Merge tag 'mvebu-fixes-4.1-2' of git://git.infradead.org/linux-mvebu into fixes
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 while (!RB_EMPTY_ROOT(&tree->state)) {
86 struct rb_node *node;
87 struct extent_state *state;
88
89 node = rb_first(&tree->state);
90 state = rb_entry(node, struct extent_state, rb_node);
91 rb_erase(&state->rb_node, &tree->state);
92 RB_CLEAR_NODE(&state->rb_node);
93 /*
94 * btree io trees aren't supposed to have tasks waiting for
95 * changes in the flags of extent states ever.
96 */
97 ASSERT(!waitqueue_active(&state->wq));
98 free_extent_state(state);
99
100 cond_resched_lock(&tree->lock);
101 }
102 spin_unlock(&tree->lock);
103 }
104
105 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106 struct btrfs_fs_info *fs_info)
107 {
108 struct btrfs_root *root, *tmp;
109
110 down_write(&fs_info->commit_root_sem);
111 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112 dirty_list) {
113 list_del_init(&root->dirty_list);
114 free_extent_buffer(root->commit_root);
115 root->commit_root = btrfs_root_node(root);
116 if (is_fstree(root->objectid))
117 btrfs_unpin_free_ino(root);
118 clear_btree_io_tree(&root->dirty_log_pages);
119 }
120 up_write(&fs_info->commit_root_sem);
121 }
122
123 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124 unsigned int type)
125 {
126 if (type & TRANS_EXTWRITERS)
127 atomic_inc(&trans->num_extwriters);
128 }
129
130 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131 unsigned int type)
132 {
133 if (type & TRANS_EXTWRITERS)
134 atomic_dec(&trans->num_extwriters);
135 }
136
137 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138 unsigned int type)
139 {
140 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141 }
142
143 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144 {
145 return atomic_read(&trans->num_extwriters);
146 }
147
148 /*
149 * either allocate a new transaction or hop into the existing one
150 */
151 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152 {
153 struct btrfs_transaction *cur_trans;
154 struct btrfs_fs_info *fs_info = root->fs_info;
155
156 spin_lock(&fs_info->trans_lock);
157 loop:
158 /* The file system has been taken offline. No new transactions. */
159 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160 spin_unlock(&fs_info->trans_lock);
161 return -EROFS;
162 }
163
164 cur_trans = fs_info->running_transaction;
165 if (cur_trans) {
166 if (cur_trans->aborted) {
167 spin_unlock(&fs_info->trans_lock);
168 return cur_trans->aborted;
169 }
170 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171 spin_unlock(&fs_info->trans_lock);
172 return -EBUSY;
173 }
174 atomic_inc(&cur_trans->use_count);
175 atomic_inc(&cur_trans->num_writers);
176 extwriter_counter_inc(cur_trans, type);
177 spin_unlock(&fs_info->trans_lock);
178 return 0;
179 }
180 spin_unlock(&fs_info->trans_lock);
181
182 /*
183 * If we are ATTACH, we just want to catch the current transaction,
184 * and commit it. If there is no transaction, just return ENOENT.
185 */
186 if (type == TRANS_ATTACH)
187 return -ENOENT;
188
189 /*
190 * JOIN_NOLOCK only happens during the transaction commit, so
191 * it is impossible that ->running_transaction is NULL
192 */
193 BUG_ON(type == TRANS_JOIN_NOLOCK);
194
195 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196 if (!cur_trans)
197 return -ENOMEM;
198
199 spin_lock(&fs_info->trans_lock);
200 if (fs_info->running_transaction) {
201 /*
202 * someone started a transaction after we unlocked. Make sure
203 * to redo the checks above
204 */
205 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206 goto loop;
207 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208 spin_unlock(&fs_info->trans_lock);
209 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210 return -EROFS;
211 }
212
213 atomic_set(&cur_trans->num_writers, 1);
214 extwriter_counter_init(cur_trans, type);
215 init_waitqueue_head(&cur_trans->writer_wait);
216 init_waitqueue_head(&cur_trans->commit_wait);
217 cur_trans->state = TRANS_STATE_RUNNING;
218 /*
219 * One for this trans handle, one so it will live on until we
220 * commit the transaction.
221 */
222 atomic_set(&cur_trans->use_count, 2);
223 cur_trans->have_free_bgs = 0;
224 cur_trans->start_time = get_seconds();
225 cur_trans->dirty_bg_run = 0;
226
227 cur_trans->delayed_refs.href_root = RB_ROOT;
228 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
229 cur_trans->delayed_refs.num_heads_ready = 0;
230 cur_trans->delayed_refs.pending_csums = 0;
231 cur_trans->delayed_refs.num_heads = 0;
232 cur_trans->delayed_refs.flushing = 0;
233 cur_trans->delayed_refs.run_delayed_start = 0;
234
235 /*
236 * although the tree mod log is per file system and not per transaction,
237 * the log must never go across transaction boundaries.
238 */
239 smp_mb();
240 if (!list_empty(&fs_info->tree_mod_seq_list))
241 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
242 "creating a fresh transaction\n");
243 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
244 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
245 "creating a fresh transaction\n");
246 atomic64_set(&fs_info->tree_mod_seq, 0);
247
248 spin_lock_init(&cur_trans->delayed_refs.lock);
249
250 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
251 INIT_LIST_HEAD(&cur_trans->pending_chunks);
252 INIT_LIST_HEAD(&cur_trans->switch_commits);
253 INIT_LIST_HEAD(&cur_trans->pending_ordered);
254 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
255 INIT_LIST_HEAD(&cur_trans->io_bgs);
256 mutex_init(&cur_trans->cache_write_mutex);
257 cur_trans->num_dirty_bgs = 0;
258 spin_lock_init(&cur_trans->dirty_bgs_lock);
259 list_add_tail(&cur_trans->list, &fs_info->trans_list);
260 extent_io_tree_init(&cur_trans->dirty_pages,
261 fs_info->btree_inode->i_mapping);
262 fs_info->generation++;
263 cur_trans->transid = fs_info->generation;
264 fs_info->running_transaction = cur_trans;
265 cur_trans->aborted = 0;
266 spin_unlock(&fs_info->trans_lock);
267
268 return 0;
269 }
270
271 /*
272 * this does all the record keeping required to make sure that a reference
273 * counted root is properly recorded in a given transaction. This is required
274 * to make sure the old root from before we joined the transaction is deleted
275 * when the transaction commits
276 */
277 static int record_root_in_trans(struct btrfs_trans_handle *trans,
278 struct btrfs_root *root)
279 {
280 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
281 root->last_trans < trans->transid) {
282 WARN_ON(root == root->fs_info->extent_root);
283 WARN_ON(root->commit_root != root->node);
284
285 /*
286 * see below for IN_TRANS_SETUP usage rules
287 * we have the reloc mutex held now, so there
288 * is only one writer in this function
289 */
290 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
291
292 /* make sure readers find IN_TRANS_SETUP before
293 * they find our root->last_trans update
294 */
295 smp_wmb();
296
297 spin_lock(&root->fs_info->fs_roots_radix_lock);
298 if (root->last_trans == trans->transid) {
299 spin_unlock(&root->fs_info->fs_roots_radix_lock);
300 return 0;
301 }
302 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
303 (unsigned long)root->root_key.objectid,
304 BTRFS_ROOT_TRANS_TAG);
305 spin_unlock(&root->fs_info->fs_roots_radix_lock);
306 root->last_trans = trans->transid;
307
308 /* this is pretty tricky. We don't want to
309 * take the relocation lock in btrfs_record_root_in_trans
310 * unless we're really doing the first setup for this root in
311 * this transaction.
312 *
313 * Normally we'd use root->last_trans as a flag to decide
314 * if we want to take the expensive mutex.
315 *
316 * But, we have to set root->last_trans before we
317 * init the relocation root, otherwise, we trip over warnings
318 * in ctree.c. The solution used here is to flag ourselves
319 * with root IN_TRANS_SETUP. When this is 1, we're still
320 * fixing up the reloc trees and everyone must wait.
321 *
322 * When this is zero, they can trust root->last_trans and fly
323 * through btrfs_record_root_in_trans without having to take the
324 * lock. smp_wmb() makes sure that all the writes above are
325 * done before we pop in the zero below
326 */
327 btrfs_init_reloc_root(trans, root);
328 smp_mb__before_atomic();
329 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330 }
331 return 0;
332 }
333
334
335 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
336 struct btrfs_root *root)
337 {
338 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
339 return 0;
340
341 /*
342 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
343 * and barriers
344 */
345 smp_rmb();
346 if (root->last_trans == trans->transid &&
347 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
348 return 0;
349
350 mutex_lock(&root->fs_info->reloc_mutex);
351 record_root_in_trans(trans, root);
352 mutex_unlock(&root->fs_info->reloc_mutex);
353
354 return 0;
355 }
356
357 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
358 {
359 return (trans->state >= TRANS_STATE_BLOCKED &&
360 trans->state < TRANS_STATE_UNBLOCKED &&
361 !trans->aborted);
362 }
363
364 /* wait for commit against the current transaction to become unblocked
365 * when this is done, it is safe to start a new transaction, but the current
366 * transaction might not be fully on disk.
367 */
368 static void wait_current_trans(struct btrfs_root *root)
369 {
370 struct btrfs_transaction *cur_trans;
371
372 spin_lock(&root->fs_info->trans_lock);
373 cur_trans = root->fs_info->running_transaction;
374 if (cur_trans && is_transaction_blocked(cur_trans)) {
375 atomic_inc(&cur_trans->use_count);
376 spin_unlock(&root->fs_info->trans_lock);
377
378 wait_event(root->fs_info->transaction_wait,
379 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
380 cur_trans->aborted);
381 btrfs_put_transaction(cur_trans);
382 } else {
383 spin_unlock(&root->fs_info->trans_lock);
384 }
385 }
386
387 static int may_wait_transaction(struct btrfs_root *root, int type)
388 {
389 if (root->fs_info->log_root_recovering)
390 return 0;
391
392 if (type == TRANS_USERSPACE)
393 return 1;
394
395 if (type == TRANS_START &&
396 !atomic_read(&root->fs_info->open_ioctl_trans))
397 return 1;
398
399 return 0;
400 }
401
402 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
403 {
404 if (!root->fs_info->reloc_ctl ||
405 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
406 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
407 root->reloc_root)
408 return false;
409
410 return true;
411 }
412
413 static struct btrfs_trans_handle *
414 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
415 enum btrfs_reserve_flush_enum flush)
416 {
417 struct btrfs_trans_handle *h;
418 struct btrfs_transaction *cur_trans;
419 u64 num_bytes = 0;
420 u64 qgroup_reserved = 0;
421 bool reloc_reserved = false;
422 int ret;
423
424 /* Send isn't supposed to start transactions. */
425 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
426
427 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
428 return ERR_PTR(-EROFS);
429
430 if (current->journal_info) {
431 WARN_ON(type & TRANS_EXTWRITERS);
432 h = current->journal_info;
433 h->use_count++;
434 WARN_ON(h->use_count > 2);
435 h->orig_rsv = h->block_rsv;
436 h->block_rsv = NULL;
437 goto got_it;
438 }
439
440 /*
441 * Do the reservation before we join the transaction so we can do all
442 * the appropriate flushing if need be.
443 */
444 if (num_items > 0 && root != root->fs_info->chunk_root) {
445 if (root->fs_info->quota_enabled &&
446 is_fstree(root->root_key.objectid)) {
447 qgroup_reserved = num_items * root->nodesize;
448 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
449 if (ret)
450 return ERR_PTR(ret);
451 }
452
453 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
454 /*
455 * Do the reservation for the relocation root creation
456 */
457 if (need_reserve_reloc_root(root)) {
458 num_bytes += root->nodesize;
459 reloc_reserved = true;
460 }
461
462 ret = btrfs_block_rsv_add(root,
463 &root->fs_info->trans_block_rsv,
464 num_bytes, flush);
465 if (ret)
466 goto reserve_fail;
467 }
468 again:
469 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
470 if (!h) {
471 ret = -ENOMEM;
472 goto alloc_fail;
473 }
474
475 /*
476 * If we are JOIN_NOLOCK we're already committing a transaction and
477 * waiting on this guy, so we don't need to do the sb_start_intwrite
478 * because we're already holding a ref. We need this because we could
479 * have raced in and did an fsync() on a file which can kick a commit
480 * and then we deadlock with somebody doing a freeze.
481 *
482 * If we are ATTACH, it means we just want to catch the current
483 * transaction and commit it, so we needn't do sb_start_intwrite().
484 */
485 if (type & __TRANS_FREEZABLE)
486 sb_start_intwrite(root->fs_info->sb);
487
488 if (may_wait_transaction(root, type))
489 wait_current_trans(root);
490
491 do {
492 ret = join_transaction(root, type);
493 if (ret == -EBUSY) {
494 wait_current_trans(root);
495 if (unlikely(type == TRANS_ATTACH))
496 ret = -ENOENT;
497 }
498 } while (ret == -EBUSY);
499
500 if (ret < 0) {
501 /* We must get the transaction if we are JOIN_NOLOCK. */
502 BUG_ON(type == TRANS_JOIN_NOLOCK);
503 goto join_fail;
504 }
505
506 cur_trans = root->fs_info->running_transaction;
507
508 h->transid = cur_trans->transid;
509 h->transaction = cur_trans;
510 h->blocks_used = 0;
511 h->bytes_reserved = 0;
512 h->root = root;
513 h->delayed_ref_updates = 0;
514 h->use_count = 1;
515 h->adding_csums = 0;
516 h->block_rsv = NULL;
517 h->orig_rsv = NULL;
518 h->aborted = 0;
519 h->qgroup_reserved = 0;
520 h->delayed_ref_elem.seq = 0;
521 h->type = type;
522 h->allocating_chunk = false;
523 h->reloc_reserved = false;
524 h->sync = false;
525 INIT_LIST_HEAD(&h->qgroup_ref_list);
526 INIT_LIST_HEAD(&h->new_bgs);
527 INIT_LIST_HEAD(&h->ordered);
528
529 smp_mb();
530 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
531 may_wait_transaction(root, type)) {
532 current->journal_info = h;
533 btrfs_commit_transaction(h, root);
534 goto again;
535 }
536
537 if (num_bytes) {
538 trace_btrfs_space_reservation(root->fs_info, "transaction",
539 h->transid, num_bytes, 1);
540 h->block_rsv = &root->fs_info->trans_block_rsv;
541 h->bytes_reserved = num_bytes;
542 h->reloc_reserved = reloc_reserved;
543 }
544 h->qgroup_reserved = qgroup_reserved;
545
546 got_it:
547 btrfs_record_root_in_trans(h, root);
548
549 if (!current->journal_info && type != TRANS_USERSPACE)
550 current->journal_info = h;
551 return h;
552
553 join_fail:
554 if (type & __TRANS_FREEZABLE)
555 sb_end_intwrite(root->fs_info->sb);
556 kmem_cache_free(btrfs_trans_handle_cachep, h);
557 alloc_fail:
558 if (num_bytes)
559 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
560 num_bytes);
561 reserve_fail:
562 if (qgroup_reserved)
563 btrfs_qgroup_free(root, qgroup_reserved);
564 return ERR_PTR(ret);
565 }
566
567 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
568 int num_items)
569 {
570 return start_transaction(root, num_items, TRANS_START,
571 BTRFS_RESERVE_FLUSH_ALL);
572 }
573
574 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
575 struct btrfs_root *root, int num_items)
576 {
577 return start_transaction(root, num_items, TRANS_START,
578 BTRFS_RESERVE_FLUSH_LIMIT);
579 }
580
581 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
582 {
583 return start_transaction(root, 0, TRANS_JOIN, 0);
584 }
585
586 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
587 {
588 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
589 }
590
591 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
592 {
593 return start_transaction(root, 0, TRANS_USERSPACE, 0);
594 }
595
596 /*
597 * btrfs_attach_transaction() - catch the running transaction
598 *
599 * It is used when we want to commit the current the transaction, but
600 * don't want to start a new one.
601 *
602 * Note: If this function return -ENOENT, it just means there is no
603 * running transaction. But it is possible that the inactive transaction
604 * is still in the memory, not fully on disk. If you hope there is no
605 * inactive transaction in the fs when -ENOENT is returned, you should
606 * invoke
607 * btrfs_attach_transaction_barrier()
608 */
609 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
610 {
611 return start_transaction(root, 0, TRANS_ATTACH, 0);
612 }
613
614 /*
615 * btrfs_attach_transaction_barrier() - catch the running transaction
616 *
617 * It is similar to the above function, the differentia is this one
618 * will wait for all the inactive transactions until they fully
619 * complete.
620 */
621 struct btrfs_trans_handle *
622 btrfs_attach_transaction_barrier(struct btrfs_root *root)
623 {
624 struct btrfs_trans_handle *trans;
625
626 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
627 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
628 btrfs_wait_for_commit(root, 0);
629
630 return trans;
631 }
632
633 /* wait for a transaction commit to be fully complete */
634 static noinline void wait_for_commit(struct btrfs_root *root,
635 struct btrfs_transaction *commit)
636 {
637 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
638 }
639
640 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
641 {
642 struct btrfs_transaction *cur_trans = NULL, *t;
643 int ret = 0;
644
645 if (transid) {
646 if (transid <= root->fs_info->last_trans_committed)
647 goto out;
648
649 /* find specified transaction */
650 spin_lock(&root->fs_info->trans_lock);
651 list_for_each_entry(t, &root->fs_info->trans_list, list) {
652 if (t->transid == transid) {
653 cur_trans = t;
654 atomic_inc(&cur_trans->use_count);
655 ret = 0;
656 break;
657 }
658 if (t->transid > transid) {
659 ret = 0;
660 break;
661 }
662 }
663 spin_unlock(&root->fs_info->trans_lock);
664
665 /*
666 * The specified transaction doesn't exist, or we
667 * raced with btrfs_commit_transaction
668 */
669 if (!cur_trans) {
670 if (transid > root->fs_info->last_trans_committed)
671 ret = -EINVAL;
672 goto out;
673 }
674 } else {
675 /* find newest transaction that is committing | committed */
676 spin_lock(&root->fs_info->trans_lock);
677 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
678 list) {
679 if (t->state >= TRANS_STATE_COMMIT_START) {
680 if (t->state == TRANS_STATE_COMPLETED)
681 break;
682 cur_trans = t;
683 atomic_inc(&cur_trans->use_count);
684 break;
685 }
686 }
687 spin_unlock(&root->fs_info->trans_lock);
688 if (!cur_trans)
689 goto out; /* nothing committing|committed */
690 }
691
692 wait_for_commit(root, cur_trans);
693 btrfs_put_transaction(cur_trans);
694 out:
695 return ret;
696 }
697
698 void btrfs_throttle(struct btrfs_root *root)
699 {
700 if (!atomic_read(&root->fs_info->open_ioctl_trans))
701 wait_current_trans(root);
702 }
703
704 static int should_end_transaction(struct btrfs_trans_handle *trans,
705 struct btrfs_root *root)
706 {
707 if (root->fs_info->global_block_rsv.space_info->full &&
708 btrfs_check_space_for_delayed_refs(trans, root))
709 return 1;
710
711 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
712 }
713
714 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
715 struct btrfs_root *root)
716 {
717 struct btrfs_transaction *cur_trans = trans->transaction;
718 int updates;
719 int err;
720
721 smp_mb();
722 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
723 cur_trans->delayed_refs.flushing)
724 return 1;
725
726 updates = trans->delayed_ref_updates;
727 trans->delayed_ref_updates = 0;
728 if (updates) {
729 err = btrfs_run_delayed_refs(trans, root, updates * 2);
730 if (err) /* Error code will also eval true */
731 return err;
732 }
733
734 return should_end_transaction(trans, root);
735 }
736
737 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
738 struct btrfs_root *root, int throttle)
739 {
740 struct btrfs_transaction *cur_trans = trans->transaction;
741 struct btrfs_fs_info *info = root->fs_info;
742 unsigned long cur = trans->delayed_ref_updates;
743 int lock = (trans->type != TRANS_JOIN_NOLOCK);
744 int err = 0;
745 int must_run_delayed_refs = 0;
746
747 if (trans->use_count > 1) {
748 trans->use_count--;
749 trans->block_rsv = trans->orig_rsv;
750 return 0;
751 }
752
753 btrfs_trans_release_metadata(trans, root);
754 trans->block_rsv = NULL;
755
756 if (!list_empty(&trans->new_bgs))
757 btrfs_create_pending_block_groups(trans, root);
758
759 if (!list_empty(&trans->ordered)) {
760 spin_lock(&info->trans_lock);
761 list_splice(&trans->ordered, &cur_trans->pending_ordered);
762 spin_unlock(&info->trans_lock);
763 }
764
765 trans->delayed_ref_updates = 0;
766 if (!trans->sync) {
767 must_run_delayed_refs =
768 btrfs_should_throttle_delayed_refs(trans, root);
769 cur = max_t(unsigned long, cur, 32);
770
771 /*
772 * don't make the caller wait if they are from a NOLOCK
773 * or ATTACH transaction, it will deadlock with commit
774 */
775 if (must_run_delayed_refs == 1 &&
776 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
777 must_run_delayed_refs = 2;
778 }
779
780 if (trans->qgroup_reserved) {
781 /*
782 * the same root has to be passed here between start_transaction
783 * and end_transaction. Subvolume quota depends on this.
784 */
785 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
786 trans->qgroup_reserved = 0;
787 }
788
789 btrfs_trans_release_metadata(trans, root);
790 trans->block_rsv = NULL;
791
792 if (!list_empty(&trans->new_bgs))
793 btrfs_create_pending_block_groups(trans, root);
794
795 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
796 should_end_transaction(trans, root) &&
797 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
798 spin_lock(&info->trans_lock);
799 if (cur_trans->state == TRANS_STATE_RUNNING)
800 cur_trans->state = TRANS_STATE_BLOCKED;
801 spin_unlock(&info->trans_lock);
802 }
803
804 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
805 if (throttle)
806 return btrfs_commit_transaction(trans, root);
807 else
808 wake_up_process(info->transaction_kthread);
809 }
810
811 if (trans->type & __TRANS_FREEZABLE)
812 sb_end_intwrite(root->fs_info->sb);
813
814 WARN_ON(cur_trans != info->running_transaction);
815 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
816 atomic_dec(&cur_trans->num_writers);
817 extwriter_counter_dec(cur_trans, trans->type);
818
819 smp_mb();
820 if (waitqueue_active(&cur_trans->writer_wait))
821 wake_up(&cur_trans->writer_wait);
822 btrfs_put_transaction(cur_trans);
823
824 if (current->journal_info == trans)
825 current->journal_info = NULL;
826
827 if (throttle)
828 btrfs_run_delayed_iputs(root);
829
830 if (trans->aborted ||
831 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
832 wake_up_process(info->transaction_kthread);
833 err = -EIO;
834 }
835 assert_qgroups_uptodate(trans);
836
837 kmem_cache_free(btrfs_trans_handle_cachep, trans);
838 if (must_run_delayed_refs) {
839 btrfs_async_run_delayed_refs(root, cur,
840 must_run_delayed_refs == 1);
841 }
842 return err;
843 }
844
845 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
846 struct btrfs_root *root)
847 {
848 return __btrfs_end_transaction(trans, root, 0);
849 }
850
851 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
852 struct btrfs_root *root)
853 {
854 return __btrfs_end_transaction(trans, root, 1);
855 }
856
857 /*
858 * when btree blocks are allocated, they have some corresponding bits set for
859 * them in one of two extent_io trees. This is used to make sure all of
860 * those extents are sent to disk but does not wait on them
861 */
862 int btrfs_write_marked_extents(struct btrfs_root *root,
863 struct extent_io_tree *dirty_pages, int mark)
864 {
865 int err = 0;
866 int werr = 0;
867 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
868 struct extent_state *cached_state = NULL;
869 u64 start = 0;
870 u64 end;
871
872 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
873 mark, &cached_state)) {
874 bool wait_writeback = false;
875
876 err = convert_extent_bit(dirty_pages, start, end,
877 EXTENT_NEED_WAIT,
878 mark, &cached_state, GFP_NOFS);
879 /*
880 * convert_extent_bit can return -ENOMEM, which is most of the
881 * time a temporary error. So when it happens, ignore the error
882 * and wait for writeback of this range to finish - because we
883 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
884 * to btrfs_wait_marked_extents() would not know that writeback
885 * for this range started and therefore wouldn't wait for it to
886 * finish - we don't want to commit a superblock that points to
887 * btree nodes/leafs for which writeback hasn't finished yet
888 * (and without errors).
889 * We cleanup any entries left in the io tree when committing
890 * the transaction (through clear_btree_io_tree()).
891 */
892 if (err == -ENOMEM) {
893 err = 0;
894 wait_writeback = true;
895 }
896 if (!err)
897 err = filemap_fdatawrite_range(mapping, start, end);
898 if (err)
899 werr = err;
900 else if (wait_writeback)
901 werr = filemap_fdatawait_range(mapping, start, end);
902 free_extent_state(cached_state);
903 cached_state = NULL;
904 cond_resched();
905 start = end + 1;
906 }
907 return werr;
908 }
909
910 /*
911 * when btree blocks are allocated, they have some corresponding bits set for
912 * them in one of two extent_io trees. This is used to make sure all of
913 * those extents are on disk for transaction or log commit. We wait
914 * on all the pages and clear them from the dirty pages state tree
915 */
916 int btrfs_wait_marked_extents(struct btrfs_root *root,
917 struct extent_io_tree *dirty_pages, int mark)
918 {
919 int err = 0;
920 int werr = 0;
921 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
922 struct extent_state *cached_state = NULL;
923 u64 start = 0;
924 u64 end;
925 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
926 bool errors = false;
927
928 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
929 EXTENT_NEED_WAIT, &cached_state)) {
930 /*
931 * Ignore -ENOMEM errors returned by clear_extent_bit().
932 * When committing the transaction, we'll remove any entries
933 * left in the io tree. For a log commit, we don't remove them
934 * after committing the log because the tree can be accessed
935 * concurrently - we do it only at transaction commit time when
936 * it's safe to do it (through clear_btree_io_tree()).
937 */
938 err = clear_extent_bit(dirty_pages, start, end,
939 EXTENT_NEED_WAIT,
940 0, 0, &cached_state, GFP_NOFS);
941 if (err == -ENOMEM)
942 err = 0;
943 if (!err)
944 err = filemap_fdatawait_range(mapping, start, end);
945 if (err)
946 werr = err;
947 free_extent_state(cached_state);
948 cached_state = NULL;
949 cond_resched();
950 start = end + 1;
951 }
952 if (err)
953 werr = err;
954
955 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
956 if ((mark & EXTENT_DIRTY) &&
957 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
958 &btree_ino->runtime_flags))
959 errors = true;
960
961 if ((mark & EXTENT_NEW) &&
962 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
963 &btree_ino->runtime_flags))
964 errors = true;
965 } else {
966 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
967 &btree_ino->runtime_flags))
968 errors = true;
969 }
970
971 if (errors && !werr)
972 werr = -EIO;
973
974 return werr;
975 }
976
977 /*
978 * when btree blocks are allocated, they have some corresponding bits set for
979 * them in one of two extent_io trees. This is used to make sure all of
980 * those extents are on disk for transaction or log commit
981 */
982 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
983 struct extent_io_tree *dirty_pages, int mark)
984 {
985 int ret;
986 int ret2;
987 struct blk_plug plug;
988
989 blk_start_plug(&plug);
990 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
991 blk_finish_plug(&plug);
992 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
993
994 if (ret)
995 return ret;
996 if (ret2)
997 return ret2;
998 return 0;
999 }
1000
1001 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1002 struct btrfs_root *root)
1003 {
1004 int ret;
1005
1006 ret = btrfs_write_and_wait_marked_extents(root,
1007 &trans->transaction->dirty_pages,
1008 EXTENT_DIRTY);
1009 clear_btree_io_tree(&trans->transaction->dirty_pages);
1010
1011 return ret;
1012 }
1013
1014 /*
1015 * this is used to update the root pointer in the tree of tree roots.
1016 *
1017 * But, in the case of the extent allocation tree, updating the root
1018 * pointer may allocate blocks which may change the root of the extent
1019 * allocation tree.
1020 *
1021 * So, this loops and repeats and makes sure the cowonly root didn't
1022 * change while the root pointer was being updated in the metadata.
1023 */
1024 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1025 struct btrfs_root *root)
1026 {
1027 int ret;
1028 u64 old_root_bytenr;
1029 u64 old_root_used;
1030 struct btrfs_root *tree_root = root->fs_info->tree_root;
1031
1032 old_root_used = btrfs_root_used(&root->root_item);
1033
1034 while (1) {
1035 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1036 if (old_root_bytenr == root->node->start &&
1037 old_root_used == btrfs_root_used(&root->root_item))
1038 break;
1039
1040 btrfs_set_root_node(&root->root_item, root->node);
1041 ret = btrfs_update_root(trans, tree_root,
1042 &root->root_key,
1043 &root->root_item);
1044 if (ret)
1045 return ret;
1046
1047 old_root_used = btrfs_root_used(&root->root_item);
1048 }
1049
1050 return 0;
1051 }
1052
1053 /*
1054 * update all the cowonly tree roots on disk
1055 *
1056 * The error handling in this function may not be obvious. Any of the
1057 * failures will cause the file system to go offline. We still need
1058 * to clean up the delayed refs.
1059 */
1060 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1061 struct btrfs_root *root)
1062 {
1063 struct btrfs_fs_info *fs_info = root->fs_info;
1064 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1065 struct list_head *io_bgs = &trans->transaction->io_bgs;
1066 struct list_head *next;
1067 struct extent_buffer *eb;
1068 int ret;
1069
1070 eb = btrfs_lock_root_node(fs_info->tree_root);
1071 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1072 0, &eb);
1073 btrfs_tree_unlock(eb);
1074 free_extent_buffer(eb);
1075
1076 if (ret)
1077 return ret;
1078
1079 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1080 if (ret)
1081 return ret;
1082
1083 ret = btrfs_run_dev_stats(trans, root->fs_info);
1084 if (ret)
1085 return ret;
1086 ret = btrfs_run_dev_replace(trans, root->fs_info);
1087 if (ret)
1088 return ret;
1089 ret = btrfs_run_qgroups(trans, root->fs_info);
1090 if (ret)
1091 return ret;
1092
1093 ret = btrfs_setup_space_cache(trans, root);
1094 if (ret)
1095 return ret;
1096
1097 /* run_qgroups might have added some more refs */
1098 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1099 if (ret)
1100 return ret;
1101 again:
1102 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1103 next = fs_info->dirty_cowonly_roots.next;
1104 list_del_init(next);
1105 root = list_entry(next, struct btrfs_root, dirty_list);
1106 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1107
1108 if (root != fs_info->extent_root)
1109 list_add_tail(&root->dirty_list,
1110 &trans->transaction->switch_commits);
1111 ret = update_cowonly_root(trans, root);
1112 if (ret)
1113 return ret;
1114 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1115 if (ret)
1116 return ret;
1117 }
1118
1119 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1120 ret = btrfs_write_dirty_block_groups(trans, root);
1121 if (ret)
1122 return ret;
1123 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1124 if (ret)
1125 return ret;
1126 }
1127
1128 if (!list_empty(&fs_info->dirty_cowonly_roots))
1129 goto again;
1130
1131 list_add_tail(&fs_info->extent_root->dirty_list,
1132 &trans->transaction->switch_commits);
1133 btrfs_after_dev_replace_commit(fs_info);
1134
1135 return 0;
1136 }
1137
1138 /*
1139 * dead roots are old snapshots that need to be deleted. This allocates
1140 * a dirty root struct and adds it into the list of dead roots that need to
1141 * be deleted
1142 */
1143 void btrfs_add_dead_root(struct btrfs_root *root)
1144 {
1145 spin_lock(&root->fs_info->trans_lock);
1146 if (list_empty(&root->root_list))
1147 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1148 spin_unlock(&root->fs_info->trans_lock);
1149 }
1150
1151 /*
1152 * update all the cowonly tree roots on disk
1153 */
1154 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1155 struct btrfs_root *root)
1156 {
1157 struct btrfs_root *gang[8];
1158 struct btrfs_fs_info *fs_info = root->fs_info;
1159 int i;
1160 int ret;
1161 int err = 0;
1162
1163 spin_lock(&fs_info->fs_roots_radix_lock);
1164 while (1) {
1165 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1166 (void **)gang, 0,
1167 ARRAY_SIZE(gang),
1168 BTRFS_ROOT_TRANS_TAG);
1169 if (ret == 0)
1170 break;
1171 for (i = 0; i < ret; i++) {
1172 root = gang[i];
1173 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1174 (unsigned long)root->root_key.objectid,
1175 BTRFS_ROOT_TRANS_TAG);
1176 spin_unlock(&fs_info->fs_roots_radix_lock);
1177
1178 btrfs_free_log(trans, root);
1179 btrfs_update_reloc_root(trans, root);
1180 btrfs_orphan_commit_root(trans, root);
1181
1182 btrfs_save_ino_cache(root, trans);
1183
1184 /* see comments in should_cow_block() */
1185 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1186 smp_mb__after_atomic();
1187
1188 if (root->commit_root != root->node) {
1189 list_add_tail(&root->dirty_list,
1190 &trans->transaction->switch_commits);
1191 btrfs_set_root_node(&root->root_item,
1192 root->node);
1193 }
1194
1195 err = btrfs_update_root(trans, fs_info->tree_root,
1196 &root->root_key,
1197 &root->root_item);
1198 spin_lock(&fs_info->fs_roots_radix_lock);
1199 if (err)
1200 break;
1201 }
1202 }
1203 spin_unlock(&fs_info->fs_roots_radix_lock);
1204 return err;
1205 }
1206
1207 /*
1208 * defrag a given btree.
1209 * Every leaf in the btree is read and defragged.
1210 */
1211 int btrfs_defrag_root(struct btrfs_root *root)
1212 {
1213 struct btrfs_fs_info *info = root->fs_info;
1214 struct btrfs_trans_handle *trans;
1215 int ret;
1216
1217 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1218 return 0;
1219
1220 while (1) {
1221 trans = btrfs_start_transaction(root, 0);
1222 if (IS_ERR(trans))
1223 return PTR_ERR(trans);
1224
1225 ret = btrfs_defrag_leaves(trans, root);
1226
1227 btrfs_end_transaction(trans, root);
1228 btrfs_btree_balance_dirty(info->tree_root);
1229 cond_resched();
1230
1231 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1232 break;
1233
1234 if (btrfs_defrag_cancelled(root->fs_info)) {
1235 pr_debug("BTRFS: defrag_root cancelled\n");
1236 ret = -EAGAIN;
1237 break;
1238 }
1239 }
1240 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1241 return ret;
1242 }
1243
1244 /*
1245 * new snapshots need to be created at a very specific time in the
1246 * transaction commit. This does the actual creation.
1247 *
1248 * Note:
1249 * If the error which may affect the commitment of the current transaction
1250 * happens, we should return the error number. If the error which just affect
1251 * the creation of the pending snapshots, just return 0.
1252 */
1253 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1254 struct btrfs_fs_info *fs_info,
1255 struct btrfs_pending_snapshot *pending)
1256 {
1257 struct btrfs_key key;
1258 struct btrfs_root_item *new_root_item;
1259 struct btrfs_root *tree_root = fs_info->tree_root;
1260 struct btrfs_root *root = pending->root;
1261 struct btrfs_root *parent_root;
1262 struct btrfs_block_rsv *rsv;
1263 struct inode *parent_inode;
1264 struct btrfs_path *path;
1265 struct btrfs_dir_item *dir_item;
1266 struct dentry *dentry;
1267 struct extent_buffer *tmp;
1268 struct extent_buffer *old;
1269 struct timespec cur_time = CURRENT_TIME;
1270 int ret = 0;
1271 u64 to_reserve = 0;
1272 u64 index = 0;
1273 u64 objectid;
1274 u64 root_flags;
1275 uuid_le new_uuid;
1276
1277 path = btrfs_alloc_path();
1278 if (!path) {
1279 pending->error = -ENOMEM;
1280 return 0;
1281 }
1282
1283 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1284 if (!new_root_item) {
1285 pending->error = -ENOMEM;
1286 goto root_item_alloc_fail;
1287 }
1288
1289 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1290 if (pending->error)
1291 goto no_free_objectid;
1292
1293 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1294
1295 if (to_reserve > 0) {
1296 pending->error = btrfs_block_rsv_add(root,
1297 &pending->block_rsv,
1298 to_reserve,
1299 BTRFS_RESERVE_NO_FLUSH);
1300 if (pending->error)
1301 goto no_free_objectid;
1302 }
1303
1304 key.objectid = objectid;
1305 key.offset = (u64)-1;
1306 key.type = BTRFS_ROOT_ITEM_KEY;
1307
1308 rsv = trans->block_rsv;
1309 trans->block_rsv = &pending->block_rsv;
1310 trans->bytes_reserved = trans->block_rsv->reserved;
1311
1312 dentry = pending->dentry;
1313 parent_inode = pending->dir;
1314 parent_root = BTRFS_I(parent_inode)->root;
1315 record_root_in_trans(trans, parent_root);
1316
1317 /*
1318 * insert the directory item
1319 */
1320 ret = btrfs_set_inode_index(parent_inode, &index);
1321 BUG_ON(ret); /* -ENOMEM */
1322
1323 /* check if there is a file/dir which has the same name. */
1324 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1325 btrfs_ino(parent_inode),
1326 dentry->d_name.name,
1327 dentry->d_name.len, 0);
1328 if (dir_item != NULL && !IS_ERR(dir_item)) {
1329 pending->error = -EEXIST;
1330 goto dir_item_existed;
1331 } else if (IS_ERR(dir_item)) {
1332 ret = PTR_ERR(dir_item);
1333 btrfs_abort_transaction(trans, root, ret);
1334 goto fail;
1335 }
1336 btrfs_release_path(path);
1337
1338 /*
1339 * pull in the delayed directory update
1340 * and the delayed inode item
1341 * otherwise we corrupt the FS during
1342 * snapshot
1343 */
1344 ret = btrfs_run_delayed_items(trans, root);
1345 if (ret) { /* Transaction aborted */
1346 btrfs_abort_transaction(trans, root, ret);
1347 goto fail;
1348 }
1349
1350 record_root_in_trans(trans, root);
1351 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1352 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1353 btrfs_check_and_init_root_item(new_root_item);
1354
1355 root_flags = btrfs_root_flags(new_root_item);
1356 if (pending->readonly)
1357 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1358 else
1359 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1360 btrfs_set_root_flags(new_root_item, root_flags);
1361
1362 btrfs_set_root_generation_v2(new_root_item,
1363 trans->transid);
1364 uuid_le_gen(&new_uuid);
1365 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1366 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1367 BTRFS_UUID_SIZE);
1368 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1369 memset(new_root_item->received_uuid, 0,
1370 sizeof(new_root_item->received_uuid));
1371 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1372 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1373 btrfs_set_root_stransid(new_root_item, 0);
1374 btrfs_set_root_rtransid(new_root_item, 0);
1375 }
1376 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1377 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1378 btrfs_set_root_otransid(new_root_item, trans->transid);
1379
1380 old = btrfs_lock_root_node(root);
1381 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1382 if (ret) {
1383 btrfs_tree_unlock(old);
1384 free_extent_buffer(old);
1385 btrfs_abort_transaction(trans, root, ret);
1386 goto fail;
1387 }
1388
1389 btrfs_set_lock_blocking(old);
1390
1391 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1392 /* clean up in any case */
1393 btrfs_tree_unlock(old);
1394 free_extent_buffer(old);
1395 if (ret) {
1396 btrfs_abort_transaction(trans, root, ret);
1397 goto fail;
1398 }
1399
1400 /*
1401 * We need to flush delayed refs in order to make sure all of our quota
1402 * operations have been done before we call btrfs_qgroup_inherit.
1403 */
1404 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1405 if (ret) {
1406 btrfs_abort_transaction(trans, root, ret);
1407 goto fail;
1408 }
1409
1410 ret = btrfs_qgroup_inherit(trans, fs_info,
1411 root->root_key.objectid,
1412 objectid, pending->inherit);
1413 if (ret) {
1414 btrfs_abort_transaction(trans, root, ret);
1415 goto fail;
1416 }
1417
1418 /* see comments in should_cow_block() */
1419 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1420 smp_wmb();
1421
1422 btrfs_set_root_node(new_root_item, tmp);
1423 /* record when the snapshot was created in key.offset */
1424 key.offset = trans->transid;
1425 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1426 btrfs_tree_unlock(tmp);
1427 free_extent_buffer(tmp);
1428 if (ret) {
1429 btrfs_abort_transaction(trans, root, ret);
1430 goto fail;
1431 }
1432
1433 /*
1434 * insert root back/forward references
1435 */
1436 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1437 parent_root->root_key.objectid,
1438 btrfs_ino(parent_inode), index,
1439 dentry->d_name.name, dentry->d_name.len);
1440 if (ret) {
1441 btrfs_abort_transaction(trans, root, ret);
1442 goto fail;
1443 }
1444
1445 key.offset = (u64)-1;
1446 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1447 if (IS_ERR(pending->snap)) {
1448 ret = PTR_ERR(pending->snap);
1449 btrfs_abort_transaction(trans, root, ret);
1450 goto fail;
1451 }
1452
1453 ret = btrfs_reloc_post_snapshot(trans, pending);
1454 if (ret) {
1455 btrfs_abort_transaction(trans, root, ret);
1456 goto fail;
1457 }
1458
1459 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1460 if (ret) {
1461 btrfs_abort_transaction(trans, root, ret);
1462 goto fail;
1463 }
1464
1465 ret = btrfs_insert_dir_item(trans, parent_root,
1466 dentry->d_name.name, dentry->d_name.len,
1467 parent_inode, &key,
1468 BTRFS_FT_DIR, index);
1469 /* We have check then name at the beginning, so it is impossible. */
1470 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1471 if (ret) {
1472 btrfs_abort_transaction(trans, root, ret);
1473 goto fail;
1474 }
1475
1476 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1477 dentry->d_name.len * 2);
1478 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1479 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1480 if (ret) {
1481 btrfs_abort_transaction(trans, root, ret);
1482 goto fail;
1483 }
1484 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1485 BTRFS_UUID_KEY_SUBVOL, objectid);
1486 if (ret) {
1487 btrfs_abort_transaction(trans, root, ret);
1488 goto fail;
1489 }
1490 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1491 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1492 new_root_item->received_uuid,
1493 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1494 objectid);
1495 if (ret && ret != -EEXIST) {
1496 btrfs_abort_transaction(trans, root, ret);
1497 goto fail;
1498 }
1499 }
1500 fail:
1501 pending->error = ret;
1502 dir_item_existed:
1503 trans->block_rsv = rsv;
1504 trans->bytes_reserved = 0;
1505 no_free_objectid:
1506 kfree(new_root_item);
1507 root_item_alloc_fail:
1508 btrfs_free_path(path);
1509 return ret;
1510 }
1511
1512 /*
1513 * create all the snapshots we've scheduled for creation
1514 */
1515 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1516 struct btrfs_fs_info *fs_info)
1517 {
1518 struct btrfs_pending_snapshot *pending, *next;
1519 struct list_head *head = &trans->transaction->pending_snapshots;
1520 int ret = 0;
1521
1522 list_for_each_entry_safe(pending, next, head, list) {
1523 list_del(&pending->list);
1524 ret = create_pending_snapshot(trans, fs_info, pending);
1525 if (ret)
1526 break;
1527 }
1528 return ret;
1529 }
1530
1531 static void update_super_roots(struct btrfs_root *root)
1532 {
1533 struct btrfs_root_item *root_item;
1534 struct btrfs_super_block *super;
1535
1536 super = root->fs_info->super_copy;
1537
1538 root_item = &root->fs_info->chunk_root->root_item;
1539 super->chunk_root = root_item->bytenr;
1540 super->chunk_root_generation = root_item->generation;
1541 super->chunk_root_level = root_item->level;
1542
1543 root_item = &root->fs_info->tree_root->root_item;
1544 super->root = root_item->bytenr;
1545 super->generation = root_item->generation;
1546 super->root_level = root_item->level;
1547 if (btrfs_test_opt(root, SPACE_CACHE))
1548 super->cache_generation = root_item->generation;
1549 if (root->fs_info->update_uuid_tree_gen)
1550 super->uuid_tree_generation = root_item->generation;
1551 }
1552
1553 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1554 {
1555 struct btrfs_transaction *trans;
1556 int ret = 0;
1557
1558 spin_lock(&info->trans_lock);
1559 trans = info->running_transaction;
1560 if (trans)
1561 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1562 spin_unlock(&info->trans_lock);
1563 return ret;
1564 }
1565
1566 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1567 {
1568 struct btrfs_transaction *trans;
1569 int ret = 0;
1570
1571 spin_lock(&info->trans_lock);
1572 trans = info->running_transaction;
1573 if (trans)
1574 ret = is_transaction_blocked(trans);
1575 spin_unlock(&info->trans_lock);
1576 return ret;
1577 }
1578
1579 /*
1580 * wait for the current transaction commit to start and block subsequent
1581 * transaction joins
1582 */
1583 static void wait_current_trans_commit_start(struct btrfs_root *root,
1584 struct btrfs_transaction *trans)
1585 {
1586 wait_event(root->fs_info->transaction_blocked_wait,
1587 trans->state >= TRANS_STATE_COMMIT_START ||
1588 trans->aborted);
1589 }
1590
1591 /*
1592 * wait for the current transaction to start and then become unblocked.
1593 * caller holds ref.
1594 */
1595 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1596 struct btrfs_transaction *trans)
1597 {
1598 wait_event(root->fs_info->transaction_wait,
1599 trans->state >= TRANS_STATE_UNBLOCKED ||
1600 trans->aborted);
1601 }
1602
1603 /*
1604 * commit transactions asynchronously. once btrfs_commit_transaction_async
1605 * returns, any subsequent transaction will not be allowed to join.
1606 */
1607 struct btrfs_async_commit {
1608 struct btrfs_trans_handle *newtrans;
1609 struct btrfs_root *root;
1610 struct work_struct work;
1611 };
1612
1613 static void do_async_commit(struct work_struct *work)
1614 {
1615 struct btrfs_async_commit *ac =
1616 container_of(work, struct btrfs_async_commit, work);
1617
1618 /*
1619 * We've got freeze protection passed with the transaction.
1620 * Tell lockdep about it.
1621 */
1622 if (ac->newtrans->type & __TRANS_FREEZABLE)
1623 rwsem_acquire_read(
1624 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1625 0, 1, _THIS_IP_);
1626
1627 current->journal_info = ac->newtrans;
1628
1629 btrfs_commit_transaction(ac->newtrans, ac->root);
1630 kfree(ac);
1631 }
1632
1633 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1634 struct btrfs_root *root,
1635 int wait_for_unblock)
1636 {
1637 struct btrfs_async_commit *ac;
1638 struct btrfs_transaction *cur_trans;
1639
1640 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1641 if (!ac)
1642 return -ENOMEM;
1643
1644 INIT_WORK(&ac->work, do_async_commit);
1645 ac->root = root;
1646 ac->newtrans = btrfs_join_transaction(root);
1647 if (IS_ERR(ac->newtrans)) {
1648 int err = PTR_ERR(ac->newtrans);
1649 kfree(ac);
1650 return err;
1651 }
1652
1653 /* take transaction reference */
1654 cur_trans = trans->transaction;
1655 atomic_inc(&cur_trans->use_count);
1656
1657 btrfs_end_transaction(trans, root);
1658
1659 /*
1660 * Tell lockdep we've released the freeze rwsem, since the
1661 * async commit thread will be the one to unlock it.
1662 */
1663 if (ac->newtrans->type & __TRANS_FREEZABLE)
1664 rwsem_release(
1665 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1666 1, _THIS_IP_);
1667
1668 schedule_work(&ac->work);
1669
1670 /* wait for transaction to start and unblock */
1671 if (wait_for_unblock)
1672 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1673 else
1674 wait_current_trans_commit_start(root, cur_trans);
1675
1676 if (current->journal_info == trans)
1677 current->journal_info = NULL;
1678
1679 btrfs_put_transaction(cur_trans);
1680 return 0;
1681 }
1682
1683
1684 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1685 struct btrfs_root *root, int err)
1686 {
1687 struct btrfs_transaction *cur_trans = trans->transaction;
1688 DEFINE_WAIT(wait);
1689
1690 WARN_ON(trans->use_count > 1);
1691
1692 btrfs_abort_transaction(trans, root, err);
1693
1694 spin_lock(&root->fs_info->trans_lock);
1695
1696 /*
1697 * If the transaction is removed from the list, it means this
1698 * transaction has been committed successfully, so it is impossible
1699 * to call the cleanup function.
1700 */
1701 BUG_ON(list_empty(&cur_trans->list));
1702
1703 list_del_init(&cur_trans->list);
1704 if (cur_trans == root->fs_info->running_transaction) {
1705 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1706 spin_unlock(&root->fs_info->trans_lock);
1707 wait_event(cur_trans->writer_wait,
1708 atomic_read(&cur_trans->num_writers) == 1);
1709
1710 spin_lock(&root->fs_info->trans_lock);
1711 }
1712 spin_unlock(&root->fs_info->trans_lock);
1713
1714 btrfs_cleanup_one_transaction(trans->transaction, root);
1715
1716 spin_lock(&root->fs_info->trans_lock);
1717 if (cur_trans == root->fs_info->running_transaction)
1718 root->fs_info->running_transaction = NULL;
1719 spin_unlock(&root->fs_info->trans_lock);
1720
1721 if (trans->type & __TRANS_FREEZABLE)
1722 sb_end_intwrite(root->fs_info->sb);
1723 btrfs_put_transaction(cur_trans);
1724 btrfs_put_transaction(cur_trans);
1725
1726 trace_btrfs_transaction_commit(root);
1727
1728 if (current->journal_info == trans)
1729 current->journal_info = NULL;
1730 btrfs_scrub_cancel(root->fs_info);
1731
1732 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1733 }
1734
1735 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1736 {
1737 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1738 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1739 return 0;
1740 }
1741
1742 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1743 {
1744 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1745 btrfs_wait_ordered_roots(fs_info, -1);
1746 }
1747
1748 static inline void
1749 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1750 struct btrfs_fs_info *fs_info)
1751 {
1752 struct btrfs_ordered_extent *ordered;
1753
1754 spin_lock(&fs_info->trans_lock);
1755 while (!list_empty(&cur_trans->pending_ordered)) {
1756 ordered = list_first_entry(&cur_trans->pending_ordered,
1757 struct btrfs_ordered_extent,
1758 trans_list);
1759 list_del_init(&ordered->trans_list);
1760 spin_unlock(&fs_info->trans_lock);
1761
1762 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1763 &ordered->flags));
1764 btrfs_put_ordered_extent(ordered);
1765 spin_lock(&fs_info->trans_lock);
1766 }
1767 spin_unlock(&fs_info->trans_lock);
1768 }
1769
1770 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1771 struct btrfs_root *root)
1772 {
1773 struct btrfs_transaction *cur_trans = trans->transaction;
1774 struct btrfs_transaction *prev_trans = NULL;
1775 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1776 int ret;
1777
1778 /* Stop the commit early if ->aborted is set */
1779 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1780 ret = cur_trans->aborted;
1781 btrfs_end_transaction(trans, root);
1782 return ret;
1783 }
1784
1785 /* make a pass through all the delayed refs we have so far
1786 * any runnings procs may add more while we are here
1787 */
1788 ret = btrfs_run_delayed_refs(trans, root, 0);
1789 if (ret) {
1790 btrfs_end_transaction(trans, root);
1791 return ret;
1792 }
1793
1794 btrfs_trans_release_metadata(trans, root);
1795 trans->block_rsv = NULL;
1796 if (trans->qgroup_reserved) {
1797 btrfs_qgroup_free(root, trans->qgroup_reserved);
1798 trans->qgroup_reserved = 0;
1799 }
1800
1801 cur_trans = trans->transaction;
1802
1803 /*
1804 * set the flushing flag so procs in this transaction have to
1805 * start sending their work down.
1806 */
1807 cur_trans->delayed_refs.flushing = 1;
1808 smp_wmb();
1809
1810 if (!list_empty(&trans->new_bgs))
1811 btrfs_create_pending_block_groups(trans, root);
1812
1813 ret = btrfs_run_delayed_refs(trans, root, 0);
1814 if (ret) {
1815 btrfs_end_transaction(trans, root);
1816 return ret;
1817 }
1818
1819 if (!cur_trans->dirty_bg_run) {
1820 int run_it = 0;
1821
1822 /* this mutex is also taken before trying to set
1823 * block groups readonly. We need to make sure
1824 * that nobody has set a block group readonly
1825 * after a extents from that block group have been
1826 * allocated for cache files. btrfs_set_block_group_ro
1827 * will wait for the transaction to commit if it
1828 * finds dirty_bg_run = 1
1829 *
1830 * The dirty_bg_run flag is also used to make sure only
1831 * one process starts all the block group IO. It wouldn't
1832 * hurt to have more than one go through, but there's no
1833 * real advantage to it either.
1834 */
1835 mutex_lock(&root->fs_info->ro_block_group_mutex);
1836 if (!cur_trans->dirty_bg_run) {
1837 run_it = 1;
1838 cur_trans->dirty_bg_run = 1;
1839 }
1840 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1841
1842 if (run_it)
1843 ret = btrfs_start_dirty_block_groups(trans, root);
1844 }
1845 if (ret) {
1846 btrfs_end_transaction(trans, root);
1847 return ret;
1848 }
1849
1850 spin_lock(&root->fs_info->trans_lock);
1851 list_splice(&trans->ordered, &cur_trans->pending_ordered);
1852 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1853 spin_unlock(&root->fs_info->trans_lock);
1854 atomic_inc(&cur_trans->use_count);
1855 ret = btrfs_end_transaction(trans, root);
1856
1857 wait_for_commit(root, cur_trans);
1858
1859 if (unlikely(cur_trans->aborted))
1860 ret = cur_trans->aborted;
1861
1862 btrfs_put_transaction(cur_trans);
1863
1864 return ret;
1865 }
1866
1867 cur_trans->state = TRANS_STATE_COMMIT_START;
1868 wake_up(&root->fs_info->transaction_blocked_wait);
1869
1870 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1871 prev_trans = list_entry(cur_trans->list.prev,
1872 struct btrfs_transaction, list);
1873 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1874 atomic_inc(&prev_trans->use_count);
1875 spin_unlock(&root->fs_info->trans_lock);
1876
1877 wait_for_commit(root, prev_trans);
1878
1879 btrfs_put_transaction(prev_trans);
1880 } else {
1881 spin_unlock(&root->fs_info->trans_lock);
1882 }
1883 } else {
1884 spin_unlock(&root->fs_info->trans_lock);
1885 }
1886
1887 extwriter_counter_dec(cur_trans, trans->type);
1888
1889 ret = btrfs_start_delalloc_flush(root->fs_info);
1890 if (ret)
1891 goto cleanup_transaction;
1892
1893 ret = btrfs_run_delayed_items(trans, root);
1894 if (ret)
1895 goto cleanup_transaction;
1896
1897 wait_event(cur_trans->writer_wait,
1898 extwriter_counter_read(cur_trans) == 0);
1899
1900 /* some pending stuffs might be added after the previous flush. */
1901 ret = btrfs_run_delayed_items(trans, root);
1902 if (ret)
1903 goto cleanup_transaction;
1904
1905 btrfs_wait_delalloc_flush(root->fs_info);
1906
1907 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1908
1909 btrfs_scrub_pause(root);
1910 /*
1911 * Ok now we need to make sure to block out any other joins while we
1912 * commit the transaction. We could have started a join before setting
1913 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1914 */
1915 spin_lock(&root->fs_info->trans_lock);
1916 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1917 spin_unlock(&root->fs_info->trans_lock);
1918 wait_event(cur_trans->writer_wait,
1919 atomic_read(&cur_trans->num_writers) == 1);
1920
1921 /* ->aborted might be set after the previous check, so check it */
1922 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1923 ret = cur_trans->aborted;
1924 goto scrub_continue;
1925 }
1926 /*
1927 * the reloc mutex makes sure that we stop
1928 * the balancing code from coming in and moving
1929 * extents around in the middle of the commit
1930 */
1931 mutex_lock(&root->fs_info->reloc_mutex);
1932
1933 /*
1934 * We needn't worry about the delayed items because we will
1935 * deal with them in create_pending_snapshot(), which is the
1936 * core function of the snapshot creation.
1937 */
1938 ret = create_pending_snapshots(trans, root->fs_info);
1939 if (ret) {
1940 mutex_unlock(&root->fs_info->reloc_mutex);
1941 goto scrub_continue;
1942 }
1943
1944 /*
1945 * We insert the dir indexes of the snapshots and update the inode
1946 * of the snapshots' parents after the snapshot creation, so there
1947 * are some delayed items which are not dealt with. Now deal with
1948 * them.
1949 *
1950 * We needn't worry that this operation will corrupt the snapshots,
1951 * because all the tree which are snapshoted will be forced to COW
1952 * the nodes and leaves.
1953 */
1954 ret = btrfs_run_delayed_items(trans, root);
1955 if (ret) {
1956 mutex_unlock(&root->fs_info->reloc_mutex);
1957 goto scrub_continue;
1958 }
1959
1960 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1961 if (ret) {
1962 mutex_unlock(&root->fs_info->reloc_mutex);
1963 goto scrub_continue;
1964 }
1965
1966 /*
1967 * make sure none of the code above managed to slip in a
1968 * delayed item
1969 */
1970 btrfs_assert_delayed_root_empty(root);
1971
1972 WARN_ON(cur_trans != trans->transaction);
1973
1974 /* btrfs_commit_tree_roots is responsible for getting the
1975 * various roots consistent with each other. Every pointer
1976 * in the tree of tree roots has to point to the most up to date
1977 * root for every subvolume and other tree. So, we have to keep
1978 * the tree logging code from jumping in and changing any
1979 * of the trees.
1980 *
1981 * At this point in the commit, there can't be any tree-log
1982 * writers, but a little lower down we drop the trans mutex
1983 * and let new people in. By holding the tree_log_mutex
1984 * from now until after the super is written, we avoid races
1985 * with the tree-log code.
1986 */
1987 mutex_lock(&root->fs_info->tree_log_mutex);
1988
1989 ret = commit_fs_roots(trans, root);
1990 if (ret) {
1991 mutex_unlock(&root->fs_info->tree_log_mutex);
1992 mutex_unlock(&root->fs_info->reloc_mutex);
1993 goto scrub_continue;
1994 }
1995
1996 /*
1997 * Since the transaction is done, we can apply the pending changes
1998 * before the next transaction.
1999 */
2000 btrfs_apply_pending_changes(root->fs_info);
2001
2002 /* commit_fs_roots gets rid of all the tree log roots, it is now
2003 * safe to free the root of tree log roots
2004 */
2005 btrfs_free_log_root_tree(trans, root->fs_info);
2006
2007 ret = commit_cowonly_roots(trans, root);
2008 if (ret) {
2009 mutex_unlock(&root->fs_info->tree_log_mutex);
2010 mutex_unlock(&root->fs_info->reloc_mutex);
2011 goto scrub_continue;
2012 }
2013
2014 /*
2015 * The tasks which save the space cache and inode cache may also
2016 * update ->aborted, check it.
2017 */
2018 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2019 ret = cur_trans->aborted;
2020 mutex_unlock(&root->fs_info->tree_log_mutex);
2021 mutex_unlock(&root->fs_info->reloc_mutex);
2022 goto scrub_continue;
2023 }
2024
2025 btrfs_prepare_extent_commit(trans, root);
2026
2027 cur_trans = root->fs_info->running_transaction;
2028
2029 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2030 root->fs_info->tree_root->node);
2031 list_add_tail(&root->fs_info->tree_root->dirty_list,
2032 &cur_trans->switch_commits);
2033
2034 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2035 root->fs_info->chunk_root->node);
2036 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2037 &cur_trans->switch_commits);
2038
2039 switch_commit_roots(cur_trans, root->fs_info);
2040
2041 assert_qgroups_uptodate(trans);
2042 ASSERT(list_empty(&cur_trans->dirty_bgs));
2043 ASSERT(list_empty(&cur_trans->io_bgs));
2044 update_super_roots(root);
2045
2046 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2047 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2048 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2049 sizeof(*root->fs_info->super_copy));
2050
2051 btrfs_update_commit_device_size(root->fs_info);
2052 btrfs_update_commit_device_bytes_used(root, cur_trans);
2053
2054 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2055 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2056
2057 spin_lock(&root->fs_info->trans_lock);
2058 cur_trans->state = TRANS_STATE_UNBLOCKED;
2059 root->fs_info->running_transaction = NULL;
2060 spin_unlock(&root->fs_info->trans_lock);
2061 mutex_unlock(&root->fs_info->reloc_mutex);
2062
2063 wake_up(&root->fs_info->transaction_wait);
2064
2065 ret = btrfs_write_and_wait_transaction(trans, root);
2066 if (ret) {
2067 btrfs_error(root->fs_info, ret,
2068 "Error while writing out transaction");
2069 mutex_unlock(&root->fs_info->tree_log_mutex);
2070 goto scrub_continue;
2071 }
2072
2073 ret = write_ctree_super(trans, root, 0);
2074 if (ret) {
2075 mutex_unlock(&root->fs_info->tree_log_mutex);
2076 goto scrub_continue;
2077 }
2078
2079 /*
2080 * the super is written, we can safely allow the tree-loggers
2081 * to go about their business
2082 */
2083 mutex_unlock(&root->fs_info->tree_log_mutex);
2084
2085 btrfs_finish_extent_commit(trans, root);
2086
2087 if (cur_trans->have_free_bgs)
2088 btrfs_clear_space_info_full(root->fs_info);
2089
2090 root->fs_info->last_trans_committed = cur_trans->transid;
2091 /*
2092 * We needn't acquire the lock here because there is no other task
2093 * which can change it.
2094 */
2095 cur_trans->state = TRANS_STATE_COMPLETED;
2096 wake_up(&cur_trans->commit_wait);
2097
2098 spin_lock(&root->fs_info->trans_lock);
2099 list_del_init(&cur_trans->list);
2100 spin_unlock(&root->fs_info->trans_lock);
2101
2102 btrfs_put_transaction(cur_trans);
2103 btrfs_put_transaction(cur_trans);
2104
2105 if (trans->type & __TRANS_FREEZABLE)
2106 sb_end_intwrite(root->fs_info->sb);
2107
2108 trace_btrfs_transaction_commit(root);
2109
2110 btrfs_scrub_continue(root);
2111
2112 if (current->journal_info == trans)
2113 current->journal_info = NULL;
2114
2115 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2116
2117 if (current != root->fs_info->transaction_kthread)
2118 btrfs_run_delayed_iputs(root);
2119
2120 return ret;
2121
2122 scrub_continue:
2123 btrfs_scrub_continue(root);
2124 cleanup_transaction:
2125 btrfs_trans_release_metadata(trans, root);
2126 trans->block_rsv = NULL;
2127 if (trans->qgroup_reserved) {
2128 btrfs_qgroup_free(root, trans->qgroup_reserved);
2129 trans->qgroup_reserved = 0;
2130 }
2131 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2132 if (current->journal_info == trans)
2133 current->journal_info = NULL;
2134 cleanup_transaction(trans, root, ret);
2135
2136 return ret;
2137 }
2138
2139 /*
2140 * return < 0 if error
2141 * 0 if there are no more dead_roots at the time of call
2142 * 1 there are more to be processed, call me again
2143 *
2144 * The return value indicates there are certainly more snapshots to delete, but
2145 * if there comes a new one during processing, it may return 0. We don't mind,
2146 * because btrfs_commit_super will poke cleaner thread and it will process it a
2147 * few seconds later.
2148 */
2149 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2150 {
2151 int ret;
2152 struct btrfs_fs_info *fs_info = root->fs_info;
2153
2154 spin_lock(&fs_info->trans_lock);
2155 if (list_empty(&fs_info->dead_roots)) {
2156 spin_unlock(&fs_info->trans_lock);
2157 return 0;
2158 }
2159 root = list_first_entry(&fs_info->dead_roots,
2160 struct btrfs_root, root_list);
2161 list_del_init(&root->root_list);
2162 spin_unlock(&fs_info->trans_lock);
2163
2164 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2165
2166 btrfs_kill_all_delayed_nodes(root);
2167
2168 if (btrfs_header_backref_rev(root->node) <
2169 BTRFS_MIXED_BACKREF_REV)
2170 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2171 else
2172 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2173
2174 return (ret < 0) ? 0 : 1;
2175 }
2176
2177 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2178 {
2179 unsigned long prev;
2180 unsigned long bit;
2181
2182 prev = xchg(&fs_info->pending_changes, 0);
2183 if (!prev)
2184 return;
2185
2186 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2187 if (prev & bit)
2188 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2189 prev &= ~bit;
2190
2191 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2192 if (prev & bit)
2193 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2194 prev &= ~bit;
2195
2196 bit = 1 << BTRFS_PENDING_COMMIT;
2197 if (prev & bit)
2198 btrfs_debug(fs_info, "pending commit done");
2199 prev &= ~bit;
2200
2201 if (prev)
2202 btrfs_warn(fs_info,
2203 "unknown pending changes left 0x%lx, ignoring", prev);
2204 }
This page took 0.082297 seconds and 5 git commands to generate.