction);
1411
1412 btrfs_scrub_pause(root);
1413 /* btrfs_commit_tree_roots is responsible for getting the
1414 * various roots consistent with each other. Every pointer
1415 * in the tree of tree roots has to point to the most up to date
1416 * root for every subvolume and other tree. So, we have to keep
1417 * the tree logging code from jumping in and changing any
1418 * of the trees.
1419 *
1420 * At this point in the commit, there can't be any tree-log
1421 * writers, but a little lower down we drop the trans mutex
1422 * and let new people in. By holding the tree_log_mutex
1423 * from now until after the super is written, we avoid races
1424 * with the tree-log code.
1425 */
1426 mutex_lock(&root->fs_info->tree_log_mutex);
1427
1428 ret = commit_fs_roots(trans, root);
1429 if (ret) {
1430 mutex_unlock(&root->fs_info->tree_log_mutex);
1431 mutex_unlock(&root->fs_info->reloc_mutex);
1432 goto cleanup_transaction;
1433 }
1434
1435 /* commit_fs_roots gets rid of all the tree log roots, it is now
1436 * safe to free the root of tree log roots
1437 */
1438 btrfs_free_log_root_tree(trans, root->fs_info);
1439
1440 ret = commit_cowonly_roots(trans, root);
1441 if (ret) {
1442 mutex_unlock(&root->fs_info->tree_log_mutex);
1443 mutex_unlock(&root->fs_info->reloc_mutex);
1444 goto cleanup_transaction;
1445 }
1446
1447 btrfs_prepare_extent_commit(trans, root);
1448
1449 cur_trans = root->fs_info->running_transaction;
1450
1451 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1452 root->fs_info->tree_root->node);
1453 switch_commit_root(root->fs_info->tree_root);
1454
1455 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1456 root->fs_info->chunk_root->node);
1457 switch_commit_root(root->fs_info->chunk_root);
1458
1459 update_super_roots(root);
1460
1461 if (!root->fs_info->log_root_recovering) {
1462 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1463 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1464 }
1465
1466 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1467 sizeof(*root->fs_info->super_copy));
1468
1469 trans->transaction->blocked = 0;
1470 spin_lock(&root->fs_info->trans_lock);
1471 root->fs_info->running_transaction = NULL;
1472 root->fs_info->trans_no_join = 0;
1473 spin_unlock(&root->fs_info->trans_lock);
1474 mutex_unlock(&root->fs_info->reloc_mutex);
1475
1476 wake_up(&root->fs_info->transaction_wait);
1477
1478 ret = btrfs_write_and_wait_transaction(trans, root);
1479 if (ret) {
1480 btrfs_error(root->fs_info, ret,
1481 "Error while writing out transaction.");
1482 mutex_unlock(&root->fs_info->tree_log_mutex);
1483 goto cleanup_transaction;
1484 }
1485
1486 ret = write_ctree_super(trans, root, 0);
1487 if (ret) {
1488 mutex_unlock(&root->fs_info->tree_log_mutex);
1489 goto cleanup_transaction;
1490 }
1491
1492 /*
1493 * the super is written, we can safely allow the tree-loggers
1494 * to go about their business
1495 */
1496 mutex_unlock(&root->fs_info->tree_log_mutex);
1497
1498 btrfs_finish_extent_commit(trans, root);
1499
1500 cur_trans->commit_done = 1;
1501
1502 root->fs_info->last_trans_committed = cur_trans->transid;
1503
1504 wake_up(&cur_trans->commit_wait);
1505
1506 spin_lock(&root->fs_info->trans_lock);
1507 list_del_init(&cur_trans->list);
1508 spin_unlock(&root->fs_info->trans_lock);
1509
1510 put_transaction(cur_trans);
1511 put_transaction(cur_trans);
1512
1513 trace_btrfs_transaction_commit(root);
1514
1515 btrfs_scrub_continue(root);
1516
1517 if (current->journal_info == trans)
1518 current->journal_info = NULL;
1519
1520 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1521
1522 if (current != root->fs_info->transaction_kthread)
1523 btrfs_run_delayed_iputs(root);
1524
1525 return ret;
1526
1527 cleanup_transaction:
1528 btrfs_trans_release_metadata(trans, root);
1529 trans->block_rsv = NULL;
1530 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1531 // WARN_ON(1);
1532 if (current->journal_info == trans)
1533 current->journal_info = NULL;
1534 cleanup_transaction(trans, root, ret);
1535
1536 return ret;
1537 }
1538
1539 /*
1540 * interface function to delete all the snapshots we have scheduled for deletion
1541 */
1542 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1543 {
1544 LIST_HEAD(list);
1545 struct btrfs_fs_info *fs_info = root->fs_info;
1546
1547 spin_lock(&fs_info->trans_lock);
1548 list_splice_init(&fs_info->dead_roots, &list);
1549 spin_unlock(&fs_info->trans_lock);
1550
1551 while (!list_empty(&list)) {
1552 int ret;
1553
1554 root = list_entry(list.next, struct btrfs_root, root_list);
1555 list_del(&root->root_list);
1556
1557 btrfs_kill_all_delayed_nodes(root);
1558
1559 if (btrfs_header_backref_rev(root->node) <
1560 BTRFS_MIXED_BACKREF_REV)
1561 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1562 else
1563 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1564 BUG_ON(ret < 0);
1565 }
1566 return 0;
1567 }
This page took 0.086403 seconds and 5 git commands to generate.