btrfs: Add handler for invalidate page
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 }
80 }
81
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 spin_lock(&tree->lock);
85 /*
86 * Do a single barrier for the waitqueue_active check here, the state
87 * of the waitqueue should not change once clear_btree_io_tree is
88 * called.
89 */
90 smp_mb();
91 while (!RB_EMPTY_ROOT(&tree->state)) {
92 struct rb_node *node;
93 struct extent_state *state;
94
95 node = rb_first(&tree->state);
96 state = rb_entry(node, struct extent_state, rb_node);
97 rb_erase(&state->rb_node, &tree->state);
98 RB_CLEAR_NODE(&state->rb_node);
99 /*
100 * btree io trees aren't supposed to have tasks waiting for
101 * changes in the flags of extent states ever.
102 */
103 ASSERT(!waitqueue_active(&state->wq));
104 free_extent_state(state);
105
106 cond_resched_lock(&tree->lock);
107 }
108 spin_unlock(&tree->lock);
109 }
110
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 struct btrfs_fs_info *fs_info)
113 {
114 struct btrfs_root *root, *tmp;
115
116 down_write(&fs_info->commit_root_sem);
117 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 dirty_list) {
119 list_del_init(&root->dirty_list);
120 free_extent_buffer(root->commit_root);
121 root->commit_root = btrfs_root_node(root);
122 if (is_fstree(root->objectid))
123 btrfs_unpin_free_ino(root);
124 clear_btree_io_tree(&root->dirty_log_pages);
125 }
126
127 /* We can free old roots now. */
128 spin_lock(&trans->dropped_roots_lock);
129 while (!list_empty(&trans->dropped_roots)) {
130 root = list_first_entry(&trans->dropped_roots,
131 struct btrfs_root, root_list);
132 list_del_init(&root->root_list);
133 spin_unlock(&trans->dropped_roots_lock);
134 btrfs_drop_and_free_fs_root(fs_info, root);
135 spin_lock(&trans->dropped_roots_lock);
136 }
137 spin_unlock(&trans->dropped_roots_lock);
138 up_write(&fs_info->commit_root_sem);
139 }
140
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 unsigned int type)
143 {
144 if (type & TRANS_EXTWRITERS)
145 atomic_inc(&trans->num_extwriters);
146 }
147
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 unsigned int type)
150 {
151 if (type & TRANS_EXTWRITERS)
152 atomic_dec(&trans->num_extwriters);
153 }
154
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 unsigned int type)
157 {
158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 return atomic_read(&trans->num_extwriters);
164 }
165
166 /*
167 * either allocate a new transaction or hop into the existing one
168 */
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 struct btrfs_transaction *cur_trans;
172 struct btrfs_fs_info *fs_info = root->fs_info;
173
174 spin_lock(&fs_info->trans_lock);
175 loop:
176 /* The file system has been taken offline. No new transactions. */
177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 spin_unlock(&fs_info->trans_lock);
179 return -EROFS;
180 }
181
182 cur_trans = fs_info->running_transaction;
183 if (cur_trans) {
184 if (cur_trans->aborted) {
185 spin_unlock(&fs_info->trans_lock);
186 return cur_trans->aborted;
187 }
188 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 spin_unlock(&fs_info->trans_lock);
190 return -EBUSY;
191 }
192 atomic_inc(&cur_trans->use_count);
193 atomic_inc(&cur_trans->num_writers);
194 extwriter_counter_inc(cur_trans, type);
195 spin_unlock(&fs_info->trans_lock);
196 return 0;
197 }
198 spin_unlock(&fs_info->trans_lock);
199
200 /*
201 * If we are ATTACH, we just want to catch the current transaction,
202 * and commit it. If there is no transaction, just return ENOENT.
203 */
204 if (type == TRANS_ATTACH)
205 return -ENOENT;
206
207 /*
208 * JOIN_NOLOCK only happens during the transaction commit, so
209 * it is impossible that ->running_transaction is NULL
210 */
211 BUG_ON(type == TRANS_JOIN_NOLOCK);
212
213 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 if (!cur_trans)
215 return -ENOMEM;
216
217 spin_lock(&fs_info->trans_lock);
218 if (fs_info->running_transaction) {
219 /*
220 * someone started a transaction after we unlocked. Make sure
221 * to redo the checks above
222 */
223 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 goto loop;
225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 spin_unlock(&fs_info->trans_lock);
227 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 return -EROFS;
229 }
230
231 atomic_set(&cur_trans->num_writers, 1);
232 extwriter_counter_init(cur_trans, type);
233 init_waitqueue_head(&cur_trans->writer_wait);
234 init_waitqueue_head(&cur_trans->commit_wait);
235 cur_trans->state = TRANS_STATE_RUNNING;
236 /*
237 * One for this trans handle, one so it will live on until we
238 * commit the transaction.
239 */
240 atomic_set(&cur_trans->use_count, 2);
241 cur_trans->have_free_bgs = 0;
242 cur_trans->start_time = get_seconds();
243 cur_trans->dirty_bg_run = 0;
244
245 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
246
247 cur_trans->delayed_refs.href_root = RB_ROOT;
248 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
249 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
250
251 /*
252 * although the tree mod log is per file system and not per transaction,
253 * the log must never go across transaction boundaries.
254 */
255 smp_mb();
256 if (!list_empty(&fs_info->tree_mod_seq_list))
257 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
258 "creating a fresh transaction\n");
259 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
260 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
261 "creating a fresh transaction\n");
262 atomic64_set(&fs_info->tree_mod_seq, 0);
263
264 spin_lock_init(&cur_trans->delayed_refs.lock);
265
266 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
267 INIT_LIST_HEAD(&cur_trans->pending_chunks);
268 INIT_LIST_HEAD(&cur_trans->switch_commits);
269 INIT_LIST_HEAD(&cur_trans->pending_ordered);
270 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
271 INIT_LIST_HEAD(&cur_trans->io_bgs);
272 INIT_LIST_HEAD(&cur_trans->dropped_roots);
273 mutex_init(&cur_trans->cache_write_mutex);
274 cur_trans->num_dirty_bgs = 0;
275 spin_lock_init(&cur_trans->dirty_bgs_lock);
276 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
277 spin_lock_init(&cur_trans->deleted_bgs_lock);
278 spin_lock_init(&cur_trans->dropped_roots_lock);
279 list_add_tail(&cur_trans->list, &fs_info->trans_list);
280 extent_io_tree_init(&cur_trans->dirty_pages,
281 fs_info->btree_inode->i_mapping);
282 fs_info->generation++;
283 cur_trans->transid = fs_info->generation;
284 fs_info->running_transaction = cur_trans;
285 cur_trans->aborted = 0;
286 spin_unlock(&fs_info->trans_lock);
287
288 return 0;
289 }
290
291 /*
292 * this does all the record keeping required to make sure that a reference
293 * counted root is properly recorded in a given transaction. This is required
294 * to make sure the old root from before we joined the transaction is deleted
295 * when the transaction commits
296 */
297 static int record_root_in_trans(struct btrfs_trans_handle *trans,
298 struct btrfs_root *root)
299 {
300 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 root->last_trans < trans->transid) {
302 WARN_ON(root == root->fs_info->extent_root);
303 WARN_ON(root->commit_root != root->node);
304
305 /*
306 * see below for IN_TRANS_SETUP usage rules
307 * we have the reloc mutex held now, so there
308 * is only one writer in this function
309 */
310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
311
312 /* make sure readers find IN_TRANS_SETUP before
313 * they find our root->last_trans update
314 */
315 smp_wmb();
316
317 spin_lock(&root->fs_info->fs_roots_radix_lock);
318 if (root->last_trans == trans->transid) {
319 spin_unlock(&root->fs_info->fs_roots_radix_lock);
320 return 0;
321 }
322 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
323 (unsigned long)root->root_key.objectid,
324 BTRFS_ROOT_TRANS_TAG);
325 spin_unlock(&root->fs_info->fs_roots_radix_lock);
326 root->last_trans = trans->transid;
327
328 /* this is pretty tricky. We don't want to
329 * take the relocation lock in btrfs_record_root_in_trans
330 * unless we're really doing the first setup for this root in
331 * this transaction.
332 *
333 * Normally we'd use root->last_trans as a flag to decide
334 * if we want to take the expensive mutex.
335 *
336 * But, we have to set root->last_trans before we
337 * init the relocation root, otherwise, we trip over warnings
338 * in ctree.c. The solution used here is to flag ourselves
339 * with root IN_TRANS_SETUP. When this is 1, we're still
340 * fixing up the reloc trees and everyone must wait.
341 *
342 * When this is zero, they can trust root->last_trans and fly
343 * through btrfs_record_root_in_trans without having to take the
344 * lock. smp_wmb() makes sure that all the writes above are
345 * done before we pop in the zero below
346 */
347 btrfs_init_reloc_root(trans, root);
348 smp_mb__before_atomic();
349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
350 }
351 return 0;
352 }
353
354
355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 struct btrfs_root *root)
357 {
358 struct btrfs_transaction *cur_trans = trans->transaction;
359
360 /* Add ourselves to the transaction dropped list */
361 spin_lock(&cur_trans->dropped_roots_lock);
362 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
363 spin_unlock(&cur_trans->dropped_roots_lock);
364
365 /* Make sure we don't try to update the root at commit time */
366 spin_lock(&root->fs_info->fs_roots_radix_lock);
367 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
368 (unsigned long)root->root_key.objectid,
369 BTRFS_ROOT_TRANS_TAG);
370 spin_unlock(&root->fs_info->fs_roots_radix_lock);
371 }
372
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root)
375 {
376 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
377 return 0;
378
379 /*
380 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
381 * and barriers
382 */
383 smp_rmb();
384 if (root->last_trans == trans->transid &&
385 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
386 return 0;
387
388 mutex_lock(&root->fs_info->reloc_mutex);
389 record_root_in_trans(trans, root);
390 mutex_unlock(&root->fs_info->reloc_mutex);
391
392 return 0;
393 }
394
395 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
396 {
397 return (trans->state >= TRANS_STATE_BLOCKED &&
398 trans->state < TRANS_STATE_UNBLOCKED &&
399 !trans->aborted);
400 }
401
402 /* wait for commit against the current transaction to become unblocked
403 * when this is done, it is safe to start a new transaction, but the current
404 * transaction might not be fully on disk.
405 */
406 static void wait_current_trans(struct btrfs_root *root)
407 {
408 struct btrfs_transaction *cur_trans;
409
410 spin_lock(&root->fs_info->trans_lock);
411 cur_trans = root->fs_info->running_transaction;
412 if (cur_trans && is_transaction_blocked(cur_trans)) {
413 atomic_inc(&cur_trans->use_count);
414 spin_unlock(&root->fs_info->trans_lock);
415
416 wait_event(root->fs_info->transaction_wait,
417 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
418 cur_trans->aborted);
419 btrfs_put_transaction(cur_trans);
420 } else {
421 spin_unlock(&root->fs_info->trans_lock);
422 }
423 }
424
425 static int may_wait_transaction(struct btrfs_root *root, int type)
426 {
427 if (root->fs_info->log_root_recovering)
428 return 0;
429
430 if (type == TRANS_USERSPACE)
431 return 1;
432
433 if (type == TRANS_START &&
434 !atomic_read(&root->fs_info->open_ioctl_trans))
435 return 1;
436
437 return 0;
438 }
439
440 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
441 {
442 if (!root->fs_info->reloc_ctl ||
443 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
445 root->reloc_root)
446 return false;
447
448 return true;
449 }
450
451 static struct btrfs_trans_handle *
452 start_transaction(struct btrfs_root *root, unsigned int num_items,
453 unsigned int type, enum btrfs_reserve_flush_enum flush)
454 {
455 struct btrfs_trans_handle *h;
456 struct btrfs_transaction *cur_trans;
457 u64 num_bytes = 0;
458 u64 qgroup_reserved = 0;
459 bool reloc_reserved = false;
460 int ret;
461
462 /* Send isn't supposed to start transactions. */
463 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
464
465 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
466 return ERR_PTR(-EROFS);
467
468 if (current->journal_info) {
469 WARN_ON(type & TRANS_EXTWRITERS);
470 h = current->journal_info;
471 h->use_count++;
472 WARN_ON(h->use_count > 2);
473 h->orig_rsv = h->block_rsv;
474 h->block_rsv = NULL;
475 goto got_it;
476 }
477
478 /*
479 * Do the reservation before we join the transaction so we can do all
480 * the appropriate flushing if need be.
481 */
482 if (num_items > 0 && root != root->fs_info->chunk_root) {
483 qgroup_reserved = num_items * root->nodesize;
484 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
485 if (ret)
486 return ERR_PTR(ret);
487
488 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
489 /*
490 * Do the reservation for the relocation root creation
491 */
492 if (need_reserve_reloc_root(root)) {
493 num_bytes += root->nodesize;
494 reloc_reserved = true;
495 }
496
497 ret = btrfs_block_rsv_add(root,
498 &root->fs_info->trans_block_rsv,
499 num_bytes, flush);
500 if (ret)
501 goto reserve_fail;
502 }
503 again:
504 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
505 if (!h) {
506 ret = -ENOMEM;
507 goto alloc_fail;
508 }
509
510 /*
511 * If we are JOIN_NOLOCK we're already committing a transaction and
512 * waiting on this guy, so we don't need to do the sb_start_intwrite
513 * because we're already holding a ref. We need this because we could
514 * have raced in and did an fsync() on a file which can kick a commit
515 * and then we deadlock with somebody doing a freeze.
516 *
517 * If we are ATTACH, it means we just want to catch the current
518 * transaction and commit it, so we needn't do sb_start_intwrite().
519 */
520 if (type & __TRANS_FREEZABLE)
521 sb_start_intwrite(root->fs_info->sb);
522
523 if (may_wait_transaction(root, type))
524 wait_current_trans(root);
525
526 do {
527 ret = join_transaction(root, type);
528 if (ret == -EBUSY) {
529 wait_current_trans(root);
530 if (unlikely(type == TRANS_ATTACH))
531 ret = -ENOENT;
532 }
533 } while (ret == -EBUSY);
534
535 if (ret < 0) {
536 /* We must get the transaction if we are JOIN_NOLOCK. */
537 BUG_ON(type == TRANS_JOIN_NOLOCK);
538 goto join_fail;
539 }
540
541 cur_trans = root->fs_info->running_transaction;
542
543 h->transid = cur_trans->transid;
544 h->transaction = cur_trans;
545 h->root = root;
546 h->use_count = 1;
547
548 h->type = type;
549 h->can_flush_pending_bgs = true;
550 INIT_LIST_HEAD(&h->qgroup_ref_list);
551 INIT_LIST_HEAD(&h->new_bgs);
552 INIT_LIST_HEAD(&h->ordered);
553
554 smp_mb();
555 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
556 may_wait_transaction(root, type)) {
557 current->journal_info = h;
558 btrfs_commit_transaction(h, root);
559 goto again;
560 }
561
562 if (num_bytes) {
563 trace_btrfs_space_reservation(root->fs_info, "transaction",
564 h->transid, num_bytes, 1);
565 h->block_rsv = &root->fs_info->trans_block_rsv;
566 h->bytes_reserved = num_bytes;
567 h->reloc_reserved = reloc_reserved;
568 }
569
570 got_it:
571 btrfs_record_root_in_trans(h, root);
572
573 if (!current->journal_info && type != TRANS_USERSPACE)
574 current->journal_info = h;
575 return h;
576
577 join_fail:
578 if (type & __TRANS_FREEZABLE)
579 sb_end_intwrite(root->fs_info->sb);
580 kmem_cache_free(btrfs_trans_handle_cachep, h);
581 alloc_fail:
582 if (num_bytes)
583 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
584 num_bytes);
585 reserve_fail:
586 btrfs_qgroup_free_meta(root, qgroup_reserved);
587 return ERR_PTR(ret);
588 }
589
590 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
591 unsigned int num_items)
592 {
593 return start_transaction(root, num_items, TRANS_START,
594 BTRFS_RESERVE_FLUSH_ALL);
595 }
596
597 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
598 struct btrfs_root *root,
599 unsigned int num_items)
600 {
601 return start_transaction(root, num_items, TRANS_START,
602 BTRFS_RESERVE_FLUSH_LIMIT);
603 }
604
605 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
606 {
607 return start_transaction(root, 0, TRANS_JOIN, 0);
608 }
609
610 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
611 {
612 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
613 }
614
615 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
616 {
617 return start_transaction(root, 0, TRANS_USERSPACE, 0);
618 }
619
620 /*
621 * btrfs_attach_transaction() - catch the running transaction
622 *
623 * It is used when we want to commit the current the transaction, but
624 * don't want to start a new one.
625 *
626 * Note: If this function return -ENOENT, it just means there is no
627 * running transaction. But it is possible that the inactive transaction
628 * is still in the memory, not fully on disk. If you hope there is no
629 * inactive transaction in the fs when -ENOENT is returned, you should
630 * invoke
631 * btrfs_attach_transaction_barrier()
632 */
633 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
634 {
635 return start_transaction(root, 0, TRANS_ATTACH, 0);
636 }
637
638 /*
639 * btrfs_attach_transaction_barrier() - catch the running transaction
640 *
641 * It is similar to the above function, the differentia is this one
642 * will wait for all the inactive transactions until they fully
643 * complete.
644 */
645 struct btrfs_trans_handle *
646 btrfs_attach_transaction_barrier(struct btrfs_root *root)
647 {
648 struct btrfs_trans_handle *trans;
649
650 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
651 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
652 btrfs_wait_for_commit(root, 0);
653
654 return trans;
655 }
656
657 /* wait for a transaction commit to be fully complete */
658 static noinline void wait_for_commit(struct btrfs_root *root,
659 struct btrfs_transaction *commit)
660 {
661 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
662 }
663
664 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
665 {
666 struct btrfs_transaction *cur_trans = NULL, *t;
667 int ret = 0;
668
669 if (transid) {
670 if (transid <= root->fs_info->last_trans_committed)
671 goto out;
672
673 /* find specified transaction */
674 spin_lock(&root->fs_info->trans_lock);
675 list_for_each_entry(t, &root->fs_info->trans_list, list) {
676 if (t->transid == transid) {
677 cur_trans = t;
678 atomic_inc(&cur_trans->use_count);
679 ret = 0;
680 break;
681 }
682 if (t->transid > transid) {
683 ret = 0;
684 break;
685 }
686 }
687 spin_unlock(&root->fs_info->trans_lock);
688
689 /*
690 * The specified transaction doesn't exist, or we
691 * raced with btrfs_commit_transaction
692 */
693 if (!cur_trans) {
694 if (transid > root->fs_info->last_trans_committed)
695 ret = -EINVAL;
696 goto out;
697 }
698 } else {
699 /* find newest transaction that is committing | committed */
700 spin_lock(&root->fs_info->trans_lock);
701 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
702 list) {
703 if (t->state >= TRANS_STATE_COMMIT_START) {
704 if (t->state == TRANS_STATE_COMPLETED)
705 break;
706 cur_trans = t;
707 atomic_inc(&cur_trans->use_count);
708 break;
709 }
710 }
711 spin_unlock(&root->fs_info->trans_lock);
712 if (!cur_trans)
713 goto out; /* nothing committing|committed */
714 }
715
716 wait_for_commit(root, cur_trans);
717 btrfs_put_transaction(cur_trans);
718 out:
719 return ret;
720 }
721
722 void btrfs_throttle(struct btrfs_root *root)
723 {
724 if (!atomic_read(&root->fs_info->open_ioctl_trans))
725 wait_current_trans(root);
726 }
727
728 static int should_end_transaction(struct btrfs_trans_handle *trans,
729 struct btrfs_root *root)
730 {
731 if (root->fs_info->global_block_rsv.space_info->full &&
732 btrfs_check_space_for_delayed_refs(trans, root))
733 return 1;
734
735 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
736 }
737
738 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
739 struct btrfs_root *root)
740 {
741 struct btrfs_transaction *cur_trans = trans->transaction;
742 int updates;
743 int err;
744
745 smp_mb();
746 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
747 cur_trans->delayed_refs.flushing)
748 return 1;
749
750 updates = trans->delayed_ref_updates;
751 trans->delayed_ref_updates = 0;
752 if (updates) {
753 err = btrfs_run_delayed_refs(trans, root, updates * 2);
754 if (err) /* Error code will also eval true */
755 return err;
756 }
757
758 return should_end_transaction(trans, root);
759 }
760
761 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
762 struct btrfs_root *root, int throttle)
763 {
764 struct btrfs_transaction *cur_trans = trans->transaction;
765 struct btrfs_fs_info *info = root->fs_info;
766 unsigned long cur = trans->delayed_ref_updates;
767 int lock = (trans->type != TRANS_JOIN_NOLOCK);
768 int err = 0;
769 int must_run_delayed_refs = 0;
770
771 if (trans->use_count > 1) {
772 trans->use_count--;
773 trans->block_rsv = trans->orig_rsv;
774 return 0;
775 }
776
777 btrfs_trans_release_metadata(trans, root);
778 trans->block_rsv = NULL;
779
780 if (!list_empty(&trans->new_bgs))
781 btrfs_create_pending_block_groups(trans, root);
782
783 if (!list_empty(&trans->ordered)) {
784 spin_lock(&info->trans_lock);
785 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
786 spin_unlock(&info->trans_lock);
787 }
788
789 trans->delayed_ref_updates = 0;
790 if (!trans->sync) {
791 must_run_delayed_refs =
792 btrfs_should_throttle_delayed_refs(trans, root);
793 cur = max_t(unsigned long, cur, 32);
794
795 /*
796 * don't make the caller wait if they are from a NOLOCK
797 * or ATTACH transaction, it will deadlock with commit
798 */
799 if (must_run_delayed_refs == 1 &&
800 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
801 must_run_delayed_refs = 2;
802 }
803
804 btrfs_trans_release_metadata(trans, root);
805 trans->block_rsv = NULL;
806
807 if (!list_empty(&trans->new_bgs))
808 btrfs_create_pending_block_groups(trans, root);
809
810 btrfs_trans_release_chunk_metadata(trans);
811
812 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
813 should_end_transaction(trans, root) &&
814 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
815 spin_lock(&info->trans_lock);
816 if (cur_trans->state == TRANS_STATE_RUNNING)
817 cur_trans->state = TRANS_STATE_BLOCKED;
818 spin_unlock(&info->trans_lock);
819 }
820
821 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
822 if (throttle)
823 return btrfs_commit_transaction(trans, root);
824 else
825 wake_up_process(info->transaction_kthread);
826 }
827
828 if (trans->type & __TRANS_FREEZABLE)
829 sb_end_intwrite(root->fs_info->sb);
830
831 WARN_ON(cur_trans != info->running_transaction);
832 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
833 atomic_dec(&cur_trans->num_writers);
834 extwriter_counter_dec(cur_trans, trans->type);
835
836 /*
837 * Make sure counter is updated before we wake up waiters.
838 */
839 smp_mb();
840 if (waitqueue_active(&cur_trans->writer_wait))
841 wake_up(&cur_trans->writer_wait);
842 btrfs_put_transaction(cur_trans);
843
844 if (current->journal_info == trans)
845 current->journal_info = NULL;
846
847 if (throttle)
848 btrfs_run_delayed_iputs(root);
849
850 if (trans->aborted ||
851 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
852 wake_up_process(info->transaction_kthread);
853 err = -EIO;
854 }
855 assert_qgroups_uptodate(trans);
856
857 kmem_cache_free(btrfs_trans_handle_cachep, trans);
858 if (must_run_delayed_refs) {
859 btrfs_async_run_delayed_refs(root, cur,
860 must_run_delayed_refs == 1);
861 }
862 return err;
863 }
864
865 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
866 struct btrfs_root *root)
867 {
868 return __btrfs_end_transaction(trans, root, 0);
869 }
870
871 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
872 struct btrfs_root *root)
873 {
874 return __btrfs_end_transaction(trans, root, 1);
875 }
876
877 /*
878 * when btree blocks are allocated, they have some corresponding bits set for
879 * them in one of two extent_io trees. This is used to make sure all of
880 * those extents are sent to disk but does not wait on them
881 */
882 int btrfs_write_marked_extents(struct btrfs_root *root,
883 struct extent_io_tree *dirty_pages, int mark)
884 {
885 int err = 0;
886 int werr = 0;
887 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
888 struct extent_state *cached_state = NULL;
889 u64 start = 0;
890 u64 end;
891
892 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
893 mark, &cached_state)) {
894 bool wait_writeback = false;
895
896 err = convert_extent_bit(dirty_pages, start, end,
897 EXTENT_NEED_WAIT,
898 mark, &cached_state, GFP_NOFS);
899 /*
900 * convert_extent_bit can return -ENOMEM, which is most of the
901 * time a temporary error. So when it happens, ignore the error
902 * and wait for writeback of this range to finish - because we
903 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
904 * to btrfs_wait_marked_extents() would not know that writeback
905 * for this range started and therefore wouldn't wait for it to
906 * finish - we don't want to commit a superblock that points to
907 * btree nodes/leafs for which writeback hasn't finished yet
908 * (and without errors).
909 * We cleanup any entries left in the io tree when committing
910 * the transaction (through clear_btree_io_tree()).
911 */
912 if (err == -ENOMEM) {
913 err = 0;
914 wait_writeback = true;
915 }
916 if (!err)
917 err = filemap_fdatawrite_range(mapping, start, end);
918 if (err)
919 werr = err;
920 else if (wait_writeback)
921 werr = filemap_fdatawait_range(mapping, start, end);
922 free_extent_state(cached_state);
923 cached_state = NULL;
924 cond_resched();
925 start = end + 1;
926 }
927 return werr;
928 }
929
930 /*
931 * when btree blocks are allocated, they have some corresponding bits set for
932 * them in one of two extent_io trees. This is used to make sure all of
933 * those extents are on disk for transaction or log commit. We wait
934 * on all the pages and clear them from the dirty pages state tree
935 */
936 int btrfs_wait_marked_extents(struct btrfs_root *root,
937 struct extent_io_tree *dirty_pages, int mark)
938 {
939 int err = 0;
940 int werr = 0;
941 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
942 struct extent_state *cached_state = NULL;
943 u64 start = 0;
944 u64 end;
945 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
946 bool errors = false;
947
948 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
949 EXTENT_NEED_WAIT, &cached_state)) {
950 /*
951 * Ignore -ENOMEM errors returned by clear_extent_bit().
952 * When committing the transaction, we'll remove any entries
953 * left in the io tree. For a log commit, we don't remove them
954 * after committing the log because the tree can be accessed
955 * concurrently - we do it only at transaction commit time when
956 * it's safe to do it (through clear_btree_io_tree()).
957 */
958 err = clear_extent_bit(dirty_pages, start, end,
959 EXTENT_NEED_WAIT,
960 0, 0, &cached_state, GFP_NOFS);
961 if (err == -ENOMEM)
962 err = 0;
963 if (!err)
964 err = filemap_fdatawait_range(mapping, start, end);
965 if (err)
966 werr = err;
967 free_extent_state(cached_state);
968 cached_state = NULL;
969 cond_resched();
970 start = end + 1;
971 }
972 if (err)
973 werr = err;
974
975 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
976 if ((mark & EXTENT_DIRTY) &&
977 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
978 &btree_ino->runtime_flags))
979 errors = true;
980
981 if ((mark & EXTENT_NEW) &&
982 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
983 &btree_ino->runtime_flags))
984 errors = true;
985 } else {
986 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
987 &btree_ino->runtime_flags))
988 errors = true;
989 }
990
991 if (errors && !werr)
992 werr = -EIO;
993
994 return werr;
995 }
996
997 /*
998 * when btree blocks are allocated, they have some corresponding bits set for
999 * them in one of two extent_io trees. This is used to make sure all of
1000 * those extents are on disk for transaction or log commit
1001 */
1002 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1003 struct extent_io_tree *dirty_pages, int mark)
1004 {
1005 int ret;
1006 int ret2;
1007 struct blk_plug plug;
1008
1009 blk_start_plug(&plug);
1010 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1011 blk_finish_plug(&plug);
1012 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1013
1014 if (ret)
1015 return ret;
1016 if (ret2)
1017 return ret2;
1018 return 0;
1019 }
1020
1021 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1022 struct btrfs_root *root)
1023 {
1024 int ret;
1025
1026 ret = btrfs_write_and_wait_marked_extents(root,
1027 &trans->transaction->dirty_pages,
1028 EXTENT_DIRTY);
1029 clear_btree_io_tree(&trans->transaction->dirty_pages);
1030
1031 return ret;
1032 }
1033
1034 /*
1035 * this is used to update the root pointer in the tree of tree roots.
1036 *
1037 * But, in the case of the extent allocation tree, updating the root
1038 * pointer may allocate blocks which may change the root of the extent
1039 * allocation tree.
1040 *
1041 * So, this loops and repeats and makes sure the cowonly root didn't
1042 * change while the root pointer was being updated in the metadata.
1043 */
1044 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1045 struct btrfs_root *root)
1046 {
1047 int ret;
1048 u64 old_root_bytenr;
1049 u64 old_root_used;
1050 struct btrfs_root *tree_root = root->fs_info->tree_root;
1051
1052 old_root_used = btrfs_root_used(&root->root_item);
1053
1054 while (1) {
1055 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1056 if (old_root_bytenr == root->node->start &&
1057 old_root_used == btrfs_root_used(&root->root_item))
1058 break;
1059
1060 btrfs_set_root_node(&root->root_item, root->node);
1061 ret = btrfs_update_root(trans, tree_root,
1062 &root->root_key,
1063 &root->root_item);
1064 if (ret)
1065 return ret;
1066
1067 old_root_used = btrfs_root_used(&root->root_item);
1068 }
1069
1070 return 0;
1071 }
1072
1073 /*
1074 * update all the cowonly tree roots on disk
1075 *
1076 * The error handling in this function may not be obvious. Any of the
1077 * failures will cause the file system to go offline. We still need
1078 * to clean up the delayed refs.
1079 */
1080 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1081 struct btrfs_root *root)
1082 {
1083 struct btrfs_fs_info *fs_info = root->fs_info;
1084 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1085 struct list_head *io_bgs = &trans->transaction->io_bgs;
1086 struct list_head *next;
1087 struct extent_buffer *eb;
1088 int ret;
1089
1090 eb = btrfs_lock_root_node(fs_info->tree_root);
1091 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1092 0, &eb);
1093 btrfs_tree_unlock(eb);
1094 free_extent_buffer(eb);
1095
1096 if (ret)
1097 return ret;
1098
1099 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1100 if (ret)
1101 return ret;
1102
1103 ret = btrfs_run_dev_stats(trans, root->fs_info);
1104 if (ret)
1105 return ret;
1106 ret = btrfs_run_dev_replace(trans, root->fs_info);
1107 if (ret)
1108 return ret;
1109 ret = btrfs_run_qgroups(trans, root->fs_info);
1110 if (ret)
1111 return ret;
1112
1113 ret = btrfs_setup_space_cache(trans, root);
1114 if (ret)
1115 return ret;
1116
1117 /* run_qgroups might have added some more refs */
1118 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1119 if (ret)
1120 return ret;
1121 again:
1122 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1123 next = fs_info->dirty_cowonly_roots.next;
1124 list_del_init(next);
1125 root = list_entry(next, struct btrfs_root, dirty_list);
1126 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1127
1128 if (root != fs_info->extent_root)
1129 list_add_tail(&root->dirty_list,
1130 &trans->transaction->switch_commits);
1131 ret = update_cowonly_root(trans, root);
1132 if (ret)
1133 return ret;
1134 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1135 if (ret)
1136 return ret;
1137 }
1138
1139 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1140 ret = btrfs_write_dirty_block_groups(trans, root);
1141 if (ret)
1142 return ret;
1143 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1144 if (ret)
1145 return ret;
1146 }
1147
1148 if (!list_empty(&fs_info->dirty_cowonly_roots))
1149 goto again;
1150
1151 list_add_tail(&fs_info->extent_root->dirty_list,
1152 &trans->transaction->switch_commits);
1153 btrfs_after_dev_replace_commit(fs_info);
1154
1155 return 0;
1156 }
1157
1158 /*
1159 * dead roots are old snapshots that need to be deleted. This allocates
1160 * a dirty root struct and adds it into the list of dead roots that need to
1161 * be deleted
1162 */
1163 void btrfs_add_dead_root(struct btrfs_root *root)
1164 {
1165 spin_lock(&root->fs_info->trans_lock);
1166 if (list_empty(&root->root_list))
1167 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1168 spin_unlock(&root->fs_info->trans_lock);
1169 }
1170
1171 /*
1172 * update all the cowonly tree roots on disk
1173 */
1174 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root)
1176 {
1177 struct btrfs_root *gang[8];
1178 struct btrfs_fs_info *fs_info = root->fs_info;
1179 int i;
1180 int ret;
1181 int err = 0;
1182
1183 spin_lock(&fs_info->fs_roots_radix_lock);
1184 while (1) {
1185 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1186 (void **)gang, 0,
1187 ARRAY_SIZE(gang),
1188 BTRFS_ROOT_TRANS_TAG);
1189 if (ret == 0)
1190 break;
1191 for (i = 0; i < ret; i++) {
1192 root = gang[i];
1193 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1194 (unsigned long)root->root_key.objectid,
1195 BTRFS_ROOT_TRANS_TAG);
1196 spin_unlock(&fs_info->fs_roots_radix_lock);
1197
1198 btrfs_free_log(trans, root);
1199 btrfs_update_reloc_root(trans, root);
1200 btrfs_orphan_commit_root(trans, root);
1201
1202 btrfs_save_ino_cache(root, trans);
1203
1204 /* see comments in should_cow_block() */
1205 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1206 smp_mb__after_atomic();
1207
1208 if (root->commit_root != root->node) {
1209 list_add_tail(&root->dirty_list,
1210 &trans->transaction->switch_commits);
1211 btrfs_set_root_node(&root->root_item,
1212 root->node);
1213 }
1214
1215 err = btrfs_update_root(trans, fs_info->tree_root,
1216 &root->root_key,
1217 &root->root_item);
1218 spin_lock(&fs_info->fs_roots_radix_lock);
1219 if (err)
1220 break;
1221 btrfs_qgroup_free_meta_all(root);
1222 }
1223 }
1224 spin_unlock(&fs_info->fs_roots_radix_lock);
1225 return err;
1226 }
1227
1228 /*
1229 * defrag a given btree.
1230 * Every leaf in the btree is read and defragged.
1231 */
1232 int btrfs_defrag_root(struct btrfs_root *root)
1233 {
1234 struct btrfs_fs_info *info = root->fs_info;
1235 struct btrfs_trans_handle *trans;
1236 int ret;
1237
1238 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1239 return 0;
1240
1241 while (1) {
1242 trans = btrfs_start_transaction(root, 0);
1243 if (IS_ERR(trans))
1244 return PTR_ERR(trans);
1245
1246 ret = btrfs_defrag_leaves(trans, root);
1247
1248 btrfs_end_transaction(trans, root);
1249 btrfs_btree_balance_dirty(info->tree_root);
1250 cond_resched();
1251
1252 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1253 break;
1254
1255 if (btrfs_defrag_cancelled(root->fs_info)) {
1256 pr_debug("BTRFS: defrag_root cancelled\n");
1257 ret = -EAGAIN;
1258 break;
1259 }
1260 }
1261 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1262 return ret;
1263 }
1264
1265 /*
1266 * new snapshots need to be created at a very specific time in the
1267 * transaction commit. This does the actual creation.
1268 *
1269 * Note:
1270 * If the error which may affect the commitment of the current transaction
1271 * happens, we should return the error number. If the error which just affect
1272 * the creation of the pending snapshots, just return 0.
1273 */
1274 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1275 struct btrfs_fs_info *fs_info,
1276 struct btrfs_pending_snapshot *pending)
1277 {
1278 struct btrfs_key key;
1279 struct btrfs_root_item *new_root_item;
1280 struct btrfs_root *tree_root = fs_info->tree_root;
1281 struct btrfs_root *root = pending->root;
1282 struct btrfs_root *parent_root;
1283 struct btrfs_block_rsv *rsv;
1284 struct inode *parent_inode;
1285 struct btrfs_path *path;
1286 struct btrfs_dir_item *dir_item;
1287 struct dentry *dentry;
1288 struct extent_buffer *tmp;
1289 struct extent_buffer *old;
1290 struct timespec cur_time = CURRENT_TIME;
1291 int ret = 0;
1292 u64 to_reserve = 0;
1293 u64 index = 0;
1294 u64 objectid;
1295 u64 root_flags;
1296 uuid_le new_uuid;
1297
1298 path = btrfs_alloc_path();
1299 if (!path) {
1300 pending->error = -ENOMEM;
1301 return 0;
1302 }
1303
1304 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1305 if (!new_root_item) {
1306 pending->error = -ENOMEM;
1307 goto root_item_alloc_fail;
1308 }
1309
1310 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1311 if (pending->error)
1312 goto no_free_objectid;
1313
1314 /*
1315 * Make qgroup to skip current new snapshot's qgroupid, as it is
1316 * accounted by later btrfs_qgroup_inherit().
1317 */
1318 btrfs_set_skip_qgroup(trans, objectid);
1319
1320 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1321
1322 if (to_reserve > 0) {
1323 pending->error = btrfs_block_rsv_add(root,
1324 &pending->block_rsv,
1325 to_reserve,
1326 BTRFS_RESERVE_NO_FLUSH);
1327 if (pending->error)
1328 goto clear_skip_qgroup;
1329 }
1330
1331 key.objectid = objectid;
1332 key.offset = (u64)-1;
1333 key.type = BTRFS_ROOT_ITEM_KEY;
1334
1335 rsv = trans->block_rsv;
1336 trans->block_rsv = &pending->block_rsv;
1337 trans->bytes_reserved = trans->block_rsv->reserved;
1338
1339 dentry = pending->dentry;
1340 parent_inode = pending->dir;
1341 parent_root = BTRFS_I(parent_inode)->root;
1342 record_root_in_trans(trans, parent_root);
1343
1344 /*
1345 * insert the directory item
1346 */
1347 ret = btrfs_set_inode_index(parent_inode, &index);
1348 BUG_ON(ret); /* -ENOMEM */
1349
1350 /* check if there is a file/dir which has the same name. */
1351 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1352 btrfs_ino(parent_inode),
1353 dentry->d_name.name,
1354 dentry->d_name.len, 0);
1355 if (dir_item != NULL && !IS_ERR(dir_item)) {
1356 pending->error = -EEXIST;
1357 goto dir_item_existed;
1358 } else if (IS_ERR(dir_item)) {
1359 ret = PTR_ERR(dir_item);
1360 btrfs_abort_transaction(trans, root, ret);
1361 goto fail;
1362 }
1363 btrfs_release_path(path);
1364
1365 /*
1366 * pull in the delayed directory update
1367 * and the delayed inode item
1368 * otherwise we corrupt the FS during
1369 * snapshot
1370 */
1371 ret = btrfs_run_delayed_items(trans, root);
1372 if (ret) { /* Transaction aborted */
1373 btrfs_abort_transaction(trans, root, ret);
1374 goto fail;
1375 }
1376
1377 record_root_in_trans(trans, root);
1378 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1379 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1380 btrfs_check_and_init_root_item(new_root_item);
1381
1382 root_flags = btrfs_root_flags(new_root_item);
1383 if (pending->readonly)
1384 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1385 else
1386 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1387 btrfs_set_root_flags(new_root_item, root_flags);
1388
1389 btrfs_set_root_generation_v2(new_root_item,
1390 trans->transid);
1391 uuid_le_gen(&new_uuid);
1392 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1393 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1394 BTRFS_UUID_SIZE);
1395 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1396 memset(new_root_item->received_uuid, 0,
1397 sizeof(new_root_item->received_uuid));
1398 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1399 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1400 btrfs_set_root_stransid(new_root_item, 0);
1401 btrfs_set_root_rtransid(new_root_item, 0);
1402 }
1403 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1404 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1405 btrfs_set_root_otransid(new_root_item, trans->transid);
1406
1407 old = btrfs_lock_root_node(root);
1408 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1409 if (ret) {
1410 btrfs_tree_unlock(old);
1411 free_extent_buffer(old);
1412 btrfs_abort_transaction(trans, root, ret);
1413 goto fail;
1414 }
1415
1416 btrfs_set_lock_blocking(old);
1417
1418 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1419 /* clean up in any case */
1420 btrfs_tree_unlock(old);
1421 free_extent_buffer(old);
1422 if (ret) {
1423 btrfs_abort_transaction(trans, root, ret);
1424 goto fail;
1425 }
1426 /* see comments in should_cow_block() */
1427 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1428 smp_wmb();
1429
1430 btrfs_set_root_node(new_root_item, tmp);
1431 /* record when the snapshot was created in key.offset */
1432 key.offset = trans->transid;
1433 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1434 btrfs_tree_unlock(tmp);
1435 free_extent_buffer(tmp);
1436 if (ret) {
1437 btrfs_abort_transaction(trans, root, ret);
1438 goto fail;
1439 }
1440
1441 /*
1442 * insert root back/forward references
1443 */
1444 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1445 parent_root->root_key.objectid,
1446 btrfs_ino(parent_inode), index,
1447 dentry->d_name.name, dentry->d_name.len);
1448 if (ret) {
1449 btrfs_abort_transaction(trans, root, ret);
1450 goto fail;
1451 }
1452
1453 key.offset = (u64)-1;
1454 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1455 if (IS_ERR(pending->snap)) {
1456 ret = PTR_ERR(pending->snap);
1457 btrfs_abort_transaction(trans, root, ret);
1458 goto fail;
1459 }
1460
1461 ret = btrfs_reloc_post_snapshot(trans, pending);
1462 if (ret) {
1463 btrfs_abort_transaction(trans, root, ret);
1464 goto fail;
1465 }
1466
1467 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1468 if (ret) {
1469 btrfs_abort_transaction(trans, root, ret);
1470 goto fail;
1471 }
1472
1473 ret = btrfs_insert_dir_item(trans, parent_root,
1474 dentry->d_name.name, dentry->d_name.len,
1475 parent_inode, &key,
1476 BTRFS_FT_DIR, index);
1477 /* We have check then name at the beginning, so it is impossible. */
1478 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1479 if (ret) {
1480 btrfs_abort_transaction(trans, root, ret);
1481 goto fail;
1482 }
1483
1484 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1485 dentry->d_name.len * 2);
1486 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1487 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1488 if (ret) {
1489 btrfs_abort_transaction(trans, root, ret);
1490 goto fail;
1491 }
1492 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1493 BTRFS_UUID_KEY_SUBVOL, objectid);
1494 if (ret) {
1495 btrfs_abort_transaction(trans, root, ret);
1496 goto fail;
1497 }
1498 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1499 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1500 new_root_item->received_uuid,
1501 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1502 objectid);
1503 if (ret && ret != -EEXIST) {
1504 btrfs_abort_transaction(trans, root, ret);
1505 goto fail;
1506 }
1507 }
1508
1509 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1510 if (ret) {
1511 btrfs_abort_transaction(trans, root, ret);
1512 goto fail;
1513 }
1514
1515 /*
1516 * account qgroup counters before qgroup_inherit()
1517 */
1518 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1519 if (ret)
1520 goto fail;
1521 ret = btrfs_qgroup_account_extents(trans, fs_info);
1522 if (ret)
1523 goto fail;
1524 ret = btrfs_qgroup_inherit(trans, fs_info,
1525 root->root_key.objectid,
1526 objectid, pending->inherit);
1527 if (ret) {
1528 btrfs_abort_transaction(trans, root, ret);
1529 goto fail;
1530 }
1531
1532 fail:
1533 pending->error = ret;
1534 dir_item_existed:
1535 trans->block_rsv = rsv;
1536 trans->bytes_reserved = 0;
1537 clear_skip_qgroup:
1538 btrfs_clear_skip_qgroup(trans);
1539 no_free_objectid:
1540 kfree(new_root_item);
1541 root_item_alloc_fail:
1542 btrfs_free_path(path);
1543 return ret;
1544 }
1545
1546 /*
1547 * create all the snapshots we've scheduled for creation
1548 */
1549 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1550 struct btrfs_fs_info *fs_info)
1551 {
1552 struct btrfs_pending_snapshot *pending, *next;
1553 struct list_head *head = &trans->transaction->pending_snapshots;
1554 int ret = 0;
1555
1556 list_for_each_entry_safe(pending, next, head, list) {
1557 list_del(&pending->list);
1558 ret = create_pending_snapshot(trans, fs_info, pending);
1559 if (ret)
1560 break;
1561 }
1562 return ret;
1563 }
1564
1565 static void update_super_roots(struct btrfs_root *root)
1566 {
1567 struct btrfs_root_item *root_item;
1568 struct btrfs_super_block *super;
1569
1570 super = root->fs_info->super_copy;
1571
1572 root_item = &root->fs_info->chunk_root->root_item;
1573 super->chunk_root = root_item->bytenr;
1574 super->chunk_root_generation = root_item->generation;
1575 super->chunk_root_level = root_item->level;
1576
1577 root_item = &root->fs_info->tree_root->root_item;
1578 super->root = root_item->bytenr;
1579 super->generation = root_item->generation;
1580 super->root_level = root_item->level;
1581 if (btrfs_test_opt(root, SPACE_CACHE))
1582 super->cache_generation = root_item->generation;
1583 if (root->fs_info->update_uuid_tree_gen)
1584 super->uuid_tree_generation = root_item->generation;
1585 }
1586
1587 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1588 {
1589 struct btrfs_transaction *trans;
1590 int ret = 0;
1591
1592 spin_lock(&info->trans_lock);
1593 trans = info->running_transaction;
1594 if (trans)
1595 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1596 spin_unlock(&info->trans_lock);
1597 return ret;
1598 }
1599
1600 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1601 {
1602 struct btrfs_transaction *trans;
1603 int ret = 0;
1604
1605 spin_lock(&info->trans_lock);
1606 trans = info->running_transaction;
1607 if (trans)
1608 ret = is_transaction_blocked(trans);
1609 spin_unlock(&info->trans_lock);
1610 return ret;
1611 }
1612
1613 /*
1614 * wait for the current transaction commit to start and block subsequent
1615 * transaction joins
1616 */
1617 static void wait_current_trans_commit_start(struct btrfs_root *root,
1618 struct btrfs_transaction *trans)
1619 {
1620 wait_event(root->fs_info->transaction_blocked_wait,
1621 trans->state >= TRANS_STATE_COMMIT_START ||
1622 trans->aborted);
1623 }
1624
1625 /*
1626 * wait for the current transaction to start and then become unblocked.
1627 * caller holds ref.
1628 */
1629 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1630 struct btrfs_transaction *trans)
1631 {
1632 wait_event(root->fs_info->transaction_wait,
1633 trans->state >= TRANS_STATE_UNBLOCKED ||
1634 trans->aborted);
1635 }
1636
1637 /*
1638 * commit transactions asynchronously. once btrfs_commit_transaction_async
1639 * returns, any subsequent transaction will not be allowed to join.
1640 */
1641 struct btrfs_async_commit {
1642 struct btrfs_trans_handle *newtrans;
1643 struct btrfs_root *root;
1644 struct work_struct work;
1645 };
1646
1647 static void do_async_commit(struct work_struct *work)
1648 {
1649 struct btrfs_async_commit *ac =
1650 container_of(work, struct btrfs_async_commit, work);
1651
1652 /*
1653 * We've got freeze protection passed with the transaction.
1654 * Tell lockdep about it.
1655 */
1656 if (ac->newtrans->type & __TRANS_FREEZABLE)
1657 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1658
1659 current->journal_info = ac->newtrans;
1660
1661 btrfs_commit_transaction(ac->newtrans, ac->root);
1662 kfree(ac);
1663 }
1664
1665 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1666 struct btrfs_root *root,
1667 int wait_for_unblock)
1668 {
1669 struct btrfs_async_commit *ac;
1670 struct btrfs_transaction *cur_trans;
1671
1672 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1673 if (!ac)
1674 return -ENOMEM;
1675
1676 INIT_WORK(&ac->work, do_async_commit);
1677 ac->root = root;
1678 ac->newtrans = btrfs_join_transaction(root);
1679 if (IS_ERR(ac->newtrans)) {
1680 int err = PTR_ERR(ac->newtrans);
1681 kfree(ac);
1682 return err;
1683 }
1684
1685 /* take transaction reference */
1686 cur_trans = trans->transaction;
1687 atomic_inc(&cur_trans->use_count);
1688
1689 btrfs_end_transaction(trans, root);
1690
1691 /*
1692 * Tell lockdep we've released the freeze rwsem, since the
1693 * async commit thread will be the one to unlock it.
1694 */
1695 if (ac->newtrans->type & __TRANS_FREEZABLE)
1696 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1697
1698 schedule_work(&ac->work);
1699
1700 /* wait for transaction to start and unblock */
1701 if (wait_for_unblock)
1702 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1703 else
1704 wait_current_trans_commit_start(root, cur_trans);
1705
1706 if (current->journal_info == trans)
1707 current->journal_info = NULL;
1708
1709 btrfs_put_transaction(cur_trans);
1710 return 0;
1711 }
1712
1713
1714 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1715 struct btrfs_root *root, int err)
1716 {
1717 struct btrfs_transaction *cur_trans = trans->transaction;
1718 DEFINE_WAIT(wait);
1719
1720 WARN_ON(trans->use_count > 1);
1721
1722 btrfs_abort_transaction(trans, root, err);
1723
1724 spin_lock(&root->fs_info->trans_lock);
1725
1726 /*
1727 * If the transaction is removed from the list, it means this
1728 * transaction has been committed successfully, so it is impossible
1729 * to call the cleanup function.
1730 */
1731 BUG_ON(list_empty(&cur_trans->list));
1732
1733 list_del_init(&cur_trans->list);
1734 if (cur_trans == root->fs_info->running_transaction) {
1735 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1736 spin_unlock(&root->fs_info->trans_lock);
1737 wait_event(cur_trans->writer_wait,
1738 atomic_read(&cur_trans->num_writers) == 1);
1739
1740 spin_lock(&root->fs_info->trans_lock);
1741 }
1742 spin_unlock(&root->fs_info->trans_lock);
1743
1744 btrfs_cleanup_one_transaction(trans->transaction, root);
1745
1746 spin_lock(&root->fs_info->trans_lock);
1747 if (cur_trans == root->fs_info->running_transaction)
1748 root->fs_info->running_transaction = NULL;
1749 spin_unlock(&root->fs_info->trans_lock);
1750
1751 if (trans->type & __TRANS_FREEZABLE)
1752 sb_end_intwrite(root->fs_info->sb);
1753 btrfs_put_transaction(cur_trans);
1754 btrfs_put_transaction(cur_trans);
1755
1756 trace_btrfs_transaction_commit(root);
1757
1758 if (current->journal_info == trans)
1759 current->journal_info = NULL;
1760 btrfs_scrub_cancel(root->fs_info);
1761
1762 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1763 }
1764
1765 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1766 {
1767 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1768 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1769 return 0;
1770 }
1771
1772 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1773 {
1774 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1775 btrfs_wait_ordered_roots(fs_info, -1);
1776 }
1777
1778 static inline void
1779 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1780 struct btrfs_fs_info *fs_info)
1781 {
1782 struct btrfs_ordered_extent *ordered;
1783
1784 spin_lock(&fs_info->trans_lock);
1785 while (!list_empty(&cur_trans->pending_ordered)) {
1786 ordered = list_first_entry(&cur_trans->pending_ordered,
1787 struct btrfs_ordered_extent,
1788 trans_list);
1789 list_del_init(&ordered->trans_list);
1790 spin_unlock(&fs_info->trans_lock);
1791
1792 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1793 &ordered->flags));
1794 btrfs_put_ordered_extent(ordered);
1795 spin_lock(&fs_info->trans_lock);
1796 }
1797 spin_unlock(&fs_info->trans_lock);
1798 }
1799
1800 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root)
1802 {
1803 struct btrfs_transaction *cur_trans = trans->transaction;
1804 struct btrfs_transaction *prev_trans = NULL;
1805 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1806 int ret;
1807
1808 /* Stop the commit early if ->aborted is set */
1809 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1810 ret = cur_trans->aborted;
1811 btrfs_end_transaction(trans, root);
1812 return ret;
1813 }
1814
1815 /* make a pass through all the delayed refs we have so far
1816 * any runnings procs may add more while we are here
1817 */
1818 ret = btrfs_run_delayed_refs(trans, root, 0);
1819 if (ret) {
1820 btrfs_end_transaction(trans, root);
1821 return ret;
1822 }
1823
1824 btrfs_trans_release_metadata(trans, root);
1825 trans->block_rsv = NULL;
1826
1827 cur_trans = trans->transaction;
1828
1829 /*
1830 * set the flushing flag so procs in this transaction have to
1831 * start sending their work down.
1832 */
1833 cur_trans->delayed_refs.flushing = 1;
1834 smp_wmb();
1835
1836 if (!list_empty(&trans->new_bgs))
1837 btrfs_create_pending_block_groups(trans, root);
1838
1839 ret = btrfs_run_delayed_refs(trans, root, 0);
1840 if (ret) {
1841 btrfs_end_transaction(trans, root);
1842 return ret;
1843 }
1844
1845 if (!cur_trans->dirty_bg_run) {
1846 int run_it = 0;
1847
1848 /* this mutex is also taken before trying to set
1849 * block groups readonly. We need to make sure
1850 * that nobody has set a block group readonly
1851 * after a extents from that block group have been
1852 * allocated for cache files. btrfs_set_block_group_ro
1853 * will wait for the transaction to commit if it
1854 * finds dirty_bg_run = 1
1855 *
1856 * The dirty_bg_run flag is also used to make sure only
1857 * one process starts all the block group IO. It wouldn't
1858 * hurt to have more than one go through, but there's no
1859 * real advantage to it either.
1860 */
1861 mutex_lock(&root->fs_info->ro_block_group_mutex);
1862 if (!cur_trans->dirty_bg_run) {
1863 run_it = 1;
1864 cur_trans->dirty_bg_run = 1;
1865 }
1866 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1867
1868 if (run_it)
1869 ret = btrfs_start_dirty_block_groups(trans, root);
1870 }
1871 if (ret) {
1872 btrfs_end_transaction(trans, root);
1873 return ret;
1874 }
1875
1876 spin_lock(&root->fs_info->trans_lock);
1877 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1878 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1879 spin_unlock(&root->fs_info->trans_lock);
1880 atomic_inc(&cur_trans->use_count);
1881 ret = btrfs_end_transaction(trans, root);
1882
1883 wait_for_commit(root, cur_trans);
1884
1885 if (unlikely(cur_trans->aborted))
1886 ret = cur_trans->aborted;
1887
1888 btrfs_put_transaction(cur_trans);
1889
1890 return ret;
1891 }
1892
1893 cur_trans->state = TRANS_STATE_COMMIT_START;
1894 wake_up(&root->fs_info->transaction_blocked_wait);
1895
1896 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1897 prev_trans = list_entry(cur_trans->list.prev,
1898 struct btrfs_transaction, list);
1899 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1900 atomic_inc(&prev_trans->use_count);
1901 spin_unlock(&root->fs_info->trans_lock);
1902
1903 wait_for_commit(root, prev_trans);
1904 ret = prev_trans->aborted;
1905
1906 btrfs_put_transaction(prev_trans);
1907 if (ret)
1908 goto cleanup_transaction;
1909 } else {
1910 spin_unlock(&root->fs_info->trans_lock);
1911 }
1912 } else {
1913 spin_unlock(&root->fs_info->trans_lock);
1914 }
1915
1916 extwriter_counter_dec(cur_trans, trans->type);
1917
1918 ret = btrfs_start_delalloc_flush(root->fs_info);
1919 if (ret)
1920 goto cleanup_transaction;
1921
1922 ret = btrfs_run_delayed_items(trans, root);
1923 if (ret)
1924 goto cleanup_transaction;
1925
1926 wait_event(cur_trans->writer_wait,
1927 extwriter_counter_read(cur_trans) == 0);
1928
1929 /* some pending stuffs might be added after the previous flush. */
1930 ret = btrfs_run_delayed_items(trans, root);
1931 if (ret)
1932 goto cleanup_transaction;
1933
1934 btrfs_wait_delalloc_flush(root->fs_info);
1935
1936 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1937
1938 btrfs_scrub_pause(root);
1939 /*
1940 * Ok now we need to make sure to block out any other joins while we
1941 * commit the transaction. We could have started a join before setting
1942 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1943 */
1944 spin_lock(&root->fs_info->trans_lock);
1945 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1946 spin_unlock(&root->fs_info->trans_lock);
1947 wait_event(cur_trans->writer_wait,
1948 atomic_read(&cur_trans->num_writers) == 1);
1949
1950 /* ->aborted might be set after the previous check, so check it */
1951 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1952 ret = cur_trans->aborted;
1953 goto scrub_continue;
1954 }
1955 /*
1956 * the reloc mutex makes sure that we stop
1957 * the balancing code from coming in and moving
1958 * extents around in the middle of the commit
1959 */
1960 mutex_lock(&root->fs_info->reloc_mutex);
1961
1962 /*
1963 * We needn't worry about the delayed items because we will
1964 * deal with them in create_pending_snapshot(), which is the
1965 * core function of the snapshot creation.
1966 */
1967 ret = create_pending_snapshots(trans, root->fs_info);
1968 if (ret) {
1969 mutex_unlock(&root->fs_info->reloc_mutex);
1970 goto scrub_continue;
1971 }
1972
1973 /*
1974 * We insert the dir indexes of the snapshots and update the inode
1975 * of the snapshots' parents after the snapshot creation, so there
1976 * are some delayed items which are not dealt with. Now deal with
1977 * them.
1978 *
1979 * We needn't worry that this operation will corrupt the snapshots,
1980 * because all the tree which are snapshoted will be forced to COW
1981 * the nodes and leaves.
1982 */
1983 ret = btrfs_run_delayed_items(trans, root);
1984 if (ret) {
1985 mutex_unlock(&root->fs_info->reloc_mutex);
1986 goto scrub_continue;
1987 }
1988
1989 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1990 if (ret) {
1991 mutex_unlock(&root->fs_info->reloc_mutex);
1992 goto scrub_continue;
1993 }
1994
1995 /* Reocrd old roots for later qgroup accounting */
1996 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
1997 if (ret) {
1998 mutex_unlock(&root->fs_info->reloc_mutex);
1999 goto scrub_continue;
2000 }
2001
2002 /*
2003 * make sure none of the code above managed to slip in a
2004 * delayed item
2005 */
2006 btrfs_assert_delayed_root_empty(root);
2007
2008 WARN_ON(cur_trans != trans->transaction);
2009
2010 /* btrfs_commit_tree_roots is responsible for getting the
2011 * various roots consistent with each other. Every pointer
2012 * in the tree of tree roots has to point to the most up to date
2013 * root for every subvolume and other tree. So, we have to keep
2014 * the tree logging code from jumping in and changing any
2015 * of the trees.
2016 *
2017 * At this point in the commit, there can't be any tree-log
2018 * writers, but a little lower down we drop the trans mutex
2019 * and let new people in. By holding the tree_log_mutex
2020 * from now until after the super is written, we avoid races
2021 * with the tree-log code.
2022 */
2023 mutex_lock(&root->fs_info->tree_log_mutex);
2024
2025 ret = commit_fs_roots(trans, root);
2026 if (ret) {
2027 mutex_unlock(&root->fs_info->tree_log_mutex);
2028 mutex_unlock(&root->fs_info->reloc_mutex);
2029 goto scrub_continue;
2030 }
2031
2032 /*
2033 * Since the transaction is done, we can apply the pending changes
2034 * before the next transaction.
2035 */
2036 btrfs_apply_pending_changes(root->fs_info);
2037
2038 /* commit_fs_roots gets rid of all the tree log roots, it is now
2039 * safe to free the root of tree log roots
2040 */
2041 btrfs_free_log_root_tree(trans, root->fs_info);
2042
2043 /*
2044 * Since fs roots are all committed, we can get a quite accurate
2045 * new_roots. So let's do quota accounting.
2046 */
2047 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2048 if (ret < 0) {
2049 mutex_unlock(&root->fs_info->tree_log_mutex);
2050 mutex_unlock(&root->fs_info->reloc_mutex);
2051 goto scrub_continue;
2052 }
2053
2054 ret = commit_cowonly_roots(trans, root);
2055 if (ret) {
2056 mutex_unlock(&root->fs_info->tree_log_mutex);
2057 mutex_unlock(&root->fs_info->reloc_mutex);
2058 goto scrub_continue;
2059 }
2060
2061 /*
2062 * The tasks which save the space cache and inode cache may also
2063 * update ->aborted, check it.
2064 */
2065 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2066 ret = cur_trans->aborted;
2067 mutex_unlock(&root->fs_info->tree_log_mutex);
2068 mutex_unlock(&root->fs_info->reloc_mutex);
2069 goto scrub_continue;
2070 }
2071
2072 btrfs_prepare_extent_commit(trans, root);
2073
2074 cur_trans = root->fs_info->running_transaction;
2075
2076 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2077 root->fs_info->tree_root->node);
2078 list_add_tail(&root->fs_info->tree_root->dirty_list,
2079 &cur_trans->switch_commits);
2080
2081 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2082 root->fs_info->chunk_root->node);
2083 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2084 &cur_trans->switch_commits);
2085
2086 switch_commit_roots(cur_trans, root->fs_info);
2087
2088 assert_qgroups_uptodate(trans);
2089 ASSERT(list_empty(&cur_trans->dirty_bgs));
2090 ASSERT(list_empty(&cur_trans->io_bgs));
2091 update_super_roots(root);
2092
2093 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2094 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2095 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2096 sizeof(*root->fs_info->super_copy));
2097
2098 btrfs_update_commit_device_size(root->fs_info);
2099 btrfs_update_commit_device_bytes_used(root, cur_trans);
2100
2101 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2102 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2103
2104 btrfs_trans_release_chunk_metadata(trans);
2105
2106 spin_lock(&root->fs_info->trans_lock);
2107 cur_trans->state = TRANS_STATE_UNBLOCKED;
2108 root->fs_info->running_transaction = NULL;
2109 spin_unlock(&root->fs_info->trans_lock);
2110 mutex_unlock(&root->fs_info->reloc_mutex);
2111
2112 wake_up(&root->fs_info->transaction_wait);
2113
2114 ret = btrfs_write_and_wait_transaction(trans, root);
2115 if (ret) {
2116 btrfs_std_error(root->fs_info, ret,
2117 "Error while writing out transaction");
2118 mutex_unlock(&root->fs_info->tree_log_mutex);
2119 goto scrub_continue;
2120 }
2121
2122 ret = write_ctree_super(trans, root, 0);
2123 if (ret) {
2124 mutex_unlock(&root->fs_info->tree_log_mutex);
2125 goto scrub_continue;
2126 }
2127
2128 /*
2129 * the super is written, we can safely allow the tree-loggers
2130 * to go about their business
2131 */
2132 mutex_unlock(&root->fs_info->tree_log_mutex);
2133
2134 btrfs_finish_extent_commit(trans, root);
2135
2136 if (cur_trans->have_free_bgs)
2137 btrfs_clear_space_info_full(root->fs_info);
2138
2139 root->fs_info->last_trans_committed = cur_trans->transid;
2140 /*
2141 * We needn't acquire the lock here because there is no other task
2142 * which can change it.
2143 */
2144 cur_trans->state = TRANS_STATE_COMPLETED;
2145 wake_up(&cur_trans->commit_wait);
2146
2147 spin_lock(&root->fs_info->trans_lock);
2148 list_del_init(&cur_trans->list);
2149 spin_unlock(&root->fs_info->trans_lock);
2150
2151 btrfs_put_transaction(cur_trans);
2152 btrfs_put_transaction(cur_trans);
2153
2154 if (trans->type & __TRANS_FREEZABLE)
2155 sb_end_intwrite(root->fs_info->sb);
2156
2157 trace_btrfs_transaction_commit(root);
2158
2159 btrfs_scrub_continue(root);
2160
2161 if (current->journal_info == trans)
2162 current->journal_info = NULL;
2163
2164 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2165
2166 if (current != root->fs_info->transaction_kthread &&
2167 current != root->fs_info->cleaner_kthread)
2168 btrfs_run_delayed_iputs(root);
2169
2170 return ret;
2171
2172 scrub_continue:
2173 btrfs_scrub_continue(root);
2174 cleanup_transaction:
2175 btrfs_trans_release_metadata(trans, root);
2176 btrfs_trans_release_chunk_metadata(trans);
2177 trans->block_rsv = NULL;
2178 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2179 if (current->journal_info == trans)
2180 current->journal_info = NULL;
2181 cleanup_transaction(trans, root, ret);
2182
2183 return ret;
2184 }
2185
2186 /*
2187 * return < 0 if error
2188 * 0 if there are no more dead_roots at the time of call
2189 * 1 there are more to be processed, call me again
2190 *
2191 * The return value indicates there are certainly more snapshots to delete, but
2192 * if there comes a new one during processing, it may return 0. We don't mind,
2193 * because btrfs_commit_super will poke cleaner thread and it will process it a
2194 * few seconds later.
2195 */
2196 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2197 {
2198 int ret;
2199 struct btrfs_fs_info *fs_info = root->fs_info;
2200
2201 spin_lock(&fs_info->trans_lock);
2202 if (list_empty(&fs_info->dead_roots)) {
2203 spin_unlock(&fs_info->trans_lock);
2204 return 0;
2205 }
2206 root = list_first_entry(&fs_info->dead_roots,
2207 struct btrfs_root, root_list);
2208 list_del_init(&root->root_list);
2209 spin_unlock(&fs_info->trans_lock);
2210
2211 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2212
2213 btrfs_kill_all_delayed_nodes(root);
2214
2215 if (btrfs_header_backref_rev(root->node) <
2216 BTRFS_MIXED_BACKREF_REV)
2217 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2218 else
2219 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2220
2221 return (ret < 0) ? 0 : 1;
2222 }
2223
2224 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2225 {
2226 unsigned long prev;
2227 unsigned long bit;
2228
2229 prev = xchg(&fs_info->pending_changes, 0);
2230 if (!prev)
2231 return;
2232
2233 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2234 if (prev & bit)
2235 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2236 prev &= ~bit;
2237
2238 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2239 if (prev & bit)
2240 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2241 prev &= ~bit;
2242
2243 bit = 1 << BTRFS_PENDING_COMMIT;
2244 if (prev & bit)
2245 btrfs_debug(fs_info, "pending commit done");
2246 prev &= ~bit;
2247
2248 if (prev)
2249 btrfs_warn(fs_info,
2250 "unknown pending changes left 0x%lx, ignoring", prev);
2251 }
This page took 0.160459 seconds and 5 git commands to generate.