Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 /*
79 * If any block groups are found in ->deleted_bgs then it's
80 * because the transaction was aborted and a commit did not
81 * happen (things failed before writing the new superblock
82 * and calling btrfs_finish_extent_commit()), so we can not
83 * discard the physical locations of the block groups.
84 */
85 while (!list_empty(&transaction->deleted_bgs)) {
86 struct btrfs_block_group_cache *cache;
87
88 cache = list_first_entry(&transaction->deleted_bgs,
89 struct btrfs_block_group_cache,
90 bg_list);
91 list_del_init(&cache->bg_list);
92 btrfs_put_block_group_trimming(cache);
93 btrfs_put_block_group(cache);
94 }
95 kmem_cache_free(btrfs_transaction_cachep, transaction);
96 }
97 }
98
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
100 {
101 spin_lock(&tree->lock);
102 /*
103 * Do a single barrier for the waitqueue_active check here, the state
104 * of the waitqueue should not change once clear_btree_io_tree is
105 * called.
106 */
107 smp_mb();
108 while (!RB_EMPTY_ROOT(&tree->state)) {
109 struct rb_node *node;
110 struct extent_state *state;
111
112 node = rb_first(&tree->state);
113 state = rb_entry(node, struct extent_state, rb_node);
114 rb_erase(&state->rb_node, &tree->state);
115 RB_CLEAR_NODE(&state->rb_node);
116 /*
117 * btree io trees aren't supposed to have tasks waiting for
118 * changes in the flags of extent states ever.
119 */
120 ASSERT(!waitqueue_active(&state->wq));
121 free_extent_state(state);
122
123 cond_resched_lock(&tree->lock);
124 }
125 spin_unlock(&tree->lock);
126 }
127
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 struct btrfs_fs_info *fs_info)
130 {
131 struct btrfs_root *root, *tmp;
132
133 down_write(&fs_info->commit_root_sem);
134 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 dirty_list) {
136 list_del_init(&root->dirty_list);
137 free_extent_buffer(root->commit_root);
138 root->commit_root = btrfs_root_node(root);
139 if (is_fstree(root->objectid))
140 btrfs_unpin_free_ino(root);
141 clear_btree_io_tree(&root->dirty_log_pages);
142 }
143
144 /* We can free old roots now. */
145 spin_lock(&trans->dropped_roots_lock);
146 while (!list_empty(&trans->dropped_roots)) {
147 root = list_first_entry(&trans->dropped_roots,
148 struct btrfs_root, root_list);
149 list_del_init(&root->root_list);
150 spin_unlock(&trans->dropped_roots_lock);
151 btrfs_drop_and_free_fs_root(fs_info, root);
152 spin_lock(&trans->dropped_roots_lock);
153 }
154 spin_unlock(&trans->dropped_roots_lock);
155 up_write(&fs_info->commit_root_sem);
156 }
157
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 unsigned int type)
160 {
161 if (type & TRANS_EXTWRITERS)
162 atomic_inc(&trans->num_extwriters);
163 }
164
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 unsigned int type)
167 {
168 if (type & TRANS_EXTWRITERS)
169 atomic_dec(&trans->num_extwriters);
170 }
171
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 unsigned int type)
174 {
175 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176 }
177
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179 {
180 return atomic_read(&trans->num_extwriters);
181 }
182
183 /*
184 * either allocate a new transaction or hop into the existing one
185 */
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187 {
188 struct btrfs_transaction *cur_trans;
189 struct btrfs_fs_info *fs_info = root->fs_info;
190
191 spin_lock(&fs_info->trans_lock);
192 loop:
193 /* The file system has been taken offline. No new transactions. */
194 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 spin_unlock(&fs_info->trans_lock);
196 return -EROFS;
197 }
198
199 cur_trans = fs_info->running_transaction;
200 if (cur_trans) {
201 if (cur_trans->aborted) {
202 spin_unlock(&fs_info->trans_lock);
203 return cur_trans->aborted;
204 }
205 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 spin_unlock(&fs_info->trans_lock);
207 return -EBUSY;
208 }
209 atomic_inc(&cur_trans->use_count);
210 atomic_inc(&cur_trans->num_writers);
211 extwriter_counter_inc(cur_trans, type);
212 spin_unlock(&fs_info->trans_lock);
213 return 0;
214 }
215 spin_unlock(&fs_info->trans_lock);
216
217 /*
218 * If we are ATTACH, we just want to catch the current transaction,
219 * and commit it. If there is no transaction, just return ENOENT.
220 */
221 if (type == TRANS_ATTACH)
222 return -ENOENT;
223
224 /*
225 * JOIN_NOLOCK only happens during the transaction commit, so
226 * it is impossible that ->running_transaction is NULL
227 */
228 BUG_ON(type == TRANS_JOIN_NOLOCK);
229
230 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 if (!cur_trans)
232 return -ENOMEM;
233
234 spin_lock(&fs_info->trans_lock);
235 if (fs_info->running_transaction) {
236 /*
237 * someone started a transaction after we unlocked. Make sure
238 * to redo the checks above
239 */
240 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 goto loop;
242 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 spin_unlock(&fs_info->trans_lock);
244 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 return -EROFS;
246 }
247
248 atomic_set(&cur_trans->num_writers, 1);
249 extwriter_counter_init(cur_trans, type);
250 init_waitqueue_head(&cur_trans->writer_wait);
251 init_waitqueue_head(&cur_trans->commit_wait);
252 init_waitqueue_head(&cur_trans->pending_wait);
253 cur_trans->state = TRANS_STATE_RUNNING;
254 /*
255 * One for this trans handle, one so it will live on until we
256 * commit the transaction.
257 */
258 atomic_set(&cur_trans->use_count, 2);
259 atomic_set(&cur_trans->pending_ordered, 0);
260 cur_trans->flags = 0;
261 cur_trans->start_time = get_seconds();
262
263 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264
265 cur_trans->delayed_refs.href_root = RB_ROOT;
266 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268
269 /*
270 * although the tree mod log is per file system and not per transaction,
271 * the log must never go across transaction boundaries.
272 */
273 smp_mb();
274 if (!list_empty(&fs_info->tree_mod_seq_list))
275 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 "creating a fresh transaction\n");
277 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 "creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305 }
306
307 /*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
316 {
317 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318 root->last_trans < trans->transid) || force) {
319 WARN_ON(root == root->fs_info->extent_root);
320 WARN_ON(root->commit_root != root->node);
321
322 /*
323 * see below for IN_TRANS_SETUP usage rules
324 * we have the reloc mutex held now, so there
325 * is only one writer in this function
326 */
327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
328
329 /* make sure readers find IN_TRANS_SETUP before
330 * they find our root->last_trans update
331 */
332 smp_wmb();
333
334 spin_lock(&root->fs_info->fs_roots_radix_lock);
335 if (root->last_trans == trans->transid && !force) {
336 spin_unlock(&root->fs_info->fs_roots_radix_lock);
337 return 0;
338 }
339 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340 (unsigned long)root->root_key.objectid,
341 BTRFS_ROOT_TRANS_TAG);
342 spin_unlock(&root->fs_info->fs_roots_radix_lock);
343 root->last_trans = trans->transid;
344
345 /* this is pretty tricky. We don't want to
346 * take the relocation lock in btrfs_record_root_in_trans
347 * unless we're really doing the first setup for this root in
348 * this transaction.
349 *
350 * Normally we'd use root->last_trans as a flag to decide
351 * if we want to take the expensive mutex.
352 *
353 * But, we have to set root->last_trans before we
354 * init the relocation root, otherwise, we trip over warnings
355 * in ctree.c. The solution used here is to flag ourselves
356 * with root IN_TRANS_SETUP. When this is 1, we're still
357 * fixing up the reloc trees and everyone must wait.
358 *
359 * When this is zero, they can trust root->last_trans and fly
360 * through btrfs_record_root_in_trans without having to take the
361 * lock. smp_wmb() makes sure that all the writes above are
362 * done before we pop in the zero below
363 */
364 btrfs_init_reloc_root(trans, root);
365 smp_mb__before_atomic();
366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
367 }
368 return 0;
369 }
370
371
372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373 struct btrfs_root *root)
374 {
375 struct btrfs_transaction *cur_trans = trans->transaction;
376
377 /* Add ourselves to the transaction dropped list */
378 spin_lock(&cur_trans->dropped_roots_lock);
379 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380 spin_unlock(&cur_trans->dropped_roots_lock);
381
382 /* Make sure we don't try to update the root at commit time */
383 spin_lock(&root->fs_info->fs_roots_radix_lock);
384 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385 (unsigned long)root->root_key.objectid,
386 BTRFS_ROOT_TRANS_TAG);
387 spin_unlock(&root->fs_info->fs_roots_radix_lock);
388 }
389
390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391 struct btrfs_root *root)
392 {
393 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
394 return 0;
395
396 /*
397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
398 * and barriers
399 */
400 smp_rmb();
401 if (root->last_trans == trans->transid &&
402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
403 return 0;
404
405 mutex_lock(&root->fs_info->reloc_mutex);
406 record_root_in_trans(trans, root, 0);
407 mutex_unlock(&root->fs_info->reloc_mutex);
408
409 return 0;
410 }
411
412 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
413 {
414 return (trans->state >= TRANS_STATE_BLOCKED &&
415 trans->state < TRANS_STATE_UNBLOCKED &&
416 !trans->aborted);
417 }
418
419 /* wait for commit against the current transaction to become unblocked
420 * when this is done, it is safe to start a new transaction, but the current
421 * transaction might not be fully on disk.
422 */
423 static void wait_current_trans(struct btrfs_root *root)
424 {
425 struct btrfs_transaction *cur_trans;
426
427 spin_lock(&root->fs_info->trans_lock);
428 cur_trans = root->fs_info->running_transaction;
429 if (cur_trans && is_transaction_blocked(cur_trans)) {
430 atomic_inc(&cur_trans->use_count);
431 spin_unlock(&root->fs_info->trans_lock);
432
433 wait_event(root->fs_info->transaction_wait,
434 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435 cur_trans->aborted);
436 btrfs_put_transaction(cur_trans);
437 } else {
438 spin_unlock(&root->fs_info->trans_lock);
439 }
440 }
441
442 static int may_wait_transaction(struct btrfs_root *root, int type)
443 {
444 if (root->fs_info->log_root_recovering)
445 return 0;
446
447 if (type == TRANS_USERSPACE)
448 return 1;
449
450 if (type == TRANS_START &&
451 !atomic_read(&root->fs_info->open_ioctl_trans))
452 return 1;
453
454 return 0;
455 }
456
457 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
458 {
459 if (!root->fs_info->reloc_ctl ||
460 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
462 root->reloc_root)
463 return false;
464
465 return true;
466 }
467
468 static struct btrfs_trans_handle *
469 start_transaction(struct btrfs_root *root, unsigned int num_items,
470 unsigned int type, enum btrfs_reserve_flush_enum flush)
471 {
472 struct btrfs_trans_handle *h;
473 struct btrfs_transaction *cur_trans;
474 u64 num_bytes = 0;
475 u64 qgroup_reserved = 0;
476 bool reloc_reserved = false;
477 int ret;
478
479 /* Send isn't supposed to start transactions. */
480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
481
482 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483 return ERR_PTR(-EROFS);
484
485 if (current->journal_info) {
486 WARN_ON(type & TRANS_EXTWRITERS);
487 h = current->journal_info;
488 h->use_count++;
489 WARN_ON(h->use_count > 2);
490 h->orig_rsv = h->block_rsv;
491 h->block_rsv = NULL;
492 goto got_it;
493 }
494
495 /*
496 * Do the reservation before we join the transaction so we can do all
497 * the appropriate flushing if need be.
498 */
499 if (num_items > 0 && root != root->fs_info->chunk_root) {
500 qgroup_reserved = num_items * root->nodesize;
501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
502 if (ret)
503 return ERR_PTR(ret);
504
505 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
506 /*
507 * Do the reservation for the relocation root creation
508 */
509 if (need_reserve_reloc_root(root)) {
510 num_bytes += root->nodesize;
511 reloc_reserved = true;
512 }
513
514 ret = btrfs_block_rsv_add(root,
515 &root->fs_info->trans_block_rsv,
516 num_bytes, flush);
517 if (ret)
518 goto reserve_fail;
519 }
520 again:
521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
522 if (!h) {
523 ret = -ENOMEM;
524 goto alloc_fail;
525 }
526
527 /*
528 * If we are JOIN_NOLOCK we're already committing a transaction and
529 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 * because we're already holding a ref. We need this because we could
531 * have raced in and did an fsync() on a file which can kick a commit
532 * and then we deadlock with somebody doing a freeze.
533 *
534 * If we are ATTACH, it means we just want to catch the current
535 * transaction and commit it, so we needn't do sb_start_intwrite().
536 */
537 if (type & __TRANS_FREEZABLE)
538 sb_start_intwrite(root->fs_info->sb);
539
540 if (may_wait_transaction(root, type))
541 wait_current_trans(root);
542
543 do {
544 ret = join_transaction(root, type);
545 if (ret == -EBUSY) {
546 wait_current_trans(root);
547 if (unlikely(type == TRANS_ATTACH))
548 ret = -ENOENT;
549 }
550 } while (ret == -EBUSY);
551
552 if (ret < 0) {
553 /* We must get the transaction if we are JOIN_NOLOCK. */
554 BUG_ON(type == TRANS_JOIN_NOLOCK);
555 goto join_fail;
556 }
557
558 cur_trans = root->fs_info->running_transaction;
559
560 h->transid = cur_trans->transid;
561 h->transaction = cur_trans;
562 h->root = root;
563 h->use_count = 1;
564
565 h->type = type;
566 h->can_flush_pending_bgs = true;
567 INIT_LIST_HEAD(&h->qgroup_ref_list);
568 INIT_LIST_HEAD(&h->new_bgs);
569
570 smp_mb();
571 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
572 may_wait_transaction(root, type)) {
573 current->journal_info = h;
574 btrfs_commit_transaction(h, root);
575 goto again;
576 }
577
578 if (num_bytes) {
579 trace_btrfs_space_reservation(root->fs_info, "transaction",
580 h->transid, num_bytes, 1);
581 h->block_rsv = &root->fs_info->trans_block_rsv;
582 h->bytes_reserved = num_bytes;
583 h->reloc_reserved = reloc_reserved;
584 }
585
586 got_it:
587 btrfs_record_root_in_trans(h, root);
588
589 if (!current->journal_info && type != TRANS_USERSPACE)
590 current->journal_info = h;
591 return h;
592
593 join_fail:
594 if (type & __TRANS_FREEZABLE)
595 sb_end_intwrite(root->fs_info->sb);
596 kmem_cache_free(btrfs_trans_handle_cachep, h);
597 alloc_fail:
598 if (num_bytes)
599 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
600 num_bytes);
601 reserve_fail:
602 btrfs_qgroup_free_meta(root, qgroup_reserved);
603 return ERR_PTR(ret);
604 }
605
606 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
607 unsigned int num_items)
608 {
609 return start_transaction(root, num_items, TRANS_START,
610 BTRFS_RESERVE_FLUSH_ALL);
611 }
612 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
613 struct btrfs_root *root,
614 unsigned int num_items,
615 int min_factor)
616 {
617 struct btrfs_trans_handle *trans;
618 u64 num_bytes;
619 int ret;
620
621 trans = btrfs_start_transaction(root, num_items);
622 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
623 return trans;
624
625 trans = btrfs_start_transaction(root, 0);
626 if (IS_ERR(trans))
627 return trans;
628
629 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
630 ret = btrfs_cond_migrate_bytes(root->fs_info,
631 &root->fs_info->trans_block_rsv,
632 num_bytes,
633 min_factor);
634 if (ret) {
635 btrfs_end_transaction(trans, root);
636 return ERR_PTR(ret);
637 }
638
639 trans->block_rsv = &root->fs_info->trans_block_rsv;
640 trans->bytes_reserved = num_bytes;
641 trace_btrfs_space_reservation(root->fs_info, "transaction",
642 trans->transid, num_bytes, 1);
643
644 return trans;
645 }
646
647 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
648 struct btrfs_root *root,
649 unsigned int num_items)
650 {
651 return start_transaction(root, num_items, TRANS_START,
652 BTRFS_RESERVE_FLUSH_LIMIT);
653 }
654
655 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
656 {
657 return start_transaction(root, 0, TRANS_JOIN,
658 BTRFS_RESERVE_NO_FLUSH);
659 }
660
661 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
662 {
663 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
664 BTRFS_RESERVE_NO_FLUSH);
665 }
666
667 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
668 {
669 return start_transaction(root, 0, TRANS_USERSPACE,
670 BTRFS_RESERVE_NO_FLUSH);
671 }
672
673 /*
674 * btrfs_attach_transaction() - catch the running transaction
675 *
676 * It is used when we want to commit the current the transaction, but
677 * don't want to start a new one.
678 *
679 * Note: If this function return -ENOENT, it just means there is no
680 * running transaction. But it is possible that the inactive transaction
681 * is still in the memory, not fully on disk. If you hope there is no
682 * inactive transaction in the fs when -ENOENT is returned, you should
683 * invoke
684 * btrfs_attach_transaction_barrier()
685 */
686 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
687 {
688 return start_transaction(root, 0, TRANS_ATTACH,
689 BTRFS_RESERVE_NO_FLUSH);
690 }
691
692 /*
693 * btrfs_attach_transaction_barrier() - catch the running transaction
694 *
695 * It is similar to the above function, the differentia is this one
696 * will wait for all the inactive transactions until they fully
697 * complete.
698 */
699 struct btrfs_trans_handle *
700 btrfs_attach_transaction_barrier(struct btrfs_root *root)
701 {
702 struct btrfs_trans_handle *trans;
703
704 trans = start_transaction(root, 0, TRANS_ATTACH,
705 BTRFS_RESERVE_NO_FLUSH);
706 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
707 btrfs_wait_for_commit(root, 0);
708
709 return trans;
710 }
711
712 /* wait for a transaction commit to be fully complete */
713 static noinline void wait_for_commit(struct btrfs_root *root,
714 struct btrfs_transaction *commit)
715 {
716 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
717 }
718
719 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
720 {
721 struct btrfs_transaction *cur_trans = NULL, *t;
722 int ret = 0;
723
724 if (transid) {
725 if (transid <= root->fs_info->last_trans_committed)
726 goto out;
727
728 /* find specified transaction */
729 spin_lock(&root->fs_info->trans_lock);
730 list_for_each_entry(t, &root->fs_info->trans_list, list) {
731 if (t->transid == transid) {
732 cur_trans = t;
733 atomic_inc(&cur_trans->use_count);
734 ret = 0;
735 break;
736 }
737 if (t->transid > transid) {
738 ret = 0;
739 break;
740 }
741 }
742 spin_unlock(&root->fs_info->trans_lock);
743
744 /*
745 * The specified transaction doesn't exist, or we
746 * raced with btrfs_commit_transaction
747 */
748 if (!cur_trans) {
749 if (transid > root->fs_info->last_trans_committed)
750 ret = -EINVAL;
751 goto out;
752 }
753 } else {
754 /* find newest transaction that is committing | committed */
755 spin_lock(&root->fs_info->trans_lock);
756 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
757 list) {
758 if (t->state >= TRANS_STATE_COMMIT_START) {
759 if (t->state == TRANS_STATE_COMPLETED)
760 break;
761 cur_trans = t;
762 atomic_inc(&cur_trans->use_count);
763 break;
764 }
765 }
766 spin_unlock(&root->fs_info->trans_lock);
767 if (!cur_trans)
768 goto out; /* nothing committing|committed */
769 }
770
771 wait_for_commit(root, cur_trans);
772 btrfs_put_transaction(cur_trans);
773 out:
774 return ret;
775 }
776
777 void btrfs_throttle(struct btrfs_root *root)
778 {
779 if (!atomic_read(&root->fs_info->open_ioctl_trans))
780 wait_current_trans(root);
781 }
782
783 static int should_end_transaction(struct btrfs_trans_handle *trans,
784 struct btrfs_root *root)
785 {
786 if (root->fs_info->global_block_rsv.space_info->full &&
787 btrfs_check_space_for_delayed_refs(trans, root))
788 return 1;
789
790 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
791 }
792
793 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
794 struct btrfs_root *root)
795 {
796 struct btrfs_transaction *cur_trans = trans->transaction;
797 int updates;
798 int err;
799
800 smp_mb();
801 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
802 cur_trans->delayed_refs.flushing)
803 return 1;
804
805 updates = trans->delayed_ref_updates;
806 trans->delayed_ref_updates = 0;
807 if (updates) {
808 err = btrfs_run_delayed_refs(trans, root, updates * 2);
809 if (err) /* Error code will also eval true */
810 return err;
811 }
812
813 return should_end_transaction(trans, root);
814 }
815
816 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
817 struct btrfs_root *root, int throttle)
818 {
819 struct btrfs_transaction *cur_trans = trans->transaction;
820 struct btrfs_fs_info *info = root->fs_info;
821 u64 transid = trans->transid;
822 unsigned long cur = trans->delayed_ref_updates;
823 int lock = (trans->type != TRANS_JOIN_NOLOCK);
824 int err = 0;
825 int must_run_delayed_refs = 0;
826
827 if (trans->use_count > 1) {
828 trans->use_count--;
829 trans->block_rsv = trans->orig_rsv;
830 return 0;
831 }
832
833 btrfs_trans_release_metadata(trans, root);
834 trans->block_rsv = NULL;
835
836 if (!list_empty(&trans->new_bgs))
837 btrfs_create_pending_block_groups(trans, root);
838
839 trans->delayed_ref_updates = 0;
840 if (!trans->sync) {
841 must_run_delayed_refs =
842 btrfs_should_throttle_delayed_refs(trans, root);
843 cur = max_t(unsigned long, cur, 32);
844
845 /*
846 * don't make the caller wait if they are from a NOLOCK
847 * or ATTACH transaction, it will deadlock with commit
848 */
849 if (must_run_delayed_refs == 1 &&
850 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
851 must_run_delayed_refs = 2;
852 }
853
854 btrfs_trans_release_metadata(trans, root);
855 trans->block_rsv = NULL;
856
857 if (!list_empty(&trans->new_bgs))
858 btrfs_create_pending_block_groups(trans, root);
859
860 btrfs_trans_release_chunk_metadata(trans);
861
862 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
863 should_end_transaction(trans, root) &&
864 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
865 spin_lock(&info->trans_lock);
866 if (cur_trans->state == TRANS_STATE_RUNNING)
867 cur_trans->state = TRANS_STATE_BLOCKED;
868 spin_unlock(&info->trans_lock);
869 }
870
871 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
872 if (throttle)
873 return btrfs_commit_transaction(trans, root);
874 else
875 wake_up_process(info->transaction_kthread);
876 }
877
878 if (trans->type & __TRANS_FREEZABLE)
879 sb_end_intwrite(root->fs_info->sb);
880
881 WARN_ON(cur_trans != info->running_transaction);
882 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
883 atomic_dec(&cur_trans->num_writers);
884 extwriter_counter_dec(cur_trans, trans->type);
885
886 /*
887 * Make sure counter is updated before we wake up waiters.
888 */
889 smp_mb();
890 if (waitqueue_active(&cur_trans->writer_wait))
891 wake_up(&cur_trans->writer_wait);
892 btrfs_put_transaction(cur_trans);
893
894 if (current->journal_info == trans)
895 current->journal_info = NULL;
896
897 if (throttle)
898 btrfs_run_delayed_iputs(root);
899
900 if (trans->aborted ||
901 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
902 wake_up_process(info->transaction_kthread);
903 err = -EIO;
904 }
905 assert_qgroups_uptodate(trans);
906
907 kmem_cache_free(btrfs_trans_handle_cachep, trans);
908 if (must_run_delayed_refs) {
909 btrfs_async_run_delayed_refs(root, cur, transid,
910 must_run_delayed_refs == 1);
911 }
912 return err;
913 }
914
915 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
916 struct btrfs_root *root)
917 {
918 return __btrfs_end_transaction(trans, root, 0);
919 }
920
921 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
922 struct btrfs_root *root)
923 {
924 return __btrfs_end_transaction(trans, root, 1);
925 }
926
927 /*
928 * when btree blocks are allocated, they have some corresponding bits set for
929 * them in one of two extent_io trees. This is used to make sure all of
930 * those extents are sent to disk but does not wait on them
931 */
932 int btrfs_write_marked_extents(struct btrfs_root *root,
933 struct extent_io_tree *dirty_pages, int mark)
934 {
935 int err = 0;
936 int werr = 0;
937 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
938 struct extent_state *cached_state = NULL;
939 u64 start = 0;
940 u64 end;
941
942 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
943 mark, &cached_state)) {
944 bool wait_writeback = false;
945
946 err = convert_extent_bit(dirty_pages, start, end,
947 EXTENT_NEED_WAIT,
948 mark, &cached_state);
949 /*
950 * convert_extent_bit can return -ENOMEM, which is most of the
951 * time a temporary error. So when it happens, ignore the error
952 * and wait for writeback of this range to finish - because we
953 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
954 * to btrfs_wait_marked_extents() would not know that writeback
955 * for this range started and therefore wouldn't wait for it to
956 * finish - we don't want to commit a superblock that points to
957 * btree nodes/leafs for which writeback hasn't finished yet
958 * (and without errors).
959 * We cleanup any entries left in the io tree when committing
960 * the transaction (through clear_btree_io_tree()).
961 */
962 if (err == -ENOMEM) {
963 err = 0;
964 wait_writeback = true;
965 }
966 if (!err)
967 err = filemap_fdatawrite_range(mapping, start, end);
968 if (err)
969 werr = err;
970 else if (wait_writeback)
971 werr = filemap_fdatawait_range(mapping, start, end);
972 free_extent_state(cached_state);
973 cached_state = NULL;
974 cond_resched();
975 start = end + 1;
976 }
977 return werr;
978 }
979
980 /*
981 * when btree blocks are allocated, they have some corresponding bits set for
982 * them in one of two extent_io trees. This is used to make sure all of
983 * those extents are on disk for transaction or log commit. We wait
984 * on all the pages and clear them from the dirty pages state tree
985 */
986 int btrfs_wait_marked_extents(struct btrfs_root *root,
987 struct extent_io_tree *dirty_pages, int mark)
988 {
989 int err = 0;
990 int werr = 0;
991 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
992 struct extent_state *cached_state = NULL;
993 u64 start = 0;
994 u64 end;
995 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
996 bool errors = false;
997
998 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
999 EXTENT_NEED_WAIT, &cached_state)) {
1000 /*
1001 * Ignore -ENOMEM errors returned by clear_extent_bit().
1002 * When committing the transaction, we'll remove any entries
1003 * left in the io tree. For a log commit, we don't remove them
1004 * after committing the log because the tree can be accessed
1005 * concurrently - we do it only at transaction commit time when
1006 * it's safe to do it (through clear_btree_io_tree()).
1007 */
1008 err = clear_extent_bit(dirty_pages, start, end,
1009 EXTENT_NEED_WAIT,
1010 0, 0, &cached_state, GFP_NOFS);
1011 if (err == -ENOMEM)
1012 err = 0;
1013 if (!err)
1014 err = filemap_fdatawait_range(mapping, start, end);
1015 if (err)
1016 werr = err;
1017 free_extent_state(cached_state);
1018 cached_state = NULL;
1019 cond_resched();
1020 start = end + 1;
1021 }
1022 if (err)
1023 werr = err;
1024
1025 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1026 if ((mark & EXTENT_DIRTY) &&
1027 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1028 &btree_ino->runtime_flags))
1029 errors = true;
1030
1031 if ((mark & EXTENT_NEW) &&
1032 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1033 &btree_ino->runtime_flags))
1034 errors = true;
1035 } else {
1036 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1037 &btree_ino->runtime_flags))
1038 errors = true;
1039 }
1040
1041 if (errors && !werr)
1042 werr = -EIO;
1043
1044 return werr;
1045 }
1046
1047 /*
1048 * when btree blocks are allocated, they have some corresponding bits set for
1049 * them in one of two extent_io trees. This is used to make sure all of
1050 * those extents are on disk for transaction or log commit
1051 */
1052 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1053 struct extent_io_tree *dirty_pages, int mark)
1054 {
1055 int ret;
1056 int ret2;
1057 struct blk_plug plug;
1058
1059 blk_start_plug(&plug);
1060 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1061 blk_finish_plug(&plug);
1062 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1063
1064 if (ret)
1065 return ret;
1066 if (ret2)
1067 return ret2;
1068 return 0;
1069 }
1070
1071 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root)
1073 {
1074 int ret;
1075
1076 ret = btrfs_write_and_wait_marked_extents(root,
1077 &trans->transaction->dirty_pages,
1078 EXTENT_DIRTY);
1079 clear_btree_io_tree(&trans->transaction->dirty_pages);
1080
1081 return ret;
1082 }
1083
1084 /*
1085 * this is used to update the root pointer in the tree of tree roots.
1086 *
1087 * But, in the case of the extent allocation tree, updating the root
1088 * pointer may allocate blocks which may change the root of the extent
1089 * allocation tree.
1090 *
1091 * So, this loops and repeats and makes sure the cowonly root didn't
1092 * change while the root pointer was being updated in the metadata.
1093 */
1094 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1095 struct btrfs_root *root)
1096 {
1097 int ret;
1098 u64 old_root_bytenr;
1099 u64 old_root_used;
1100 struct btrfs_root *tree_root = root->fs_info->tree_root;
1101
1102 old_root_used = btrfs_root_used(&root->root_item);
1103
1104 while (1) {
1105 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1106 if (old_root_bytenr == root->node->start &&
1107 old_root_used == btrfs_root_used(&root->root_item))
1108 break;
1109
1110 btrfs_set_root_node(&root->root_item, root->node);
1111 ret = btrfs_update_root(trans, tree_root,
1112 &root->root_key,
1113 &root->root_item);
1114 if (ret)
1115 return ret;
1116
1117 old_root_used = btrfs_root_used(&root->root_item);
1118 }
1119
1120 return 0;
1121 }
1122
1123 /*
1124 * update all the cowonly tree roots on disk
1125 *
1126 * The error handling in this function may not be obvious. Any of the
1127 * failures will cause the file system to go offline. We still need
1128 * to clean up the delayed refs.
1129 */
1130 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1131 struct btrfs_root *root)
1132 {
1133 struct btrfs_fs_info *fs_info = root->fs_info;
1134 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1135 struct list_head *io_bgs = &trans->transaction->io_bgs;
1136 struct list_head *next;
1137 struct extent_buffer *eb;
1138 int ret;
1139
1140 eb = btrfs_lock_root_node(fs_info->tree_root);
1141 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1142 0, &eb);
1143 btrfs_tree_unlock(eb);
1144 free_extent_buffer(eb);
1145
1146 if (ret)
1147 return ret;
1148
1149 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1150 if (ret)
1151 return ret;
1152
1153 ret = btrfs_run_dev_stats(trans, root->fs_info);
1154 if (ret)
1155 return ret;
1156 ret = btrfs_run_dev_replace(trans, root->fs_info);
1157 if (ret)
1158 return ret;
1159 ret = btrfs_run_qgroups(trans, root->fs_info);
1160 if (ret)
1161 return ret;
1162
1163 ret = btrfs_setup_space_cache(trans, root);
1164 if (ret)
1165 return ret;
1166
1167 /* run_qgroups might have added some more refs */
1168 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1169 if (ret)
1170 return ret;
1171 again:
1172 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1173 next = fs_info->dirty_cowonly_roots.next;
1174 list_del_init(next);
1175 root = list_entry(next, struct btrfs_root, dirty_list);
1176 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1177
1178 if (root != fs_info->extent_root)
1179 list_add_tail(&root->dirty_list,
1180 &trans->transaction->switch_commits);
1181 ret = update_cowonly_root(trans, root);
1182 if (ret)
1183 return ret;
1184 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1185 if (ret)
1186 return ret;
1187 }
1188
1189 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1190 ret = btrfs_write_dirty_block_groups(trans, root);
1191 if (ret)
1192 return ret;
1193 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1194 if (ret)
1195 return ret;
1196 }
1197
1198 if (!list_empty(&fs_info->dirty_cowonly_roots))
1199 goto again;
1200
1201 list_add_tail(&fs_info->extent_root->dirty_list,
1202 &trans->transaction->switch_commits);
1203 btrfs_after_dev_replace_commit(fs_info);
1204
1205 return 0;
1206 }
1207
1208 /*
1209 * dead roots are old snapshots that need to be deleted. This allocates
1210 * a dirty root struct and adds it into the list of dead roots that need to
1211 * be deleted
1212 */
1213 void btrfs_add_dead_root(struct btrfs_root *root)
1214 {
1215 spin_lock(&root->fs_info->trans_lock);
1216 if (list_empty(&root->root_list))
1217 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1218 spin_unlock(&root->fs_info->trans_lock);
1219 }
1220
1221 /*
1222 * update all the cowonly tree roots on disk
1223 */
1224 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1225 struct btrfs_root *root)
1226 {
1227 struct btrfs_root *gang[8];
1228 struct btrfs_fs_info *fs_info = root->fs_info;
1229 int i;
1230 int ret;
1231 int err = 0;
1232
1233 spin_lock(&fs_info->fs_roots_radix_lock);
1234 while (1) {
1235 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1236 (void **)gang, 0,
1237 ARRAY_SIZE(gang),
1238 BTRFS_ROOT_TRANS_TAG);
1239 if (ret == 0)
1240 break;
1241 for (i = 0; i < ret; i++) {
1242 root = gang[i];
1243 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1244 (unsigned long)root->root_key.objectid,
1245 BTRFS_ROOT_TRANS_TAG);
1246 spin_unlock(&fs_info->fs_roots_radix_lock);
1247
1248 btrfs_free_log(trans, root);
1249 btrfs_update_reloc_root(trans, root);
1250 btrfs_orphan_commit_root(trans, root);
1251
1252 btrfs_save_ino_cache(root, trans);
1253
1254 /* see comments in should_cow_block() */
1255 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1256 smp_mb__after_atomic();
1257
1258 if (root->commit_root != root->node) {
1259 list_add_tail(&root->dirty_list,
1260 &trans->transaction->switch_commits);
1261 btrfs_set_root_node(&root->root_item,
1262 root->node);
1263 }
1264
1265 err = btrfs_update_root(trans, fs_info->tree_root,
1266 &root->root_key,
1267 &root->root_item);
1268 spin_lock(&fs_info->fs_roots_radix_lock);
1269 if (err)
1270 break;
1271 btrfs_qgroup_free_meta_all(root);
1272 }
1273 }
1274 spin_unlock(&fs_info->fs_roots_radix_lock);
1275 return err;
1276 }
1277
1278 /*
1279 * defrag a given btree.
1280 * Every leaf in the btree is read and defragged.
1281 */
1282 int btrfs_defrag_root(struct btrfs_root *root)
1283 {
1284 struct btrfs_fs_info *info = root->fs_info;
1285 struct btrfs_trans_handle *trans;
1286 int ret;
1287
1288 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1289 return 0;
1290
1291 while (1) {
1292 trans = btrfs_start_transaction(root, 0);
1293 if (IS_ERR(trans))
1294 return PTR_ERR(trans);
1295
1296 ret = btrfs_defrag_leaves(trans, root);
1297
1298 btrfs_end_transaction(trans, root);
1299 btrfs_btree_balance_dirty(info->tree_root);
1300 cond_resched();
1301
1302 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1303 break;
1304
1305 if (btrfs_defrag_cancelled(root->fs_info)) {
1306 pr_debug("BTRFS: defrag_root cancelled\n");
1307 ret = -EAGAIN;
1308 break;
1309 }
1310 }
1311 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1312 return ret;
1313 }
1314
1315 /*
1316 * Do all special snapshot related qgroup dirty hack.
1317 *
1318 * Will do all needed qgroup inherit and dirty hack like switch commit
1319 * roots inside one transaction and write all btree into disk, to make
1320 * qgroup works.
1321 */
1322 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1323 struct btrfs_root *src,
1324 struct btrfs_root *parent,
1325 struct btrfs_qgroup_inherit *inherit,
1326 u64 dst_objectid)
1327 {
1328 struct btrfs_fs_info *fs_info = src->fs_info;
1329 int ret;
1330
1331 /*
1332 * Save some performance in the case that qgroups are not
1333 * enabled. If this check races with the ioctl, rescan will
1334 * kick in anyway.
1335 */
1336 mutex_lock(&fs_info->qgroup_ioctl_lock);
1337 if (!fs_info->quota_enabled) {
1338 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1339 return 0;
1340 }
1341 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1342
1343 /*
1344 * We are going to commit transaction, see btrfs_commit_transaction()
1345 * comment for reason locking tree_log_mutex
1346 */
1347 mutex_lock(&fs_info->tree_log_mutex);
1348
1349 ret = commit_fs_roots(trans, src);
1350 if (ret)
1351 goto out;
1352 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1353 if (ret < 0)
1354 goto out;
1355 ret = btrfs_qgroup_account_extents(trans, fs_info);
1356 if (ret < 0)
1357 goto out;
1358
1359 /* Now qgroup are all updated, we can inherit it to new qgroups */
1360 ret = btrfs_qgroup_inherit(trans, fs_info,
1361 src->root_key.objectid, dst_objectid,
1362 inherit);
1363 if (ret < 0)
1364 goto out;
1365
1366 /*
1367 * Now we do a simplified commit transaction, which will:
1368 * 1) commit all subvolume and extent tree
1369 * To ensure all subvolume and extent tree have a valid
1370 * commit_root to accounting later insert_dir_item()
1371 * 2) write all btree blocks onto disk
1372 * This is to make sure later btree modification will be cowed
1373 * Or commit_root can be populated and cause wrong qgroup numbers
1374 * In this simplified commit, we don't really care about other trees
1375 * like chunk and root tree, as they won't affect qgroup.
1376 * And we don't write super to avoid half committed status.
1377 */
1378 ret = commit_cowonly_roots(trans, src);
1379 if (ret)
1380 goto out;
1381 switch_commit_roots(trans->transaction, fs_info);
1382 ret = btrfs_write_and_wait_transaction(trans, src);
1383 if (ret)
1384 btrfs_handle_fs_error(fs_info, ret,
1385 "Error while writing out transaction for qgroup");
1386
1387 out:
1388 mutex_unlock(&fs_info->tree_log_mutex);
1389
1390 /*
1391 * Force parent root to be updated, as we recorded it before so its
1392 * last_trans == cur_transid.
1393 * Or it won't be committed again onto disk after later
1394 * insert_dir_item()
1395 */
1396 if (!ret)
1397 record_root_in_trans(trans, parent, 1);
1398 return ret;
1399 }
1400
1401 /*
1402 * new snapshots need to be created at a very specific time in the
1403 * transaction commit. This does the actual creation.
1404 *
1405 * Note:
1406 * If the error which may affect the commitment of the current transaction
1407 * happens, we should return the error number. If the error which just affect
1408 * the creation of the pending snapshots, just return 0.
1409 */
1410 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1411 struct btrfs_fs_info *fs_info,
1412 struct btrfs_pending_snapshot *pending)
1413 {
1414 struct btrfs_key key;
1415 struct btrfs_root_item *new_root_item;
1416 struct btrfs_root *tree_root = fs_info->tree_root;
1417 struct btrfs_root *root = pending->root;
1418 struct btrfs_root *parent_root;
1419 struct btrfs_block_rsv *rsv;
1420 struct inode *parent_inode;
1421 struct btrfs_path *path;
1422 struct btrfs_dir_item *dir_item;
1423 struct dentry *dentry;
1424 struct extent_buffer *tmp;
1425 struct extent_buffer *old;
1426 struct timespec cur_time;
1427 int ret = 0;
1428 u64 to_reserve = 0;
1429 u64 index = 0;
1430 u64 objectid;
1431 u64 root_flags;
1432 uuid_le new_uuid;
1433
1434 ASSERT(pending->path);
1435 path = pending->path;
1436
1437 ASSERT(pending->root_item);
1438 new_root_item = pending->root_item;
1439
1440 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1441 if (pending->error)
1442 goto no_free_objectid;
1443
1444 /*
1445 * Make qgroup to skip current new snapshot's qgroupid, as it is
1446 * accounted by later btrfs_qgroup_inherit().
1447 */
1448 btrfs_set_skip_qgroup(trans, objectid);
1449
1450 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1451
1452 if (to_reserve > 0) {
1453 pending->error = btrfs_block_rsv_add(root,
1454 &pending->block_rsv,
1455 to_reserve,
1456 BTRFS_RESERVE_NO_FLUSH);
1457 if (pending->error)
1458 goto clear_skip_qgroup;
1459 }
1460
1461 key.objectid = objectid;
1462 key.offset = (u64)-1;
1463 key.type = BTRFS_ROOT_ITEM_KEY;
1464
1465 rsv = trans->block_rsv;
1466 trans->block_rsv = &pending->block_rsv;
1467 trans->bytes_reserved = trans->block_rsv->reserved;
1468 trace_btrfs_space_reservation(root->fs_info, "transaction",
1469 trans->transid,
1470 trans->bytes_reserved, 1);
1471 dentry = pending->dentry;
1472 parent_inode = pending->dir;
1473 parent_root = BTRFS_I(parent_inode)->root;
1474 record_root_in_trans(trans, parent_root, 0);
1475
1476 cur_time = current_fs_time(parent_inode->i_sb);
1477
1478 /*
1479 * insert the directory item
1480 */
1481 ret = btrfs_set_inode_index(parent_inode, &index);
1482 BUG_ON(ret); /* -ENOMEM */
1483
1484 /* check if there is a file/dir which has the same name. */
1485 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1486 btrfs_ino(parent_inode),
1487 dentry->d_name.name,
1488 dentry->d_name.len, 0);
1489 if (dir_item != NULL && !IS_ERR(dir_item)) {
1490 pending->error = -EEXIST;
1491 goto dir_item_existed;
1492 } else if (IS_ERR(dir_item)) {
1493 ret = PTR_ERR(dir_item);
1494 btrfs_abort_transaction(trans, root, ret);
1495 goto fail;
1496 }
1497 btrfs_release_path(path);
1498
1499 /*
1500 * pull in the delayed directory update
1501 * and the delayed inode item
1502 * otherwise we corrupt the FS during
1503 * snapshot
1504 */
1505 ret = btrfs_run_delayed_items(trans, root);
1506 if (ret) { /* Transaction aborted */
1507 btrfs_abort_transaction(trans, root, ret);
1508 goto fail;
1509 }
1510
1511 record_root_in_trans(trans, root, 0);
1512 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1513 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1514 btrfs_check_and_init_root_item(new_root_item);
1515
1516 root_flags = btrfs_root_flags(new_root_item);
1517 if (pending->readonly)
1518 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1519 else
1520 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1521 btrfs_set_root_flags(new_root_item, root_flags);
1522
1523 btrfs_set_root_generation_v2(new_root_item,
1524 trans->transid);
1525 uuid_le_gen(&new_uuid);
1526 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1527 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1528 BTRFS_UUID_SIZE);
1529 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1530 memset(new_root_item->received_uuid, 0,
1531 sizeof(new_root_item->received_uuid));
1532 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1533 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1534 btrfs_set_root_stransid(new_root_item, 0);
1535 btrfs_set_root_rtransid(new_root_item, 0);
1536 }
1537 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1538 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1539 btrfs_set_root_otransid(new_root_item, trans->transid);
1540
1541 old = btrfs_lock_root_node(root);
1542 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1543 if (ret) {
1544 btrfs_tree_unlock(old);
1545 free_extent_buffer(old);
1546 btrfs_abort_transaction(trans, root, ret);
1547 goto fail;
1548 }
1549
1550 btrfs_set_lock_blocking(old);
1551
1552 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1553 /* clean up in any case */
1554 btrfs_tree_unlock(old);
1555 free_extent_buffer(old);
1556 if (ret) {
1557 btrfs_abort_transaction(trans, root, ret);
1558 goto fail;
1559 }
1560 /* see comments in should_cow_block() */
1561 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1562 smp_wmb();
1563
1564 btrfs_set_root_node(new_root_item, tmp);
1565 /* record when the snapshot was created in key.offset */
1566 key.offset = trans->transid;
1567 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1568 btrfs_tree_unlock(tmp);
1569 free_extent_buffer(tmp);
1570 if (ret) {
1571 btrfs_abort_transaction(trans, root, ret);
1572 goto fail;
1573 }
1574
1575 /*
1576 * insert root back/forward references
1577 */
1578 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1579 parent_root->root_key.objectid,
1580 btrfs_ino(parent_inode), index,
1581 dentry->d_name.name, dentry->d_name.len);
1582 if (ret) {
1583 btrfs_abort_transaction(trans, root, ret);
1584 goto fail;
1585 }
1586
1587 key.offset = (u64)-1;
1588 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1589 if (IS_ERR(pending->snap)) {
1590 ret = PTR_ERR(pending->snap);
1591 btrfs_abort_transaction(trans, root, ret);
1592 goto fail;
1593 }
1594
1595 ret = btrfs_reloc_post_snapshot(trans, pending);
1596 if (ret) {
1597 btrfs_abort_transaction(trans, root, ret);
1598 goto fail;
1599 }
1600
1601 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1602 if (ret) {
1603 btrfs_abort_transaction(trans, root, ret);
1604 goto fail;
1605 }
1606
1607 /*
1608 * Do special qgroup accounting for snapshot, as we do some qgroup
1609 * snapshot hack to do fast snapshot.
1610 * To co-operate with that hack, we do hack again.
1611 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1612 */
1613 ret = qgroup_account_snapshot(trans, root, parent_root,
1614 pending->inherit, objectid);
1615 if (ret < 0)
1616 goto fail;
1617
1618 ret = btrfs_insert_dir_item(trans, parent_root,
1619 dentry->d_name.name, dentry->d_name.len,
1620 parent_inode, &key,
1621 BTRFS_FT_DIR, index);
1622 /* We have check then name at the beginning, so it is impossible. */
1623 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1624 if (ret) {
1625 btrfs_abort_transaction(trans, root, ret);
1626 goto fail;
1627 }
1628
1629 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1630 dentry->d_name.len * 2);
1631 parent_inode->i_mtime = parent_inode->i_ctime =
1632 current_fs_time(parent_inode->i_sb);
1633 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1634 if (ret) {
1635 btrfs_abort_transaction(trans, root, ret);
1636 goto fail;
1637 }
1638 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1639 BTRFS_UUID_KEY_SUBVOL, objectid);
1640 if (ret) {
1641 btrfs_abort_transaction(trans, root, ret);
1642 goto fail;
1643 }
1644 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1645 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1646 new_root_item->received_uuid,
1647 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1648 objectid);
1649 if (ret && ret != -EEXIST) {
1650 btrfs_abort_transaction(trans, root, ret);
1651 goto fail;
1652 }
1653 }
1654
1655 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1656 if (ret) {
1657 btrfs_abort_transaction(trans, root, ret);
1658 goto fail;
1659 }
1660
1661 fail:
1662 pending->error = ret;
1663 dir_item_existed:
1664 trans->block_rsv = rsv;
1665 trans->bytes_reserved = 0;
1666 clear_skip_qgroup:
1667 btrfs_clear_skip_qgroup(trans);
1668 no_free_objectid:
1669 kfree(new_root_item);
1670 pending->root_item = NULL;
1671 btrfs_free_path(path);
1672 pending->path = NULL;
1673
1674 return ret;
1675 }
1676
1677 /*
1678 * create all the snapshots we've scheduled for creation
1679 */
1680 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1681 struct btrfs_fs_info *fs_info)
1682 {
1683 struct btrfs_pending_snapshot *pending, *next;
1684 struct list_head *head = &trans->transaction->pending_snapshots;
1685 int ret = 0;
1686
1687 list_for_each_entry_safe(pending, next, head, list) {
1688 list_del(&pending->list);
1689 ret = create_pending_snapshot(trans, fs_info, pending);
1690 if (ret)
1691 break;
1692 }
1693 return ret;
1694 }
1695
1696 static void update_super_roots(struct btrfs_root *root)
1697 {
1698 struct btrfs_root_item *root_item;
1699 struct btrfs_super_block *super;
1700
1701 super = root->fs_info->super_copy;
1702
1703 root_item = &root->fs_info->chunk_root->root_item;
1704 super->chunk_root = root_item->bytenr;
1705 super->chunk_root_generation = root_item->generation;
1706 super->chunk_root_level = root_item->level;
1707
1708 root_item = &root->fs_info->tree_root->root_item;
1709 super->root = root_item->bytenr;
1710 super->generation = root_item->generation;
1711 super->root_level = root_item->level;
1712 if (btrfs_test_opt(root, SPACE_CACHE))
1713 super->cache_generation = root_item->generation;
1714 if (root->fs_info->update_uuid_tree_gen)
1715 super->uuid_tree_generation = root_item->generation;
1716 }
1717
1718 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1719 {
1720 struct btrfs_transaction *trans;
1721 int ret = 0;
1722
1723 spin_lock(&info->trans_lock);
1724 trans = info->running_transaction;
1725 if (trans)
1726 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1727 spin_unlock(&info->trans_lock);
1728 return ret;
1729 }
1730
1731 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1732 {
1733 struct btrfs_transaction *trans;
1734 int ret = 0;
1735
1736 spin_lock(&info->trans_lock);
1737 trans = info->running_transaction;
1738 if (trans)
1739 ret = is_transaction_blocked(trans);
1740 spin_unlock(&info->trans_lock);
1741 return ret;
1742 }
1743
1744 /*
1745 * wait for the current transaction commit to start and block subsequent
1746 * transaction joins
1747 */
1748 static void wait_current_trans_commit_start(struct btrfs_root *root,
1749 struct btrfs_transaction *trans)
1750 {
1751 wait_event(root->fs_info->transaction_blocked_wait,
1752 trans->state >= TRANS_STATE_COMMIT_START ||
1753 trans->aborted);
1754 }
1755
1756 /*
1757 * wait for the current transaction to start and then become unblocked.
1758 * caller holds ref.
1759 */
1760 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1761 struct btrfs_transaction *trans)
1762 {
1763 wait_event(root->fs_info->transaction_wait,
1764 trans->state >= TRANS_STATE_UNBLOCKED ||
1765 trans->aborted);
1766 }
1767
1768 /*
1769 * commit transactions asynchronously. once btrfs_commit_transaction_async
1770 * returns, any subsequent transaction will not be allowed to join.
1771 */
1772 struct btrfs_async_commit {
1773 struct btrfs_trans_handle *newtrans;
1774 struct btrfs_root *root;
1775 struct work_struct work;
1776 };
1777
1778 static void do_async_commit(struct work_struct *work)
1779 {
1780 struct btrfs_async_commit *ac =
1781 container_of(work, struct btrfs_async_commit, work);
1782
1783 /*
1784 * We've got freeze protection passed with the transaction.
1785 * Tell lockdep about it.
1786 */
1787 if (ac->newtrans->type & __TRANS_FREEZABLE)
1788 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1789
1790 current->journal_info = ac->newtrans;
1791
1792 btrfs_commit_transaction(ac->newtrans, ac->root);
1793 kfree(ac);
1794 }
1795
1796 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1797 struct btrfs_root *root,
1798 int wait_for_unblock)
1799 {
1800 struct btrfs_async_commit *ac;
1801 struct btrfs_transaction *cur_trans;
1802
1803 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1804 if (!ac)
1805 return -ENOMEM;
1806
1807 INIT_WORK(&ac->work, do_async_commit);
1808 ac->root = root;
1809 ac->newtrans = btrfs_join_transaction(root);
1810 if (IS_ERR(ac->newtrans)) {
1811 int err = PTR_ERR(ac->newtrans);
1812 kfree(ac);
1813 return err;
1814 }
1815
1816 /* take transaction reference */
1817 cur_trans = trans->transaction;
1818 atomic_inc(&cur_trans->use_count);
1819
1820 btrfs_end_transaction(trans, root);
1821
1822 /*
1823 * Tell lockdep we've released the freeze rwsem, since the
1824 * async commit thread will be the one to unlock it.
1825 */
1826 if (ac->newtrans->type & __TRANS_FREEZABLE)
1827 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1828
1829 schedule_work(&ac->work);
1830
1831 /* wait for transaction to start and unblock */
1832 if (wait_for_unblock)
1833 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1834 else
1835 wait_current_trans_commit_start(root, cur_trans);
1836
1837 if (current->journal_info == trans)
1838 current->journal_info = NULL;
1839
1840 btrfs_put_transaction(cur_trans);
1841 return 0;
1842 }
1843
1844
1845 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root, int err)
1847 {
1848 struct btrfs_transaction *cur_trans = trans->transaction;
1849 DEFINE_WAIT(wait);
1850
1851 WARN_ON(trans->use_count > 1);
1852
1853 btrfs_abort_transaction(trans, root, err);
1854
1855 spin_lock(&root->fs_info->trans_lock);
1856
1857 /*
1858 * If the transaction is removed from the list, it means this
1859 * transaction has been committed successfully, so it is impossible
1860 * to call the cleanup function.
1861 */
1862 BUG_ON(list_empty(&cur_trans->list));
1863
1864 list_del_init(&cur_trans->list);
1865 if (cur_trans == root->fs_info->running_transaction) {
1866 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1867 spin_unlock(&root->fs_info->trans_lock);
1868 wait_event(cur_trans->writer_wait,
1869 atomic_read(&cur_trans->num_writers) == 1);
1870
1871 spin_lock(&root->fs_info->trans_lock);
1872 }
1873 spin_unlock(&root->fs_info->trans_lock);
1874
1875 btrfs_cleanup_one_transaction(trans->transaction, root);
1876
1877 spin_lock(&root->fs_info->trans_lock);
1878 if (cur_trans == root->fs_info->running_transaction)
1879 root->fs_info->running_transaction = NULL;
1880 spin_unlock(&root->fs_info->trans_lock);
1881
1882 if (trans->type & __TRANS_FREEZABLE)
1883 sb_end_intwrite(root->fs_info->sb);
1884 btrfs_put_transaction(cur_trans);
1885 btrfs_put_transaction(cur_trans);
1886
1887 trace_btrfs_transaction_commit(root);
1888
1889 if (current->journal_info == trans)
1890 current->journal_info = NULL;
1891 btrfs_scrub_cancel(root->fs_info);
1892
1893 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1894 }
1895
1896 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1897 {
1898 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1899 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1900 return 0;
1901 }
1902
1903 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1904 {
1905 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1906 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1907 }
1908
1909 static inline void
1910 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1911 {
1912 wait_event(cur_trans->pending_wait,
1913 atomic_read(&cur_trans->pending_ordered) == 0);
1914 }
1915
1916 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1917 struct btrfs_root *root)
1918 {
1919 struct btrfs_transaction *cur_trans = trans->transaction;
1920 struct btrfs_transaction *prev_trans = NULL;
1921 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1922 int ret;
1923
1924 /* Stop the commit early if ->aborted is set */
1925 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1926 ret = cur_trans->aborted;
1927 btrfs_end_transaction(trans, root);
1928 return ret;
1929 }
1930
1931 /* make a pass through all the delayed refs we have so far
1932 * any runnings procs may add more while we are here
1933 */
1934 ret = btrfs_run_delayed_refs(trans, root, 0);
1935 if (ret) {
1936 btrfs_end_transaction(trans, root);
1937 return ret;
1938 }
1939
1940 btrfs_trans_release_metadata(trans, root);
1941 trans->block_rsv = NULL;
1942
1943 cur_trans = trans->transaction;
1944
1945 /*
1946 * set the flushing flag so procs in this transaction have to
1947 * start sending their work down.
1948 */
1949 cur_trans->delayed_refs.flushing = 1;
1950 smp_wmb();
1951
1952 if (!list_empty(&trans->new_bgs))
1953 btrfs_create_pending_block_groups(trans, root);
1954
1955 ret = btrfs_run_delayed_refs(trans, root, 0);
1956 if (ret) {
1957 btrfs_end_transaction(trans, root);
1958 return ret;
1959 }
1960
1961 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1962 int run_it = 0;
1963
1964 /* this mutex is also taken before trying to set
1965 * block groups readonly. We need to make sure
1966 * that nobody has set a block group readonly
1967 * after a extents from that block group have been
1968 * allocated for cache files. btrfs_set_block_group_ro
1969 * will wait for the transaction to commit if it
1970 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1971 *
1972 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1973 * only one process starts all the block group IO. It wouldn't
1974 * hurt to have more than one go through, but there's no
1975 * real advantage to it either.
1976 */
1977 mutex_lock(&root->fs_info->ro_block_group_mutex);
1978 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1979 &cur_trans->flags))
1980 run_it = 1;
1981 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1982
1983 if (run_it)
1984 ret = btrfs_start_dirty_block_groups(trans, root);
1985 }
1986 if (ret) {
1987 btrfs_end_transaction(trans, root);
1988 return ret;
1989 }
1990
1991 spin_lock(&root->fs_info->trans_lock);
1992 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1993 spin_unlock(&root->fs_info->trans_lock);
1994 atomic_inc(&cur_trans->use_count);
1995 ret = btrfs_end_transaction(trans, root);
1996
1997 wait_for_commit(root, cur_trans);
1998
1999 if (unlikely(cur_trans->aborted))
2000 ret = cur_trans->aborted;
2001
2002 btrfs_put_transaction(cur_trans);
2003
2004 return ret;
2005 }
2006
2007 cur_trans->state = TRANS_STATE_COMMIT_START;
2008 wake_up(&root->fs_info->transaction_blocked_wait);
2009
2010 if (cur_trans->list.prev != &root->fs_info->trans_list) {
2011 prev_trans = list_entry(cur_trans->list.prev,
2012 struct btrfs_transaction, list);
2013 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2014 atomic_inc(&prev_trans->use_count);
2015 spin_unlock(&root->fs_info->trans_lock);
2016
2017 wait_for_commit(root, prev_trans);
2018 ret = prev_trans->aborted;
2019
2020 btrfs_put_transaction(prev_trans);
2021 if (ret)
2022 goto cleanup_transaction;
2023 } else {
2024 spin_unlock(&root->fs_info->trans_lock);
2025 }
2026 } else {
2027 spin_unlock(&root->fs_info->trans_lock);
2028 }
2029
2030 extwriter_counter_dec(cur_trans, trans->type);
2031
2032 ret = btrfs_start_delalloc_flush(root->fs_info);
2033 if (ret)
2034 goto cleanup_transaction;
2035
2036 ret = btrfs_run_delayed_items(trans, root);
2037 if (ret)
2038 goto cleanup_transaction;
2039
2040 wait_event(cur_trans->writer_wait,
2041 extwriter_counter_read(cur_trans) == 0);
2042
2043 /* some pending stuffs might be added after the previous flush. */
2044 ret = btrfs_run_delayed_items(trans, root);
2045 if (ret)
2046 goto cleanup_transaction;
2047
2048 btrfs_wait_delalloc_flush(root->fs_info);
2049
2050 btrfs_wait_pending_ordered(cur_trans);
2051
2052 btrfs_scrub_pause(root);
2053 /*
2054 * Ok now we need to make sure to block out any other joins while we
2055 * commit the transaction. We could have started a join before setting
2056 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2057 */
2058 spin_lock(&root->fs_info->trans_lock);
2059 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2060 spin_unlock(&root->fs_info->trans_lock);
2061 wait_event(cur_trans->writer_wait,
2062 atomic_read(&cur_trans->num_writers) == 1);
2063
2064 /* ->aborted might be set after the previous check, so check it */
2065 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2066 ret = cur_trans->aborted;
2067 goto scrub_continue;
2068 }
2069 /*
2070 * the reloc mutex makes sure that we stop
2071 * the balancing code from coming in and moving
2072 * extents around in the middle of the commit
2073 */
2074 mutex_lock(&root->fs_info->reloc_mutex);
2075
2076 /*
2077 * We needn't worry about the delayed items because we will
2078 * deal with them in create_pending_snapshot(), which is the
2079 * core function of the snapshot creation.
2080 */
2081 ret = create_pending_snapshots(trans, root->fs_info);
2082 if (ret) {
2083 mutex_unlock(&root->fs_info->reloc_mutex);
2084 goto scrub_continue;
2085 }
2086
2087 /*
2088 * We insert the dir indexes of the snapshots and update the inode
2089 * of the snapshots' parents after the snapshot creation, so there
2090 * are some delayed items which are not dealt with. Now deal with
2091 * them.
2092 *
2093 * We needn't worry that this operation will corrupt the snapshots,
2094 * because all the tree which are snapshoted will be forced to COW
2095 * the nodes and leaves.
2096 */
2097 ret = btrfs_run_delayed_items(trans, root);
2098 if (ret) {
2099 mutex_unlock(&root->fs_info->reloc_mutex);
2100 goto scrub_continue;
2101 }
2102
2103 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2104 if (ret) {
2105 mutex_unlock(&root->fs_info->reloc_mutex);
2106 goto scrub_continue;
2107 }
2108
2109 /* Reocrd old roots for later qgroup accounting */
2110 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2111 if (ret) {
2112 mutex_unlock(&root->fs_info->reloc_mutex);
2113 goto scrub_continue;
2114 }
2115
2116 /*
2117 * make sure none of the code above managed to slip in a
2118 * delayed item
2119 */
2120 btrfs_assert_delayed_root_empty(root);
2121
2122 WARN_ON(cur_trans != trans->transaction);
2123
2124 /* btrfs_commit_tree_roots is responsible for getting the
2125 * various roots consistent with each other. Every pointer
2126 * in the tree of tree roots has to point to the most up to date
2127 * root for every subvolume and other tree. So, we have to keep
2128 * the tree logging code from jumping in and changing any
2129 * of the trees.
2130 *
2131 * At this point in the commit, there can't be any tree-log
2132 * writers, but a little lower down we drop the trans mutex
2133 * and let new people in. By holding the tree_log_mutex
2134 * from now until after the super is written, we avoid races
2135 * with the tree-log code.
2136 */
2137 mutex_lock(&root->fs_info->tree_log_mutex);
2138
2139 ret = commit_fs_roots(trans, root);
2140 if (ret) {
2141 mutex_unlock(&root->fs_info->tree_log_mutex);
2142 mutex_unlock(&root->fs_info->reloc_mutex);
2143 goto scrub_continue;
2144 }
2145
2146 /*
2147 * Since the transaction is done, we can apply the pending changes
2148 * before the next transaction.
2149 */
2150 btrfs_apply_pending_changes(root->fs_info);
2151
2152 /* commit_fs_roots gets rid of all the tree log roots, it is now
2153 * safe to free the root of tree log roots
2154 */
2155 btrfs_free_log_root_tree(trans, root->fs_info);
2156
2157 /*
2158 * Since fs roots are all committed, we can get a quite accurate
2159 * new_roots. So let's do quota accounting.
2160 */
2161 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2162 if (ret < 0) {
2163 mutex_unlock(&root->fs_info->tree_log_mutex);
2164 mutex_unlock(&root->fs_info->reloc_mutex);
2165 goto scrub_continue;
2166 }
2167
2168 ret = commit_cowonly_roots(trans, root);
2169 if (ret) {
2170 mutex_unlock(&root->fs_info->tree_log_mutex);
2171 mutex_unlock(&root->fs_info->reloc_mutex);
2172 goto scrub_continue;
2173 }
2174
2175 /*
2176 * The tasks which save the space cache and inode cache may also
2177 * update ->aborted, check it.
2178 */
2179 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2180 ret = cur_trans->aborted;
2181 mutex_unlock(&root->fs_info->tree_log_mutex);
2182 mutex_unlock(&root->fs_info->reloc_mutex);
2183 goto scrub_continue;
2184 }
2185
2186 btrfs_prepare_extent_commit(trans, root);
2187
2188 cur_trans = root->fs_info->running_transaction;
2189
2190 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2191 root->fs_info->tree_root->node);
2192 list_add_tail(&root->fs_info->tree_root->dirty_list,
2193 &cur_trans->switch_commits);
2194
2195 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2196 root->fs_info->chunk_root->node);
2197 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2198 &cur_trans->switch_commits);
2199
2200 switch_commit_roots(cur_trans, root->fs_info);
2201
2202 assert_qgroups_uptodate(trans);
2203 ASSERT(list_empty(&cur_trans->dirty_bgs));
2204 ASSERT(list_empty(&cur_trans->io_bgs));
2205 update_super_roots(root);
2206
2207 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2208 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2209 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2210 sizeof(*root->fs_info->super_copy));
2211
2212 btrfs_update_commit_device_size(root->fs_info);
2213 btrfs_update_commit_device_bytes_used(root, cur_trans);
2214
2215 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2216 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2217
2218 btrfs_trans_release_chunk_metadata(trans);
2219
2220 spin_lock(&root->fs_info->trans_lock);
2221 cur_trans->state = TRANS_STATE_UNBLOCKED;
2222 root->fs_info->running_transaction = NULL;
2223 spin_unlock(&root->fs_info->trans_lock);
2224 mutex_unlock(&root->fs_info->reloc_mutex);
2225
2226 wake_up(&root->fs_info->transaction_wait);
2227
2228 ret = btrfs_write_and_wait_transaction(trans, root);
2229 if (ret) {
2230 btrfs_handle_fs_error(root->fs_info, ret,
2231 "Error while writing out transaction");
2232 mutex_unlock(&root->fs_info->tree_log_mutex);
2233 goto scrub_continue;
2234 }
2235
2236 ret = write_ctree_super(trans, root, 0);
2237 if (ret) {
2238 mutex_unlock(&root->fs_info->tree_log_mutex);
2239 goto scrub_continue;
2240 }
2241
2242 /*
2243 * the super is written, we can safely allow the tree-loggers
2244 * to go about their business
2245 */
2246 mutex_unlock(&root->fs_info->tree_log_mutex);
2247
2248 btrfs_finish_extent_commit(trans, root);
2249
2250 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2251 btrfs_clear_space_info_full(root->fs_info);
2252
2253 root->fs_info->last_trans_committed = cur_trans->transid;
2254 /*
2255 * We needn't acquire the lock here because there is no other task
2256 * which can change it.
2257 */
2258 cur_trans->state = TRANS_STATE_COMPLETED;
2259 wake_up(&cur_trans->commit_wait);
2260
2261 spin_lock(&root->fs_info->trans_lock);
2262 list_del_init(&cur_trans->list);
2263 spin_unlock(&root->fs_info->trans_lock);
2264
2265 btrfs_put_transaction(cur_trans);
2266 btrfs_put_transaction(cur_trans);
2267
2268 if (trans->type & __TRANS_FREEZABLE)
2269 sb_end_intwrite(root->fs_info->sb);
2270
2271 trace_btrfs_transaction_commit(root);
2272
2273 btrfs_scrub_continue(root);
2274
2275 if (current->journal_info == trans)
2276 current->journal_info = NULL;
2277
2278 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2279
2280 if (current != root->fs_info->transaction_kthread &&
2281 current != root->fs_info->cleaner_kthread)
2282 btrfs_run_delayed_iputs(root);
2283
2284 return ret;
2285
2286 scrub_continue:
2287 btrfs_scrub_continue(root);
2288 cleanup_transaction:
2289 btrfs_trans_release_metadata(trans, root);
2290 btrfs_trans_release_chunk_metadata(trans);
2291 trans->block_rsv = NULL;
2292 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2293 if (current->journal_info == trans)
2294 current->journal_info = NULL;
2295 cleanup_transaction(trans, root, ret);
2296
2297 return ret;
2298 }
2299
2300 /*
2301 * return < 0 if error
2302 * 0 if there are no more dead_roots at the time of call
2303 * 1 there are more to be processed, call me again
2304 *
2305 * The return value indicates there are certainly more snapshots to delete, but
2306 * if there comes a new one during processing, it may return 0. We don't mind,
2307 * because btrfs_commit_super will poke cleaner thread and it will process it a
2308 * few seconds later.
2309 */
2310 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2311 {
2312 int ret;
2313 struct btrfs_fs_info *fs_info = root->fs_info;
2314
2315 spin_lock(&fs_info->trans_lock);
2316 if (list_empty(&fs_info->dead_roots)) {
2317 spin_unlock(&fs_info->trans_lock);
2318 return 0;
2319 }
2320 root = list_first_entry(&fs_info->dead_roots,
2321 struct btrfs_root, root_list);
2322 list_del_init(&root->root_list);
2323 spin_unlock(&fs_info->trans_lock);
2324
2325 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2326
2327 btrfs_kill_all_delayed_nodes(root);
2328
2329 if (btrfs_header_backref_rev(root->node) <
2330 BTRFS_MIXED_BACKREF_REV)
2331 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2332 else
2333 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2334
2335 return (ret < 0) ? 0 : 1;
2336 }
2337
2338 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2339 {
2340 unsigned long prev;
2341 unsigned long bit;
2342
2343 prev = xchg(&fs_info->pending_changes, 0);
2344 if (!prev)
2345 return;
2346
2347 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2348 if (prev & bit)
2349 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2350 prev &= ~bit;
2351
2352 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2353 if (prev & bit)
2354 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2355 prev &= ~bit;
2356
2357 bit = 1 << BTRFS_PENDING_COMMIT;
2358 if (prev & bit)
2359 btrfs_debug(fs_info, "pending commit done");
2360 prev &= ~bit;
2361
2362 if (prev)
2363 btrfs_warn(fs_info,
2364 "unknown pending changes left 0x%lx, ignoring", prev);
2365 }
This page took 0.086319 seconds and 5 git commands to generate.