ALSA: ice1712: add suspend support for ICE1712 chip
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
40 __TRANS_START),
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
42 __TRANS_START |
43 __TRANS_ATTACH),
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
45 __TRANS_START |
46 __TRANS_ATTACH |
47 __TRANS_JOIN),
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
49 __TRANS_START |
50 __TRANS_ATTACH |
51 __TRANS_JOIN |
52 __TRANS_JOIN_NOLOCK),
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
54 __TRANS_START |
55 __TRANS_ATTACH |
56 __TRANS_JOIN |
57 __TRANS_JOIN_NOLOCK),
58 };
59
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
61 {
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
66 while (!list_empty(&transaction->pending_chunks)) {
67 struct extent_map *em;
68
69 em = list_first_entry(&transaction->pending_chunks,
70 struct extent_map, list);
71 list_del_init(&em->list);
72 free_extent_map(em);
73 }
74 kmem_cache_free(btrfs_transaction_cachep, transaction);
75 }
76 }
77
78 static noinline void switch_commit_root(struct btrfs_root *root)
79 {
80 free_extent_buffer(root->commit_root);
81 root->commit_root = btrfs_root_node(root);
82 }
83
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
85 unsigned int type)
86 {
87 if (type & TRANS_EXTWRITERS)
88 atomic_inc(&trans->num_extwriters);
89 }
90
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
92 unsigned int type)
93 {
94 if (type & TRANS_EXTWRITERS)
95 atomic_dec(&trans->num_extwriters);
96 }
97
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
99 unsigned int type)
100 {
101 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
102 }
103
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
105 {
106 return atomic_read(&trans->num_extwriters);
107 }
108
109 /*
110 * either allocate a new transaction or hop into the existing one
111 */
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
113 {
114 struct btrfs_transaction *cur_trans;
115 struct btrfs_fs_info *fs_info = root->fs_info;
116
117 spin_lock(&fs_info->trans_lock);
118 loop:
119 /* The file system has been taken offline. No new transactions. */
120 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121 spin_unlock(&fs_info->trans_lock);
122 return -EROFS;
123 }
124
125 cur_trans = fs_info->running_transaction;
126 if (cur_trans) {
127 if (cur_trans->aborted) {
128 spin_unlock(&fs_info->trans_lock);
129 return cur_trans->aborted;
130 }
131 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132 spin_unlock(&fs_info->trans_lock);
133 return -EBUSY;
134 }
135 atomic_inc(&cur_trans->use_count);
136 atomic_inc(&cur_trans->num_writers);
137 extwriter_counter_inc(cur_trans, type);
138 spin_unlock(&fs_info->trans_lock);
139 return 0;
140 }
141 spin_unlock(&fs_info->trans_lock);
142
143 /*
144 * If we are ATTACH, we just want to catch the current transaction,
145 * and commit it. If there is no transaction, just return ENOENT.
146 */
147 if (type == TRANS_ATTACH)
148 return -ENOENT;
149
150 /*
151 * JOIN_NOLOCK only happens during the transaction commit, so
152 * it is impossible that ->running_transaction is NULL
153 */
154 BUG_ON(type == TRANS_JOIN_NOLOCK);
155
156 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
157 if (!cur_trans)
158 return -ENOMEM;
159
160 spin_lock(&fs_info->trans_lock);
161 if (fs_info->running_transaction) {
162 /*
163 * someone started a transaction after we unlocked. Make sure
164 * to redo the checks above
165 */
166 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
167 goto loop;
168 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169 spin_unlock(&fs_info->trans_lock);
170 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
171 return -EROFS;
172 }
173
174 atomic_set(&cur_trans->num_writers, 1);
175 extwriter_counter_init(cur_trans, type);
176 init_waitqueue_head(&cur_trans->writer_wait);
177 init_waitqueue_head(&cur_trans->commit_wait);
178 cur_trans->state = TRANS_STATE_RUNNING;
179 /*
180 * One for this trans handle, one so it will live on until we
181 * commit the transaction.
182 */
183 atomic_set(&cur_trans->use_count, 2);
184 cur_trans->start_time = get_seconds();
185
186 cur_trans->delayed_refs.href_root = RB_ROOT;
187 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
188 cur_trans->delayed_refs.num_heads_ready = 0;
189 cur_trans->delayed_refs.num_heads = 0;
190 cur_trans->delayed_refs.flushing = 0;
191 cur_trans->delayed_refs.run_delayed_start = 0;
192
193 /*
194 * although the tree mod log is per file system and not per transaction,
195 * the log must never go across transaction boundaries.
196 */
197 smp_mb();
198 if (!list_empty(&fs_info->tree_mod_seq_list))
199 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
200 "creating a fresh transaction\n");
201 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
203 "creating a fresh transaction\n");
204 atomic64_set(&fs_info->tree_mod_seq, 0);
205
206 spin_lock_init(&cur_trans->delayed_refs.lock);
207
208 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
209 INIT_LIST_HEAD(&cur_trans->ordered_operations);
210 INIT_LIST_HEAD(&cur_trans->pending_chunks);
211 list_add_tail(&cur_trans->list, &fs_info->trans_list);
212 extent_io_tree_init(&cur_trans->dirty_pages,
213 fs_info->btree_inode->i_mapping);
214 fs_info->generation++;
215 cur_trans->transid = fs_info->generation;
216 fs_info->running_transaction = cur_trans;
217 cur_trans->aborted = 0;
218 spin_unlock(&fs_info->trans_lock);
219
220 return 0;
221 }
222
223 /*
224 * this does all the record keeping required to make sure that a reference
225 * counted root is properly recorded in a given transaction. This is required
226 * to make sure the old root from before we joined the transaction is deleted
227 * when the transaction commits
228 */
229 static int record_root_in_trans(struct btrfs_trans_handle *trans,
230 struct btrfs_root *root)
231 {
232 if (root->ref_cows && root->last_trans < trans->transid) {
233 WARN_ON(root == root->fs_info->extent_root);
234 WARN_ON(root->commit_root != root->node);
235
236 /*
237 * see below for in_trans_setup usage rules
238 * we have the reloc mutex held now, so there
239 * is only one writer in this function
240 */
241 root->in_trans_setup = 1;
242
243 /* make sure readers find in_trans_setup before
244 * they find our root->last_trans update
245 */
246 smp_wmb();
247
248 spin_lock(&root->fs_info->fs_roots_radix_lock);
249 if (root->last_trans == trans->transid) {
250 spin_unlock(&root->fs_info->fs_roots_radix_lock);
251 return 0;
252 }
253 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
254 (unsigned long)root->root_key.objectid,
255 BTRFS_ROOT_TRANS_TAG);
256 spin_unlock(&root->fs_info->fs_roots_radix_lock);
257 root->last_trans = trans->transid;
258
259 /* this is pretty tricky. We don't want to
260 * take the relocation lock in btrfs_record_root_in_trans
261 * unless we're really doing the first setup for this root in
262 * this transaction.
263 *
264 * Normally we'd use root->last_trans as a flag to decide
265 * if we want to take the expensive mutex.
266 *
267 * But, we have to set root->last_trans before we
268 * init the relocation root, otherwise, we trip over warnings
269 * in ctree.c. The solution used here is to flag ourselves
270 * with root->in_trans_setup. When this is 1, we're still
271 * fixing up the reloc trees and everyone must wait.
272 *
273 * When this is zero, they can trust root->last_trans and fly
274 * through btrfs_record_root_in_trans without having to take the
275 * lock. smp_wmb() makes sure that all the writes above are
276 * done before we pop in the zero below
277 */
278 btrfs_init_reloc_root(trans, root);
279 smp_wmb();
280 root->in_trans_setup = 0;
281 }
282 return 0;
283 }
284
285
286 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
287 struct btrfs_root *root)
288 {
289 if (!root->ref_cows)
290 return 0;
291
292 /*
293 * see record_root_in_trans for comments about in_trans_setup usage
294 * and barriers
295 */
296 smp_rmb();
297 if (root->last_trans == trans->transid &&
298 !root->in_trans_setup)
299 return 0;
300
301 mutex_lock(&root->fs_info->reloc_mutex);
302 record_root_in_trans(trans, root);
303 mutex_unlock(&root->fs_info->reloc_mutex);
304
305 return 0;
306 }
307
308 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
309 {
310 return (trans->state >= TRANS_STATE_BLOCKED &&
311 trans->state < TRANS_STATE_UNBLOCKED &&
312 !trans->aborted);
313 }
314
315 /* wait for commit against the current transaction to become unblocked
316 * when this is done, it is safe to start a new transaction, but the current
317 * transaction might not be fully on disk.
318 */
319 static void wait_current_trans(struct btrfs_root *root)
320 {
321 struct btrfs_transaction *cur_trans;
322
323 spin_lock(&root->fs_info->trans_lock);
324 cur_trans = root->fs_info->running_transaction;
325 if (cur_trans && is_transaction_blocked(cur_trans)) {
326 atomic_inc(&cur_trans->use_count);
327 spin_unlock(&root->fs_info->trans_lock);
328
329 wait_event(root->fs_info->transaction_wait,
330 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
331 cur_trans->aborted);
332 btrfs_put_transaction(cur_trans);
333 } else {
334 spin_unlock(&root->fs_info->trans_lock);
335 }
336 }
337
338 static int may_wait_transaction(struct btrfs_root *root, int type)
339 {
340 if (root->fs_info->log_root_recovering)
341 return 0;
342
343 if (type == TRANS_USERSPACE)
344 return 1;
345
346 if (type == TRANS_START &&
347 !atomic_read(&root->fs_info->open_ioctl_trans))
348 return 1;
349
350 return 0;
351 }
352
353 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
354 {
355 if (!root->fs_info->reloc_ctl ||
356 !root->ref_cows ||
357 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
358 root->reloc_root)
359 return false;
360
361 return true;
362 }
363
364 static struct btrfs_trans_handle *
365 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
366 enum btrfs_reserve_flush_enum flush)
367 {
368 struct btrfs_trans_handle *h;
369 struct btrfs_transaction *cur_trans;
370 u64 num_bytes = 0;
371 u64 qgroup_reserved = 0;
372 bool reloc_reserved = false;
373 int ret;
374
375 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
376 return ERR_PTR(-EROFS);
377
378 if (current->journal_info) {
379 WARN_ON(type & TRANS_EXTWRITERS);
380 h = current->journal_info;
381 h->use_count++;
382 WARN_ON(h->use_count > 2);
383 h->orig_rsv = h->block_rsv;
384 h->block_rsv = NULL;
385 goto got_it;
386 }
387
388 /*
389 * Do the reservation before we join the transaction so we can do all
390 * the appropriate flushing if need be.
391 */
392 if (num_items > 0 && root != root->fs_info->chunk_root) {
393 if (root->fs_info->quota_enabled &&
394 is_fstree(root->root_key.objectid)) {
395 qgroup_reserved = num_items * root->leafsize;
396 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
397 if (ret)
398 return ERR_PTR(ret);
399 }
400
401 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
402 /*
403 * Do the reservation for the relocation root creation
404 */
405 if (unlikely(need_reserve_reloc_root(root))) {
406 num_bytes += root->nodesize;
407 reloc_reserved = true;
408 }
409
410 ret = btrfs_block_rsv_add(root,
411 &root->fs_info->trans_block_rsv,
412 num_bytes, flush);
413 if (ret)
414 goto reserve_fail;
415 }
416 again:
417 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
418 if (!h) {
419 ret = -ENOMEM;
420 goto alloc_fail;
421 }
422
423 /*
424 * If we are JOIN_NOLOCK we're already committing a transaction and
425 * waiting on this guy, so we don't need to do the sb_start_intwrite
426 * because we're already holding a ref. We need this because we could
427 * have raced in and did an fsync() on a file which can kick a commit
428 * and then we deadlock with somebody doing a freeze.
429 *
430 * If we are ATTACH, it means we just want to catch the current
431 * transaction and commit it, so we needn't do sb_start_intwrite().
432 */
433 if (type & __TRANS_FREEZABLE)
434 sb_start_intwrite(root->fs_info->sb);
435
436 if (may_wait_transaction(root, type))
437 wait_current_trans(root);
438
439 do {
440 ret = join_transaction(root, type);
441 if (ret == -EBUSY) {
442 wait_current_trans(root);
443 if (unlikely(type == TRANS_ATTACH))
444 ret = -ENOENT;
445 }
446 } while (ret == -EBUSY);
447
448 if (ret < 0) {
449 /* We must get the transaction if we are JOIN_NOLOCK. */
450 BUG_ON(type == TRANS_JOIN_NOLOCK);
451 goto join_fail;
452 }
453
454 cur_trans = root->fs_info->running_transaction;
455
456 h->transid = cur_trans->transid;
457 h->transaction = cur_trans;
458 h->blocks_used = 0;
459 h->bytes_reserved = 0;
460 h->root = root;
461 h->delayed_ref_updates = 0;
462 h->use_count = 1;
463 h->adding_csums = 0;
464 h->block_rsv = NULL;
465 h->orig_rsv = NULL;
466 h->aborted = 0;
467 h->qgroup_reserved = 0;
468 h->delayed_ref_elem.seq = 0;
469 h->type = type;
470 h->allocating_chunk = false;
471 h->reloc_reserved = false;
472 h->sync = false;
473 INIT_LIST_HEAD(&h->qgroup_ref_list);
474 INIT_LIST_HEAD(&h->new_bgs);
475
476 smp_mb();
477 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
478 may_wait_transaction(root, type)) {
479 btrfs_commit_transaction(h, root);
480 goto again;
481 }
482
483 if (num_bytes) {
484 trace_btrfs_space_reservation(root->fs_info, "transaction",
485 h->transid, num_bytes, 1);
486 h->block_rsv = &root->fs_info->trans_block_rsv;
487 h->bytes_reserved = num_bytes;
488 h->reloc_reserved = reloc_reserved;
489 }
490 h->qgroup_reserved = qgroup_reserved;
491
492 got_it:
493 btrfs_record_root_in_trans(h, root);
494
495 if (!current->journal_info && type != TRANS_USERSPACE)
496 current->journal_info = h;
497 return h;
498
499 join_fail:
500 if (type & __TRANS_FREEZABLE)
501 sb_end_intwrite(root->fs_info->sb);
502 kmem_cache_free(btrfs_trans_handle_cachep, h);
503 alloc_fail:
504 if (num_bytes)
505 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
506 num_bytes);
507 reserve_fail:
508 if (qgroup_reserved)
509 btrfs_qgroup_free(root, qgroup_reserved);
510 return ERR_PTR(ret);
511 }
512
513 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
514 int num_items)
515 {
516 return start_transaction(root, num_items, TRANS_START,
517 BTRFS_RESERVE_FLUSH_ALL);
518 }
519
520 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
521 struct btrfs_root *root, int num_items)
522 {
523 return start_transaction(root, num_items, TRANS_START,
524 BTRFS_RESERVE_FLUSH_LIMIT);
525 }
526
527 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
528 {
529 return start_transaction(root, 0, TRANS_JOIN, 0);
530 }
531
532 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
533 {
534 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
535 }
536
537 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
538 {
539 return start_transaction(root, 0, TRANS_USERSPACE, 0);
540 }
541
542 /*
543 * btrfs_attach_transaction() - catch the running transaction
544 *
545 * It is used when we want to commit the current the transaction, but
546 * don't want to start a new one.
547 *
548 * Note: If this function return -ENOENT, it just means there is no
549 * running transaction. But it is possible that the inactive transaction
550 * is still in the memory, not fully on disk. If you hope there is no
551 * inactive transaction in the fs when -ENOENT is returned, you should
552 * invoke
553 * btrfs_attach_transaction_barrier()
554 */
555 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
556 {
557 return start_transaction(root, 0, TRANS_ATTACH, 0);
558 }
559
560 /*
561 * btrfs_attach_transaction_barrier() - catch the running transaction
562 *
563 * It is similar to the above function, the differentia is this one
564 * will wait for all the inactive transactions until they fully
565 * complete.
566 */
567 struct btrfs_trans_handle *
568 btrfs_attach_transaction_barrier(struct btrfs_root *root)
569 {
570 struct btrfs_trans_handle *trans;
571
572 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
573 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
574 btrfs_wait_for_commit(root, 0);
575
576 return trans;
577 }
578
579 /* wait for a transaction commit to be fully complete */
580 static noinline void wait_for_commit(struct btrfs_root *root,
581 struct btrfs_transaction *commit)
582 {
583 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
584 }
585
586 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
587 {
588 struct btrfs_transaction *cur_trans = NULL, *t;
589 int ret = 0;
590
591 if (transid) {
592 if (transid <= root->fs_info->last_trans_committed)
593 goto out;
594
595 ret = -EINVAL;
596 /* find specified transaction */
597 spin_lock(&root->fs_info->trans_lock);
598 list_for_each_entry(t, &root->fs_info->trans_list, list) {
599 if (t->transid == transid) {
600 cur_trans = t;
601 atomic_inc(&cur_trans->use_count);
602 ret = 0;
603 break;
604 }
605 if (t->transid > transid) {
606 ret = 0;
607 break;
608 }
609 }
610 spin_unlock(&root->fs_info->trans_lock);
611 /* The specified transaction doesn't exist */
612 if (!cur_trans)
613 goto out;
614 } else {
615 /* find newest transaction that is committing | committed */
616 spin_lock(&root->fs_info->trans_lock);
617 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
618 list) {
619 if (t->state >= TRANS_STATE_COMMIT_START) {
620 if (t->state == TRANS_STATE_COMPLETED)
621 break;
622 cur_trans = t;
623 atomic_inc(&cur_trans->use_count);
624 break;
625 }
626 }
627 spin_unlock(&root->fs_info->trans_lock);
628 if (!cur_trans)
629 goto out; /* nothing committing|committed */
630 }
631
632 wait_for_commit(root, cur_trans);
633 btrfs_put_transaction(cur_trans);
634 out:
635 return ret;
636 }
637
638 void btrfs_throttle(struct btrfs_root *root)
639 {
640 if (!atomic_read(&root->fs_info->open_ioctl_trans))
641 wait_current_trans(root);
642 }
643
644 static int should_end_transaction(struct btrfs_trans_handle *trans,
645 struct btrfs_root *root)
646 {
647 if (root->fs_info->global_block_rsv.space_info->full &&
648 btrfs_check_space_for_delayed_refs(trans, root))
649 return 1;
650
651 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
652 }
653
654 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
655 struct btrfs_root *root)
656 {
657 struct btrfs_transaction *cur_trans = trans->transaction;
658 int updates;
659 int err;
660
661 smp_mb();
662 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
663 cur_trans->delayed_refs.flushing)
664 return 1;
665
666 updates = trans->delayed_ref_updates;
667 trans->delayed_ref_updates = 0;
668 if (updates) {
669 err = btrfs_run_delayed_refs(trans, root, updates);
670 if (err) /* Error code will also eval true */
671 return err;
672 }
673
674 return should_end_transaction(trans, root);
675 }
676
677 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
678 struct btrfs_root *root, int throttle)
679 {
680 struct btrfs_transaction *cur_trans = trans->transaction;
681 struct btrfs_fs_info *info = root->fs_info;
682 unsigned long cur = trans->delayed_ref_updates;
683 int lock = (trans->type != TRANS_JOIN_NOLOCK);
684 int err = 0;
685
686 if (--trans->use_count) {
687 trans->block_rsv = trans->orig_rsv;
688 return 0;
689 }
690
691 /*
692 * do the qgroup accounting as early as possible
693 */
694 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
695
696 btrfs_trans_release_metadata(trans, root);
697 trans->block_rsv = NULL;
698
699 if (trans->qgroup_reserved) {
700 /*
701 * the same root has to be passed here between start_transaction
702 * and end_transaction. Subvolume quota depends on this.
703 */
704 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
705 trans->qgroup_reserved = 0;
706 }
707
708 if (!list_empty(&trans->new_bgs))
709 btrfs_create_pending_block_groups(trans, root);
710
711 trans->delayed_ref_updates = 0;
712 if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
713 cur = max_t(unsigned long, cur, 32);
714 trans->delayed_ref_updates = 0;
715 btrfs_run_delayed_refs(trans, root, cur);
716 }
717
718 btrfs_trans_release_metadata(trans, root);
719 trans->block_rsv = NULL;
720
721 if (!list_empty(&trans->new_bgs))
722 btrfs_create_pending_block_groups(trans, root);
723
724 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
725 should_end_transaction(trans, root) &&
726 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
727 spin_lock(&info->trans_lock);
728 if (cur_trans->state == TRANS_STATE_RUNNING)
729 cur_trans->state = TRANS_STATE_BLOCKED;
730 spin_unlock(&info->trans_lock);
731 }
732
733 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
734 if (throttle) {
735 /*
736 * We may race with somebody else here so end up having
737 * to call end_transaction on ourselves again, so inc
738 * our use_count.
739 */
740 trans->use_count++;
741 return btrfs_commit_transaction(trans, root);
742 } else {
743 wake_up_process(info->transaction_kthread);
744 }
745 }
746
747 if (trans->type & __TRANS_FREEZABLE)
748 sb_end_intwrite(root->fs_info->sb);
749
750 WARN_ON(cur_trans != info->running_transaction);
751 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
752 atomic_dec(&cur_trans->num_writers);
753 extwriter_counter_dec(cur_trans, trans->type);
754
755 smp_mb();
756 if (waitqueue_active(&cur_trans->writer_wait))
757 wake_up(&cur_trans->writer_wait);
758 btrfs_put_transaction(cur_trans);
759
760 if (current->journal_info == trans)
761 current->journal_info = NULL;
762
763 if (throttle)
764 btrfs_run_delayed_iputs(root);
765
766 if (trans->aborted ||
767 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
768 wake_up_process(info->transaction_kthread);
769 err = -EIO;
770 }
771 assert_qgroups_uptodate(trans);
772
773 kmem_cache_free(btrfs_trans_handle_cachep, trans);
774 return err;
775 }
776
777 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
778 struct btrfs_root *root)
779 {
780 return __btrfs_end_transaction(trans, root, 0);
781 }
782
783 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
784 struct btrfs_root *root)
785 {
786 return __btrfs_end_transaction(trans, root, 1);
787 }
788
789 /*
790 * when btree blocks are allocated, they have some corresponding bits set for
791 * them in one of two extent_io trees. This is used to make sure all of
792 * those extents are sent to disk but does not wait on them
793 */
794 int btrfs_write_marked_extents(struct btrfs_root *root,
795 struct extent_io_tree *dirty_pages, int mark)
796 {
797 int err = 0;
798 int werr = 0;
799 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
800 struct extent_state *cached_state = NULL;
801 u64 start = 0;
802 u64 end;
803
804 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
805 mark, &cached_state)) {
806 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
807 mark, &cached_state, GFP_NOFS);
808 cached_state = NULL;
809 err = filemap_fdatawrite_range(mapping, start, end);
810 if (err)
811 werr = err;
812 cond_resched();
813 start = end + 1;
814 }
815 if (err)
816 werr = err;
817 return werr;
818 }
819
820 /*
821 * when btree blocks are allocated, they have some corresponding bits set for
822 * them in one of two extent_io trees. This is used to make sure all of
823 * those extents are on disk for transaction or log commit. We wait
824 * on all the pages and clear them from the dirty pages state tree
825 */
826 int btrfs_wait_marked_extents(struct btrfs_root *root,
827 struct extent_io_tree *dirty_pages, int mark)
828 {
829 int err = 0;
830 int werr = 0;
831 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
832 struct extent_state *cached_state = NULL;
833 u64 start = 0;
834 u64 end;
835
836 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
837 EXTENT_NEED_WAIT, &cached_state)) {
838 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
839 0, 0, &cached_state, GFP_NOFS);
840 err = filemap_fdatawait_range(mapping, start, end);
841 if (err)
842 werr = err;
843 cond_resched();
844 start = end + 1;
845 }
846 if (err)
847 werr = err;
848 return werr;
849 }
850
851 /*
852 * when btree blocks are allocated, they have some corresponding bits set for
853 * them in one of two extent_io trees. This is used to make sure all of
854 * those extents are on disk for transaction or log commit
855 */
856 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
857 struct extent_io_tree *dirty_pages, int mark)
858 {
859 int ret;
860 int ret2;
861 struct blk_plug plug;
862
863 blk_start_plug(&plug);
864 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
865 blk_finish_plug(&plug);
866 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
867
868 if (ret)
869 return ret;
870 if (ret2)
871 return ret2;
872 return 0;
873 }
874
875 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
876 struct btrfs_root *root)
877 {
878 if (!trans || !trans->transaction) {
879 struct inode *btree_inode;
880 btree_inode = root->fs_info->btree_inode;
881 return filemap_write_and_wait(btree_inode->i_mapping);
882 }
883 return btrfs_write_and_wait_marked_extents(root,
884 &trans->transaction->dirty_pages,
885 EXTENT_DIRTY);
886 }
887
888 /*
889 * this is used to update the root pointer in the tree of tree roots.
890 *
891 * But, in the case of the extent allocation tree, updating the root
892 * pointer may allocate blocks which may change the root of the extent
893 * allocation tree.
894 *
895 * So, this loops and repeats and makes sure the cowonly root didn't
896 * change while the root pointer was being updated in the metadata.
897 */
898 static int update_cowonly_root(struct btrfs_trans_handle *trans,
899 struct btrfs_root *root)
900 {
901 int ret;
902 u64 old_root_bytenr;
903 u64 old_root_used;
904 struct btrfs_root *tree_root = root->fs_info->tree_root;
905
906 old_root_used = btrfs_root_used(&root->root_item);
907 btrfs_write_dirty_block_groups(trans, root);
908
909 while (1) {
910 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
911 if (old_root_bytenr == root->node->start &&
912 old_root_used == btrfs_root_used(&root->root_item))
913 break;
914
915 btrfs_set_root_node(&root->root_item, root->node);
916 ret = btrfs_update_root(trans, tree_root,
917 &root->root_key,
918 &root->root_item);
919 if (ret)
920 return ret;
921
922 old_root_used = btrfs_root_used(&root->root_item);
923 ret = btrfs_write_dirty_block_groups(trans, root);
924 if (ret)
925 return ret;
926 }
927
928 if (root != root->fs_info->extent_root)
929 switch_commit_root(root);
930
931 return 0;
932 }
933
934 /*
935 * update all the cowonly tree roots on disk
936 *
937 * The error handling in this function may not be obvious. Any of the
938 * failures will cause the file system to go offline. We still need
939 * to clean up the delayed refs.
940 */
941 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
942 struct btrfs_root *root)
943 {
944 struct btrfs_fs_info *fs_info = root->fs_info;
945 struct list_head *next;
946 struct extent_buffer *eb;
947 int ret;
948
949 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
950 if (ret)
951 return ret;
952
953 eb = btrfs_lock_root_node(fs_info->tree_root);
954 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
955 0, &eb);
956 btrfs_tree_unlock(eb);
957 free_extent_buffer(eb);
958
959 if (ret)
960 return ret;
961
962 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
963 if (ret)
964 return ret;
965
966 ret = btrfs_run_dev_stats(trans, root->fs_info);
967 if (ret)
968 return ret;
969 ret = btrfs_run_dev_replace(trans, root->fs_info);
970 if (ret)
971 return ret;
972 ret = btrfs_run_qgroups(trans, root->fs_info);
973 if (ret)
974 return ret;
975
976 /* run_qgroups might have added some more refs */
977 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
978 if (ret)
979 return ret;
980
981 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
982 next = fs_info->dirty_cowonly_roots.next;
983 list_del_init(next);
984 root = list_entry(next, struct btrfs_root, dirty_list);
985
986 ret = update_cowonly_root(trans, root);
987 if (ret)
988 return ret;
989 }
990
991 down_write(&fs_info->extent_commit_sem);
992 switch_commit_root(fs_info->extent_root);
993 up_write(&fs_info->extent_commit_sem);
994
995 btrfs_after_dev_replace_commit(fs_info);
996
997 return 0;
998 }
999
1000 /*
1001 * dead roots are old snapshots that need to be deleted. This allocates
1002 * a dirty root struct and adds it into the list of dead roots that need to
1003 * be deleted
1004 */
1005 void btrfs_add_dead_root(struct btrfs_root *root)
1006 {
1007 spin_lock(&root->fs_info->trans_lock);
1008 if (list_empty(&root->root_list))
1009 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1010 spin_unlock(&root->fs_info->trans_lock);
1011 }
1012
1013 /*
1014 * update all the cowonly tree roots on disk
1015 */
1016 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1017 struct btrfs_root *root)
1018 {
1019 struct btrfs_root *gang[8];
1020 struct btrfs_fs_info *fs_info = root->fs_info;
1021 int i;
1022 int ret;
1023 int err = 0;
1024
1025 spin_lock(&fs_info->fs_roots_radix_lock);
1026 while (1) {
1027 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1028 (void **)gang, 0,
1029 ARRAY_SIZE(gang),
1030 BTRFS_ROOT_TRANS_TAG);
1031 if (ret == 0)
1032 break;
1033 for (i = 0; i < ret; i++) {
1034 root = gang[i];
1035 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1036 (unsigned long)root->root_key.objectid,
1037 BTRFS_ROOT_TRANS_TAG);
1038 spin_unlock(&fs_info->fs_roots_radix_lock);
1039
1040 btrfs_free_log(trans, root);
1041 btrfs_update_reloc_root(trans, root);
1042 btrfs_orphan_commit_root(trans, root);
1043
1044 btrfs_save_ino_cache(root, trans);
1045
1046 /* see comments in should_cow_block() */
1047 root->force_cow = 0;
1048 smp_wmb();
1049
1050 if (root->commit_root != root->node) {
1051 mutex_lock(&root->fs_commit_mutex);
1052 switch_commit_root(root);
1053 btrfs_unpin_free_ino(root);
1054 mutex_unlock(&root->fs_commit_mutex);
1055
1056 btrfs_set_root_node(&root->root_item,
1057 root->node);
1058 }
1059
1060 err = btrfs_update_root(trans, fs_info->tree_root,
1061 &root->root_key,
1062 &root->root_item);
1063 spin_lock(&fs_info->fs_roots_radix_lock);
1064 if (err)
1065 break;
1066 }
1067 }
1068 spin_unlock(&fs_info->fs_roots_radix_lock);
1069 return err;
1070 }
1071
1072 /*
1073 * defrag a given btree.
1074 * Every leaf in the btree is read and defragged.
1075 */
1076 int btrfs_defrag_root(struct btrfs_root *root)
1077 {
1078 struct btrfs_fs_info *info = root->fs_info;
1079 struct btrfs_trans_handle *trans;
1080 int ret;
1081
1082 if (xchg(&root->defrag_running, 1))
1083 return 0;
1084
1085 while (1) {
1086 trans = btrfs_start_transaction(root, 0);
1087 if (IS_ERR(trans))
1088 return PTR_ERR(trans);
1089
1090 ret = btrfs_defrag_leaves(trans, root);
1091
1092 btrfs_end_transaction(trans, root);
1093 btrfs_btree_balance_dirty(info->tree_root);
1094 cond_resched();
1095
1096 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1097 break;
1098
1099 if (btrfs_defrag_cancelled(root->fs_info)) {
1100 pr_debug("BTRFS: defrag_root cancelled\n");
1101 ret = -EAGAIN;
1102 break;
1103 }
1104 }
1105 root->defrag_running = 0;
1106 return ret;
1107 }
1108
1109 /*
1110 * new snapshots need to be created at a very specific time in the
1111 * transaction commit. This does the actual creation.
1112 *
1113 * Note:
1114 * If the error which may affect the commitment of the current transaction
1115 * happens, we should return the error number. If the error which just affect
1116 * the creation of the pending snapshots, just return 0.
1117 */
1118 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1119 struct btrfs_fs_info *fs_info,
1120 struct btrfs_pending_snapshot *pending)
1121 {
1122 struct btrfs_key key;
1123 struct btrfs_root_item *new_root_item;
1124 struct btrfs_root *tree_root = fs_info->tree_root;
1125 struct btrfs_root *root = pending->root;
1126 struct btrfs_root *parent_root;
1127 struct btrfs_block_rsv *rsv;
1128 struct inode *parent_inode;
1129 struct btrfs_path *path;
1130 struct btrfs_dir_item *dir_item;
1131 struct dentry *dentry;
1132 struct extent_buffer *tmp;
1133 struct extent_buffer *old;
1134 struct timespec cur_time = CURRENT_TIME;
1135 int ret = 0;
1136 u64 to_reserve = 0;
1137 u64 index = 0;
1138 u64 objectid;
1139 u64 root_flags;
1140 uuid_le new_uuid;
1141
1142 path = btrfs_alloc_path();
1143 if (!path) {
1144 pending->error = -ENOMEM;
1145 return 0;
1146 }
1147
1148 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1149 if (!new_root_item) {
1150 pending->error = -ENOMEM;
1151 goto root_item_alloc_fail;
1152 }
1153
1154 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1155 if (pending->error)
1156 goto no_free_objectid;
1157
1158 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1159
1160 if (to_reserve > 0) {
1161 pending->error = btrfs_block_rsv_add(root,
1162 &pending->block_rsv,
1163 to_reserve,
1164 BTRFS_RESERVE_NO_FLUSH);
1165 if (pending->error)
1166 goto no_free_objectid;
1167 }
1168
1169 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1170 root->root_key.objectid,
1171 objectid, pending->inherit);
1172 if (pending->error)
1173 goto no_free_objectid;
1174
1175 key.objectid = objectid;
1176 key.offset = (u64)-1;
1177 key.type = BTRFS_ROOT_ITEM_KEY;
1178
1179 rsv = trans->block_rsv;
1180 trans->block_rsv = &pending->block_rsv;
1181 trans->bytes_reserved = trans->block_rsv->reserved;
1182
1183 dentry = pending->dentry;
1184 parent_inode = pending->dir;
1185 parent_root = BTRFS_I(parent_inode)->root;
1186 record_root_in_trans(trans, parent_root);
1187
1188 /*
1189 * insert the directory item
1190 */
1191 ret = btrfs_set_inode_index(parent_inode, &index);
1192 BUG_ON(ret); /* -ENOMEM */
1193
1194 /* check if there is a file/dir which has the same name. */
1195 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1196 btrfs_ino(parent_inode),
1197 dentry->d_name.name,
1198 dentry->d_name.len, 0);
1199 if (dir_item != NULL && !IS_ERR(dir_item)) {
1200 pending->error = -EEXIST;
1201 goto dir_item_existed;
1202 } else if (IS_ERR(dir_item)) {
1203 ret = PTR_ERR(dir_item);
1204 btrfs_abort_transaction(trans, root, ret);
1205 goto fail;
1206 }
1207 btrfs_release_path(path);
1208
1209 /*
1210 * pull in the delayed directory update
1211 * and the delayed inode item
1212 * otherwise we corrupt the FS during
1213 * snapshot
1214 */
1215 ret = btrfs_run_delayed_items(trans, root);
1216 if (ret) { /* Transaction aborted */
1217 btrfs_abort_transaction(trans, root, ret);
1218 goto fail;
1219 }
1220
1221 record_root_in_trans(trans, root);
1222 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1223 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1224 btrfs_check_and_init_root_item(new_root_item);
1225
1226 root_flags = btrfs_root_flags(new_root_item);
1227 if (pending->readonly)
1228 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1229 else
1230 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1231 btrfs_set_root_flags(new_root_item, root_flags);
1232
1233 btrfs_set_root_generation_v2(new_root_item,
1234 trans->transid);
1235 uuid_le_gen(&new_uuid);
1236 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1237 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1238 BTRFS_UUID_SIZE);
1239 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1240 memset(new_root_item->received_uuid, 0,
1241 sizeof(new_root_item->received_uuid));
1242 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1243 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1244 btrfs_set_root_stransid(new_root_item, 0);
1245 btrfs_set_root_rtransid(new_root_item, 0);
1246 }
1247 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1248 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1249 btrfs_set_root_otransid(new_root_item, trans->transid);
1250
1251 old = btrfs_lock_root_node(root);
1252 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1253 if (ret) {
1254 btrfs_tree_unlock(old);
1255 free_extent_buffer(old);
1256 btrfs_abort_transaction(trans, root, ret);
1257 goto fail;
1258 }
1259
1260 btrfs_set_lock_blocking(old);
1261
1262 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1263 /* clean up in any case */
1264 btrfs_tree_unlock(old);
1265 free_extent_buffer(old);
1266 if (ret) {
1267 btrfs_abort_transaction(trans, root, ret);
1268 goto fail;
1269 }
1270
1271 /* see comments in should_cow_block() */
1272 root->force_cow = 1;
1273 smp_wmb();
1274
1275 btrfs_set_root_node(new_root_item, tmp);
1276 /* record when the snapshot was created in key.offset */
1277 key.offset = trans->transid;
1278 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1279 btrfs_tree_unlock(tmp);
1280 free_extent_buffer(tmp);
1281 if (ret) {
1282 btrfs_abort_transaction(trans, root, ret);
1283 goto fail;
1284 }
1285
1286 /*
1287 * insert root back/forward references
1288 */
1289 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1290 parent_root->root_key.objectid,
1291 btrfs_ino(parent_inode), index,
1292 dentry->d_name.name, dentry->d_name.len);
1293 if (ret) {
1294 btrfs_abort_transaction(trans, root, ret);
1295 goto fail;
1296 }
1297
1298 key.offset = (u64)-1;
1299 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1300 if (IS_ERR(pending->snap)) {
1301 ret = PTR_ERR(pending->snap);
1302 btrfs_abort_transaction(trans, root, ret);
1303 goto fail;
1304 }
1305
1306 ret = btrfs_reloc_post_snapshot(trans, pending);
1307 if (ret) {
1308 btrfs_abort_transaction(trans, root, ret);
1309 goto fail;
1310 }
1311
1312 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1313 if (ret) {
1314 btrfs_abort_transaction(trans, root, ret);
1315 goto fail;
1316 }
1317
1318 ret = btrfs_insert_dir_item(trans, parent_root,
1319 dentry->d_name.name, dentry->d_name.len,
1320 parent_inode, &key,
1321 BTRFS_FT_DIR, index);
1322 /* We have check then name at the beginning, so it is impossible. */
1323 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1324 if (ret) {
1325 btrfs_abort_transaction(trans, root, ret);
1326 goto fail;
1327 }
1328
1329 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1330 dentry->d_name.len * 2);
1331 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1332 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1333 if (ret) {
1334 btrfs_abort_transaction(trans, root, ret);
1335 goto fail;
1336 }
1337 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1338 BTRFS_UUID_KEY_SUBVOL, objectid);
1339 if (ret) {
1340 btrfs_abort_transaction(trans, root, ret);
1341 goto fail;
1342 }
1343 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1344 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1345 new_root_item->received_uuid,
1346 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1347 objectid);
1348 if (ret && ret != -EEXIST) {
1349 btrfs_abort_transaction(trans, root, ret);
1350 goto fail;
1351 }
1352 }
1353 fail:
1354 pending->error = ret;
1355 dir_item_existed:
1356 trans->block_rsv = rsv;
1357 trans->bytes_reserved = 0;
1358 no_free_objectid:
1359 kfree(new_root_item);
1360 root_item_alloc_fail:
1361 btrfs_free_path(path);
1362 return ret;
1363 }
1364
1365 /*
1366 * create all the snapshots we've scheduled for creation
1367 */
1368 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1369 struct btrfs_fs_info *fs_info)
1370 {
1371 struct btrfs_pending_snapshot *pending, *next;
1372 struct list_head *head = &trans->transaction->pending_snapshots;
1373 int ret = 0;
1374
1375 list_for_each_entry_safe(pending, next, head, list) {
1376 list_del(&pending->list);
1377 ret = create_pending_snapshot(trans, fs_info, pending);
1378 if (ret)
1379 break;
1380 }
1381 return ret;
1382 }
1383
1384 static void update_super_roots(struct btrfs_root *root)
1385 {
1386 struct btrfs_root_item *root_item;
1387 struct btrfs_super_block *super;
1388
1389 super = root->fs_info->super_copy;
1390
1391 root_item = &root->fs_info->chunk_root->root_item;
1392 super->chunk_root = root_item->bytenr;
1393 super->chunk_root_generation = root_item->generation;
1394 super->chunk_root_level = root_item->level;
1395
1396 root_item = &root->fs_info->tree_root->root_item;
1397 super->root = root_item->bytenr;
1398 super->generation = root_item->generation;
1399 super->root_level = root_item->level;
1400 if (btrfs_test_opt(root, SPACE_CACHE))
1401 super->cache_generation = root_item->generation;
1402 if (root->fs_info->update_uuid_tree_gen)
1403 super->uuid_tree_generation = root_item->generation;
1404 }
1405
1406 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1407 {
1408 struct btrfs_transaction *trans;
1409 int ret = 0;
1410
1411 spin_lock(&info->trans_lock);
1412 trans = info->running_transaction;
1413 if (trans)
1414 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1415 spin_unlock(&info->trans_lock);
1416 return ret;
1417 }
1418
1419 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1420 {
1421 struct btrfs_transaction *trans;
1422 int ret = 0;
1423
1424 spin_lock(&info->trans_lock);
1425 trans = info->running_transaction;
1426 if (trans)
1427 ret = is_transaction_blocked(trans);
1428 spin_unlock(&info->trans_lock);
1429 return ret;
1430 }
1431
1432 /*
1433 * wait for the current transaction commit to start and block subsequent
1434 * transaction joins
1435 */
1436 static void wait_current_trans_commit_start(struct btrfs_root *root,
1437 struct btrfs_transaction *trans)
1438 {
1439 wait_event(root->fs_info->transaction_blocked_wait,
1440 trans->state >= TRANS_STATE_COMMIT_START ||
1441 trans->aborted);
1442 }
1443
1444 /*
1445 * wait for the current transaction to start and then become unblocked.
1446 * caller holds ref.
1447 */
1448 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1449 struct btrfs_transaction *trans)
1450 {
1451 wait_event(root->fs_info->transaction_wait,
1452 trans->state >= TRANS_STATE_UNBLOCKED ||
1453 trans->aborted);
1454 }
1455
1456 /*
1457 * commit transactions asynchronously. once btrfs_commit_transaction_async
1458 * returns, any subsequent transaction will not be allowed to join.
1459 */
1460 struct btrfs_async_commit {
1461 struct btrfs_trans_handle *newtrans;
1462 struct btrfs_root *root;
1463 struct work_struct work;
1464 };
1465
1466 static void do_async_commit(struct work_struct *work)
1467 {
1468 struct btrfs_async_commit *ac =
1469 container_of(work, struct btrfs_async_commit, work);
1470
1471 /*
1472 * We've got freeze protection passed with the transaction.
1473 * Tell lockdep about it.
1474 */
1475 if (ac->newtrans->type & __TRANS_FREEZABLE)
1476 rwsem_acquire_read(
1477 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1478 0, 1, _THIS_IP_);
1479
1480 current->journal_info = ac->newtrans;
1481
1482 btrfs_commit_transaction(ac->newtrans, ac->root);
1483 kfree(ac);
1484 }
1485
1486 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1487 struct btrfs_root *root,
1488 int wait_for_unblock)
1489 {
1490 struct btrfs_async_commit *ac;
1491 struct btrfs_transaction *cur_trans;
1492
1493 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1494 if (!ac)
1495 return -ENOMEM;
1496
1497 INIT_WORK(&ac->work, do_async_commit);
1498 ac->root = root;
1499 ac->newtrans = btrfs_join_transaction(root);
1500 if (IS_ERR(ac->newtrans)) {
1501 int err = PTR_ERR(ac->newtrans);
1502 kfree(ac);
1503 return err;
1504 }
1505
1506 /* take transaction reference */
1507 cur_trans = trans->transaction;
1508 atomic_inc(&cur_trans->use_count);
1509
1510 btrfs_end_transaction(trans, root);
1511
1512 /*
1513 * Tell lockdep we've released the freeze rwsem, since the
1514 * async commit thread will be the one to unlock it.
1515 */
1516 if (ac->newtrans->type & __TRANS_FREEZABLE)
1517 rwsem_release(
1518 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1519 1, _THIS_IP_);
1520
1521 schedule_work(&ac->work);
1522
1523 /* wait for transaction to start and unblock */
1524 if (wait_for_unblock)
1525 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1526 else
1527 wait_current_trans_commit_start(root, cur_trans);
1528
1529 if (current->journal_info == trans)
1530 current->journal_info = NULL;
1531
1532 btrfs_put_transaction(cur_trans);
1533 return 0;
1534 }
1535
1536
1537 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1538 struct btrfs_root *root, int err)
1539 {
1540 struct btrfs_transaction *cur_trans = trans->transaction;
1541 DEFINE_WAIT(wait);
1542
1543 WARN_ON(trans->use_count > 1);
1544
1545 btrfs_abort_transaction(trans, root, err);
1546
1547 spin_lock(&root->fs_info->trans_lock);
1548
1549 /*
1550 * If the transaction is removed from the list, it means this
1551 * transaction has been committed successfully, so it is impossible
1552 * to call the cleanup function.
1553 */
1554 BUG_ON(list_empty(&cur_trans->list));
1555
1556 list_del_init(&cur_trans->list);
1557 if (cur_trans == root->fs_info->running_transaction) {
1558 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1559 spin_unlock(&root->fs_info->trans_lock);
1560 wait_event(cur_trans->writer_wait,
1561 atomic_read(&cur_trans->num_writers) == 1);
1562
1563 spin_lock(&root->fs_info->trans_lock);
1564 }
1565 spin_unlock(&root->fs_info->trans_lock);
1566
1567 btrfs_cleanup_one_transaction(trans->transaction, root);
1568
1569 spin_lock(&root->fs_info->trans_lock);
1570 if (cur_trans == root->fs_info->running_transaction)
1571 root->fs_info->running_transaction = NULL;
1572 spin_unlock(&root->fs_info->trans_lock);
1573
1574 if (trans->type & __TRANS_FREEZABLE)
1575 sb_end_intwrite(root->fs_info->sb);
1576 btrfs_put_transaction(cur_trans);
1577 btrfs_put_transaction(cur_trans);
1578
1579 trace_btrfs_transaction_commit(root);
1580
1581 btrfs_scrub_continue(root);
1582
1583 if (current->journal_info == trans)
1584 current->journal_info = NULL;
1585
1586 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1587 }
1588
1589 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1590 struct btrfs_root *root)
1591 {
1592 int ret;
1593
1594 ret = btrfs_run_delayed_items(trans, root);
1595 /*
1596 * running the delayed items may have added new refs. account
1597 * them now so that they hinder processing of more delayed refs
1598 * as little as possible.
1599 */
1600 if (ret) {
1601 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1602 return ret;
1603 }
1604
1605 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1606 if (ret)
1607 return ret;
1608
1609 /*
1610 * rename don't use btrfs_join_transaction, so, once we
1611 * set the transaction to blocked above, we aren't going
1612 * to get any new ordered operations. We can safely run
1613 * it here and no for sure that nothing new will be added
1614 * to the list
1615 */
1616 ret = btrfs_run_ordered_operations(trans, root, 1);
1617
1618 return ret;
1619 }
1620
1621 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1622 {
1623 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1624 return btrfs_start_delalloc_roots(fs_info, 1);
1625 return 0;
1626 }
1627
1628 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1629 {
1630 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1631 btrfs_wait_ordered_roots(fs_info, -1);
1632 }
1633
1634 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1635 struct btrfs_root *root)
1636 {
1637 struct btrfs_transaction *cur_trans = trans->transaction;
1638 struct btrfs_transaction *prev_trans = NULL;
1639 int ret;
1640
1641 ret = btrfs_run_ordered_operations(trans, root, 0);
1642 if (ret) {
1643 btrfs_abort_transaction(trans, root, ret);
1644 btrfs_end_transaction(trans, root);
1645 return ret;
1646 }
1647
1648 /* Stop the commit early if ->aborted is set */
1649 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1650 ret = cur_trans->aborted;
1651 btrfs_end_transaction(trans, root);
1652 return ret;
1653 }
1654
1655 /* make a pass through all the delayed refs we have so far
1656 * any runnings procs may add more while we are here
1657 */
1658 ret = btrfs_run_delayed_refs(trans, root, 0);
1659 if (ret) {
1660 btrfs_end_transaction(trans, root);
1661 return ret;
1662 }
1663
1664 btrfs_trans_release_metadata(trans, root);
1665 trans->block_rsv = NULL;
1666 if (trans->qgroup_reserved) {
1667 btrfs_qgroup_free(root, trans->qgroup_reserved);
1668 trans->qgroup_reserved = 0;
1669 }
1670
1671 cur_trans = trans->transaction;
1672
1673 /*
1674 * set the flushing flag so procs in this transaction have to
1675 * start sending their work down.
1676 */
1677 cur_trans->delayed_refs.flushing = 1;
1678 smp_wmb();
1679
1680 if (!list_empty(&trans->new_bgs))
1681 btrfs_create_pending_block_groups(trans, root);
1682
1683 ret = btrfs_run_delayed_refs(trans, root, 0);
1684 if (ret) {
1685 btrfs_end_transaction(trans, root);
1686 return ret;
1687 }
1688
1689 spin_lock(&root->fs_info->trans_lock);
1690 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1691 spin_unlock(&root->fs_info->trans_lock);
1692 atomic_inc(&cur_trans->use_count);
1693 ret = btrfs_end_transaction(trans, root);
1694
1695 wait_for_commit(root, cur_trans);
1696
1697 btrfs_put_transaction(cur_trans);
1698
1699 return ret;
1700 }
1701
1702 cur_trans->state = TRANS_STATE_COMMIT_START;
1703 wake_up(&root->fs_info->transaction_blocked_wait);
1704
1705 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1706 prev_trans = list_entry(cur_trans->list.prev,
1707 struct btrfs_transaction, list);
1708 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1709 atomic_inc(&prev_trans->use_count);
1710 spin_unlock(&root->fs_info->trans_lock);
1711
1712 wait_for_commit(root, prev_trans);
1713
1714 btrfs_put_transaction(prev_trans);
1715 } else {
1716 spin_unlock(&root->fs_info->trans_lock);
1717 }
1718 } else {
1719 spin_unlock(&root->fs_info->trans_lock);
1720 }
1721
1722 extwriter_counter_dec(cur_trans, trans->type);
1723
1724 ret = btrfs_start_delalloc_flush(root->fs_info);
1725 if (ret)
1726 goto cleanup_transaction;
1727
1728 ret = btrfs_flush_all_pending_stuffs(trans, root);
1729 if (ret)
1730 goto cleanup_transaction;
1731
1732 wait_event(cur_trans->writer_wait,
1733 extwriter_counter_read(cur_trans) == 0);
1734
1735 /* some pending stuffs might be added after the previous flush. */
1736 ret = btrfs_flush_all_pending_stuffs(trans, root);
1737 if (ret)
1738 goto cleanup_transaction;
1739
1740 btrfs_wait_delalloc_flush(root->fs_info);
1741
1742 btrfs_scrub_pause(root);
1743 /*
1744 * Ok now we need to make sure to block out any other joins while we
1745 * commit the transaction. We could have started a join before setting
1746 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1747 */
1748 spin_lock(&root->fs_info->trans_lock);
1749 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1750 spin_unlock(&root->fs_info->trans_lock);
1751 wait_event(cur_trans->writer_wait,
1752 atomic_read(&cur_trans->num_writers) == 1);
1753
1754 /* ->aborted might be set after the previous check, so check it */
1755 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1756 ret = cur_trans->aborted;
1757 goto cleanup_transaction;
1758 }
1759 /*
1760 * the reloc mutex makes sure that we stop
1761 * the balancing code from coming in and moving
1762 * extents around in the middle of the commit
1763 */
1764 mutex_lock(&root->fs_info->reloc_mutex);
1765
1766 /*
1767 * We needn't worry about the delayed items because we will
1768 * deal with them in create_pending_snapshot(), which is the
1769 * core function of the snapshot creation.
1770 */
1771 ret = create_pending_snapshots(trans, root->fs_info);
1772 if (ret) {
1773 mutex_unlock(&root->fs_info->reloc_mutex);
1774 goto cleanup_transaction;
1775 }
1776
1777 /*
1778 * We insert the dir indexes of the snapshots and update the inode
1779 * of the snapshots' parents after the snapshot creation, so there
1780 * are some delayed items which are not dealt with. Now deal with
1781 * them.
1782 *
1783 * We needn't worry that this operation will corrupt the snapshots,
1784 * because all the tree which are snapshoted will be forced to COW
1785 * the nodes and leaves.
1786 */
1787 ret = btrfs_run_delayed_items(trans, root);
1788 if (ret) {
1789 mutex_unlock(&root->fs_info->reloc_mutex);
1790 goto cleanup_transaction;
1791 }
1792
1793 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1794 if (ret) {
1795 mutex_unlock(&root->fs_info->reloc_mutex);
1796 goto cleanup_transaction;
1797 }
1798
1799 /*
1800 * make sure none of the code above managed to slip in a
1801 * delayed item
1802 */
1803 btrfs_assert_delayed_root_empty(root);
1804
1805 WARN_ON(cur_trans != trans->transaction);
1806
1807 /* btrfs_commit_tree_roots is responsible for getting the
1808 * various roots consistent with each other. Every pointer
1809 * in the tree of tree roots has to point to the most up to date
1810 * root for every subvolume and other tree. So, we have to keep
1811 * the tree logging code from jumping in and changing any
1812 * of the trees.
1813 *
1814 * At this point in the commit, there can't be any tree-log
1815 * writers, but a little lower down we drop the trans mutex
1816 * and let new people in. By holding the tree_log_mutex
1817 * from now until after the super is written, we avoid races
1818 * with the tree-log code.
1819 */
1820 mutex_lock(&root->fs_info->tree_log_mutex);
1821
1822 ret = commit_fs_roots(trans, root);
1823 if (ret) {
1824 mutex_unlock(&root->fs_info->tree_log_mutex);
1825 mutex_unlock(&root->fs_info->reloc_mutex);
1826 goto cleanup_transaction;
1827 }
1828
1829 /*
1830 * Since the transaction is done, we should set the inode map cache flag
1831 * before any other comming transaction.
1832 */
1833 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1834 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1835 else
1836 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1837
1838 /* commit_fs_roots gets rid of all the tree log roots, it is now
1839 * safe to free the root of tree log roots
1840 */
1841 btrfs_free_log_root_tree(trans, root->fs_info);
1842
1843 ret = commit_cowonly_roots(trans, root);
1844 if (ret) {
1845 mutex_unlock(&root->fs_info->tree_log_mutex);
1846 mutex_unlock(&root->fs_info->reloc_mutex);
1847 goto cleanup_transaction;
1848 }
1849
1850 /*
1851 * The tasks which save the space cache and inode cache may also
1852 * update ->aborted, check it.
1853 */
1854 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1855 ret = cur_trans->aborted;
1856 mutex_unlock(&root->fs_info->tree_log_mutex);
1857 mutex_unlock(&root->fs_info->reloc_mutex);
1858 goto cleanup_transaction;
1859 }
1860
1861 btrfs_prepare_extent_commit(trans, root);
1862
1863 cur_trans = root->fs_info->running_transaction;
1864
1865 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1866 root->fs_info->tree_root->node);
1867 switch_commit_root(root->fs_info->tree_root);
1868
1869 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1870 root->fs_info->chunk_root->node);
1871 switch_commit_root(root->fs_info->chunk_root);
1872
1873 assert_qgroups_uptodate(trans);
1874 update_super_roots(root);
1875
1876 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1877 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1878 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1879 sizeof(*root->fs_info->super_copy));
1880
1881 spin_lock(&root->fs_info->trans_lock);
1882 cur_trans->state = TRANS_STATE_UNBLOCKED;
1883 root->fs_info->running_transaction = NULL;
1884 spin_unlock(&root->fs_info->trans_lock);
1885 mutex_unlock(&root->fs_info->reloc_mutex);
1886
1887 wake_up(&root->fs_info->transaction_wait);
1888
1889 ret = btrfs_write_and_wait_transaction(trans, root);
1890 if (ret) {
1891 btrfs_error(root->fs_info, ret,
1892 "Error while writing out transaction");
1893 mutex_unlock(&root->fs_info->tree_log_mutex);
1894 goto cleanup_transaction;
1895 }
1896
1897 ret = write_ctree_super(trans, root, 0);
1898 if (ret) {
1899 mutex_unlock(&root->fs_info->tree_log_mutex);
1900 goto cleanup_transaction;
1901 }
1902
1903 /*
1904 * the super is written, we can safely allow the tree-loggers
1905 * to go about their business
1906 */
1907 mutex_unlock(&root->fs_info->tree_log_mutex);
1908
1909 btrfs_finish_extent_commit(trans, root);
1910
1911 root->fs_info->last_trans_committed = cur_trans->transid;
1912 /*
1913 * We needn't acquire the lock here because there is no other task
1914 * which can change it.
1915 */
1916 cur_trans->state = TRANS_STATE_COMPLETED;
1917 wake_up(&cur_trans->commit_wait);
1918
1919 spin_lock(&root->fs_info->trans_lock);
1920 list_del_init(&cur_trans->list);
1921 spin_unlock(&root->fs_info->trans_lock);
1922
1923 btrfs_put_transaction(cur_trans);
1924 btrfs_put_transaction(cur_trans);
1925
1926 if (trans->type & __TRANS_FREEZABLE)
1927 sb_end_intwrite(root->fs_info->sb);
1928
1929 trace_btrfs_transaction_commit(root);
1930
1931 btrfs_scrub_continue(root);
1932
1933 if (current->journal_info == trans)
1934 current->journal_info = NULL;
1935
1936 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1937
1938 if (current != root->fs_info->transaction_kthread)
1939 btrfs_run_delayed_iputs(root);
1940
1941 return ret;
1942
1943 cleanup_transaction:
1944 btrfs_trans_release_metadata(trans, root);
1945 trans->block_rsv = NULL;
1946 if (trans->qgroup_reserved) {
1947 btrfs_qgroup_free(root, trans->qgroup_reserved);
1948 trans->qgroup_reserved = 0;
1949 }
1950 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1951 if (current->journal_info == trans)
1952 current->journal_info = NULL;
1953 cleanup_transaction(trans, root, ret);
1954
1955 return ret;
1956 }
1957
1958 /*
1959 * return < 0 if error
1960 * 0 if there are no more dead_roots at the time of call
1961 * 1 there are more to be processed, call me again
1962 *
1963 * The return value indicates there are certainly more snapshots to delete, but
1964 * if there comes a new one during processing, it may return 0. We don't mind,
1965 * because btrfs_commit_super will poke cleaner thread and it will process it a
1966 * few seconds later.
1967 */
1968 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1969 {
1970 int ret;
1971 struct btrfs_fs_info *fs_info = root->fs_info;
1972
1973 spin_lock(&fs_info->trans_lock);
1974 if (list_empty(&fs_info->dead_roots)) {
1975 spin_unlock(&fs_info->trans_lock);
1976 return 0;
1977 }
1978 root = list_first_entry(&fs_info->dead_roots,
1979 struct btrfs_root, root_list);
1980 /*
1981 * Make sure root is not involved in send,
1982 * if we fail with first root, we return
1983 * directly rather than continue.
1984 */
1985 spin_lock(&root->root_item_lock);
1986 if (root->send_in_progress) {
1987 spin_unlock(&fs_info->trans_lock);
1988 spin_unlock(&root->root_item_lock);
1989 return 0;
1990 }
1991 spin_unlock(&root->root_item_lock);
1992
1993 list_del_init(&root->root_list);
1994 spin_unlock(&fs_info->trans_lock);
1995
1996 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
1997
1998 btrfs_kill_all_delayed_nodes(root);
1999
2000 if (btrfs_header_backref_rev(root->node) <
2001 BTRFS_MIXED_BACKREF_REV)
2002 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2003 else
2004 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2005 /*
2006 * If we encounter a transaction abort during snapshot cleaning, we
2007 * don't want to crash here
2008 */
2009 return (ret < 0) ? 0 : 1;
2010 }
This page took 0.071436 seconds and 5 git commands to generate.