Btrfs: mnt_drop_write in ioctl_trans_end
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "ref-cache.h"
29 #include "tree-log.h"
30
31 extern struct kmem_cache *btrfs_trans_handle_cachep;
32 extern struct kmem_cache *btrfs_transaction_cachep;
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 static noinline void put_transaction(struct btrfs_transaction *transaction)
37 {
38 WARN_ON(transaction->use_count == 0);
39 transaction->use_count--;
40 if (transaction->use_count == 0) {
41 list_del_init(&transaction->list);
42 memset(transaction, 0, sizeof(*transaction));
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 /*
48 * either allocate a new transaction or hop into the existing one
49 */
50 static noinline int join_transaction(struct btrfs_root *root)
51 {
52 struct btrfs_transaction *cur_trans;
53 cur_trans = root->fs_info->running_transaction;
54 if (!cur_trans) {
55 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
56 GFP_NOFS);
57 BUG_ON(!cur_trans);
58 root->fs_info->generation++;
59 root->fs_info->last_alloc = 0;
60 root->fs_info->last_data_alloc = 0;
61 cur_trans->num_writers = 1;
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->blocked = 0;
68 cur_trans->use_count = 1;
69 cur_trans->commit_done = 0;
70 cur_trans->start_time = get_seconds();
71 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
72 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
73 extent_io_tree_init(&cur_trans->dirty_pages,
74 root->fs_info->btree_inode->i_mapping,
75 GFP_NOFS);
76 spin_lock(&root->fs_info->new_trans_lock);
77 root->fs_info->running_transaction = cur_trans;
78 spin_unlock(&root->fs_info->new_trans_lock);
79 } else {
80 cur_trans->num_writers++;
81 cur_trans->num_joined++;
82 }
83
84 return 0;
85 }
86
87 /*
88 * this does all the record keeping required to make sure that a
89 * reference counted root is properly recorded in a given transaction.
90 * This is required to make sure the old root from before we joined the transaction
91 * is deleted when the transaction commits
92 */
93 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
94 {
95 struct btrfs_dirty_root *dirty;
96 u64 running_trans_id = root->fs_info->running_transaction->transid;
97 if (root->ref_cows && root->last_trans < running_trans_id) {
98 WARN_ON(root == root->fs_info->extent_root);
99 if (root->root_item.refs != 0) {
100 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
101 (unsigned long)root->root_key.objectid,
102 BTRFS_ROOT_TRANS_TAG);
103
104 dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
105 BUG_ON(!dirty);
106 dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
107 BUG_ON(!dirty->root);
108 dirty->latest_root = root;
109 INIT_LIST_HEAD(&dirty->list);
110
111 root->commit_root = btrfs_root_node(root);
112
113 memcpy(dirty->root, root, sizeof(*root));
114 spin_lock_init(&dirty->root->node_lock);
115 spin_lock_init(&dirty->root->list_lock);
116 mutex_init(&dirty->root->objectid_mutex);
117 mutex_init(&dirty->root->log_mutex);
118 INIT_LIST_HEAD(&dirty->root->dead_list);
119 dirty->root->node = root->commit_root;
120 dirty->root->commit_root = NULL;
121
122 spin_lock(&root->list_lock);
123 list_add(&dirty->root->dead_list, &root->dead_list);
124 spin_unlock(&root->list_lock);
125
126 root->dirty_root = dirty;
127 } else {
128 WARN_ON(1);
129 }
130 root->last_trans = running_trans_id;
131 }
132 return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
138 */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141 struct btrfs_transaction *cur_trans;
142
143 cur_trans = root->fs_info->running_transaction;
144 if (cur_trans && cur_trans->blocked) {
145 DEFINE_WAIT(wait);
146 cur_trans->use_count++;
147 while(1) {
148 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 TASK_UNINTERRUPTIBLE);
150 if (cur_trans->blocked) {
151 mutex_unlock(&root->fs_info->trans_mutex);
152 schedule();
153 mutex_lock(&root->fs_info->trans_mutex);
154 finish_wait(&root->fs_info->transaction_wait,
155 &wait);
156 } else {
157 finish_wait(&root->fs_info->transaction_wait,
158 &wait);
159 break;
160 }
161 }
162 put_transaction(cur_trans);
163 }
164 }
165
166 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
167 int num_blocks, int wait)
168 {
169 struct btrfs_trans_handle *h =
170 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
171 int ret;
172
173 mutex_lock(&root->fs_info->trans_mutex);
174 if (!root->fs_info->log_root_recovering &&
175 ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
176 wait_current_trans(root);
177 ret = join_transaction(root);
178 BUG_ON(ret);
179
180 btrfs_record_root_in_trans(root);
181 h->transid = root->fs_info->running_transaction->transid;
182 h->transaction = root->fs_info->running_transaction;
183 h->blocks_reserved = num_blocks;
184 h->blocks_used = 0;
185 h->block_group = NULL;
186 h->alloc_exclude_nr = 0;
187 h->alloc_exclude_start = 0;
188 root->fs_info->running_transaction->use_count++;
189 mutex_unlock(&root->fs_info->trans_mutex);
190 return h;
191 }
192
193 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
194 int num_blocks)
195 {
196 return start_transaction(root, num_blocks, 1);
197 }
198 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
199 int num_blocks)
200 {
201 return start_transaction(root, num_blocks, 0);
202 }
203
204 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
205 int num_blocks)
206 {
207 return start_transaction(r, num_blocks, 2);
208 }
209
210 /* wait for a transaction commit to be fully complete */
211 static noinline int wait_for_commit(struct btrfs_root *root,
212 struct btrfs_transaction *commit)
213 {
214 DEFINE_WAIT(wait);
215 mutex_lock(&root->fs_info->trans_mutex);
216 while(!commit->commit_done) {
217 prepare_to_wait(&commit->commit_wait, &wait,
218 TASK_UNINTERRUPTIBLE);
219 if (commit->commit_done)
220 break;
221 mutex_unlock(&root->fs_info->trans_mutex);
222 schedule();
223 mutex_lock(&root->fs_info->trans_mutex);
224 }
225 mutex_unlock(&root->fs_info->trans_mutex);
226 finish_wait(&commit->commit_wait, &wait);
227 return 0;
228 }
229
230 /*
231 * rate limit against the drop_snapshot code. This helps to slow down new operations
232 * if the drop_snapshot code isn't able to keep up.
233 */
234 static void throttle_on_drops(struct btrfs_root *root)
235 {
236 struct btrfs_fs_info *info = root->fs_info;
237 int harder_count = 0;
238
239 harder:
240 if (atomic_read(&info->throttles)) {
241 DEFINE_WAIT(wait);
242 int thr;
243 thr = atomic_read(&info->throttle_gen);
244
245 do {
246 prepare_to_wait(&info->transaction_throttle,
247 &wait, TASK_UNINTERRUPTIBLE);
248 if (!atomic_read(&info->throttles)) {
249 finish_wait(&info->transaction_throttle, &wait);
250 break;
251 }
252 schedule();
253 finish_wait(&info->transaction_throttle, &wait);
254 } while (thr == atomic_read(&info->throttle_gen));
255 harder_count++;
256
257 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
258 harder_count < 2)
259 goto harder;
260
261 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
262 harder_count < 10)
263 goto harder;
264
265 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
266 harder_count < 20)
267 goto harder;
268 }
269 }
270
271 void btrfs_throttle(struct btrfs_root *root)
272 {
273 mutex_lock(&root->fs_info->trans_mutex);
274 if (!root->fs_info->open_ioctl_trans)
275 wait_current_trans(root);
276 mutex_unlock(&root->fs_info->trans_mutex);
277
278 throttle_on_drops(root);
279 }
280
281 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
282 struct btrfs_root *root, int throttle)
283 {
284 struct btrfs_transaction *cur_trans;
285 struct btrfs_fs_info *info = root->fs_info;
286
287 mutex_lock(&info->trans_mutex);
288 cur_trans = info->running_transaction;
289 WARN_ON(cur_trans != trans->transaction);
290 WARN_ON(cur_trans->num_writers < 1);
291 cur_trans->num_writers--;
292
293 if (waitqueue_active(&cur_trans->writer_wait))
294 wake_up(&cur_trans->writer_wait);
295 put_transaction(cur_trans);
296 mutex_unlock(&info->trans_mutex);
297 memset(trans, 0, sizeof(*trans));
298 kmem_cache_free(btrfs_trans_handle_cachep, trans);
299
300 if (throttle)
301 throttle_on_drops(root);
302
303 return 0;
304 }
305
306 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
307 struct btrfs_root *root)
308 {
309 return __btrfs_end_transaction(trans, root, 0);
310 }
311
312 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
313 struct btrfs_root *root)
314 {
315 return __btrfs_end_transaction(trans, root, 1);
316 }
317
318 /*
319 * when btree blocks are allocated, they have some corresponding bits set for
320 * them in one of two extent_io trees. This is used to make sure all of
321 * those extents are on disk for transaction or log commit
322 */
323 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
324 struct extent_io_tree *dirty_pages)
325 {
326 int ret;
327 int err = 0;
328 int werr = 0;
329 struct page *page;
330 struct inode *btree_inode = root->fs_info->btree_inode;
331 u64 start = 0;
332 u64 end;
333 unsigned long index;
334
335 while(1) {
336 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
337 EXTENT_DIRTY);
338 if (ret)
339 break;
340 while(start <= end) {
341 cond_resched();
342
343 index = start >> PAGE_CACHE_SHIFT;
344 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
345 page = find_get_page(btree_inode->i_mapping, index);
346 if (!page)
347 continue;
348
349 btree_lock_page_hook(page);
350 if (!page->mapping) {
351 unlock_page(page);
352 page_cache_release(page);
353 continue;
354 }
355
356 if (PageWriteback(page)) {
357 if (PageDirty(page))
358 wait_on_page_writeback(page);
359 else {
360 unlock_page(page);
361 page_cache_release(page);
362 continue;
363 }
364 }
365 err = write_one_page(page, 0);
366 if (err)
367 werr = err;
368 page_cache_release(page);
369 }
370 }
371 while(1) {
372 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
373 EXTENT_DIRTY);
374 if (ret)
375 break;
376
377 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
378 while(start <= end) {
379 index = start >> PAGE_CACHE_SHIFT;
380 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
381 page = find_get_page(btree_inode->i_mapping, index);
382 if (!page)
383 continue;
384 if (PageDirty(page)) {
385 btree_lock_page_hook(page);
386 wait_on_page_writeback(page);
387 err = write_one_page(page, 0);
388 if (err)
389 werr = err;
390 }
391 wait_on_page_writeback(page);
392 page_cache_release(page);
393 cond_resched();
394 }
395 }
396 if (err)
397 werr = err;
398 return werr;
399 }
400
401 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
402 struct btrfs_root *root)
403 {
404 if (!trans || !trans->transaction) {
405 struct inode *btree_inode;
406 btree_inode = root->fs_info->btree_inode;
407 return filemap_write_and_wait(btree_inode->i_mapping);
408 }
409 return btrfs_write_and_wait_marked_extents(root,
410 &trans->transaction->dirty_pages);
411 }
412
413 /*
414 * this is used to update the root pointer in the tree of tree roots.
415 *
416 * But, in the case of the extent allocation tree, updating the root
417 * pointer may allocate blocks which may change the root of the extent
418 * allocation tree.
419 *
420 * So, this loops and repeats and makes sure the cowonly root didn't
421 * change while the root pointer was being updated in the metadata.
422 */
423 static int update_cowonly_root(struct btrfs_trans_handle *trans,
424 struct btrfs_root *root)
425 {
426 int ret;
427 u64 old_root_bytenr;
428 struct btrfs_root *tree_root = root->fs_info->tree_root;
429
430 btrfs_extent_post_op(trans, root);
431 btrfs_write_dirty_block_groups(trans, root);
432 btrfs_extent_post_op(trans, root);
433
434 while(1) {
435 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
436 if (old_root_bytenr == root->node->start)
437 break;
438 btrfs_set_root_bytenr(&root->root_item,
439 root->node->start);
440 btrfs_set_root_level(&root->root_item,
441 btrfs_header_level(root->node));
442 btrfs_set_root_generation(&root->root_item, trans->transid);
443
444 btrfs_extent_post_op(trans, root);
445
446 ret = btrfs_update_root(trans, tree_root,
447 &root->root_key,
448 &root->root_item);
449 BUG_ON(ret);
450 btrfs_write_dirty_block_groups(trans, root);
451 btrfs_extent_post_op(trans, root);
452 }
453 return 0;
454 }
455
456 /*
457 * update all the cowonly tree roots on disk
458 */
459 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
460 struct btrfs_root *root)
461 {
462 struct btrfs_fs_info *fs_info = root->fs_info;
463 struct list_head *next;
464 struct extent_buffer *eb;
465
466 btrfs_extent_post_op(trans, fs_info->tree_root);
467
468 eb = btrfs_lock_root_node(fs_info->tree_root);
469 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb, 0);
470 btrfs_tree_unlock(eb);
471 free_extent_buffer(eb);
472
473 btrfs_extent_post_op(trans, fs_info->tree_root);
474
475 while(!list_empty(&fs_info->dirty_cowonly_roots)) {
476 next = fs_info->dirty_cowonly_roots.next;
477 list_del_init(next);
478 root = list_entry(next, struct btrfs_root, dirty_list);
479
480 update_cowonly_root(trans, root);
481 }
482 return 0;
483 }
484
485 /*
486 * dead roots are old snapshots that need to be deleted. This allocates
487 * a dirty root struct and adds it into the list of dead roots that need to
488 * be deleted
489 */
490 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
491 {
492 struct btrfs_dirty_root *dirty;
493
494 dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
495 if (!dirty)
496 return -ENOMEM;
497 dirty->root = root;
498 dirty->latest_root = latest;
499
500 mutex_lock(&root->fs_info->trans_mutex);
501 list_add(&dirty->list, &latest->fs_info->dead_roots);
502 mutex_unlock(&root->fs_info->trans_mutex);
503 return 0;
504 }
505
506 /*
507 * at transaction commit time we need to schedule the old roots for
508 * deletion via btrfs_drop_snapshot. This runs through all the
509 * reference counted roots that were modified in the current
510 * transaction and puts them into the drop list
511 */
512 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
513 struct radix_tree_root *radix,
514 struct list_head *list)
515 {
516 struct btrfs_dirty_root *dirty;
517 struct btrfs_root *gang[8];
518 struct btrfs_root *root;
519 int i;
520 int ret;
521 int err = 0;
522 u32 refs;
523
524 while(1) {
525 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
526 ARRAY_SIZE(gang),
527 BTRFS_ROOT_TRANS_TAG);
528 if (ret == 0)
529 break;
530 for (i = 0; i < ret; i++) {
531 root = gang[i];
532 radix_tree_tag_clear(radix,
533 (unsigned long)root->root_key.objectid,
534 BTRFS_ROOT_TRANS_TAG);
535
536 BUG_ON(!root->ref_tree);
537 dirty = root->dirty_root;
538
539 btrfs_free_log(trans, root);
540 btrfs_free_reloc_root(trans, root);
541
542 if (root->commit_root == root->node) {
543 WARN_ON(root->node->start !=
544 btrfs_root_bytenr(&root->root_item));
545
546 free_extent_buffer(root->commit_root);
547 root->commit_root = NULL;
548 root->dirty_root = NULL;
549
550 spin_lock(&root->list_lock);
551 list_del_init(&dirty->root->dead_list);
552 spin_unlock(&root->list_lock);
553
554 kfree(dirty->root);
555 kfree(dirty);
556
557 /* make sure to update the root on disk
558 * so we get any updates to the block used
559 * counts
560 */
561 err = btrfs_update_root(trans,
562 root->fs_info->tree_root,
563 &root->root_key,
564 &root->root_item);
565 continue;
566 }
567
568 memset(&root->root_item.drop_progress, 0,
569 sizeof(struct btrfs_disk_key));
570 root->root_item.drop_level = 0;
571 root->commit_root = NULL;
572 root->dirty_root = NULL;
573 root->root_key.offset = root->fs_info->generation;
574 btrfs_set_root_bytenr(&root->root_item,
575 root->node->start);
576 btrfs_set_root_level(&root->root_item,
577 btrfs_header_level(root->node));
578 btrfs_set_root_generation(&root->root_item,
579 root->root_key.offset);
580
581 err = btrfs_insert_root(trans, root->fs_info->tree_root,
582 &root->root_key,
583 &root->root_item);
584 if (err)
585 break;
586
587 refs = btrfs_root_refs(&dirty->root->root_item);
588 btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
589 err = btrfs_update_root(trans, root->fs_info->tree_root,
590 &dirty->root->root_key,
591 &dirty->root->root_item);
592
593 BUG_ON(err);
594 if (refs == 1) {
595 list_add(&dirty->list, list);
596 } else {
597 WARN_ON(1);
598 free_extent_buffer(dirty->root->node);
599 kfree(dirty->root);
600 kfree(dirty);
601 }
602 }
603 }
604 return err;
605 }
606
607 /*
608 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
609 * otherwise every leaf in the btree is read and defragged.
610 */
611 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
612 {
613 struct btrfs_fs_info *info = root->fs_info;
614 int ret;
615 struct btrfs_trans_handle *trans;
616 unsigned long nr;
617
618 smp_mb();
619 if (root->defrag_running)
620 return 0;
621 trans = btrfs_start_transaction(root, 1);
622 while (1) {
623 root->defrag_running = 1;
624 ret = btrfs_defrag_leaves(trans, root, cacheonly);
625 nr = trans->blocks_used;
626 btrfs_end_transaction(trans, root);
627 btrfs_btree_balance_dirty(info->tree_root, nr);
628 cond_resched();
629
630 trans = btrfs_start_transaction(root, 1);
631 if (root->fs_info->closing || ret != -EAGAIN)
632 break;
633 }
634 root->defrag_running = 0;
635 smp_mb();
636 btrfs_end_transaction(trans, root);
637 return 0;
638 }
639
640 /*
641 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
642 * all of them
643 */
644 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
645 struct list_head *list)
646 {
647 struct btrfs_dirty_root *dirty;
648 struct btrfs_trans_handle *trans;
649 unsigned long nr;
650 u64 num_bytes;
651 u64 bytes_used;
652 u64 max_useless;
653 int ret = 0;
654 int err;
655
656 while(!list_empty(list)) {
657 struct btrfs_root *root;
658
659 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
660 list_del_init(&dirty->list);
661
662 num_bytes = btrfs_root_used(&dirty->root->root_item);
663 root = dirty->latest_root;
664 atomic_inc(&root->fs_info->throttles);
665
666 while(1) {
667 trans = btrfs_start_transaction(tree_root, 1);
668 mutex_lock(&root->fs_info->drop_mutex);
669 ret = btrfs_drop_snapshot(trans, dirty->root);
670 if (ret != -EAGAIN) {
671 break;
672 }
673 mutex_unlock(&root->fs_info->drop_mutex);
674
675 err = btrfs_update_root(trans,
676 tree_root,
677 &dirty->root->root_key,
678 &dirty->root->root_item);
679 if (err)
680 ret = err;
681 nr = trans->blocks_used;
682 ret = btrfs_end_transaction(trans, tree_root);
683 BUG_ON(ret);
684
685 btrfs_btree_balance_dirty(tree_root, nr);
686 cond_resched();
687 }
688 BUG_ON(ret);
689 atomic_dec(&root->fs_info->throttles);
690 wake_up(&root->fs_info->transaction_throttle);
691
692 num_bytes -= btrfs_root_used(&dirty->root->root_item);
693 bytes_used = btrfs_root_used(&root->root_item);
694 if (num_bytes) {
695 btrfs_record_root_in_trans(root);
696 btrfs_set_root_used(&root->root_item,
697 bytes_used - num_bytes);
698 }
699
700 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
701 if (ret) {
702 BUG();
703 break;
704 }
705 mutex_unlock(&root->fs_info->drop_mutex);
706
707 spin_lock(&root->list_lock);
708 list_del_init(&dirty->root->dead_list);
709 if (!list_empty(&root->dead_list)) {
710 struct btrfs_root *oldest;
711 oldest = list_entry(root->dead_list.prev,
712 struct btrfs_root, dead_list);
713 max_useless = oldest->root_key.offset - 1;
714 } else {
715 max_useless = root->root_key.offset - 1;
716 }
717 spin_unlock(&root->list_lock);
718
719 nr = trans->blocks_used;
720 ret = btrfs_end_transaction(trans, tree_root);
721 BUG_ON(ret);
722
723 ret = btrfs_remove_leaf_refs(root, max_useless, 0);
724 BUG_ON(ret);
725
726 free_extent_buffer(dirty->root->node);
727 kfree(dirty->root);
728 kfree(dirty);
729
730 btrfs_btree_balance_dirty(tree_root, nr);
731 cond_resched();
732 }
733 return ret;
734 }
735
736 /*
737 * new snapshots need to be created at a very specific time in the
738 * transaction commit. This does the actual creation
739 */
740 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
741 struct btrfs_fs_info *fs_info,
742 struct btrfs_pending_snapshot *pending)
743 {
744 struct btrfs_key key;
745 struct btrfs_root_item *new_root_item;
746 struct btrfs_root *tree_root = fs_info->tree_root;
747 struct btrfs_root *root = pending->root;
748 struct extent_buffer *tmp;
749 struct extent_buffer *old;
750 int ret;
751 u64 objectid;
752
753 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
754 if (!new_root_item) {
755 ret = -ENOMEM;
756 goto fail;
757 }
758 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
759 if (ret)
760 goto fail;
761
762 btrfs_record_root_in_trans(root);
763 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
764 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
765
766 key.objectid = objectid;
767 key.offset = trans->transid;
768 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
769
770 old = btrfs_lock_root_node(root);
771 btrfs_cow_block(trans, root, old, NULL, 0, &old, 0);
772
773 btrfs_copy_root(trans, root, old, &tmp, objectid);
774 btrfs_tree_unlock(old);
775 free_extent_buffer(old);
776
777 btrfs_set_root_bytenr(new_root_item, tmp->start);
778 btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
779 btrfs_set_root_generation(new_root_item, trans->transid);
780 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
781 new_root_item);
782 btrfs_tree_unlock(tmp);
783 free_extent_buffer(tmp);
784 if (ret)
785 goto fail;
786
787 key.offset = (u64)-1;
788 memcpy(&pending->root_key, &key, sizeof(key));
789 fail:
790 kfree(new_root_item);
791 return ret;
792 }
793
794 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
795 struct btrfs_pending_snapshot *pending)
796 {
797 int ret;
798 int namelen;
799 u64 index = 0;
800 struct btrfs_trans_handle *trans;
801 struct inode *parent_inode;
802 struct inode *inode;
803 struct btrfs_root *parent_root;
804
805 parent_inode = pending->dentry->d_parent->d_inode;
806 parent_root = BTRFS_I(parent_inode)->root;
807 trans = btrfs_start_transaction(parent_root, 1);
808
809 /*
810 * insert the directory item
811 */
812 namelen = strlen(pending->name);
813 ret = btrfs_set_inode_index(parent_inode, &index);
814 ret = btrfs_insert_dir_item(trans, parent_root,
815 pending->name, namelen,
816 parent_inode->i_ino,
817 &pending->root_key, BTRFS_FT_DIR, index);
818
819 if (ret)
820 goto fail;
821
822 /* add the backref first */
823 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
824 pending->root_key.objectid,
825 BTRFS_ROOT_BACKREF_KEY,
826 parent_root->root_key.objectid,
827 parent_inode->i_ino, index, pending->name,
828 namelen);
829
830 BUG_ON(ret);
831
832 /* now add the forward ref */
833 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
834 parent_root->root_key.objectid,
835 BTRFS_ROOT_REF_KEY,
836 pending->root_key.objectid,
837 parent_inode->i_ino, index, pending->name,
838 namelen);
839
840 inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
841 d_instantiate(pending->dentry, inode);
842 fail:
843 btrfs_end_transaction(trans, fs_info->fs_root);
844 return ret;
845 }
846
847 /*
848 * create all the snapshots we've scheduled for creation
849 */
850 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
851 struct btrfs_fs_info *fs_info)
852 {
853 struct btrfs_pending_snapshot *pending;
854 struct list_head *head = &trans->transaction->pending_snapshots;
855 struct list_head *cur;
856 int ret;
857
858 list_for_each(cur, head) {
859 pending = list_entry(cur, struct btrfs_pending_snapshot, list);
860 ret = create_pending_snapshot(trans, fs_info, pending);
861 BUG_ON(ret);
862 }
863 return 0;
864 }
865
866 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
867 struct btrfs_fs_info *fs_info)
868 {
869 struct btrfs_pending_snapshot *pending;
870 struct list_head *head = &trans->transaction->pending_snapshots;
871 int ret;
872
873 while(!list_empty(head)) {
874 pending = list_entry(head->next,
875 struct btrfs_pending_snapshot, list);
876 ret = finish_pending_snapshot(fs_info, pending);
877 BUG_ON(ret);
878 list_del(&pending->list);
879 kfree(pending->name);
880 kfree(pending);
881 }
882 return 0;
883 }
884
885 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
886 struct btrfs_root *root)
887 {
888 unsigned long joined = 0;
889 unsigned long timeout = 1;
890 struct btrfs_transaction *cur_trans;
891 struct btrfs_transaction *prev_trans = NULL;
892 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
893 struct list_head dirty_fs_roots;
894 struct extent_io_tree *pinned_copy;
895 DEFINE_WAIT(wait);
896 int ret;
897
898 INIT_LIST_HEAD(&dirty_fs_roots);
899 mutex_lock(&root->fs_info->trans_mutex);
900 if (trans->transaction->in_commit) {
901 cur_trans = trans->transaction;
902 trans->transaction->use_count++;
903 mutex_unlock(&root->fs_info->trans_mutex);
904 btrfs_end_transaction(trans, root);
905
906 ret = wait_for_commit(root, cur_trans);
907 BUG_ON(ret);
908
909 mutex_lock(&root->fs_info->trans_mutex);
910 put_transaction(cur_trans);
911 mutex_unlock(&root->fs_info->trans_mutex);
912
913 return 0;
914 }
915
916 pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
917 if (!pinned_copy)
918 return -ENOMEM;
919
920 extent_io_tree_init(pinned_copy,
921 root->fs_info->btree_inode->i_mapping, GFP_NOFS);
922
923 trans->transaction->in_commit = 1;
924 trans->transaction->blocked = 1;
925 cur_trans = trans->transaction;
926 if (cur_trans->list.prev != &root->fs_info->trans_list) {
927 prev_trans = list_entry(cur_trans->list.prev,
928 struct btrfs_transaction, list);
929 if (!prev_trans->commit_done) {
930 prev_trans->use_count++;
931 mutex_unlock(&root->fs_info->trans_mutex);
932
933 wait_for_commit(root, prev_trans);
934
935 mutex_lock(&root->fs_info->trans_mutex);
936 put_transaction(prev_trans);
937 }
938 }
939
940 do {
941 int snap_pending = 0;
942 joined = cur_trans->num_joined;
943 if (!list_empty(&trans->transaction->pending_snapshots))
944 snap_pending = 1;
945
946 WARN_ON(cur_trans != trans->transaction);
947 prepare_to_wait(&cur_trans->writer_wait, &wait,
948 TASK_UNINTERRUPTIBLE);
949
950 if (cur_trans->num_writers > 1)
951 timeout = MAX_SCHEDULE_TIMEOUT;
952 else
953 timeout = 1;
954
955 mutex_unlock(&root->fs_info->trans_mutex);
956
957 if (snap_pending) {
958 ret = btrfs_wait_ordered_extents(root, 1);
959 BUG_ON(ret);
960 }
961
962 schedule_timeout(timeout);
963
964 mutex_lock(&root->fs_info->trans_mutex);
965 finish_wait(&cur_trans->writer_wait, &wait);
966 } while (cur_trans->num_writers > 1 ||
967 (cur_trans->num_joined != joined));
968
969 ret = create_pending_snapshots(trans, root->fs_info);
970 BUG_ON(ret);
971
972 WARN_ON(cur_trans != trans->transaction);
973
974 /* btrfs_commit_tree_roots is responsible for getting the
975 * various roots consistent with each other. Every pointer
976 * in the tree of tree roots has to point to the most up to date
977 * root for every subvolume and other tree. So, we have to keep
978 * the tree logging code from jumping in and changing any
979 * of the trees.
980 *
981 * At this point in the commit, there can't be any tree-log
982 * writers, but a little lower down we drop the trans mutex
983 * and let new people in. By holding the tree_log_mutex
984 * from now until after the super is written, we avoid races
985 * with the tree-log code.
986 */
987 mutex_lock(&root->fs_info->tree_log_mutex);
988 /*
989 * keep tree reloc code from adding new reloc trees
990 */
991 mutex_lock(&root->fs_info->tree_reloc_mutex);
992
993
994 ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
995 &dirty_fs_roots);
996 BUG_ON(ret);
997
998 /* add_dirty_roots gets rid of all the tree log roots, it is now
999 * safe to free the root of tree log roots
1000 */
1001 btrfs_free_log_root_tree(trans, root->fs_info);
1002
1003 ret = btrfs_commit_tree_roots(trans, root);
1004 BUG_ON(ret);
1005
1006 cur_trans = root->fs_info->running_transaction;
1007 spin_lock(&root->fs_info->new_trans_lock);
1008 root->fs_info->running_transaction = NULL;
1009 spin_unlock(&root->fs_info->new_trans_lock);
1010 btrfs_set_super_generation(&root->fs_info->super_copy,
1011 cur_trans->transid);
1012 btrfs_set_super_root(&root->fs_info->super_copy,
1013 root->fs_info->tree_root->node->start);
1014 btrfs_set_super_root_level(&root->fs_info->super_copy,
1015 btrfs_header_level(root->fs_info->tree_root->node));
1016
1017 btrfs_set_super_chunk_root(&root->fs_info->super_copy,
1018 chunk_root->node->start);
1019 btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
1020 btrfs_header_level(chunk_root->node));
1021 btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy,
1022 btrfs_header_generation(chunk_root->node));
1023
1024 if (!root->fs_info->log_root_recovering) {
1025 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1026 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1027 }
1028
1029 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1030 sizeof(root->fs_info->super_copy));
1031
1032 btrfs_copy_pinned(root, pinned_copy);
1033
1034 trans->transaction->blocked = 0;
1035 wake_up(&root->fs_info->transaction_throttle);
1036 wake_up(&root->fs_info->transaction_wait);
1037
1038 mutex_unlock(&root->fs_info->trans_mutex);
1039 ret = btrfs_write_and_wait_transaction(trans, root);
1040 BUG_ON(ret);
1041 write_ctree_super(trans, root, 0);
1042
1043 /*
1044 * the super is written, we can safely allow the tree-loggers
1045 * to go about their business
1046 */
1047 mutex_unlock(&root->fs_info->tree_log_mutex);
1048
1049 btrfs_finish_extent_commit(trans, root, pinned_copy);
1050 kfree(pinned_copy);
1051
1052 btrfs_drop_dead_reloc_roots(root);
1053 mutex_unlock(&root->fs_info->tree_reloc_mutex);
1054
1055 /* do the directory inserts of any pending snapshot creations */
1056 finish_pending_snapshots(trans, root->fs_info);
1057
1058 mutex_lock(&root->fs_info->trans_mutex);
1059
1060 cur_trans->commit_done = 1;
1061 root->fs_info->last_trans_committed = cur_trans->transid;
1062 wake_up(&cur_trans->commit_wait);
1063
1064 put_transaction(cur_trans);
1065 put_transaction(cur_trans);
1066
1067 list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
1068 if (root->fs_info->closing)
1069 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
1070
1071 mutex_unlock(&root->fs_info->trans_mutex);
1072
1073 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1074
1075 if (root->fs_info->closing) {
1076 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
1077 }
1078 return ret;
1079 }
1080
1081 /*
1082 * interface function to delete all the snapshots we have scheduled for deletion
1083 */
1084 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1085 {
1086 struct list_head dirty_roots;
1087 INIT_LIST_HEAD(&dirty_roots);
1088 again:
1089 mutex_lock(&root->fs_info->trans_mutex);
1090 list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1091 mutex_unlock(&root->fs_info->trans_mutex);
1092
1093 if (!list_empty(&dirty_roots)) {
1094 drop_dirty_roots(root, &dirty_roots);
1095 goto again;
1096 }
1097 return 0;
1098 }
This page took 0.175878 seconds and 5 git commands to generate.