Btrfs: fix ->iterate_shared() by upgrading i_rwsem for delayed nodes
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 /*
79 * If any block groups are found in ->deleted_bgs then it's
80 * because the transaction was aborted and a commit did not
81 * happen (things failed before writing the new superblock
82 * and calling btrfs_finish_extent_commit()), so we can not
83 * discard the physical locations of the block groups.
84 */
85 while (!list_empty(&transaction->deleted_bgs)) {
86 struct btrfs_block_group_cache *cache;
87
88 cache = list_first_entry(&transaction->deleted_bgs,
89 struct btrfs_block_group_cache,
90 bg_list);
91 list_del_init(&cache->bg_list);
92 btrfs_put_block_group_trimming(cache);
93 btrfs_put_block_group(cache);
94 }
95 kmem_cache_free(btrfs_transaction_cachep, transaction);
96 }
97 }
98
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
100 {
101 spin_lock(&tree->lock);
102 /*
103 * Do a single barrier for the waitqueue_active check here, the state
104 * of the waitqueue should not change once clear_btree_io_tree is
105 * called.
106 */
107 smp_mb();
108 while (!RB_EMPTY_ROOT(&tree->state)) {
109 struct rb_node *node;
110 struct extent_state *state;
111
112 node = rb_first(&tree->state);
113 state = rb_entry(node, struct extent_state, rb_node);
114 rb_erase(&state->rb_node, &tree->state);
115 RB_CLEAR_NODE(&state->rb_node);
116 /*
117 * btree io trees aren't supposed to have tasks waiting for
118 * changes in the flags of extent states ever.
119 */
120 ASSERT(!waitqueue_active(&state->wq));
121 free_extent_state(state);
122
123 cond_resched_lock(&tree->lock);
124 }
125 spin_unlock(&tree->lock);
126 }
127
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 struct btrfs_fs_info *fs_info)
130 {
131 struct btrfs_root *root, *tmp;
132
133 down_write(&fs_info->commit_root_sem);
134 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 dirty_list) {
136 list_del_init(&root->dirty_list);
137 free_extent_buffer(root->commit_root);
138 root->commit_root = btrfs_root_node(root);
139 if (is_fstree(root->objectid))
140 btrfs_unpin_free_ino(root);
141 clear_btree_io_tree(&root->dirty_log_pages);
142 }
143
144 /* We can free old roots now. */
145 spin_lock(&trans->dropped_roots_lock);
146 while (!list_empty(&trans->dropped_roots)) {
147 root = list_first_entry(&trans->dropped_roots,
148 struct btrfs_root, root_list);
149 list_del_init(&root->root_list);
150 spin_unlock(&trans->dropped_roots_lock);
151 btrfs_drop_and_free_fs_root(fs_info, root);
152 spin_lock(&trans->dropped_roots_lock);
153 }
154 spin_unlock(&trans->dropped_roots_lock);
155 up_write(&fs_info->commit_root_sem);
156 }
157
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 unsigned int type)
160 {
161 if (type & TRANS_EXTWRITERS)
162 atomic_inc(&trans->num_extwriters);
163 }
164
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 unsigned int type)
167 {
168 if (type & TRANS_EXTWRITERS)
169 atomic_dec(&trans->num_extwriters);
170 }
171
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 unsigned int type)
174 {
175 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176 }
177
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179 {
180 return atomic_read(&trans->num_extwriters);
181 }
182
183 /*
184 * either allocate a new transaction or hop into the existing one
185 */
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187 {
188 struct btrfs_transaction *cur_trans;
189 struct btrfs_fs_info *fs_info = root->fs_info;
190
191 spin_lock(&fs_info->trans_lock);
192 loop:
193 /* The file system has been taken offline. No new transactions. */
194 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 spin_unlock(&fs_info->trans_lock);
196 return -EROFS;
197 }
198
199 cur_trans = fs_info->running_transaction;
200 if (cur_trans) {
201 if (cur_trans->aborted) {
202 spin_unlock(&fs_info->trans_lock);
203 return cur_trans->aborted;
204 }
205 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 spin_unlock(&fs_info->trans_lock);
207 return -EBUSY;
208 }
209 atomic_inc(&cur_trans->use_count);
210 atomic_inc(&cur_trans->num_writers);
211 extwriter_counter_inc(cur_trans, type);
212 spin_unlock(&fs_info->trans_lock);
213 return 0;
214 }
215 spin_unlock(&fs_info->trans_lock);
216
217 /*
218 * If we are ATTACH, we just want to catch the current transaction,
219 * and commit it. If there is no transaction, just return ENOENT.
220 */
221 if (type == TRANS_ATTACH)
222 return -ENOENT;
223
224 /*
225 * JOIN_NOLOCK only happens during the transaction commit, so
226 * it is impossible that ->running_transaction is NULL
227 */
228 BUG_ON(type == TRANS_JOIN_NOLOCK);
229
230 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 if (!cur_trans)
232 return -ENOMEM;
233
234 spin_lock(&fs_info->trans_lock);
235 if (fs_info->running_transaction) {
236 /*
237 * someone started a transaction after we unlocked. Make sure
238 * to redo the checks above
239 */
240 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 goto loop;
242 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 spin_unlock(&fs_info->trans_lock);
244 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 return -EROFS;
246 }
247
248 atomic_set(&cur_trans->num_writers, 1);
249 extwriter_counter_init(cur_trans, type);
250 init_waitqueue_head(&cur_trans->writer_wait);
251 init_waitqueue_head(&cur_trans->commit_wait);
252 init_waitqueue_head(&cur_trans->pending_wait);
253 cur_trans->state = TRANS_STATE_RUNNING;
254 /*
255 * One for this trans handle, one so it will live on until we
256 * commit the transaction.
257 */
258 atomic_set(&cur_trans->use_count, 2);
259 atomic_set(&cur_trans->pending_ordered, 0);
260 cur_trans->flags = 0;
261 cur_trans->start_time = get_seconds();
262
263 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264
265 cur_trans->delayed_refs.href_root = RB_ROOT;
266 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268
269 /*
270 * although the tree mod log is per file system and not per transaction,
271 * the log must never go across transaction boundaries.
272 */
273 smp_mb();
274 if (!list_empty(&fs_info->tree_mod_seq_list))
275 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 "creating a fresh transaction\n");
277 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 "creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305 }
306
307 /*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
316 {
317 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318 root->last_trans < trans->transid) || force) {
319 WARN_ON(root == root->fs_info->extent_root);
320 WARN_ON(root->commit_root != root->node);
321
322 /*
323 * see below for IN_TRANS_SETUP usage rules
324 * we have the reloc mutex held now, so there
325 * is only one writer in this function
326 */
327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
328
329 /* make sure readers find IN_TRANS_SETUP before
330 * they find our root->last_trans update
331 */
332 smp_wmb();
333
334 spin_lock(&root->fs_info->fs_roots_radix_lock);
335 if (root->last_trans == trans->transid && !force) {
336 spin_unlock(&root->fs_info->fs_roots_radix_lock);
337 return 0;
338 }
339 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340 (unsigned long)root->root_key.objectid,
341 BTRFS_ROOT_TRANS_TAG);
342 spin_unlock(&root->fs_info->fs_roots_radix_lock);
343 root->last_trans = trans->transid;
344
345 /* this is pretty tricky. We don't want to
346 * take the relocation lock in btrfs_record_root_in_trans
347 * unless we're really doing the first setup for this root in
348 * this transaction.
349 *
350 * Normally we'd use root->last_trans as a flag to decide
351 * if we want to take the expensive mutex.
352 *
353 * But, we have to set root->last_trans before we
354 * init the relocation root, otherwise, we trip over warnings
355 * in ctree.c. The solution used here is to flag ourselves
356 * with root IN_TRANS_SETUP. When this is 1, we're still
357 * fixing up the reloc trees and everyone must wait.
358 *
359 * When this is zero, they can trust root->last_trans and fly
360 * through btrfs_record_root_in_trans without having to take the
361 * lock. smp_wmb() makes sure that all the writes above are
362 * done before we pop in the zero below
363 */
364 btrfs_init_reloc_root(trans, root);
365 smp_mb__before_atomic();
366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
367 }
368 return 0;
369 }
370
371
372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373 struct btrfs_root *root)
374 {
375 struct btrfs_transaction *cur_trans = trans->transaction;
376
377 /* Add ourselves to the transaction dropped list */
378 spin_lock(&cur_trans->dropped_roots_lock);
379 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380 spin_unlock(&cur_trans->dropped_roots_lock);
381
382 /* Make sure we don't try to update the root at commit time */
383 spin_lock(&root->fs_info->fs_roots_radix_lock);
384 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385 (unsigned long)root->root_key.objectid,
386 BTRFS_ROOT_TRANS_TAG);
387 spin_unlock(&root->fs_info->fs_roots_radix_lock);
388 }
389
390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391 struct btrfs_root *root)
392 {
393 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
394 return 0;
395
396 /*
397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
398 * and barriers
399 */
400 smp_rmb();
401 if (root->last_trans == trans->transid &&
402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
403 return 0;
404
405 mutex_lock(&root->fs_info->reloc_mutex);
406 record_root_in_trans(trans, root, 0);
407 mutex_unlock(&root->fs_info->reloc_mutex);
408
409 return 0;
410 }
411
412 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
413 {
414 return (trans->state >= TRANS_STATE_BLOCKED &&
415 trans->state < TRANS_STATE_UNBLOCKED &&
416 !trans->aborted);
417 }
418
419 /* wait for commit against the current transaction to become unblocked
420 * when this is done, it is safe to start a new transaction, but the current
421 * transaction might not be fully on disk.
422 */
423 static void wait_current_trans(struct btrfs_root *root)
424 {
425 struct btrfs_transaction *cur_trans;
426
427 spin_lock(&root->fs_info->trans_lock);
428 cur_trans = root->fs_info->running_transaction;
429 if (cur_trans && is_transaction_blocked(cur_trans)) {
430 atomic_inc(&cur_trans->use_count);
431 spin_unlock(&root->fs_info->trans_lock);
432
433 wait_event(root->fs_info->transaction_wait,
434 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435 cur_trans->aborted);
436 btrfs_put_transaction(cur_trans);
437 } else {
438 spin_unlock(&root->fs_info->trans_lock);
439 }
440 }
441
442 static int may_wait_transaction(struct btrfs_root *root, int type)
443 {
444 if (root->fs_info->log_root_recovering)
445 return 0;
446
447 if (type == TRANS_USERSPACE)
448 return 1;
449
450 if (type == TRANS_START &&
451 !atomic_read(&root->fs_info->open_ioctl_trans))
452 return 1;
453
454 return 0;
455 }
456
457 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
458 {
459 if (!root->fs_info->reloc_ctl ||
460 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
462 root->reloc_root)
463 return false;
464
465 return true;
466 }
467
468 static struct btrfs_trans_handle *
469 start_transaction(struct btrfs_root *root, unsigned int num_items,
470 unsigned int type, enum btrfs_reserve_flush_enum flush)
471 {
472 struct btrfs_trans_handle *h;
473 struct btrfs_transaction *cur_trans;
474 u64 num_bytes = 0;
475 u64 qgroup_reserved = 0;
476 bool reloc_reserved = false;
477 int ret;
478
479 /* Send isn't supposed to start transactions. */
480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
481
482 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483 return ERR_PTR(-EROFS);
484
485 if (current->journal_info) {
486 WARN_ON(type & TRANS_EXTWRITERS);
487 h = current->journal_info;
488 h->use_count++;
489 WARN_ON(h->use_count > 2);
490 h->orig_rsv = h->block_rsv;
491 h->block_rsv = NULL;
492 goto got_it;
493 }
494
495 /*
496 * Do the reservation before we join the transaction so we can do all
497 * the appropriate flushing if need be.
498 */
499 if (num_items > 0 && root != root->fs_info->chunk_root) {
500 qgroup_reserved = num_items * root->nodesize;
501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
502 if (ret)
503 return ERR_PTR(ret);
504
505 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
506 /*
507 * Do the reservation for the relocation root creation
508 */
509 if (need_reserve_reloc_root(root)) {
510 num_bytes += root->nodesize;
511 reloc_reserved = true;
512 }
513
514 ret = btrfs_block_rsv_add(root,
515 &root->fs_info->trans_block_rsv,
516 num_bytes, flush);
517 if (ret)
518 goto reserve_fail;
519 }
520 again:
521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
522 if (!h) {
523 ret = -ENOMEM;
524 goto alloc_fail;
525 }
526
527 /*
528 * If we are JOIN_NOLOCK we're already committing a transaction and
529 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 * because we're already holding a ref. We need this because we could
531 * have raced in and did an fsync() on a file which can kick a commit
532 * and then we deadlock with somebody doing a freeze.
533 *
534 * If we are ATTACH, it means we just want to catch the current
535 * transaction and commit it, so we needn't do sb_start_intwrite().
536 */
537 if (type & __TRANS_FREEZABLE)
538 sb_start_intwrite(root->fs_info->sb);
539
540 if (may_wait_transaction(root, type))
541 wait_current_trans(root);
542
543 do {
544 ret = join_transaction(root, type);
545 if (ret == -EBUSY) {
546 wait_current_trans(root);
547 if (unlikely(type == TRANS_ATTACH))
548 ret = -ENOENT;
549 }
550 } while (ret == -EBUSY);
551
552 if (ret < 0) {
553 /* We must get the transaction if we are JOIN_NOLOCK. */
554 BUG_ON(type == TRANS_JOIN_NOLOCK);
555 goto join_fail;
556 }
557
558 cur_trans = root->fs_info->running_transaction;
559
560 h->transid = cur_trans->transid;
561 h->transaction = cur_trans;
562 h->root = root;
563 h->use_count = 1;
564
565 h->type = type;
566 h->can_flush_pending_bgs = true;
567 INIT_LIST_HEAD(&h->qgroup_ref_list);
568 INIT_LIST_HEAD(&h->new_bgs);
569
570 smp_mb();
571 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
572 may_wait_transaction(root, type)) {
573 current->journal_info = h;
574 btrfs_commit_transaction(h, root);
575 goto again;
576 }
577
578 if (num_bytes) {
579 trace_btrfs_space_reservation(root->fs_info, "transaction",
580 h->transid, num_bytes, 1);
581 h->block_rsv = &root->fs_info->trans_block_rsv;
582 h->bytes_reserved = num_bytes;
583 h->reloc_reserved = reloc_reserved;
584 }
585
586 got_it:
587 btrfs_record_root_in_trans(h, root);
588
589 if (!current->journal_info && type != TRANS_USERSPACE)
590 current->journal_info = h;
591 return h;
592
593 join_fail:
594 if (type & __TRANS_FREEZABLE)
595 sb_end_intwrite(root->fs_info->sb);
596 kmem_cache_free(btrfs_trans_handle_cachep, h);
597 alloc_fail:
598 if (num_bytes)
599 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
600 num_bytes);
601 reserve_fail:
602 btrfs_qgroup_free_meta(root, qgroup_reserved);
603 return ERR_PTR(ret);
604 }
605
606 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
607 unsigned int num_items)
608 {
609 return start_transaction(root, num_items, TRANS_START,
610 BTRFS_RESERVE_FLUSH_ALL);
611 }
612 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
613 struct btrfs_root *root,
614 unsigned int num_items,
615 int min_factor)
616 {
617 struct btrfs_trans_handle *trans;
618 u64 num_bytes;
619 int ret;
620
621 trans = btrfs_start_transaction(root, num_items);
622 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
623 return trans;
624
625 trans = btrfs_start_transaction(root, 0);
626 if (IS_ERR(trans))
627 return trans;
628
629 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
630 ret = btrfs_cond_migrate_bytes(root->fs_info,
631 &root->fs_info->trans_block_rsv,
632 num_bytes,
633 min_factor);
634 if (ret) {
635 btrfs_end_transaction(trans, root);
636 return ERR_PTR(ret);
637 }
638
639 trans->block_rsv = &root->fs_info->trans_block_rsv;
640 trans->bytes_reserved = num_bytes;
641 trace_btrfs_space_reservation(root->fs_info, "transaction",
642 trans->transid, num_bytes, 1);
643
644 return trans;
645 }
646
647 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
648 struct btrfs_root *root,
649 unsigned int num_items)
650 {
651 return start_transaction(root, num_items, TRANS_START,
652 BTRFS_RESERVE_FLUSH_LIMIT);
653 }
654
655 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
656 {
657 return start_transaction(root, 0, TRANS_JOIN,
658 BTRFS_RESERVE_NO_FLUSH);
659 }
660
661 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
662 {
663 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
664 BTRFS_RESERVE_NO_FLUSH);
665 }
666
667 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
668 {
669 return start_transaction(root, 0, TRANS_USERSPACE,
670 BTRFS_RESERVE_NO_FLUSH);
671 }
672
673 /*
674 * btrfs_attach_transaction() - catch the running transaction
675 *
676 * It is used when we want to commit the current the transaction, but
677 * don't want to start a new one.
678 *
679 * Note: If this function return -ENOENT, it just means there is no
680 * running transaction. But it is possible that the inactive transaction
681 * is still in the memory, not fully on disk. If you hope there is no
682 * inactive transaction in the fs when -ENOENT is returned, you should
683 * invoke
684 * btrfs_attach_transaction_barrier()
685 */
686 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
687 {
688 return start_transaction(root, 0, TRANS_ATTACH,
689 BTRFS_RESERVE_NO_FLUSH);
690 }
691
692 /*
693 * btrfs_attach_transaction_barrier() - catch the running transaction
694 *
695 * It is similar to the above function, the differentia is this one
696 * will wait for all the inactive transactions until they fully
697 * complete.
698 */
699 struct btrfs_trans_handle *
700 btrfs_attach_transaction_barrier(struct btrfs_root *root)
701 {
702 struct btrfs_trans_handle *trans;
703
704 trans = start_transaction(root, 0, TRANS_ATTACH,
705 BTRFS_RESERVE_NO_FLUSH);
706 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
707 btrfs_wait_for_commit(root, 0);
708
709 return trans;
710 }
711
712 /* wait for a transaction commit to be fully complete */
713 static noinline void wait_for_commit(struct btrfs_root *root,
714 struct btrfs_transaction *commit)
715 {
716 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
717 }
718
719 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
720 {
721 struct btrfs_transaction *cur_trans = NULL, *t;
722 int ret = 0;
723
724 if (transid) {
725 if (transid <= root->fs_info->last_trans_committed)
726 goto out;
727
728 /* find specified transaction */
729 spin_lock(&root->fs_info->trans_lock);
730 list_for_each_entry(t, &root->fs_info->trans_list, list) {
731 if (t->transid == transid) {
732 cur_trans = t;
733 atomic_inc(&cur_trans->use_count);
734 ret = 0;
735 break;
736 }
737 if (t->transid > transid) {
738 ret = 0;
739 break;
740 }
741 }
742 spin_unlock(&root->fs_info->trans_lock);
743
744 /*
745 * The specified transaction doesn't exist, or we
746 * raced with btrfs_commit_transaction
747 */
748 if (!cur_trans) {
749 if (transid > root->fs_info->last_trans_committed)
750 ret = -EINVAL;
751 goto out;
752 }
753 } else {
754 /* find newest transaction that is committing | committed */
755 spin_lock(&root->fs_info->trans_lock);
756 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
757 list) {
758 if (t->state >= TRANS_STATE_COMMIT_START) {
759 if (t->state == TRANS_STATE_COMPLETED)
760 break;
761 cur_trans = t;
762 atomic_inc(&cur_trans->use_count);
763 break;
764 }
765 }
766 spin_unlock(&root->fs_info->trans_lock);
767 if (!cur_trans)
768 goto out; /* nothing committing|committed */
769 }
770
771 wait_for_commit(root, cur_trans);
772 btrfs_put_transaction(cur_trans);
773 out:
774 return ret;
775 }
776
777 void btrfs_throttle(struct btrfs_root *root)
778 {
779 if (!atomic_read(&root->fs_info->open_ioctl_trans))
780 wait_current_trans(root);
781 }
782
783 static int should_end_transaction(struct btrfs_trans_handle *trans,
784 struct btrfs_root *root)
785 {
786 if (root->fs_info->global_block_rsv.space_info->full &&
787 btrfs_check_space_for_delayed_refs(trans, root))
788 return 1;
789
790 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
791 }
792
793 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
794 struct btrfs_root *root)
795 {
796 struct btrfs_transaction *cur_trans = trans->transaction;
797 int updates;
798 int err;
799
800 smp_mb();
801 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
802 cur_trans->delayed_refs.flushing)
803 return 1;
804
805 updates = trans->delayed_ref_updates;
806 trans->delayed_ref_updates = 0;
807 if (updates) {
808 err = btrfs_run_delayed_refs(trans, root, updates * 2);
809 if (err) /* Error code will also eval true */
810 return err;
811 }
812
813 return should_end_transaction(trans, root);
814 }
815
816 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
817 struct btrfs_root *root, int throttle)
818 {
819 struct btrfs_transaction *cur_trans = trans->transaction;
820 struct btrfs_fs_info *info = root->fs_info;
821 unsigned long cur = trans->delayed_ref_updates;
822 int lock = (trans->type != TRANS_JOIN_NOLOCK);
823 int err = 0;
824 int must_run_delayed_refs = 0;
825
826 if (trans->use_count > 1) {
827 trans->use_count--;
828 trans->block_rsv = trans->orig_rsv;
829 return 0;
830 }
831
832 btrfs_trans_release_metadata(trans, root);
833 trans->block_rsv = NULL;
834
835 if (!list_empty(&trans->new_bgs))
836 btrfs_create_pending_block_groups(trans, root);
837
838 trans->delayed_ref_updates = 0;
839 if (!trans->sync) {
840 must_run_delayed_refs =
841 btrfs_should_throttle_delayed_refs(trans, root);
842 cur = max_t(unsigned long, cur, 32);
843
844 /*
845 * don't make the caller wait if they are from a NOLOCK
846 * or ATTACH transaction, it will deadlock with commit
847 */
848 if (must_run_delayed_refs == 1 &&
849 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
850 must_run_delayed_refs = 2;
851 }
852
853 btrfs_trans_release_metadata(trans, root);
854 trans->block_rsv = NULL;
855
856 if (!list_empty(&trans->new_bgs))
857 btrfs_create_pending_block_groups(trans, root);
858
859 btrfs_trans_release_chunk_metadata(trans);
860
861 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
862 should_end_transaction(trans, root) &&
863 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
864 spin_lock(&info->trans_lock);
865 if (cur_trans->state == TRANS_STATE_RUNNING)
866 cur_trans->state = TRANS_STATE_BLOCKED;
867 spin_unlock(&info->trans_lock);
868 }
869
870 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
871 if (throttle)
872 return btrfs_commit_transaction(trans, root);
873 else
874 wake_up_process(info->transaction_kthread);
875 }
876
877 if (trans->type & __TRANS_FREEZABLE)
878 sb_end_intwrite(root->fs_info->sb);
879
880 WARN_ON(cur_trans != info->running_transaction);
881 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
882 atomic_dec(&cur_trans->num_writers);
883 extwriter_counter_dec(cur_trans, trans->type);
884
885 /*
886 * Make sure counter is updated before we wake up waiters.
887 */
888 smp_mb();
889 if (waitqueue_active(&cur_trans->writer_wait))
890 wake_up(&cur_trans->writer_wait);
891 btrfs_put_transaction(cur_trans);
892
893 if (current->journal_info == trans)
894 current->journal_info = NULL;
895
896 if (throttle)
897 btrfs_run_delayed_iputs(root);
898
899 if (trans->aborted ||
900 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
901 wake_up_process(info->transaction_kthread);
902 err = -EIO;
903 }
904 assert_qgroups_uptodate(trans);
905
906 kmem_cache_free(btrfs_trans_handle_cachep, trans);
907 if (must_run_delayed_refs) {
908 btrfs_async_run_delayed_refs(root, cur,
909 must_run_delayed_refs == 1);
910 }
911 return err;
912 }
913
914 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
915 struct btrfs_root *root)
916 {
917 return __btrfs_end_transaction(trans, root, 0);
918 }
919
920 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
921 struct btrfs_root *root)
922 {
923 return __btrfs_end_transaction(trans, root, 1);
924 }
925
926 /*
927 * when btree blocks are allocated, they have some corresponding bits set for
928 * them in one of two extent_io trees. This is used to make sure all of
929 * those extents are sent to disk but does not wait on them
930 */
931 int btrfs_write_marked_extents(struct btrfs_root *root,
932 struct extent_io_tree *dirty_pages, int mark)
933 {
934 int err = 0;
935 int werr = 0;
936 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
937 struct extent_state *cached_state = NULL;
938 u64 start = 0;
939 u64 end;
940
941 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
942 mark, &cached_state)) {
943 bool wait_writeback = false;
944
945 err = convert_extent_bit(dirty_pages, start, end,
946 EXTENT_NEED_WAIT,
947 mark, &cached_state);
948 /*
949 * convert_extent_bit can return -ENOMEM, which is most of the
950 * time a temporary error. So when it happens, ignore the error
951 * and wait for writeback of this range to finish - because we
952 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
953 * to btrfs_wait_marked_extents() would not know that writeback
954 * for this range started and therefore wouldn't wait for it to
955 * finish - we don't want to commit a superblock that points to
956 * btree nodes/leafs for which writeback hasn't finished yet
957 * (and without errors).
958 * We cleanup any entries left in the io tree when committing
959 * the transaction (through clear_btree_io_tree()).
960 */
961 if (err == -ENOMEM) {
962 err = 0;
963 wait_writeback = true;
964 }
965 if (!err)
966 err = filemap_fdatawrite_range(mapping, start, end);
967 if (err)
968 werr = err;
969 else if (wait_writeback)
970 werr = filemap_fdatawait_range(mapping, start, end);
971 free_extent_state(cached_state);
972 cached_state = NULL;
973 cond_resched();
974 start = end + 1;
975 }
976 return werr;
977 }
978
979 /*
980 * when btree blocks are allocated, they have some corresponding bits set for
981 * them in one of two extent_io trees. This is used to make sure all of
982 * those extents are on disk for transaction or log commit. We wait
983 * on all the pages and clear them from the dirty pages state tree
984 */
985 int btrfs_wait_marked_extents(struct btrfs_root *root,
986 struct extent_io_tree *dirty_pages, int mark)
987 {
988 int err = 0;
989 int werr = 0;
990 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
991 struct extent_state *cached_state = NULL;
992 u64 start = 0;
993 u64 end;
994 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
995 bool errors = false;
996
997 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
998 EXTENT_NEED_WAIT, &cached_state)) {
999 /*
1000 * Ignore -ENOMEM errors returned by clear_extent_bit().
1001 * When committing the transaction, we'll remove any entries
1002 * left in the io tree. For a log commit, we don't remove them
1003 * after committing the log because the tree can be accessed
1004 * concurrently - we do it only at transaction commit time when
1005 * it's safe to do it (through clear_btree_io_tree()).
1006 */
1007 err = clear_extent_bit(dirty_pages, start, end,
1008 EXTENT_NEED_WAIT,
1009 0, 0, &cached_state, GFP_NOFS);
1010 if (err == -ENOMEM)
1011 err = 0;
1012 if (!err)
1013 err = filemap_fdatawait_range(mapping, start, end);
1014 if (err)
1015 werr = err;
1016 free_extent_state(cached_state);
1017 cached_state = NULL;
1018 cond_resched();
1019 start = end + 1;
1020 }
1021 if (err)
1022 werr = err;
1023
1024 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1025 if ((mark & EXTENT_DIRTY) &&
1026 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1027 &btree_ino->runtime_flags))
1028 errors = true;
1029
1030 if ((mark & EXTENT_NEW) &&
1031 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1032 &btree_ino->runtime_flags))
1033 errors = true;
1034 } else {
1035 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1036 &btree_ino->runtime_flags))
1037 errors = true;
1038 }
1039
1040 if (errors && !werr)
1041 werr = -EIO;
1042
1043 return werr;
1044 }
1045
1046 /*
1047 * when btree blocks are allocated, they have some corresponding bits set for
1048 * them in one of two extent_io trees. This is used to make sure all of
1049 * those extents are on disk for transaction or log commit
1050 */
1051 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1052 struct extent_io_tree *dirty_pages, int mark)
1053 {
1054 int ret;
1055 int ret2;
1056 struct blk_plug plug;
1057
1058 blk_start_plug(&plug);
1059 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1060 blk_finish_plug(&plug);
1061 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1062
1063 if (ret)
1064 return ret;
1065 if (ret2)
1066 return ret2;
1067 return 0;
1068 }
1069
1070 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root)
1072 {
1073 int ret;
1074
1075 ret = btrfs_write_and_wait_marked_extents(root,
1076 &trans->transaction->dirty_pages,
1077 EXTENT_DIRTY);
1078 clear_btree_io_tree(&trans->transaction->dirty_pages);
1079
1080 return ret;
1081 }
1082
1083 /*
1084 * this is used to update the root pointer in the tree of tree roots.
1085 *
1086 * But, in the case of the extent allocation tree, updating the root
1087 * pointer may allocate blocks which may change the root of the extent
1088 * allocation tree.
1089 *
1090 * So, this loops and repeats and makes sure the cowonly root didn't
1091 * change while the root pointer was being updated in the metadata.
1092 */
1093 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root)
1095 {
1096 int ret;
1097 u64 old_root_bytenr;
1098 u64 old_root_used;
1099 struct btrfs_root *tree_root = root->fs_info->tree_root;
1100
1101 old_root_used = btrfs_root_used(&root->root_item);
1102
1103 while (1) {
1104 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1105 if (old_root_bytenr == root->node->start &&
1106 old_root_used == btrfs_root_used(&root->root_item))
1107 break;
1108
1109 btrfs_set_root_node(&root->root_item, root->node);
1110 ret = btrfs_update_root(trans, tree_root,
1111 &root->root_key,
1112 &root->root_item);
1113 if (ret)
1114 return ret;
1115
1116 old_root_used = btrfs_root_used(&root->root_item);
1117 }
1118
1119 return 0;
1120 }
1121
1122 /*
1123 * update all the cowonly tree roots on disk
1124 *
1125 * The error handling in this function may not be obvious. Any of the
1126 * failures will cause the file system to go offline. We still need
1127 * to clean up the delayed refs.
1128 */
1129 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1130 struct btrfs_root *root)
1131 {
1132 struct btrfs_fs_info *fs_info = root->fs_info;
1133 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1134 struct list_head *io_bgs = &trans->transaction->io_bgs;
1135 struct list_head *next;
1136 struct extent_buffer *eb;
1137 int ret;
1138
1139 eb = btrfs_lock_root_node(fs_info->tree_root);
1140 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1141 0, &eb);
1142 btrfs_tree_unlock(eb);
1143 free_extent_buffer(eb);
1144
1145 if (ret)
1146 return ret;
1147
1148 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1149 if (ret)
1150 return ret;
1151
1152 ret = btrfs_run_dev_stats(trans, root->fs_info);
1153 if (ret)
1154 return ret;
1155 ret = btrfs_run_dev_replace(trans, root->fs_info);
1156 if (ret)
1157 return ret;
1158 ret = btrfs_run_qgroups(trans, root->fs_info);
1159 if (ret)
1160 return ret;
1161
1162 ret = btrfs_setup_space_cache(trans, root);
1163 if (ret)
1164 return ret;
1165
1166 /* run_qgroups might have added some more refs */
1167 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1168 if (ret)
1169 return ret;
1170 again:
1171 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1172 next = fs_info->dirty_cowonly_roots.next;
1173 list_del_init(next);
1174 root = list_entry(next, struct btrfs_root, dirty_list);
1175 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1176
1177 if (root != fs_info->extent_root)
1178 list_add_tail(&root->dirty_list,
1179 &trans->transaction->switch_commits);
1180 ret = update_cowonly_root(trans, root);
1181 if (ret)
1182 return ret;
1183 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1184 if (ret)
1185 return ret;
1186 }
1187
1188 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1189 ret = btrfs_write_dirty_block_groups(trans, root);
1190 if (ret)
1191 return ret;
1192 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1193 if (ret)
1194 return ret;
1195 }
1196
1197 if (!list_empty(&fs_info->dirty_cowonly_roots))
1198 goto again;
1199
1200 list_add_tail(&fs_info->extent_root->dirty_list,
1201 &trans->transaction->switch_commits);
1202 btrfs_after_dev_replace_commit(fs_info);
1203
1204 return 0;
1205 }
1206
1207 /*
1208 * dead roots are old snapshots that need to be deleted. This allocates
1209 * a dirty root struct and adds it into the list of dead roots that need to
1210 * be deleted
1211 */
1212 void btrfs_add_dead_root(struct btrfs_root *root)
1213 {
1214 spin_lock(&root->fs_info->trans_lock);
1215 if (list_empty(&root->root_list))
1216 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1217 spin_unlock(&root->fs_info->trans_lock);
1218 }
1219
1220 /*
1221 * update all the cowonly tree roots on disk
1222 */
1223 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1224 struct btrfs_root *root)
1225 {
1226 struct btrfs_root *gang[8];
1227 struct btrfs_fs_info *fs_info = root->fs_info;
1228 int i;
1229 int ret;
1230 int err = 0;
1231
1232 spin_lock(&fs_info->fs_roots_radix_lock);
1233 while (1) {
1234 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1235 (void **)gang, 0,
1236 ARRAY_SIZE(gang),
1237 BTRFS_ROOT_TRANS_TAG);
1238 if (ret == 0)
1239 break;
1240 for (i = 0; i < ret; i++) {
1241 root = gang[i];
1242 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1243 (unsigned long)root->root_key.objectid,
1244 BTRFS_ROOT_TRANS_TAG);
1245 spin_unlock(&fs_info->fs_roots_radix_lock);
1246
1247 btrfs_free_log(trans, root);
1248 btrfs_update_reloc_root(trans, root);
1249 btrfs_orphan_commit_root(trans, root);
1250
1251 btrfs_save_ino_cache(root, trans);
1252
1253 /* see comments in should_cow_block() */
1254 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1255 smp_mb__after_atomic();
1256
1257 if (root->commit_root != root->node) {
1258 list_add_tail(&root->dirty_list,
1259 &trans->transaction->switch_commits);
1260 btrfs_set_root_node(&root->root_item,
1261 root->node);
1262 }
1263
1264 err = btrfs_update_root(trans, fs_info->tree_root,
1265 &root->root_key,
1266 &root->root_item);
1267 spin_lock(&fs_info->fs_roots_radix_lock);
1268 if (err)
1269 break;
1270 btrfs_qgroup_free_meta_all(root);
1271 }
1272 }
1273 spin_unlock(&fs_info->fs_roots_radix_lock);
1274 return err;
1275 }
1276
1277 /*
1278 * defrag a given btree.
1279 * Every leaf in the btree is read and defragged.
1280 */
1281 int btrfs_defrag_root(struct btrfs_root *root)
1282 {
1283 struct btrfs_fs_info *info = root->fs_info;
1284 struct btrfs_trans_handle *trans;
1285 int ret;
1286
1287 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1288 return 0;
1289
1290 while (1) {
1291 trans = btrfs_start_transaction(root, 0);
1292 if (IS_ERR(trans))
1293 return PTR_ERR(trans);
1294
1295 ret = btrfs_defrag_leaves(trans, root);
1296
1297 btrfs_end_transaction(trans, root);
1298 btrfs_btree_balance_dirty(info->tree_root);
1299 cond_resched();
1300
1301 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1302 break;
1303
1304 if (btrfs_defrag_cancelled(root->fs_info)) {
1305 pr_debug("BTRFS: defrag_root cancelled\n");
1306 ret = -EAGAIN;
1307 break;
1308 }
1309 }
1310 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1311 return ret;
1312 }
1313
1314 /*
1315 * Do all special snapshot related qgroup dirty hack.
1316 *
1317 * Will do all needed qgroup inherit and dirty hack like switch commit
1318 * roots inside one transaction and write all btree into disk, to make
1319 * qgroup works.
1320 */
1321 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1322 struct btrfs_root *src,
1323 struct btrfs_root *parent,
1324 struct btrfs_qgroup_inherit *inherit,
1325 u64 dst_objectid)
1326 {
1327 struct btrfs_fs_info *fs_info = src->fs_info;
1328 int ret;
1329
1330 /*
1331 * Save some performance in the case that qgroups are not
1332 * enabled. If this check races with the ioctl, rescan will
1333 * kick in anyway.
1334 */
1335 mutex_lock(&fs_info->qgroup_ioctl_lock);
1336 if (!fs_info->quota_enabled) {
1337 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1338 return 0;
1339 }
1340 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1341
1342 /*
1343 * We are going to commit transaction, see btrfs_commit_transaction()
1344 * comment for reason locking tree_log_mutex
1345 */
1346 mutex_lock(&fs_info->tree_log_mutex);
1347
1348 ret = commit_fs_roots(trans, src);
1349 if (ret)
1350 goto out;
1351 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1352 if (ret < 0)
1353 goto out;
1354 ret = btrfs_qgroup_account_extents(trans, fs_info);
1355 if (ret < 0)
1356 goto out;
1357
1358 /* Now qgroup are all updated, we can inherit it to new qgroups */
1359 ret = btrfs_qgroup_inherit(trans, fs_info,
1360 src->root_key.objectid, dst_objectid,
1361 inherit);
1362 if (ret < 0)
1363 goto out;
1364
1365 /*
1366 * Now we do a simplified commit transaction, which will:
1367 * 1) commit all subvolume and extent tree
1368 * To ensure all subvolume and extent tree have a valid
1369 * commit_root to accounting later insert_dir_item()
1370 * 2) write all btree blocks onto disk
1371 * This is to make sure later btree modification will be cowed
1372 * Or commit_root can be populated and cause wrong qgroup numbers
1373 * In this simplified commit, we don't really care about other trees
1374 * like chunk and root tree, as they won't affect qgroup.
1375 * And we don't write super to avoid half committed status.
1376 */
1377 ret = commit_cowonly_roots(trans, src);
1378 if (ret)
1379 goto out;
1380 switch_commit_roots(trans->transaction, fs_info);
1381 ret = btrfs_write_and_wait_transaction(trans, src);
1382 if (ret)
1383 btrfs_handle_fs_error(fs_info, ret,
1384 "Error while writing out transaction for qgroup");
1385
1386 out:
1387 mutex_unlock(&fs_info->tree_log_mutex);
1388
1389 /*
1390 * Force parent root to be updated, as we recorded it before so its
1391 * last_trans == cur_transid.
1392 * Or it won't be committed again onto disk after later
1393 * insert_dir_item()
1394 */
1395 if (!ret)
1396 record_root_in_trans(trans, parent, 1);
1397 return ret;
1398 }
1399
1400 /*
1401 * new snapshots need to be created at a very specific time in the
1402 * transaction commit. This does the actual creation.
1403 *
1404 * Note:
1405 * If the error which may affect the commitment of the current transaction
1406 * happens, we should return the error number. If the error which just affect
1407 * the creation of the pending snapshots, just return 0.
1408 */
1409 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1410 struct btrfs_fs_info *fs_info,
1411 struct btrfs_pending_snapshot *pending)
1412 {
1413 struct btrfs_key key;
1414 struct btrfs_root_item *new_root_item;
1415 struct btrfs_root *tree_root = fs_info->tree_root;
1416 struct btrfs_root *root = pending->root;
1417 struct btrfs_root *parent_root;
1418 struct btrfs_block_rsv *rsv;
1419 struct inode *parent_inode;
1420 struct btrfs_path *path;
1421 struct btrfs_dir_item *dir_item;
1422 struct dentry *dentry;
1423 struct extent_buffer *tmp;
1424 struct extent_buffer *old;
1425 struct timespec cur_time;
1426 int ret = 0;
1427 u64 to_reserve = 0;
1428 u64 index = 0;
1429 u64 objectid;
1430 u64 root_flags;
1431 uuid_le new_uuid;
1432
1433 ASSERT(pending->path);
1434 path = pending->path;
1435
1436 ASSERT(pending->root_item);
1437 new_root_item = pending->root_item;
1438
1439 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1440 if (pending->error)
1441 goto no_free_objectid;
1442
1443 /*
1444 * Make qgroup to skip current new snapshot's qgroupid, as it is
1445 * accounted by later btrfs_qgroup_inherit().
1446 */
1447 btrfs_set_skip_qgroup(trans, objectid);
1448
1449 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1450
1451 if (to_reserve > 0) {
1452 pending->error = btrfs_block_rsv_add(root,
1453 &pending->block_rsv,
1454 to_reserve,
1455 BTRFS_RESERVE_NO_FLUSH);
1456 if (pending->error)
1457 goto clear_skip_qgroup;
1458 }
1459
1460 key.objectid = objectid;
1461 key.offset = (u64)-1;
1462 key.type = BTRFS_ROOT_ITEM_KEY;
1463
1464 rsv = trans->block_rsv;
1465 trans->block_rsv = &pending->block_rsv;
1466 trans->bytes_reserved = trans->block_rsv->reserved;
1467 trace_btrfs_space_reservation(root->fs_info, "transaction",
1468 trans->transid,
1469 trans->bytes_reserved, 1);
1470 dentry = pending->dentry;
1471 parent_inode = pending->dir;
1472 parent_root = BTRFS_I(parent_inode)->root;
1473 record_root_in_trans(trans, parent_root, 0);
1474
1475 cur_time = current_fs_time(parent_inode->i_sb);
1476
1477 /*
1478 * insert the directory item
1479 */
1480 ret = btrfs_set_inode_index(parent_inode, &index);
1481 BUG_ON(ret); /* -ENOMEM */
1482
1483 /* check if there is a file/dir which has the same name. */
1484 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1485 btrfs_ino(parent_inode),
1486 dentry->d_name.name,
1487 dentry->d_name.len, 0);
1488 if (dir_item != NULL && !IS_ERR(dir_item)) {
1489 pending->error = -EEXIST;
1490 goto dir_item_existed;
1491 } else if (IS_ERR(dir_item)) {
1492 ret = PTR_ERR(dir_item);
1493 btrfs_abort_transaction(trans, root, ret);
1494 goto fail;
1495 }
1496 btrfs_release_path(path);
1497
1498 /*
1499 * pull in the delayed directory update
1500 * and the delayed inode item
1501 * otherwise we corrupt the FS during
1502 * snapshot
1503 */
1504 ret = btrfs_run_delayed_items(trans, root);
1505 if (ret) { /* Transaction aborted */
1506 btrfs_abort_transaction(trans, root, ret);
1507 goto fail;
1508 }
1509
1510 record_root_in_trans(trans, root, 0);
1511 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1512 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1513 btrfs_check_and_init_root_item(new_root_item);
1514
1515 root_flags = btrfs_root_flags(new_root_item);
1516 if (pending->readonly)
1517 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1518 else
1519 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1520 btrfs_set_root_flags(new_root_item, root_flags);
1521
1522 btrfs_set_root_generation_v2(new_root_item,
1523 trans->transid);
1524 uuid_le_gen(&new_uuid);
1525 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1526 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1527 BTRFS_UUID_SIZE);
1528 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1529 memset(new_root_item->received_uuid, 0,
1530 sizeof(new_root_item->received_uuid));
1531 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1532 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1533 btrfs_set_root_stransid(new_root_item, 0);
1534 btrfs_set_root_rtransid(new_root_item, 0);
1535 }
1536 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1537 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1538 btrfs_set_root_otransid(new_root_item, trans->transid);
1539
1540 old = btrfs_lock_root_node(root);
1541 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1542 if (ret) {
1543 btrfs_tree_unlock(old);
1544 free_extent_buffer(old);
1545 btrfs_abort_transaction(trans, root, ret);
1546 goto fail;
1547 }
1548
1549 btrfs_set_lock_blocking(old);
1550
1551 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1552 /* clean up in any case */
1553 btrfs_tree_unlock(old);
1554 free_extent_buffer(old);
1555 if (ret) {
1556 btrfs_abort_transaction(trans, root, ret);
1557 goto fail;
1558 }
1559 /* see comments in should_cow_block() */
1560 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1561 smp_wmb();
1562
1563 btrfs_set_root_node(new_root_item, tmp);
1564 /* record when the snapshot was created in key.offset */
1565 key.offset = trans->transid;
1566 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1567 btrfs_tree_unlock(tmp);
1568 free_extent_buffer(tmp);
1569 if (ret) {
1570 btrfs_abort_transaction(trans, root, ret);
1571 goto fail;
1572 }
1573
1574 /*
1575 * insert root back/forward references
1576 */
1577 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1578 parent_root->root_key.objectid,
1579 btrfs_ino(parent_inode), index,
1580 dentry->d_name.name, dentry->d_name.len);
1581 if (ret) {
1582 btrfs_abort_transaction(trans, root, ret);
1583 goto fail;
1584 }
1585
1586 key.offset = (u64)-1;
1587 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1588 if (IS_ERR(pending->snap)) {
1589 ret = PTR_ERR(pending->snap);
1590 btrfs_abort_transaction(trans, root, ret);
1591 goto fail;
1592 }
1593
1594 ret = btrfs_reloc_post_snapshot(trans, pending);
1595 if (ret) {
1596 btrfs_abort_transaction(trans, root, ret);
1597 goto fail;
1598 }
1599
1600 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1601 if (ret) {
1602 btrfs_abort_transaction(trans, root, ret);
1603 goto fail;
1604 }
1605
1606 /*
1607 * Do special qgroup accounting for snapshot, as we do some qgroup
1608 * snapshot hack to do fast snapshot.
1609 * To co-operate with that hack, we do hack again.
1610 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1611 */
1612 ret = qgroup_account_snapshot(trans, root, parent_root,
1613 pending->inherit, objectid);
1614 if (ret < 0)
1615 goto fail;
1616
1617 ret = btrfs_insert_dir_item(trans, parent_root,
1618 dentry->d_name.name, dentry->d_name.len,
1619 parent_inode, &key,
1620 BTRFS_FT_DIR, index);
1621 /* We have check then name at the beginning, so it is impossible. */
1622 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1623 if (ret) {
1624 btrfs_abort_transaction(trans, root, ret);
1625 goto fail;
1626 }
1627
1628 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1629 dentry->d_name.len * 2);
1630 parent_inode->i_mtime = parent_inode->i_ctime =
1631 current_fs_time(parent_inode->i_sb);
1632 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1633 if (ret) {
1634 btrfs_abort_transaction(trans, root, ret);
1635 goto fail;
1636 }
1637 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1638 BTRFS_UUID_KEY_SUBVOL, objectid);
1639 if (ret) {
1640 btrfs_abort_transaction(trans, root, ret);
1641 goto fail;
1642 }
1643 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1644 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1645 new_root_item->received_uuid,
1646 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1647 objectid);
1648 if (ret && ret != -EEXIST) {
1649 btrfs_abort_transaction(trans, root, ret);
1650 goto fail;
1651 }
1652 }
1653
1654 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1655 if (ret) {
1656 btrfs_abort_transaction(trans, root, ret);
1657 goto fail;
1658 }
1659
1660 fail:
1661 pending->error = ret;
1662 dir_item_existed:
1663 trans->block_rsv = rsv;
1664 trans->bytes_reserved = 0;
1665 clear_skip_qgroup:
1666 btrfs_clear_skip_qgroup(trans);
1667 no_free_objectid:
1668 kfree(new_root_item);
1669 pending->root_item = NULL;
1670 btrfs_free_path(path);
1671 pending->path = NULL;
1672
1673 return ret;
1674 }
1675
1676 /*
1677 * create all the snapshots we've scheduled for creation
1678 */
1679 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1680 struct btrfs_fs_info *fs_info)
1681 {
1682 struct btrfs_pending_snapshot *pending, *next;
1683 struct list_head *head = &trans->transaction->pending_snapshots;
1684 int ret = 0;
1685
1686 list_for_each_entry_safe(pending, next, head, list) {
1687 list_del(&pending->list);
1688 ret = create_pending_snapshot(trans, fs_info, pending);
1689 if (ret)
1690 break;
1691 }
1692 return ret;
1693 }
1694
1695 static void update_super_roots(struct btrfs_root *root)
1696 {
1697 struct btrfs_root_item *root_item;
1698 struct btrfs_super_block *super;
1699
1700 super = root->fs_info->super_copy;
1701
1702 root_item = &root->fs_info->chunk_root->root_item;
1703 super->chunk_root = root_item->bytenr;
1704 super->chunk_root_generation = root_item->generation;
1705 super->chunk_root_level = root_item->level;
1706
1707 root_item = &root->fs_info->tree_root->root_item;
1708 super->root = root_item->bytenr;
1709 super->generation = root_item->generation;
1710 super->root_level = root_item->level;
1711 if (btrfs_test_opt(root, SPACE_CACHE))
1712 super->cache_generation = root_item->generation;
1713 if (root->fs_info->update_uuid_tree_gen)
1714 super->uuid_tree_generation = root_item->generation;
1715 }
1716
1717 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1718 {
1719 struct btrfs_transaction *trans;
1720 int ret = 0;
1721
1722 spin_lock(&info->trans_lock);
1723 trans = info->running_transaction;
1724 if (trans)
1725 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1726 spin_unlock(&info->trans_lock);
1727 return ret;
1728 }
1729
1730 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1731 {
1732 struct btrfs_transaction *trans;
1733 int ret = 0;
1734
1735 spin_lock(&info->trans_lock);
1736 trans = info->running_transaction;
1737 if (trans)
1738 ret = is_transaction_blocked(trans);
1739 spin_unlock(&info->trans_lock);
1740 return ret;
1741 }
1742
1743 /*
1744 * wait for the current transaction commit to start and block subsequent
1745 * transaction joins
1746 */
1747 static void wait_current_trans_commit_start(struct btrfs_root *root,
1748 struct btrfs_transaction *trans)
1749 {
1750 wait_event(root->fs_info->transaction_blocked_wait,
1751 trans->state >= TRANS_STATE_COMMIT_START ||
1752 trans->aborted);
1753 }
1754
1755 /*
1756 * wait for the current transaction to start and then become unblocked.
1757 * caller holds ref.
1758 */
1759 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1760 struct btrfs_transaction *trans)
1761 {
1762 wait_event(root->fs_info->transaction_wait,
1763 trans->state >= TRANS_STATE_UNBLOCKED ||
1764 trans->aborted);
1765 }
1766
1767 /*
1768 * commit transactions asynchronously. once btrfs_commit_transaction_async
1769 * returns, any subsequent transaction will not be allowed to join.
1770 */
1771 struct btrfs_async_commit {
1772 struct btrfs_trans_handle *newtrans;
1773 struct btrfs_root *root;
1774 struct work_struct work;
1775 };
1776
1777 static void do_async_commit(struct work_struct *work)
1778 {
1779 struct btrfs_async_commit *ac =
1780 container_of(work, struct btrfs_async_commit, work);
1781
1782 /*
1783 * We've got freeze protection passed with the transaction.
1784 * Tell lockdep about it.
1785 */
1786 if (ac->newtrans->type & __TRANS_FREEZABLE)
1787 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1788
1789 current->journal_info = ac->newtrans;
1790
1791 btrfs_commit_transaction(ac->newtrans, ac->root);
1792 kfree(ac);
1793 }
1794
1795 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1796 struct btrfs_root *root,
1797 int wait_for_unblock)
1798 {
1799 struct btrfs_async_commit *ac;
1800 struct btrfs_transaction *cur_trans;
1801
1802 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1803 if (!ac)
1804 return -ENOMEM;
1805
1806 INIT_WORK(&ac->work, do_async_commit);
1807 ac->root = root;
1808 ac->newtrans = btrfs_join_transaction(root);
1809 if (IS_ERR(ac->newtrans)) {
1810 int err = PTR_ERR(ac->newtrans);
1811 kfree(ac);
1812 return err;
1813 }
1814
1815 /* take transaction reference */
1816 cur_trans = trans->transaction;
1817 atomic_inc(&cur_trans->use_count);
1818
1819 btrfs_end_transaction(trans, root);
1820
1821 /*
1822 * Tell lockdep we've released the freeze rwsem, since the
1823 * async commit thread will be the one to unlock it.
1824 */
1825 if (ac->newtrans->type & __TRANS_FREEZABLE)
1826 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1827
1828 schedule_work(&ac->work);
1829
1830 /* wait for transaction to start and unblock */
1831 if (wait_for_unblock)
1832 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1833 else
1834 wait_current_trans_commit_start(root, cur_trans);
1835
1836 if (current->journal_info == trans)
1837 current->journal_info = NULL;
1838
1839 btrfs_put_transaction(cur_trans);
1840 return 0;
1841 }
1842
1843
1844 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1845 struct btrfs_root *root, int err)
1846 {
1847 struct btrfs_transaction *cur_trans = trans->transaction;
1848 DEFINE_WAIT(wait);
1849
1850 WARN_ON(trans->use_count > 1);
1851
1852 btrfs_abort_transaction(trans, root, err);
1853
1854 spin_lock(&root->fs_info->trans_lock);
1855
1856 /*
1857 * If the transaction is removed from the list, it means this
1858 * transaction has been committed successfully, so it is impossible
1859 * to call the cleanup function.
1860 */
1861 BUG_ON(list_empty(&cur_trans->list));
1862
1863 list_del_init(&cur_trans->list);
1864 if (cur_trans == root->fs_info->running_transaction) {
1865 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1866 spin_unlock(&root->fs_info->trans_lock);
1867 wait_event(cur_trans->writer_wait,
1868 atomic_read(&cur_trans->num_writers) == 1);
1869
1870 spin_lock(&root->fs_info->trans_lock);
1871 }
1872 spin_unlock(&root->fs_info->trans_lock);
1873
1874 btrfs_cleanup_one_transaction(trans->transaction, root);
1875
1876 spin_lock(&root->fs_info->trans_lock);
1877 if (cur_trans == root->fs_info->running_transaction)
1878 root->fs_info->running_transaction = NULL;
1879 spin_unlock(&root->fs_info->trans_lock);
1880
1881 if (trans->type & __TRANS_FREEZABLE)
1882 sb_end_intwrite(root->fs_info->sb);
1883 btrfs_put_transaction(cur_trans);
1884 btrfs_put_transaction(cur_trans);
1885
1886 trace_btrfs_transaction_commit(root);
1887
1888 if (current->journal_info == trans)
1889 current->journal_info = NULL;
1890 btrfs_scrub_cancel(root->fs_info);
1891
1892 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1893 }
1894
1895 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1896 {
1897 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1898 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1899 return 0;
1900 }
1901
1902 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1903 {
1904 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1905 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1906 }
1907
1908 static inline void
1909 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1910 {
1911 wait_event(cur_trans->pending_wait,
1912 atomic_read(&cur_trans->pending_ordered) == 0);
1913 }
1914
1915 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1916 struct btrfs_root *root)
1917 {
1918 struct btrfs_transaction *cur_trans = trans->transaction;
1919 struct btrfs_transaction *prev_trans = NULL;
1920 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1921 int ret;
1922
1923 /* Stop the commit early if ->aborted is set */
1924 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1925 ret = cur_trans->aborted;
1926 btrfs_end_transaction(trans, root);
1927 return ret;
1928 }
1929
1930 /* make a pass through all the delayed refs we have so far
1931 * any runnings procs may add more while we are here
1932 */
1933 ret = btrfs_run_delayed_refs(trans, root, 0);
1934 if (ret) {
1935 btrfs_end_transaction(trans, root);
1936 return ret;
1937 }
1938
1939 btrfs_trans_release_metadata(trans, root);
1940 trans->block_rsv = NULL;
1941
1942 cur_trans = trans->transaction;
1943
1944 /*
1945 * set the flushing flag so procs in this transaction have to
1946 * start sending their work down.
1947 */
1948 cur_trans->delayed_refs.flushing = 1;
1949 smp_wmb();
1950
1951 if (!list_empty(&trans->new_bgs))
1952 btrfs_create_pending_block_groups(trans, root);
1953
1954 ret = btrfs_run_delayed_refs(trans, root, 0);
1955 if (ret) {
1956 btrfs_end_transaction(trans, root);
1957 return ret;
1958 }
1959
1960 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1961 int run_it = 0;
1962
1963 /* this mutex is also taken before trying to set
1964 * block groups readonly. We need to make sure
1965 * that nobody has set a block group readonly
1966 * after a extents from that block group have been
1967 * allocated for cache files. btrfs_set_block_group_ro
1968 * will wait for the transaction to commit if it
1969 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1970 *
1971 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1972 * only one process starts all the block group IO. It wouldn't
1973 * hurt to have more than one go through, but there's no
1974 * real advantage to it either.
1975 */
1976 mutex_lock(&root->fs_info->ro_block_group_mutex);
1977 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1978 &cur_trans->flags))
1979 run_it = 1;
1980 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1981
1982 if (run_it)
1983 ret = btrfs_start_dirty_block_groups(trans, root);
1984 }
1985 if (ret) {
1986 btrfs_end_transaction(trans, root);
1987 return ret;
1988 }
1989
1990 spin_lock(&root->fs_info->trans_lock);
1991 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1992 spin_unlock(&root->fs_info->trans_lock);
1993 atomic_inc(&cur_trans->use_count);
1994 ret = btrfs_end_transaction(trans, root);
1995
1996 wait_for_commit(root, cur_trans);
1997
1998 if (unlikely(cur_trans->aborted))
1999 ret = cur_trans->aborted;
2000
2001 btrfs_put_transaction(cur_trans);
2002
2003 return ret;
2004 }
2005
2006 cur_trans->state = TRANS_STATE_COMMIT_START;
2007 wake_up(&root->fs_info->transaction_blocked_wait);
2008
2009 if (cur_trans->list.prev != &root->fs_info->trans_list) {
2010 prev_trans = list_entry(cur_trans->list.prev,
2011 struct btrfs_transaction, list);
2012 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2013 atomic_inc(&prev_trans->use_count);
2014 spin_unlock(&root->fs_info->trans_lock);
2015
2016 wait_for_commit(root, prev_trans);
2017 ret = prev_trans->aborted;
2018
2019 btrfs_put_transaction(prev_trans);
2020 if (ret)
2021 goto cleanup_transaction;
2022 } else {
2023 spin_unlock(&root->fs_info->trans_lock);
2024 }
2025 } else {
2026 spin_unlock(&root->fs_info->trans_lock);
2027 }
2028
2029 extwriter_counter_dec(cur_trans, trans->type);
2030
2031 ret = btrfs_start_delalloc_flush(root->fs_info);
2032 if (ret)
2033 goto cleanup_transaction;
2034
2035 ret = btrfs_run_delayed_items(trans, root);
2036 if (ret)
2037 goto cleanup_transaction;
2038
2039 wait_event(cur_trans->writer_wait,
2040 extwriter_counter_read(cur_trans) == 0);
2041
2042 /* some pending stuffs might be added after the previous flush. */
2043 ret = btrfs_run_delayed_items(trans, root);
2044 if (ret)
2045 goto cleanup_transaction;
2046
2047 btrfs_wait_delalloc_flush(root->fs_info);
2048
2049 btrfs_wait_pending_ordered(cur_trans);
2050
2051 btrfs_scrub_pause(root);
2052 /*
2053 * Ok now we need to make sure to block out any other joins while we
2054 * commit the transaction. We could have started a join before setting
2055 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2056 */
2057 spin_lock(&root->fs_info->trans_lock);
2058 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2059 spin_unlock(&root->fs_info->trans_lock);
2060 wait_event(cur_trans->writer_wait,
2061 atomic_read(&cur_trans->num_writers) == 1);
2062
2063 /* ->aborted might be set after the previous check, so check it */
2064 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2065 ret = cur_trans->aborted;
2066 goto scrub_continue;
2067 }
2068 /*
2069 * the reloc mutex makes sure that we stop
2070 * the balancing code from coming in and moving
2071 * extents around in the middle of the commit
2072 */
2073 mutex_lock(&root->fs_info->reloc_mutex);
2074
2075 /*
2076 * We needn't worry about the delayed items because we will
2077 * deal with them in create_pending_snapshot(), which is the
2078 * core function of the snapshot creation.
2079 */
2080 ret = create_pending_snapshots(trans, root->fs_info);
2081 if (ret) {
2082 mutex_unlock(&root->fs_info->reloc_mutex);
2083 goto scrub_continue;
2084 }
2085
2086 /*
2087 * We insert the dir indexes of the snapshots and update the inode
2088 * of the snapshots' parents after the snapshot creation, so there
2089 * are some delayed items which are not dealt with. Now deal with
2090 * them.
2091 *
2092 * We needn't worry that this operation will corrupt the snapshots,
2093 * because all the tree which are snapshoted will be forced to COW
2094 * the nodes and leaves.
2095 */
2096 ret = btrfs_run_delayed_items(trans, root);
2097 if (ret) {
2098 mutex_unlock(&root->fs_info->reloc_mutex);
2099 goto scrub_continue;
2100 }
2101
2102 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2103 if (ret) {
2104 mutex_unlock(&root->fs_info->reloc_mutex);
2105 goto scrub_continue;
2106 }
2107
2108 /* Reocrd old roots for later qgroup accounting */
2109 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2110 if (ret) {
2111 mutex_unlock(&root->fs_info->reloc_mutex);
2112 goto scrub_continue;
2113 }
2114
2115 /*
2116 * make sure none of the code above managed to slip in a
2117 * delayed item
2118 */
2119 btrfs_assert_delayed_root_empty(root);
2120
2121 WARN_ON(cur_trans != trans->transaction);
2122
2123 /* btrfs_commit_tree_roots is responsible for getting the
2124 * various roots consistent with each other. Every pointer
2125 * in the tree of tree roots has to point to the most up to date
2126 * root for every subvolume and other tree. So, we have to keep
2127 * the tree logging code from jumping in and changing any
2128 * of the trees.
2129 *
2130 * At this point in the commit, there can't be any tree-log
2131 * writers, but a little lower down we drop the trans mutex
2132 * and let new people in. By holding the tree_log_mutex
2133 * from now until after the super is written, we avoid races
2134 * with the tree-log code.
2135 */
2136 mutex_lock(&root->fs_info->tree_log_mutex);
2137
2138 ret = commit_fs_roots(trans, root);
2139 if (ret) {
2140 mutex_unlock(&root->fs_info->tree_log_mutex);
2141 mutex_unlock(&root->fs_info->reloc_mutex);
2142 goto scrub_continue;
2143 }
2144
2145 /*
2146 * Since the transaction is done, we can apply the pending changes
2147 * before the next transaction.
2148 */
2149 btrfs_apply_pending_changes(root->fs_info);
2150
2151 /* commit_fs_roots gets rid of all the tree log roots, it is now
2152 * safe to free the root of tree log roots
2153 */
2154 btrfs_free_log_root_tree(trans, root->fs_info);
2155
2156 /*
2157 * Since fs roots are all committed, we can get a quite accurate
2158 * new_roots. So let's do quota accounting.
2159 */
2160 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2161 if (ret < 0) {
2162 mutex_unlock(&root->fs_info->tree_log_mutex);
2163 mutex_unlock(&root->fs_info->reloc_mutex);
2164 goto scrub_continue;
2165 }
2166
2167 ret = commit_cowonly_roots(trans, root);
2168 if (ret) {
2169 mutex_unlock(&root->fs_info->tree_log_mutex);
2170 mutex_unlock(&root->fs_info->reloc_mutex);
2171 goto scrub_continue;
2172 }
2173
2174 /*
2175 * The tasks which save the space cache and inode cache may also
2176 * update ->aborted, check it.
2177 */
2178 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2179 ret = cur_trans->aborted;
2180 mutex_unlock(&root->fs_info->tree_log_mutex);
2181 mutex_unlock(&root->fs_info->reloc_mutex);
2182 goto scrub_continue;
2183 }
2184
2185 btrfs_prepare_extent_commit(trans, root);
2186
2187 cur_trans = root->fs_info->running_transaction;
2188
2189 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2190 root->fs_info->tree_root->node);
2191 list_add_tail(&root->fs_info->tree_root->dirty_list,
2192 &cur_trans->switch_commits);
2193
2194 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2195 root->fs_info->chunk_root->node);
2196 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2197 &cur_trans->switch_commits);
2198
2199 switch_commit_roots(cur_trans, root->fs_info);
2200
2201 assert_qgroups_uptodate(trans);
2202 ASSERT(list_empty(&cur_trans->dirty_bgs));
2203 ASSERT(list_empty(&cur_trans->io_bgs));
2204 update_super_roots(root);
2205
2206 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2207 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2208 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2209 sizeof(*root->fs_info->super_copy));
2210
2211 btrfs_update_commit_device_size(root->fs_info);
2212 btrfs_update_commit_device_bytes_used(root, cur_trans);
2213
2214 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2215 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2216
2217 btrfs_trans_release_chunk_metadata(trans);
2218
2219 spin_lock(&root->fs_info->trans_lock);
2220 cur_trans->state = TRANS_STATE_UNBLOCKED;
2221 root->fs_info->running_transaction = NULL;
2222 spin_unlock(&root->fs_info->trans_lock);
2223 mutex_unlock(&root->fs_info->reloc_mutex);
2224
2225 wake_up(&root->fs_info->transaction_wait);
2226
2227 ret = btrfs_write_and_wait_transaction(trans, root);
2228 if (ret) {
2229 btrfs_handle_fs_error(root->fs_info, ret,
2230 "Error while writing out transaction");
2231 mutex_unlock(&root->fs_info->tree_log_mutex);
2232 goto scrub_continue;
2233 }
2234
2235 ret = write_ctree_super(trans, root, 0);
2236 if (ret) {
2237 mutex_unlock(&root->fs_info->tree_log_mutex);
2238 goto scrub_continue;
2239 }
2240
2241 /*
2242 * the super is written, we can safely allow the tree-loggers
2243 * to go about their business
2244 */
2245 mutex_unlock(&root->fs_info->tree_log_mutex);
2246
2247 btrfs_finish_extent_commit(trans, root);
2248
2249 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2250 btrfs_clear_space_info_full(root->fs_info);
2251
2252 root->fs_info->last_trans_committed = cur_trans->transid;
2253 /*
2254 * We needn't acquire the lock here because there is no other task
2255 * which can change it.
2256 */
2257 cur_trans->state = TRANS_STATE_COMPLETED;
2258 wake_up(&cur_trans->commit_wait);
2259
2260 spin_lock(&root->fs_info->trans_lock);
2261 list_del_init(&cur_trans->list);
2262 spin_unlock(&root->fs_info->trans_lock);
2263
2264 btrfs_put_transaction(cur_trans);
2265 btrfs_put_transaction(cur_trans);
2266
2267 if (trans->type & __TRANS_FREEZABLE)
2268 sb_end_intwrite(root->fs_info->sb);
2269
2270 trace_btrfs_transaction_commit(root);
2271
2272 btrfs_scrub_continue(root);
2273
2274 if (current->journal_info == trans)
2275 current->journal_info = NULL;
2276
2277 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2278
2279 if (current != root->fs_info->transaction_kthread &&
2280 current != root->fs_info->cleaner_kthread)
2281 btrfs_run_delayed_iputs(root);
2282
2283 return ret;
2284
2285 scrub_continue:
2286 btrfs_scrub_continue(root);
2287 cleanup_transaction:
2288 btrfs_trans_release_metadata(trans, root);
2289 btrfs_trans_release_chunk_metadata(trans);
2290 trans->block_rsv = NULL;
2291 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2292 if (current->journal_info == trans)
2293 current->journal_info = NULL;
2294 cleanup_transaction(trans, root, ret);
2295
2296 return ret;
2297 }
2298
2299 /*
2300 * return < 0 if error
2301 * 0 if there are no more dead_roots at the time of call
2302 * 1 there are more to be processed, call me again
2303 *
2304 * The return value indicates there are certainly more snapshots to delete, but
2305 * if there comes a new one during processing, it may return 0. We don't mind,
2306 * because btrfs_commit_super will poke cleaner thread and it will process it a
2307 * few seconds later.
2308 */
2309 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2310 {
2311 int ret;
2312 struct btrfs_fs_info *fs_info = root->fs_info;
2313
2314 spin_lock(&fs_info->trans_lock);
2315 if (list_empty(&fs_info->dead_roots)) {
2316 spin_unlock(&fs_info->trans_lock);
2317 return 0;
2318 }
2319 root = list_first_entry(&fs_info->dead_roots,
2320 struct btrfs_root, root_list);
2321 list_del_init(&root->root_list);
2322 spin_unlock(&fs_info->trans_lock);
2323
2324 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2325
2326 btrfs_kill_all_delayed_nodes(root);
2327
2328 if (btrfs_header_backref_rev(root->node) <
2329 BTRFS_MIXED_BACKREF_REV)
2330 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2331 else
2332 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2333
2334 return (ret < 0) ? 0 : 1;
2335 }
2336
2337 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2338 {
2339 unsigned long prev;
2340 unsigned long bit;
2341
2342 prev = xchg(&fs_info->pending_changes, 0);
2343 if (!prev)
2344 return;
2345
2346 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2347 if (prev & bit)
2348 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2349 prev &= ~bit;
2350
2351 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2352 if (prev & bit)
2353 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2354 prev &= ~bit;
2355
2356 bit = 1 << BTRFS_PENDING_COMMIT;
2357 if (prev & bit)
2358 btrfs_debug(fs_info, "pending commit done");
2359 prev &= ~bit;
2360
2361 if (prev)
2362 btrfs_warn(fs_info,
2363 "unknown pending changes left 0x%lx, ignoring", prev);
2364 }
This page took 0.10116 seconds and 5 git commands to generate.