Btrfs: add snapshot/subvolume destroy ioctl
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
24 #include "ctree.h"
25 #include "disk-io.h"
26 #include "transaction.h"
27 #include "locking.h"
28 #include "tree-log.h"
29
30 #define BTRFS_ROOT_TRANS_TAG 0
31
32 static noinline void put_transaction(struct btrfs_transaction *transaction)
33 {
34 WARN_ON(transaction->use_count == 0);
35 transaction->use_count--;
36 if (transaction->use_count == 0) {
37 list_del_init(&transaction->list);
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
40 }
41 }
42
43 static noinline void switch_commit_root(struct btrfs_root *root)
44 {
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
47 }
48
49 /*
50 * either allocate a new transaction or hop into the existing one
51 */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54 struct btrfs_transaction *cur_trans;
55 cur_trans = root->fs_info->running_transaction;
56 if (!cur_trans) {
57 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58 GFP_NOFS);
59 BUG_ON(!cur_trans);
60 root->fs_info->generation++;
61 cur_trans->num_writers = 1;
62 cur_trans->num_joined = 0;
63 cur_trans->transid = root->fs_info->generation;
64 init_waitqueue_head(&cur_trans->writer_wait);
65 init_waitqueue_head(&cur_trans->commit_wait);
66 cur_trans->in_commit = 0;
67 cur_trans->blocked = 0;
68 cur_trans->use_count = 1;
69 cur_trans->commit_done = 0;
70 cur_trans->start_time = get_seconds();
71
72 cur_trans->delayed_refs.root.rb_node = NULL;
73 cur_trans->delayed_refs.num_entries = 0;
74 cur_trans->delayed_refs.num_heads_ready = 0;
75 cur_trans->delayed_refs.num_heads = 0;
76 cur_trans->delayed_refs.flushing = 0;
77 cur_trans->delayed_refs.run_delayed_start = 0;
78 spin_lock_init(&cur_trans->delayed_refs.lock);
79
80 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
81 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
82 extent_io_tree_init(&cur_trans->dirty_pages,
83 root->fs_info->btree_inode->i_mapping,
84 GFP_NOFS);
85 spin_lock(&root->fs_info->new_trans_lock);
86 root->fs_info->running_transaction = cur_trans;
87 spin_unlock(&root->fs_info->new_trans_lock);
88 } else {
89 cur_trans->num_writers++;
90 cur_trans->num_joined++;
91 }
92
93 return 0;
94 }
95
96 /*
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
101 */
102 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root)
104 {
105 if (root->ref_cows && root->last_trans < trans->transid) {
106 WARN_ON(root == root->fs_info->extent_root);
107 WARN_ON(root->commit_root != root->node);
108
109 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
110 (unsigned long)root->root_key.objectid,
111 BTRFS_ROOT_TRANS_TAG);
112 root->last_trans = trans->transid;
113 btrfs_init_reloc_root(trans, root);
114 }
115 return 0;
116 }
117
118 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
119 struct btrfs_root *root)
120 {
121 if (!root->ref_cows)
122 return 0;
123
124 mutex_lock(&root->fs_info->trans_mutex);
125 if (root->last_trans == trans->transid) {
126 mutex_unlock(&root->fs_info->trans_mutex);
127 return 0;
128 }
129
130 record_root_in_trans(trans, root);
131 mutex_unlock(&root->fs_info->trans_mutex);
132 return 0;
133 }
134
135 /* wait for commit against the current transaction to become unblocked
136 * when this is done, it is safe to start a new transaction, but the current
137 * transaction might not be fully on disk.
138 */
139 static void wait_current_trans(struct btrfs_root *root)
140 {
141 struct btrfs_transaction *cur_trans;
142
143 cur_trans = root->fs_info->running_transaction;
144 if (cur_trans && cur_trans->blocked) {
145 DEFINE_WAIT(wait);
146 cur_trans->use_count++;
147 while (1) {
148 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
149 TASK_UNINTERRUPTIBLE);
150 if (cur_trans->blocked) {
151 mutex_unlock(&root->fs_info->trans_mutex);
152 schedule();
153 mutex_lock(&root->fs_info->trans_mutex);
154 finish_wait(&root->fs_info->transaction_wait,
155 &wait);
156 } else {
157 finish_wait(&root->fs_info->transaction_wait,
158 &wait);
159 break;
160 }
161 }
162 put_transaction(cur_trans);
163 }
164 }
165
166 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
167 int num_blocks, int wait)
168 {
169 struct btrfs_trans_handle *h =
170 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
171 int ret;
172
173 mutex_lock(&root->fs_info->trans_mutex);
174 if (!root->fs_info->log_root_recovering &&
175 ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
176 wait_current_trans(root);
177 ret = join_transaction(root);
178 BUG_ON(ret);
179
180 h->transid = root->fs_info->running_transaction->transid;
181 h->transaction = root->fs_info->running_transaction;
182 h->blocks_reserved = num_blocks;
183 h->blocks_used = 0;
184 h->block_group = 0;
185 h->alloc_exclude_nr = 0;
186 h->alloc_exclude_start = 0;
187 h->delayed_ref_updates = 0;
188
189 root->fs_info->running_transaction->use_count++;
190 record_root_in_trans(h, root);
191 mutex_unlock(&root->fs_info->trans_mutex);
192 return h;
193 }
194
195 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
196 int num_blocks)
197 {
198 return start_transaction(root, num_blocks, 1);
199 }
200 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
201 int num_blocks)
202 {
203 return start_transaction(root, num_blocks, 0);
204 }
205
206 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
207 int num_blocks)
208 {
209 return start_transaction(r, num_blocks, 2);
210 }
211
212 /* wait for a transaction commit to be fully complete */
213 static noinline int wait_for_commit(struct btrfs_root *root,
214 struct btrfs_transaction *commit)
215 {
216 DEFINE_WAIT(wait);
217 mutex_lock(&root->fs_info->trans_mutex);
218 while (!commit->commit_done) {
219 prepare_to_wait(&commit->commit_wait, &wait,
220 TASK_UNINTERRUPTIBLE);
221 if (commit->commit_done)
222 break;
223 mutex_unlock(&root->fs_info->trans_mutex);
224 schedule();
225 mutex_lock(&root->fs_info->trans_mutex);
226 }
227 mutex_unlock(&root->fs_info->trans_mutex);
228 finish_wait(&commit->commit_wait, &wait);
229 return 0;
230 }
231
232 #if 0
233 /*
234 * rate limit against the drop_snapshot code. This helps to slow down new
235 * operations if the drop_snapshot code isn't able to keep up.
236 */
237 static void throttle_on_drops(struct btrfs_root *root)
238 {
239 struct btrfs_fs_info *info = root->fs_info;
240 int harder_count = 0;
241
242 harder:
243 if (atomic_read(&info->throttles)) {
244 DEFINE_WAIT(wait);
245 int thr;
246 thr = atomic_read(&info->throttle_gen);
247
248 do {
249 prepare_to_wait(&info->transaction_throttle,
250 &wait, TASK_UNINTERRUPTIBLE);
251 if (!atomic_read(&info->throttles)) {
252 finish_wait(&info->transaction_throttle, &wait);
253 break;
254 }
255 schedule();
256 finish_wait(&info->transaction_throttle, &wait);
257 } while (thr == atomic_read(&info->throttle_gen));
258 harder_count++;
259
260 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
261 harder_count < 2)
262 goto harder;
263
264 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
265 harder_count < 10)
266 goto harder;
267
268 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
269 harder_count < 20)
270 goto harder;
271 }
272 }
273 #endif
274
275 void btrfs_throttle(struct btrfs_root *root)
276 {
277 mutex_lock(&root->fs_info->trans_mutex);
278 if (!root->fs_info->open_ioctl_trans)
279 wait_current_trans(root);
280 mutex_unlock(&root->fs_info->trans_mutex);
281 }
282
283 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
284 struct btrfs_root *root, int throttle)
285 {
286 struct btrfs_transaction *cur_trans;
287 struct btrfs_fs_info *info = root->fs_info;
288 int count = 0;
289
290 while (count < 4) {
291 unsigned long cur = trans->delayed_ref_updates;
292 trans->delayed_ref_updates = 0;
293 if (cur &&
294 trans->transaction->delayed_refs.num_heads_ready > 64) {
295 trans->delayed_ref_updates = 0;
296
297 /*
298 * do a full flush if the transaction is trying
299 * to close
300 */
301 if (trans->transaction->delayed_refs.flushing)
302 cur = 0;
303 btrfs_run_delayed_refs(trans, root, cur);
304 } else {
305 break;
306 }
307 count++;
308 }
309
310 mutex_lock(&info->trans_mutex);
311 cur_trans = info->running_transaction;
312 WARN_ON(cur_trans != trans->transaction);
313 WARN_ON(cur_trans->num_writers < 1);
314 cur_trans->num_writers--;
315
316 if (waitqueue_active(&cur_trans->writer_wait))
317 wake_up(&cur_trans->writer_wait);
318 put_transaction(cur_trans);
319 mutex_unlock(&info->trans_mutex);
320 memset(trans, 0, sizeof(*trans));
321 kmem_cache_free(btrfs_trans_handle_cachep, trans);
322
323 return 0;
324 }
325
326 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
327 struct btrfs_root *root)
328 {
329 return __btrfs_end_transaction(trans, root, 0);
330 }
331
332 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
333 struct btrfs_root *root)
334 {
335 return __btrfs_end_transaction(trans, root, 1);
336 }
337
338 /*
339 * when btree blocks are allocated, they have some corresponding bits set for
340 * them in one of two extent_io trees. This is used to make sure all of
341 * those extents are on disk for transaction or log commit
342 */
343 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
344 struct extent_io_tree *dirty_pages)
345 {
346 int ret;
347 int err = 0;
348 int werr = 0;
349 struct page *page;
350 struct inode *btree_inode = root->fs_info->btree_inode;
351 u64 start = 0;
352 u64 end;
353 unsigned long index;
354
355 while (1) {
356 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
357 EXTENT_DIRTY);
358 if (ret)
359 break;
360 while (start <= end) {
361 cond_resched();
362
363 index = start >> PAGE_CACHE_SHIFT;
364 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
365 page = find_get_page(btree_inode->i_mapping, index);
366 if (!page)
367 continue;
368
369 btree_lock_page_hook(page);
370 if (!page->mapping) {
371 unlock_page(page);
372 page_cache_release(page);
373 continue;
374 }
375
376 if (PageWriteback(page)) {
377 if (PageDirty(page))
378 wait_on_page_writeback(page);
379 else {
380 unlock_page(page);
381 page_cache_release(page);
382 continue;
383 }
384 }
385 err = write_one_page(page, 0);
386 if (err)
387 werr = err;
388 page_cache_release(page);
389 }
390 }
391 while (1) {
392 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
393 EXTENT_DIRTY);
394 if (ret)
395 break;
396
397 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
398 while (start <= end) {
399 index = start >> PAGE_CACHE_SHIFT;
400 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
401 page = find_get_page(btree_inode->i_mapping, index);
402 if (!page)
403 continue;
404 if (PageDirty(page)) {
405 btree_lock_page_hook(page);
406 wait_on_page_writeback(page);
407 err = write_one_page(page, 0);
408 if (err)
409 werr = err;
410 }
411 wait_on_page_writeback(page);
412 page_cache_release(page);
413 cond_resched();
414 }
415 }
416 if (err)
417 werr = err;
418 return werr;
419 }
420
421 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
422 struct btrfs_root *root)
423 {
424 if (!trans || !trans->transaction) {
425 struct inode *btree_inode;
426 btree_inode = root->fs_info->btree_inode;
427 return filemap_write_and_wait(btree_inode->i_mapping);
428 }
429 return btrfs_write_and_wait_marked_extents(root,
430 &trans->transaction->dirty_pages);
431 }
432
433 /*
434 * this is used to update the root pointer in the tree of tree roots.
435 *
436 * But, in the case of the extent allocation tree, updating the root
437 * pointer may allocate blocks which may change the root of the extent
438 * allocation tree.
439 *
440 * So, this loops and repeats and makes sure the cowonly root didn't
441 * change while the root pointer was being updated in the metadata.
442 */
443 static int update_cowonly_root(struct btrfs_trans_handle *trans,
444 struct btrfs_root *root)
445 {
446 int ret;
447 u64 old_root_bytenr;
448 struct btrfs_root *tree_root = root->fs_info->tree_root;
449
450 btrfs_write_dirty_block_groups(trans, root);
451
452 while (1) {
453 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
454 if (old_root_bytenr == root->node->start)
455 break;
456
457 btrfs_set_root_node(&root->root_item, root->node);
458 ret = btrfs_update_root(trans, tree_root,
459 &root->root_key,
460 &root->root_item);
461 BUG_ON(ret);
462
463 ret = btrfs_write_dirty_block_groups(trans, root);
464 BUG_ON(ret);
465 }
466
467 if (root != root->fs_info->extent_root)
468 switch_commit_root(root);
469
470 return 0;
471 }
472
473 /*
474 * update all the cowonly tree roots on disk
475 */
476 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
477 struct btrfs_root *root)
478 {
479 struct btrfs_fs_info *fs_info = root->fs_info;
480 struct list_head *next;
481 struct extent_buffer *eb;
482 int ret;
483
484 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
485 BUG_ON(ret);
486
487 eb = btrfs_lock_root_node(fs_info->tree_root);
488 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
489 btrfs_tree_unlock(eb);
490 free_extent_buffer(eb);
491
492 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
493 BUG_ON(ret);
494
495 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
496 next = fs_info->dirty_cowonly_roots.next;
497 list_del_init(next);
498 root = list_entry(next, struct btrfs_root, dirty_list);
499
500 update_cowonly_root(trans, root);
501 }
502
503 down_write(&fs_info->extent_commit_sem);
504 switch_commit_root(fs_info->extent_root);
505 up_write(&fs_info->extent_commit_sem);
506
507 return 0;
508 }
509
510 /*
511 * dead roots are old snapshots that need to be deleted. This allocates
512 * a dirty root struct and adds it into the list of dead roots that need to
513 * be deleted
514 */
515 int btrfs_add_dead_root(struct btrfs_root *root)
516 {
517 mutex_lock(&root->fs_info->trans_mutex);
518 list_add(&root->root_list, &root->fs_info->dead_roots);
519 mutex_unlock(&root->fs_info->trans_mutex);
520 return 0;
521 }
522
523 /*
524 * update all the cowonly tree roots on disk
525 */
526 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
527 struct btrfs_root *root)
528 {
529 struct btrfs_root *gang[8];
530 struct btrfs_fs_info *fs_info = root->fs_info;
531 int i;
532 int ret;
533 int err = 0;
534
535 while (1) {
536 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
537 (void **)gang, 0,
538 ARRAY_SIZE(gang),
539 BTRFS_ROOT_TRANS_TAG);
540 if (ret == 0)
541 break;
542 for (i = 0; i < ret; i++) {
543 root = gang[i];
544 radix_tree_tag_clear(&fs_info->fs_roots_radix,
545 (unsigned long)root->root_key.objectid,
546 BTRFS_ROOT_TRANS_TAG);
547
548 btrfs_free_log(trans, root);
549 btrfs_update_reloc_root(trans, root);
550
551 if (root->commit_root != root->node) {
552 switch_commit_root(root);
553 btrfs_set_root_node(&root->root_item,
554 root->node);
555 }
556
557 err = btrfs_update_root(trans, fs_info->tree_root,
558 &root->root_key,
559 &root->root_item);
560 if (err)
561 break;
562 }
563 }
564 return err;
565 }
566
567 /*
568 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
569 * otherwise every leaf in the btree is read and defragged.
570 */
571 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
572 {
573 struct btrfs_fs_info *info = root->fs_info;
574 int ret;
575 struct btrfs_trans_handle *trans;
576 unsigned long nr;
577
578 smp_mb();
579 if (root->defrag_running)
580 return 0;
581 trans = btrfs_start_transaction(root, 1);
582 while (1) {
583 root->defrag_running = 1;
584 ret = btrfs_defrag_leaves(trans, root, cacheonly);
585 nr = trans->blocks_used;
586 btrfs_end_transaction(trans, root);
587 btrfs_btree_balance_dirty(info->tree_root, nr);
588 cond_resched();
589
590 trans = btrfs_start_transaction(root, 1);
591 if (root->fs_info->closing || ret != -EAGAIN)
592 break;
593 }
594 root->defrag_running = 0;
595 smp_mb();
596 btrfs_end_transaction(trans, root);
597 return 0;
598 }
599
600 #if 0
601 /*
602 * when dropping snapshots, we generate a ton of delayed refs, and it makes
603 * sense not to join the transaction while it is trying to flush the current
604 * queue of delayed refs out.
605 *
606 * This is used by the drop snapshot code only
607 */
608 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
609 {
610 DEFINE_WAIT(wait);
611
612 mutex_lock(&info->trans_mutex);
613 while (info->running_transaction &&
614 info->running_transaction->delayed_refs.flushing) {
615 prepare_to_wait(&info->transaction_wait, &wait,
616 TASK_UNINTERRUPTIBLE);
617 mutex_unlock(&info->trans_mutex);
618
619 schedule();
620
621 mutex_lock(&info->trans_mutex);
622 finish_wait(&info->transaction_wait, &wait);
623 }
624 mutex_unlock(&info->trans_mutex);
625 return 0;
626 }
627
628 /*
629 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
630 * all of them
631 */
632 int btrfs_drop_dead_root(struct btrfs_root *root)
633 {
634 struct btrfs_trans_handle *trans;
635 struct btrfs_root *tree_root = root->fs_info->tree_root;
636 unsigned long nr;
637 int ret;
638
639 while (1) {
640 /*
641 * we don't want to jump in and create a bunch of
642 * delayed refs if the transaction is starting to close
643 */
644 wait_transaction_pre_flush(tree_root->fs_info);
645 trans = btrfs_start_transaction(tree_root, 1);
646
647 /*
648 * we've joined a transaction, make sure it isn't
649 * closing right now
650 */
651 if (trans->transaction->delayed_refs.flushing) {
652 btrfs_end_transaction(trans, tree_root);
653 continue;
654 }
655
656 ret = btrfs_drop_snapshot(trans, root);
657 if (ret != -EAGAIN)
658 break;
659
660 ret = btrfs_update_root(trans, tree_root,
661 &root->root_key,
662 &root->root_item);
663 if (ret)
664 break;
665
666 nr = trans->blocks_used;
667 ret = btrfs_end_transaction(trans, tree_root);
668 BUG_ON(ret);
669
670 btrfs_btree_balance_dirty(tree_root, nr);
671 cond_resched();
672 }
673 BUG_ON(ret);
674
675 ret = btrfs_del_root(trans, tree_root, &root->root_key);
676 BUG_ON(ret);
677
678 nr = trans->blocks_used;
679 ret = btrfs_end_transaction(trans, tree_root);
680 BUG_ON(ret);
681
682 free_extent_buffer(root->node);
683 free_extent_buffer(root->commit_root);
684 kfree(root);
685
686 btrfs_btree_balance_dirty(tree_root, nr);
687 return ret;
688 }
689 #endif
690
691 /*
692 * new snapshots need to be created at a very specific time in the
693 * transaction commit. This does the actual creation
694 */
695 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
696 struct btrfs_fs_info *fs_info,
697 struct btrfs_pending_snapshot *pending)
698 {
699 struct btrfs_key key;
700 struct btrfs_root_item *new_root_item;
701 struct btrfs_root *tree_root = fs_info->tree_root;
702 struct btrfs_root *root = pending->root;
703 struct extent_buffer *tmp;
704 struct extent_buffer *old;
705 int ret;
706 u64 objectid;
707
708 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
709 if (!new_root_item) {
710 ret = -ENOMEM;
711 goto fail;
712 }
713 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
714 if (ret)
715 goto fail;
716
717 record_root_in_trans(trans, root);
718 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
719 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
720
721 key.objectid = objectid;
722 /* record when the snapshot was created in key.offset */
723 key.offset = trans->transid;
724 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
725
726 old = btrfs_lock_root_node(root);
727 btrfs_cow_block(trans, root, old, NULL, 0, &old);
728 btrfs_set_lock_blocking(old);
729
730 btrfs_copy_root(trans, root, old, &tmp, objectid);
731 btrfs_tree_unlock(old);
732 free_extent_buffer(old);
733
734 btrfs_set_root_node(new_root_item, tmp);
735 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
736 new_root_item);
737 btrfs_tree_unlock(tmp);
738 free_extent_buffer(tmp);
739 if (ret)
740 goto fail;
741
742 key.offset = (u64)-1;
743 memcpy(&pending->root_key, &key, sizeof(key));
744 fail:
745 kfree(new_root_item);
746 return ret;
747 }
748
749 static noinline int finish_pending_snapshot(struct btrfs_fs_info *fs_info,
750 struct btrfs_pending_snapshot *pending)
751 {
752 int ret;
753 int namelen;
754 u64 index = 0;
755 struct btrfs_trans_handle *trans;
756 struct inode *parent_inode;
757 struct inode *inode;
758 struct btrfs_root *parent_root;
759
760 parent_inode = pending->dentry->d_parent->d_inode;
761 parent_root = BTRFS_I(parent_inode)->root;
762 trans = btrfs_join_transaction(parent_root, 1);
763
764 /*
765 * insert the directory item
766 */
767 namelen = strlen(pending->name);
768 ret = btrfs_set_inode_index(parent_inode, &index);
769 ret = btrfs_insert_dir_item(trans, parent_root,
770 pending->name, namelen,
771 parent_inode->i_ino,
772 &pending->root_key, BTRFS_FT_DIR, index);
773
774 if (ret)
775 goto fail;
776
777 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
778 ret = btrfs_update_inode(trans, parent_root, parent_inode);
779 BUG_ON(ret);
780
781 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
782 pending->root_key.objectid,
783 parent_root->root_key.objectid,
784 parent_inode->i_ino, index, pending->name,
785 namelen);
786
787 BUG_ON(ret);
788
789 inode = btrfs_lookup_dentry(parent_inode, pending->dentry);
790 d_instantiate(pending->dentry, inode);
791 fail:
792 btrfs_end_transaction(trans, fs_info->fs_root);
793 return ret;
794 }
795
796 /*
797 * create all the snapshots we've scheduled for creation
798 */
799 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
800 struct btrfs_fs_info *fs_info)
801 {
802 struct btrfs_pending_snapshot *pending;
803 struct list_head *head = &trans->transaction->pending_snapshots;
804 int ret;
805
806 list_for_each_entry(pending, head, list) {
807 ret = create_pending_snapshot(trans, fs_info, pending);
808 BUG_ON(ret);
809 }
810 return 0;
811 }
812
813 static noinline int finish_pending_snapshots(struct btrfs_trans_handle *trans,
814 struct btrfs_fs_info *fs_info)
815 {
816 struct btrfs_pending_snapshot *pending;
817 struct list_head *head = &trans->transaction->pending_snapshots;
818 int ret;
819
820 while (!list_empty(head)) {
821 pending = list_entry(head->next,
822 struct btrfs_pending_snapshot, list);
823 ret = finish_pending_snapshot(fs_info, pending);
824 BUG_ON(ret);
825 list_del(&pending->list);
826 kfree(pending->name);
827 kfree(pending);
828 }
829 return 0;
830 }
831
832 static void update_super_roots(struct btrfs_root *root)
833 {
834 struct btrfs_root_item *root_item;
835 struct btrfs_super_block *super;
836
837 super = &root->fs_info->super_copy;
838
839 root_item = &root->fs_info->chunk_root->root_item;
840 super->chunk_root = root_item->bytenr;
841 super->chunk_root_generation = root_item->generation;
842 super->chunk_root_level = root_item->level;
843
844 root_item = &root->fs_info->tree_root->root_item;
845 super->root = root_item->bytenr;
846 super->generation = root_item->generation;
847 super->root_level = root_item->level;
848 }
849
850 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
851 {
852 int ret = 0;
853 spin_lock(&info->new_trans_lock);
854 if (info->running_transaction)
855 ret = info->running_transaction->in_commit;
856 spin_unlock(&info->new_trans_lock);
857 return ret;
858 }
859
860 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
861 struct btrfs_root *root)
862 {
863 unsigned long joined = 0;
864 unsigned long timeout = 1;
865 struct btrfs_transaction *cur_trans;
866 struct btrfs_transaction *prev_trans = NULL;
867 DEFINE_WAIT(wait);
868 int ret;
869 int should_grow = 0;
870 unsigned long now = get_seconds();
871 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
872
873 btrfs_run_ordered_operations(root, 0);
874
875 /* make a pass through all the delayed refs we have so far
876 * any runnings procs may add more while we are here
877 */
878 ret = btrfs_run_delayed_refs(trans, root, 0);
879 BUG_ON(ret);
880
881 cur_trans = trans->transaction;
882 /*
883 * set the flushing flag so procs in this transaction have to
884 * start sending their work down.
885 */
886 cur_trans->delayed_refs.flushing = 1;
887
888 ret = btrfs_run_delayed_refs(trans, root, 0);
889 BUG_ON(ret);
890
891 mutex_lock(&root->fs_info->trans_mutex);
892 if (cur_trans->in_commit) {
893 cur_trans->use_count++;
894 mutex_unlock(&root->fs_info->trans_mutex);
895 btrfs_end_transaction(trans, root);
896
897 ret = wait_for_commit(root, cur_trans);
898 BUG_ON(ret);
899
900 mutex_lock(&root->fs_info->trans_mutex);
901 put_transaction(cur_trans);
902 mutex_unlock(&root->fs_info->trans_mutex);
903
904 return 0;
905 }
906
907 trans->transaction->in_commit = 1;
908 trans->transaction->blocked = 1;
909 if (cur_trans->list.prev != &root->fs_info->trans_list) {
910 prev_trans = list_entry(cur_trans->list.prev,
911 struct btrfs_transaction, list);
912 if (!prev_trans->commit_done) {
913 prev_trans->use_count++;
914 mutex_unlock(&root->fs_info->trans_mutex);
915
916 wait_for_commit(root, prev_trans);
917
918 mutex_lock(&root->fs_info->trans_mutex);
919 put_transaction(prev_trans);
920 }
921 }
922
923 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
924 should_grow = 1;
925
926 do {
927 int snap_pending = 0;
928 joined = cur_trans->num_joined;
929 if (!list_empty(&trans->transaction->pending_snapshots))
930 snap_pending = 1;
931
932 WARN_ON(cur_trans != trans->transaction);
933 prepare_to_wait(&cur_trans->writer_wait, &wait,
934 TASK_UNINTERRUPTIBLE);
935
936 if (cur_trans->num_writers > 1)
937 timeout = MAX_SCHEDULE_TIMEOUT;
938 else if (should_grow)
939 timeout = 1;
940
941 mutex_unlock(&root->fs_info->trans_mutex);
942
943 if (flush_on_commit) {
944 btrfs_start_delalloc_inodes(root);
945 ret = btrfs_wait_ordered_extents(root, 0);
946 BUG_ON(ret);
947 } else if (snap_pending) {
948 ret = btrfs_wait_ordered_extents(root, 1);
949 BUG_ON(ret);
950 }
951
952 /*
953 * rename don't use btrfs_join_transaction, so, once we
954 * set the transaction to blocked above, we aren't going
955 * to get any new ordered operations. We can safely run
956 * it here and no for sure that nothing new will be added
957 * to the list
958 */
959 btrfs_run_ordered_operations(root, 1);
960
961 smp_mb();
962 if (cur_trans->num_writers > 1 || should_grow)
963 schedule_timeout(timeout);
964
965 mutex_lock(&root->fs_info->trans_mutex);
966 finish_wait(&cur_trans->writer_wait, &wait);
967 } while (cur_trans->num_writers > 1 ||
968 (should_grow && cur_trans->num_joined != joined));
969
970 ret = create_pending_snapshots(trans, root->fs_info);
971 BUG_ON(ret);
972
973 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
974 BUG_ON(ret);
975
976 WARN_ON(cur_trans != trans->transaction);
977
978 /* btrfs_commit_tree_roots is responsible for getting the
979 * various roots consistent with each other. Every pointer
980 * in the tree of tree roots has to point to the most up to date
981 * root for every subvolume and other tree. So, we have to keep
982 * the tree logging code from jumping in and changing any
983 * of the trees.
984 *
985 * At this point in the commit, there can't be any tree-log
986 * writers, but a little lower down we drop the trans mutex
987 * and let new people in. By holding the tree_log_mutex
988 * from now until after the super is written, we avoid races
989 * with the tree-log code.
990 */
991 mutex_lock(&root->fs_info->tree_log_mutex);
992
993 ret = commit_fs_roots(trans, root);
994 BUG_ON(ret);
995
996 /* commit_fs_roots gets rid of all the tree log roots, it is now
997 * safe to free the root of tree log roots
998 */
999 btrfs_free_log_root_tree(trans, root->fs_info);
1000
1001 ret = commit_cowonly_roots(trans, root);
1002 BUG_ON(ret);
1003
1004 btrfs_prepare_extent_commit(trans, root);
1005
1006 cur_trans = root->fs_info->running_transaction;
1007 spin_lock(&root->fs_info->new_trans_lock);
1008 root->fs_info->running_transaction = NULL;
1009 spin_unlock(&root->fs_info->new_trans_lock);
1010
1011 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1012 root->fs_info->tree_root->node);
1013 switch_commit_root(root->fs_info->tree_root);
1014
1015 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1016 root->fs_info->chunk_root->node);
1017 switch_commit_root(root->fs_info->chunk_root);
1018
1019 update_super_roots(root);
1020
1021 if (!root->fs_info->log_root_recovering) {
1022 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1023 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1024 }
1025
1026 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1027 sizeof(root->fs_info->super_copy));
1028
1029 trans->transaction->blocked = 0;
1030
1031 wake_up(&root->fs_info->transaction_wait);
1032
1033 mutex_unlock(&root->fs_info->trans_mutex);
1034 ret = btrfs_write_and_wait_transaction(trans, root);
1035 BUG_ON(ret);
1036 write_ctree_super(trans, root, 0);
1037
1038 /*
1039 * the super is written, we can safely allow the tree-loggers
1040 * to go about their business
1041 */
1042 mutex_unlock(&root->fs_info->tree_log_mutex);
1043
1044 btrfs_finish_extent_commit(trans, root);
1045
1046 /* do the directory inserts of any pending snapshot creations */
1047 finish_pending_snapshots(trans, root->fs_info);
1048
1049 mutex_lock(&root->fs_info->trans_mutex);
1050
1051 cur_trans->commit_done = 1;
1052
1053 root->fs_info->last_trans_committed = cur_trans->transid;
1054
1055 wake_up(&cur_trans->commit_wait);
1056
1057 put_transaction(cur_trans);
1058 put_transaction(cur_trans);
1059
1060 mutex_unlock(&root->fs_info->trans_mutex);
1061
1062 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1063 return ret;
1064 }
1065
1066 /*
1067 * interface function to delete all the snapshots we have scheduled for deletion
1068 */
1069 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1070 {
1071 LIST_HEAD(list);
1072 struct btrfs_fs_info *fs_info = root->fs_info;
1073
1074 mutex_lock(&fs_info->trans_mutex);
1075 list_splice_init(&fs_info->dead_roots, &list);
1076 mutex_unlock(&fs_info->trans_mutex);
1077
1078 while (!list_empty(&list)) {
1079 root = list_entry(list.next, struct btrfs_root, root_list);
1080 list_del(&root->root_list);
1081
1082 if (btrfs_header_backref_rev(root->node) <
1083 BTRFS_MIXED_BACKREF_REV)
1084 btrfs_drop_snapshot(root, 0);
1085 else
1086 btrfs_drop_snapshot(root, 1);
1087 }
1088 return 0;
1089 }
This page took 0.067437 seconds and 5 git commands to generate.