Btrfs: don't wait for all the writers circularly during the transaction commit
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static void put_transaction(struct btrfs_transaction *transaction)
38 {
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
51 }
52
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54 unsigned int type)
55 {
56 return !(trans->in_commit &&
57 (type & TRANS_EXTWRITERS));
58 }
59
60 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
61 unsigned int type)
62 {
63 if (type & TRANS_EXTWRITERS)
64 atomic_inc(&trans->num_extwriters);
65 }
66
67 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
68 unsigned int type)
69 {
70 if (type & TRANS_EXTWRITERS)
71 atomic_dec(&trans->num_extwriters);
72 }
73
74 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
75 unsigned int type)
76 {
77 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
78 }
79
80 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
81 {
82 return atomic_read(&trans->num_extwriters);
83 }
84
85 /*
86 * either allocate a new transaction or hop into the existing one
87 */
88 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
89 {
90 struct btrfs_transaction *cur_trans;
91 struct btrfs_fs_info *fs_info = root->fs_info;
92
93 spin_lock(&fs_info->trans_lock);
94 loop:
95 /* The file system has been taken offline. No new transactions. */
96 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
97 spin_unlock(&fs_info->trans_lock);
98 return -EROFS;
99 }
100
101 if (fs_info->trans_no_join) {
102 /*
103 * If we are JOIN_NOLOCK we're already committing a current
104 * transaction, we just need a handle to deal with something
105 * when committing the transaction, such as inode cache and
106 * space cache. It is a special case.
107 */
108 if (type != TRANS_JOIN_NOLOCK) {
109 spin_unlock(&fs_info->trans_lock);
110 return -EBUSY;
111 }
112 }
113
114 cur_trans = fs_info->running_transaction;
115 if (cur_trans) {
116 if (cur_trans->aborted) {
117 spin_unlock(&fs_info->trans_lock);
118 return cur_trans->aborted;
119 }
120 if (!can_join_transaction(cur_trans, type)) {
121 spin_unlock(&fs_info->trans_lock);
122 return -EBUSY;
123 }
124 atomic_inc(&cur_trans->use_count);
125 atomic_inc(&cur_trans->num_writers);
126 extwriter_counter_inc(cur_trans, type);
127 cur_trans->num_joined++;
128 spin_unlock(&fs_info->trans_lock);
129 return 0;
130 }
131 spin_unlock(&fs_info->trans_lock);
132
133 /*
134 * If we are ATTACH, we just want to catch the current transaction,
135 * and commit it. If there is no transaction, just return ENOENT.
136 */
137 if (type == TRANS_ATTACH)
138 return -ENOENT;
139
140 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
141 if (!cur_trans)
142 return -ENOMEM;
143
144 spin_lock(&fs_info->trans_lock);
145 if (fs_info->running_transaction) {
146 /*
147 * someone started a transaction after we unlocked. Make sure
148 * to redo the trans_no_join checks above
149 */
150 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
151 goto loop;
152 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
153 spin_unlock(&fs_info->trans_lock);
154 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
155 return -EROFS;
156 }
157
158 atomic_set(&cur_trans->num_writers, 1);
159 extwriter_counter_init(cur_trans, type);
160 cur_trans->num_joined = 0;
161 init_waitqueue_head(&cur_trans->writer_wait);
162 init_waitqueue_head(&cur_trans->commit_wait);
163 cur_trans->in_commit = 0;
164 cur_trans->blocked = 0;
165 /*
166 * One for this trans handle, one so it will live on until we
167 * commit the transaction.
168 */
169 atomic_set(&cur_trans->use_count, 2);
170 cur_trans->commit_done = 0;
171 cur_trans->start_time = get_seconds();
172
173 cur_trans->delayed_refs.root = RB_ROOT;
174 cur_trans->delayed_refs.num_entries = 0;
175 cur_trans->delayed_refs.num_heads_ready = 0;
176 cur_trans->delayed_refs.num_heads = 0;
177 cur_trans->delayed_refs.flushing = 0;
178 cur_trans->delayed_refs.run_delayed_start = 0;
179
180 /*
181 * although the tree mod log is per file system and not per transaction,
182 * the log must never go across transaction boundaries.
183 */
184 smp_mb();
185 if (!list_empty(&fs_info->tree_mod_seq_list))
186 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
187 "creating a fresh transaction\n");
188 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
189 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
190 "creating a fresh transaction\n");
191 atomic64_set(&fs_info->tree_mod_seq, 0);
192
193 spin_lock_init(&cur_trans->commit_lock);
194 spin_lock_init(&cur_trans->delayed_refs.lock);
195 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
196 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
197 init_waitqueue_head(&cur_trans->delayed_refs.wait);
198
199 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
200 INIT_LIST_HEAD(&cur_trans->ordered_operations);
201 list_add_tail(&cur_trans->list, &fs_info->trans_list);
202 extent_io_tree_init(&cur_trans->dirty_pages,
203 fs_info->btree_inode->i_mapping);
204 fs_info->generation++;
205 cur_trans->transid = fs_info->generation;
206 fs_info->running_transaction = cur_trans;
207 cur_trans->aborted = 0;
208 spin_unlock(&fs_info->trans_lock);
209
210 return 0;
211 }
212
213 /*
214 * this does all the record keeping required to make sure that a reference
215 * counted root is properly recorded in a given transaction. This is required
216 * to make sure the old root from before we joined the transaction is deleted
217 * when the transaction commits
218 */
219 static int record_root_in_trans(struct btrfs_trans_handle *trans,
220 struct btrfs_root *root)
221 {
222 if (root->ref_cows && root->last_trans < trans->transid) {
223 WARN_ON(root == root->fs_info->extent_root);
224 WARN_ON(root->commit_root != root->node);
225
226 /*
227 * see below for in_trans_setup usage rules
228 * we have the reloc mutex held now, so there
229 * is only one writer in this function
230 */
231 root->in_trans_setup = 1;
232
233 /* make sure readers find in_trans_setup before
234 * they find our root->last_trans update
235 */
236 smp_wmb();
237
238 spin_lock(&root->fs_info->fs_roots_radix_lock);
239 if (root->last_trans == trans->transid) {
240 spin_unlock(&root->fs_info->fs_roots_radix_lock);
241 return 0;
242 }
243 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
244 (unsigned long)root->root_key.objectid,
245 BTRFS_ROOT_TRANS_TAG);
246 spin_unlock(&root->fs_info->fs_roots_radix_lock);
247 root->last_trans = trans->transid;
248
249 /* this is pretty tricky. We don't want to
250 * take the relocation lock in btrfs_record_root_in_trans
251 * unless we're really doing the first setup for this root in
252 * this transaction.
253 *
254 * Normally we'd use root->last_trans as a flag to decide
255 * if we want to take the expensive mutex.
256 *
257 * But, we have to set root->last_trans before we
258 * init the relocation root, otherwise, we trip over warnings
259 * in ctree.c. The solution used here is to flag ourselves
260 * with root->in_trans_setup. When this is 1, we're still
261 * fixing up the reloc trees and everyone must wait.
262 *
263 * When this is zero, they can trust root->last_trans and fly
264 * through btrfs_record_root_in_trans without having to take the
265 * lock. smp_wmb() makes sure that all the writes above are
266 * done before we pop in the zero below
267 */
268 btrfs_init_reloc_root(trans, root);
269 smp_wmb();
270 root->in_trans_setup = 0;
271 }
272 return 0;
273 }
274
275
276 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
277 struct btrfs_root *root)
278 {
279 if (!root->ref_cows)
280 return 0;
281
282 /*
283 * see record_root_in_trans for comments about in_trans_setup usage
284 * and barriers
285 */
286 smp_rmb();
287 if (root->last_trans == trans->transid &&
288 !root->in_trans_setup)
289 return 0;
290
291 mutex_lock(&root->fs_info->reloc_mutex);
292 record_root_in_trans(trans, root);
293 mutex_unlock(&root->fs_info->reloc_mutex);
294
295 return 0;
296 }
297
298 /* wait for commit against the current transaction to become unblocked
299 * when this is done, it is safe to start a new transaction, but the current
300 * transaction might not be fully on disk.
301 */
302 static void wait_current_trans(struct btrfs_root *root)
303 {
304 struct btrfs_transaction *cur_trans;
305
306 spin_lock(&root->fs_info->trans_lock);
307 cur_trans = root->fs_info->running_transaction;
308 if (cur_trans && cur_trans->blocked) {
309 atomic_inc(&cur_trans->use_count);
310 spin_unlock(&root->fs_info->trans_lock);
311
312 wait_event(root->fs_info->transaction_wait,
313 !cur_trans->blocked);
314 put_transaction(cur_trans);
315 } else {
316 spin_unlock(&root->fs_info->trans_lock);
317 }
318 }
319
320 static int may_wait_transaction(struct btrfs_root *root, int type)
321 {
322 if (root->fs_info->log_root_recovering)
323 return 0;
324
325 if (type == TRANS_USERSPACE)
326 return 1;
327
328 if (type == TRANS_START &&
329 !atomic_read(&root->fs_info->open_ioctl_trans))
330 return 1;
331
332 return 0;
333 }
334
335 static struct btrfs_trans_handle *
336 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
337 enum btrfs_reserve_flush_enum flush)
338 {
339 struct btrfs_trans_handle *h;
340 struct btrfs_transaction *cur_trans;
341 u64 num_bytes = 0;
342 int ret;
343 u64 qgroup_reserved = 0;
344
345 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
346 return ERR_PTR(-EROFS);
347
348 if (current->journal_info) {
349 WARN_ON(type & TRANS_EXTWRITERS);
350 h = current->journal_info;
351 h->use_count++;
352 WARN_ON(h->use_count > 2);
353 h->orig_rsv = h->block_rsv;
354 h->block_rsv = NULL;
355 goto got_it;
356 }
357
358 /*
359 * Do the reservation before we join the transaction so we can do all
360 * the appropriate flushing if need be.
361 */
362 if (num_items > 0 && root != root->fs_info->chunk_root) {
363 if (root->fs_info->quota_enabled &&
364 is_fstree(root->root_key.objectid)) {
365 qgroup_reserved = num_items * root->leafsize;
366 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
367 if (ret)
368 return ERR_PTR(ret);
369 }
370
371 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
372 ret = btrfs_block_rsv_add(root,
373 &root->fs_info->trans_block_rsv,
374 num_bytes, flush);
375 if (ret)
376 goto reserve_fail;
377 }
378 again:
379 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
380 if (!h) {
381 ret = -ENOMEM;
382 goto alloc_fail;
383 }
384
385 /*
386 * If we are JOIN_NOLOCK we're already committing a transaction and
387 * waiting on this guy, so we don't need to do the sb_start_intwrite
388 * because we're already holding a ref. We need this because we could
389 * have raced in and did an fsync() on a file which can kick a commit
390 * and then we deadlock with somebody doing a freeze.
391 *
392 * If we are ATTACH, it means we just want to catch the current
393 * transaction and commit it, so we needn't do sb_start_intwrite().
394 */
395 if (type & __TRANS_FREEZABLE)
396 sb_start_intwrite(root->fs_info->sb);
397
398 if (may_wait_transaction(root, type))
399 wait_current_trans(root);
400
401 do {
402 ret = join_transaction(root, type);
403 if (ret == -EBUSY) {
404 wait_current_trans(root);
405 if (unlikely(type == TRANS_ATTACH))
406 ret = -ENOENT;
407 }
408 } while (ret == -EBUSY);
409
410 if (ret < 0) {
411 /* We must get the transaction if we are JOIN_NOLOCK. */
412 BUG_ON(type == TRANS_JOIN_NOLOCK);
413 goto join_fail;
414 }
415
416 cur_trans = root->fs_info->running_transaction;
417
418 h->transid = cur_trans->transid;
419 h->transaction = cur_trans;
420 h->blocks_used = 0;
421 h->bytes_reserved = 0;
422 h->root = root;
423 h->delayed_ref_updates = 0;
424 h->use_count = 1;
425 h->adding_csums = 0;
426 h->block_rsv = NULL;
427 h->orig_rsv = NULL;
428 h->aborted = 0;
429 h->qgroup_reserved = 0;
430 h->delayed_ref_elem.seq = 0;
431 h->type = type;
432 h->allocating_chunk = false;
433 INIT_LIST_HEAD(&h->qgroup_ref_list);
434 INIT_LIST_HEAD(&h->new_bgs);
435
436 smp_mb();
437 if (cur_trans->blocked && may_wait_transaction(root, type)) {
438 btrfs_commit_transaction(h, root);
439 goto again;
440 }
441
442 if (num_bytes) {
443 trace_btrfs_space_reservation(root->fs_info, "transaction",
444 h->transid, num_bytes, 1);
445 h->block_rsv = &root->fs_info->trans_block_rsv;
446 h->bytes_reserved = num_bytes;
447 }
448 h->qgroup_reserved = qgroup_reserved;
449
450 got_it:
451 btrfs_record_root_in_trans(h, root);
452
453 if (!current->journal_info && type != TRANS_USERSPACE)
454 current->journal_info = h;
455 return h;
456
457 join_fail:
458 if (type & __TRANS_FREEZABLE)
459 sb_end_intwrite(root->fs_info->sb);
460 kmem_cache_free(btrfs_trans_handle_cachep, h);
461 alloc_fail:
462 if (num_bytes)
463 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
464 num_bytes);
465 reserve_fail:
466 if (qgroup_reserved)
467 btrfs_qgroup_free(root, qgroup_reserved);
468 return ERR_PTR(ret);
469 }
470
471 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
472 int num_items)
473 {
474 return start_transaction(root, num_items, TRANS_START,
475 BTRFS_RESERVE_FLUSH_ALL);
476 }
477
478 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
479 struct btrfs_root *root, int num_items)
480 {
481 return start_transaction(root, num_items, TRANS_START,
482 BTRFS_RESERVE_FLUSH_LIMIT);
483 }
484
485 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
486 {
487 return start_transaction(root, 0, TRANS_JOIN, 0);
488 }
489
490 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
491 {
492 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
493 }
494
495 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
496 {
497 return start_transaction(root, 0, TRANS_USERSPACE, 0);
498 }
499
500 /*
501 * btrfs_attach_transaction() - catch the running transaction
502 *
503 * It is used when we want to commit the current the transaction, but
504 * don't want to start a new one.
505 *
506 * Note: If this function return -ENOENT, it just means there is no
507 * running transaction. But it is possible that the inactive transaction
508 * is still in the memory, not fully on disk. If you hope there is no
509 * inactive transaction in the fs when -ENOENT is returned, you should
510 * invoke
511 * btrfs_attach_transaction_barrier()
512 */
513 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
514 {
515 return start_transaction(root, 0, TRANS_ATTACH, 0);
516 }
517
518 /*
519 * btrfs_attach_transaction() - catch the running transaction
520 *
521 * It is similar to the above function, the differentia is this one
522 * will wait for all the inactive transactions until they fully
523 * complete.
524 */
525 struct btrfs_trans_handle *
526 btrfs_attach_transaction_barrier(struct btrfs_root *root)
527 {
528 struct btrfs_trans_handle *trans;
529
530 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
531 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
532 btrfs_wait_for_commit(root, 0);
533
534 return trans;
535 }
536
537 /* wait for a transaction commit to be fully complete */
538 static noinline void wait_for_commit(struct btrfs_root *root,
539 struct btrfs_transaction *commit)
540 {
541 wait_event(commit->commit_wait, commit->commit_done);
542 }
543
544 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
545 {
546 struct btrfs_transaction *cur_trans = NULL, *t;
547 int ret = 0;
548
549 if (transid) {
550 if (transid <= root->fs_info->last_trans_committed)
551 goto out;
552
553 ret = -EINVAL;
554 /* find specified transaction */
555 spin_lock(&root->fs_info->trans_lock);
556 list_for_each_entry(t, &root->fs_info->trans_list, list) {
557 if (t->transid == transid) {
558 cur_trans = t;
559 atomic_inc(&cur_trans->use_count);
560 ret = 0;
561 break;
562 }
563 if (t->transid > transid) {
564 ret = 0;
565 break;
566 }
567 }
568 spin_unlock(&root->fs_info->trans_lock);
569 /* The specified transaction doesn't exist */
570 if (!cur_trans)
571 goto out;
572 } else {
573 /* find newest transaction that is committing | committed */
574 spin_lock(&root->fs_info->trans_lock);
575 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
576 list) {
577 if (t->in_commit) {
578 if (t->commit_done)
579 break;
580 cur_trans = t;
581 atomic_inc(&cur_trans->use_count);
582 break;
583 }
584 }
585 spin_unlock(&root->fs_info->trans_lock);
586 if (!cur_trans)
587 goto out; /* nothing committing|committed */
588 }
589
590 wait_for_commit(root, cur_trans);
591 put_transaction(cur_trans);
592 out:
593 return ret;
594 }
595
596 void btrfs_throttle(struct btrfs_root *root)
597 {
598 if (!atomic_read(&root->fs_info->open_ioctl_trans))
599 wait_current_trans(root);
600 }
601
602 static int should_end_transaction(struct btrfs_trans_handle *trans,
603 struct btrfs_root *root)
604 {
605 int ret;
606
607 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
608 return ret ? 1 : 0;
609 }
610
611 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
612 struct btrfs_root *root)
613 {
614 struct btrfs_transaction *cur_trans = trans->transaction;
615 int updates;
616 int err;
617
618 smp_mb();
619 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
620 return 1;
621
622 updates = trans->delayed_ref_updates;
623 trans->delayed_ref_updates = 0;
624 if (updates) {
625 err = btrfs_run_delayed_refs(trans, root, updates);
626 if (err) /* Error code will also eval true */
627 return err;
628 }
629
630 return should_end_transaction(trans, root);
631 }
632
633 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
634 struct btrfs_root *root, int throttle)
635 {
636 struct btrfs_transaction *cur_trans = trans->transaction;
637 struct btrfs_fs_info *info = root->fs_info;
638 int count = 0;
639 int lock = (trans->type != TRANS_JOIN_NOLOCK);
640 int err = 0;
641
642 if (--trans->use_count) {
643 trans->block_rsv = trans->orig_rsv;
644 return 0;
645 }
646
647 /*
648 * do the qgroup accounting as early as possible
649 */
650 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
651
652 btrfs_trans_release_metadata(trans, root);
653 trans->block_rsv = NULL;
654
655 if (trans->qgroup_reserved) {
656 /*
657 * the same root has to be passed here between start_transaction
658 * and end_transaction. Subvolume quota depends on this.
659 */
660 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
661 trans->qgroup_reserved = 0;
662 }
663
664 if (!list_empty(&trans->new_bgs))
665 btrfs_create_pending_block_groups(trans, root);
666
667 while (count < 1) {
668 unsigned long cur = trans->delayed_ref_updates;
669 trans->delayed_ref_updates = 0;
670 if (cur &&
671 trans->transaction->delayed_refs.num_heads_ready > 64) {
672 trans->delayed_ref_updates = 0;
673 btrfs_run_delayed_refs(trans, root, cur);
674 } else {
675 break;
676 }
677 count++;
678 }
679
680 btrfs_trans_release_metadata(trans, root);
681 trans->block_rsv = NULL;
682
683 if (!list_empty(&trans->new_bgs))
684 btrfs_create_pending_block_groups(trans, root);
685
686 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
687 should_end_transaction(trans, root)) {
688 trans->transaction->blocked = 1;
689 smp_wmb();
690 }
691
692 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
693 if (throttle) {
694 /*
695 * We may race with somebody else here so end up having
696 * to call end_transaction on ourselves again, so inc
697 * our use_count.
698 */
699 trans->use_count++;
700 return btrfs_commit_transaction(trans, root);
701 } else {
702 wake_up_process(info->transaction_kthread);
703 }
704 }
705
706 if (trans->type & __TRANS_FREEZABLE)
707 sb_end_intwrite(root->fs_info->sb);
708
709 WARN_ON(cur_trans != info->running_transaction);
710 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
711 atomic_dec(&cur_trans->num_writers);
712 extwriter_counter_dec(cur_trans, trans->type);
713
714 smp_mb();
715 if (waitqueue_active(&cur_trans->writer_wait))
716 wake_up(&cur_trans->writer_wait);
717 put_transaction(cur_trans);
718
719 if (current->journal_info == trans)
720 current->journal_info = NULL;
721
722 if (throttle)
723 btrfs_run_delayed_iputs(root);
724
725 if (trans->aborted ||
726 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
727 err = -EIO;
728 assert_qgroups_uptodate(trans);
729
730 kmem_cache_free(btrfs_trans_handle_cachep, trans);
731 return err;
732 }
733
734 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
735 struct btrfs_root *root)
736 {
737 return __btrfs_end_transaction(trans, root, 0);
738 }
739
740 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
741 struct btrfs_root *root)
742 {
743 return __btrfs_end_transaction(trans, root, 1);
744 }
745
746 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root)
748 {
749 return __btrfs_end_transaction(trans, root, 1);
750 }
751
752 /*
753 * when btree blocks are allocated, they have some corresponding bits set for
754 * them in one of two extent_io trees. This is used to make sure all of
755 * those extents are sent to disk but does not wait on them
756 */
757 int btrfs_write_marked_extents(struct btrfs_root *root,
758 struct extent_io_tree *dirty_pages, int mark)
759 {
760 int err = 0;
761 int werr = 0;
762 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
763 struct extent_state *cached_state = NULL;
764 u64 start = 0;
765 u64 end;
766 struct blk_plug plug;
767
768 blk_start_plug(&plug);
769 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
770 mark, &cached_state)) {
771 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
772 mark, &cached_state, GFP_NOFS);
773 cached_state = NULL;
774 err = filemap_fdatawrite_range(mapping, start, end);
775 if (err)
776 werr = err;
777 cond_resched();
778 start = end + 1;
779 }
780 if (err)
781 werr = err;
782 blk_finish_plug(&plug);
783 return werr;
784 }
785
786 /*
787 * when btree blocks are allocated, they have some corresponding bits set for
788 * them in one of two extent_io trees. This is used to make sure all of
789 * those extents are on disk for transaction or log commit. We wait
790 * on all the pages and clear them from the dirty pages state tree
791 */
792 int btrfs_wait_marked_extents(struct btrfs_root *root,
793 struct extent_io_tree *dirty_pages, int mark)
794 {
795 int err = 0;
796 int werr = 0;
797 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
798 struct extent_state *cached_state = NULL;
799 u64 start = 0;
800 u64 end;
801
802 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
803 EXTENT_NEED_WAIT, &cached_state)) {
804 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
805 0, 0, &cached_state, GFP_NOFS);
806 err = filemap_fdatawait_range(mapping, start, end);
807 if (err)
808 werr = err;
809 cond_resched();
810 start = end + 1;
811 }
812 if (err)
813 werr = err;
814 return werr;
815 }
816
817 /*
818 * when btree blocks are allocated, they have some corresponding bits set for
819 * them in one of two extent_io trees. This is used to make sure all of
820 * those extents are on disk for transaction or log commit
821 */
822 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
823 struct extent_io_tree *dirty_pages, int mark)
824 {
825 int ret;
826 int ret2;
827
828 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
829 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
830
831 if (ret)
832 return ret;
833 if (ret2)
834 return ret2;
835 return 0;
836 }
837
838 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
839 struct btrfs_root *root)
840 {
841 if (!trans || !trans->transaction) {
842 struct inode *btree_inode;
843 btree_inode = root->fs_info->btree_inode;
844 return filemap_write_and_wait(btree_inode->i_mapping);
845 }
846 return btrfs_write_and_wait_marked_extents(root,
847 &trans->transaction->dirty_pages,
848 EXTENT_DIRTY);
849 }
850
851 /*
852 * this is used to update the root pointer in the tree of tree roots.
853 *
854 * But, in the case of the extent allocation tree, updating the root
855 * pointer may allocate blocks which may change the root of the extent
856 * allocation tree.
857 *
858 * So, this loops and repeats and makes sure the cowonly root didn't
859 * change while the root pointer was being updated in the metadata.
860 */
861 static int update_cowonly_root(struct btrfs_trans_handle *trans,
862 struct btrfs_root *root)
863 {
864 int ret;
865 u64 old_root_bytenr;
866 u64 old_root_used;
867 struct btrfs_root *tree_root = root->fs_info->tree_root;
868
869 old_root_used = btrfs_root_used(&root->root_item);
870 btrfs_write_dirty_block_groups(trans, root);
871
872 while (1) {
873 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
874 if (old_root_bytenr == root->node->start &&
875 old_root_used == btrfs_root_used(&root->root_item))
876 break;
877
878 btrfs_set_root_node(&root->root_item, root->node);
879 ret = btrfs_update_root(trans, tree_root,
880 &root->root_key,
881 &root->root_item);
882 if (ret)
883 return ret;
884
885 old_root_used = btrfs_root_used(&root->root_item);
886 ret = btrfs_write_dirty_block_groups(trans, root);
887 if (ret)
888 return ret;
889 }
890
891 if (root != root->fs_info->extent_root)
892 switch_commit_root(root);
893
894 return 0;
895 }
896
897 /*
898 * update all the cowonly tree roots on disk
899 *
900 * The error handling in this function may not be obvious. Any of the
901 * failures will cause the file system to go offline. We still need
902 * to clean up the delayed refs.
903 */
904 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
905 struct btrfs_root *root)
906 {
907 struct btrfs_fs_info *fs_info = root->fs_info;
908 struct list_head *next;
909 struct extent_buffer *eb;
910 int ret;
911
912 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
913 if (ret)
914 return ret;
915
916 eb = btrfs_lock_root_node(fs_info->tree_root);
917 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
918 0, &eb);
919 btrfs_tree_unlock(eb);
920 free_extent_buffer(eb);
921
922 if (ret)
923 return ret;
924
925 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
926 if (ret)
927 return ret;
928
929 ret = btrfs_run_dev_stats(trans, root->fs_info);
930 WARN_ON(ret);
931 ret = btrfs_run_dev_replace(trans, root->fs_info);
932 WARN_ON(ret);
933
934 ret = btrfs_run_qgroups(trans, root->fs_info);
935 BUG_ON(ret);
936
937 /* run_qgroups might have added some more refs */
938 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
939 BUG_ON(ret);
940
941 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
942 next = fs_info->dirty_cowonly_roots.next;
943 list_del_init(next);
944 root = list_entry(next, struct btrfs_root, dirty_list);
945
946 ret = update_cowonly_root(trans, root);
947 if (ret)
948 return ret;
949 }
950
951 down_write(&fs_info->extent_commit_sem);
952 switch_commit_root(fs_info->extent_root);
953 up_write(&fs_info->extent_commit_sem);
954
955 btrfs_after_dev_replace_commit(fs_info);
956
957 return 0;
958 }
959
960 /*
961 * dead roots are old snapshots that need to be deleted. This allocates
962 * a dirty root struct and adds it into the list of dead roots that need to
963 * be deleted
964 */
965 int btrfs_add_dead_root(struct btrfs_root *root)
966 {
967 spin_lock(&root->fs_info->trans_lock);
968 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
969 spin_unlock(&root->fs_info->trans_lock);
970 return 0;
971 }
972
973 /*
974 * update all the cowonly tree roots on disk
975 */
976 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
977 struct btrfs_root *root)
978 {
979 struct btrfs_root *gang[8];
980 struct btrfs_fs_info *fs_info = root->fs_info;
981 int i;
982 int ret;
983 int err = 0;
984
985 spin_lock(&fs_info->fs_roots_radix_lock);
986 while (1) {
987 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
988 (void **)gang, 0,
989 ARRAY_SIZE(gang),
990 BTRFS_ROOT_TRANS_TAG);
991 if (ret == 0)
992 break;
993 for (i = 0; i < ret; i++) {
994 root = gang[i];
995 radix_tree_tag_clear(&fs_info->fs_roots_radix,
996 (unsigned long)root->root_key.objectid,
997 BTRFS_ROOT_TRANS_TAG);
998 spin_unlock(&fs_info->fs_roots_radix_lock);
999
1000 btrfs_free_log(trans, root);
1001 btrfs_update_reloc_root(trans, root);
1002 btrfs_orphan_commit_root(trans, root);
1003
1004 btrfs_save_ino_cache(root, trans);
1005
1006 /* see comments in should_cow_block() */
1007 root->force_cow = 0;
1008 smp_wmb();
1009
1010 if (root->commit_root != root->node) {
1011 mutex_lock(&root->fs_commit_mutex);
1012 switch_commit_root(root);
1013 btrfs_unpin_free_ino(root);
1014 mutex_unlock(&root->fs_commit_mutex);
1015
1016 btrfs_set_root_node(&root->root_item,
1017 root->node);
1018 }
1019
1020 err = btrfs_update_root(trans, fs_info->tree_root,
1021 &root->root_key,
1022 &root->root_item);
1023 spin_lock(&fs_info->fs_roots_radix_lock);
1024 if (err)
1025 break;
1026 }
1027 }
1028 spin_unlock(&fs_info->fs_roots_radix_lock);
1029 return err;
1030 }
1031
1032 /*
1033 * defrag a given btree.
1034 * Every leaf in the btree is read and defragged.
1035 */
1036 int btrfs_defrag_root(struct btrfs_root *root)
1037 {
1038 struct btrfs_fs_info *info = root->fs_info;
1039 struct btrfs_trans_handle *trans;
1040 int ret;
1041
1042 if (xchg(&root->defrag_running, 1))
1043 return 0;
1044
1045 while (1) {
1046 trans = btrfs_start_transaction(root, 0);
1047 if (IS_ERR(trans))
1048 return PTR_ERR(trans);
1049
1050 ret = btrfs_defrag_leaves(trans, root);
1051
1052 btrfs_end_transaction(trans, root);
1053 btrfs_btree_balance_dirty(info->tree_root);
1054 cond_resched();
1055
1056 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1057 break;
1058
1059 if (btrfs_defrag_cancelled(root->fs_info)) {
1060 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1061 ret = -EAGAIN;
1062 break;
1063 }
1064 }
1065 root->defrag_running = 0;
1066 return ret;
1067 }
1068
1069 /*
1070 * new snapshots need to be created at a very specific time in the
1071 * transaction commit. This does the actual creation.
1072 *
1073 * Note:
1074 * If the error which may affect the commitment of the current transaction
1075 * happens, we should return the error number. If the error which just affect
1076 * the creation of the pending snapshots, just return 0.
1077 */
1078 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1079 struct btrfs_fs_info *fs_info,
1080 struct btrfs_pending_snapshot *pending)
1081 {
1082 struct btrfs_key key;
1083 struct btrfs_root_item *new_root_item;
1084 struct btrfs_root *tree_root = fs_info->tree_root;
1085 struct btrfs_root *root = pending->root;
1086 struct btrfs_root *parent_root;
1087 struct btrfs_block_rsv *rsv;
1088 struct inode *parent_inode;
1089 struct btrfs_path *path;
1090 struct btrfs_dir_item *dir_item;
1091 struct dentry *dentry;
1092 struct extent_buffer *tmp;
1093 struct extent_buffer *old;
1094 struct timespec cur_time = CURRENT_TIME;
1095 int ret = 0;
1096 u64 to_reserve = 0;
1097 u64 index = 0;
1098 u64 objectid;
1099 u64 root_flags;
1100 uuid_le new_uuid;
1101
1102 path = btrfs_alloc_path();
1103 if (!path) {
1104 pending->error = -ENOMEM;
1105 return 0;
1106 }
1107
1108 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1109 if (!new_root_item) {
1110 pending->error = -ENOMEM;
1111 goto root_item_alloc_fail;
1112 }
1113
1114 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1115 if (pending->error)
1116 goto no_free_objectid;
1117
1118 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1119
1120 if (to_reserve > 0) {
1121 pending->error = btrfs_block_rsv_add(root,
1122 &pending->block_rsv,
1123 to_reserve,
1124 BTRFS_RESERVE_NO_FLUSH);
1125 if (pending->error)
1126 goto no_free_objectid;
1127 }
1128
1129 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1130 root->root_key.objectid,
1131 objectid, pending->inherit);
1132 if (pending->error)
1133 goto no_free_objectid;
1134
1135 key.objectid = objectid;
1136 key.offset = (u64)-1;
1137 key.type = BTRFS_ROOT_ITEM_KEY;
1138
1139 rsv = trans->block_rsv;
1140 trans->block_rsv = &pending->block_rsv;
1141 trans->bytes_reserved = trans->block_rsv->reserved;
1142
1143 dentry = pending->dentry;
1144 parent_inode = pending->dir;
1145 parent_root = BTRFS_I(parent_inode)->root;
1146 record_root_in_trans(trans, parent_root);
1147
1148 /*
1149 * insert the directory item
1150 */
1151 ret = btrfs_set_inode_index(parent_inode, &index);
1152 BUG_ON(ret); /* -ENOMEM */
1153
1154 /* check if there is a file/dir which has the same name. */
1155 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1156 btrfs_ino(parent_inode),
1157 dentry->d_name.name,
1158 dentry->d_name.len, 0);
1159 if (dir_item != NULL && !IS_ERR(dir_item)) {
1160 pending->error = -EEXIST;
1161 goto dir_item_existed;
1162 } else if (IS_ERR(dir_item)) {
1163 ret = PTR_ERR(dir_item);
1164 btrfs_abort_transaction(trans, root, ret);
1165 goto fail;
1166 }
1167 btrfs_release_path(path);
1168
1169 /*
1170 * pull in the delayed directory update
1171 * and the delayed inode item
1172 * otherwise we corrupt the FS during
1173 * snapshot
1174 */
1175 ret = btrfs_run_delayed_items(trans, root);
1176 if (ret) { /* Transaction aborted */
1177 btrfs_abort_transaction(trans, root, ret);
1178 goto fail;
1179 }
1180
1181 record_root_in_trans(trans, root);
1182 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1183 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1184 btrfs_check_and_init_root_item(new_root_item);
1185
1186 root_flags = btrfs_root_flags(new_root_item);
1187 if (pending->readonly)
1188 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1189 else
1190 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1191 btrfs_set_root_flags(new_root_item, root_flags);
1192
1193 btrfs_set_root_generation_v2(new_root_item,
1194 trans->transid);
1195 uuid_le_gen(&new_uuid);
1196 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1197 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1198 BTRFS_UUID_SIZE);
1199 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1200 memset(new_root_item->received_uuid, 0,
1201 sizeof(new_root_item->received_uuid));
1202 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1203 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1204 btrfs_set_root_stransid(new_root_item, 0);
1205 btrfs_set_root_rtransid(new_root_item, 0);
1206 }
1207 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1208 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1209 btrfs_set_root_otransid(new_root_item, trans->transid);
1210
1211 old = btrfs_lock_root_node(root);
1212 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1213 if (ret) {
1214 btrfs_tree_unlock(old);
1215 free_extent_buffer(old);
1216 btrfs_abort_transaction(trans, root, ret);
1217 goto fail;
1218 }
1219
1220 btrfs_set_lock_blocking(old);
1221
1222 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1223 /* clean up in any case */
1224 btrfs_tree_unlock(old);
1225 free_extent_buffer(old);
1226 if (ret) {
1227 btrfs_abort_transaction(trans, root, ret);
1228 goto fail;
1229 }
1230
1231 /* see comments in should_cow_block() */
1232 root->force_cow = 1;
1233 smp_wmb();
1234
1235 btrfs_set_root_node(new_root_item, tmp);
1236 /* record when the snapshot was created in key.offset */
1237 key.offset = trans->transid;
1238 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1239 btrfs_tree_unlock(tmp);
1240 free_extent_buffer(tmp);
1241 if (ret) {
1242 btrfs_abort_transaction(trans, root, ret);
1243 goto fail;
1244 }
1245
1246 /*
1247 * insert root back/forward references
1248 */
1249 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1250 parent_root->root_key.objectid,
1251 btrfs_ino(parent_inode), index,
1252 dentry->d_name.name, dentry->d_name.len);
1253 if (ret) {
1254 btrfs_abort_transaction(trans, root, ret);
1255 goto fail;
1256 }
1257
1258 key.offset = (u64)-1;
1259 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1260 if (IS_ERR(pending->snap)) {
1261 ret = PTR_ERR(pending->snap);
1262 btrfs_abort_transaction(trans, root, ret);
1263 goto fail;
1264 }
1265
1266 ret = btrfs_reloc_post_snapshot(trans, pending);
1267 if (ret) {
1268 btrfs_abort_transaction(trans, root, ret);
1269 goto fail;
1270 }
1271
1272 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1273 if (ret) {
1274 btrfs_abort_transaction(trans, root, ret);
1275 goto fail;
1276 }
1277
1278 ret = btrfs_insert_dir_item(trans, parent_root,
1279 dentry->d_name.name, dentry->d_name.len,
1280 parent_inode, &key,
1281 BTRFS_FT_DIR, index);
1282 /* We have check then name at the beginning, so it is impossible. */
1283 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1284 if (ret) {
1285 btrfs_abort_transaction(trans, root, ret);
1286 goto fail;
1287 }
1288
1289 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1290 dentry->d_name.len * 2);
1291 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1292 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1293 if (ret)
1294 btrfs_abort_transaction(trans, root, ret);
1295 fail:
1296 pending->error = ret;
1297 dir_item_existed:
1298 trans->block_rsv = rsv;
1299 trans->bytes_reserved = 0;
1300 no_free_objectid:
1301 kfree(new_root_item);
1302 root_item_alloc_fail:
1303 btrfs_free_path(path);
1304 return ret;
1305 }
1306
1307 /*
1308 * create all the snapshots we've scheduled for creation
1309 */
1310 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1311 struct btrfs_fs_info *fs_info)
1312 {
1313 struct btrfs_pending_snapshot *pending, *next;
1314 struct list_head *head = &trans->transaction->pending_snapshots;
1315 int ret = 0;
1316
1317 list_for_each_entry_safe(pending, next, head, list) {
1318 list_del(&pending->list);
1319 ret = create_pending_snapshot(trans, fs_info, pending);
1320 if (ret)
1321 break;
1322 }
1323 return ret;
1324 }
1325
1326 static void update_super_roots(struct btrfs_root *root)
1327 {
1328 struct btrfs_root_item *root_item;
1329 struct btrfs_super_block *super;
1330
1331 super = root->fs_info->super_copy;
1332
1333 root_item = &root->fs_info->chunk_root->root_item;
1334 super->chunk_root = root_item->bytenr;
1335 super->chunk_root_generation = root_item->generation;
1336 super->chunk_root_level = root_item->level;
1337
1338 root_item = &root->fs_info->tree_root->root_item;
1339 super->root = root_item->bytenr;
1340 super->generation = root_item->generation;
1341 super->root_level = root_item->level;
1342 if (btrfs_test_opt(root, SPACE_CACHE))
1343 super->cache_generation = root_item->generation;
1344 }
1345
1346 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1347 {
1348 int ret = 0;
1349 spin_lock(&info->trans_lock);
1350 if (info->running_transaction)
1351 ret = info->running_transaction->in_commit;
1352 spin_unlock(&info->trans_lock);
1353 return ret;
1354 }
1355
1356 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1357 {
1358 int ret = 0;
1359 spin_lock(&info->trans_lock);
1360 if (info->running_transaction)
1361 ret = info->running_transaction->blocked;
1362 spin_unlock(&info->trans_lock);
1363 return ret;
1364 }
1365
1366 /*
1367 * wait for the current transaction commit to start and block subsequent
1368 * transaction joins
1369 */
1370 static void wait_current_trans_commit_start(struct btrfs_root *root,
1371 struct btrfs_transaction *trans)
1372 {
1373 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1374 }
1375
1376 /*
1377 * wait for the current transaction to start and then become unblocked.
1378 * caller holds ref.
1379 */
1380 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1381 struct btrfs_transaction *trans)
1382 {
1383 wait_event(root->fs_info->transaction_wait,
1384 trans->commit_done || (trans->in_commit && !trans->blocked));
1385 }
1386
1387 /*
1388 * commit transactions asynchronously. once btrfs_commit_transaction_async
1389 * returns, any subsequent transaction will not be allowed to join.
1390 */
1391 struct btrfs_async_commit {
1392 struct btrfs_trans_handle *newtrans;
1393 struct btrfs_root *root;
1394 struct work_struct work;
1395 };
1396
1397 static void do_async_commit(struct work_struct *work)
1398 {
1399 struct btrfs_async_commit *ac =
1400 container_of(work, struct btrfs_async_commit, work);
1401
1402 /*
1403 * We've got freeze protection passed with the transaction.
1404 * Tell lockdep about it.
1405 */
1406 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1407 rwsem_acquire_read(
1408 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1409 0, 1, _THIS_IP_);
1410
1411 current->journal_info = ac->newtrans;
1412
1413 btrfs_commit_transaction(ac->newtrans, ac->root);
1414 kfree(ac);
1415 }
1416
1417 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1418 struct btrfs_root *root,
1419 int wait_for_unblock)
1420 {
1421 struct btrfs_async_commit *ac;
1422 struct btrfs_transaction *cur_trans;
1423
1424 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1425 if (!ac)
1426 return -ENOMEM;
1427
1428 INIT_WORK(&ac->work, do_async_commit);
1429 ac->root = root;
1430 ac->newtrans = btrfs_join_transaction(root);
1431 if (IS_ERR(ac->newtrans)) {
1432 int err = PTR_ERR(ac->newtrans);
1433 kfree(ac);
1434 return err;
1435 }
1436
1437 /* take transaction reference */
1438 cur_trans = trans->transaction;
1439 atomic_inc(&cur_trans->use_count);
1440
1441 btrfs_end_transaction(trans, root);
1442
1443 /*
1444 * Tell lockdep we've released the freeze rwsem, since the
1445 * async commit thread will be the one to unlock it.
1446 */
1447 if (trans->type < TRANS_JOIN_NOLOCK)
1448 rwsem_release(
1449 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1450 1, _THIS_IP_);
1451
1452 schedule_work(&ac->work);
1453
1454 /* wait for transaction to start and unblock */
1455 if (wait_for_unblock)
1456 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1457 else
1458 wait_current_trans_commit_start(root, cur_trans);
1459
1460 if (current->journal_info == trans)
1461 current->journal_info = NULL;
1462
1463 put_transaction(cur_trans);
1464 return 0;
1465 }
1466
1467
1468 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root, int err)
1470 {
1471 struct btrfs_transaction *cur_trans = trans->transaction;
1472 DEFINE_WAIT(wait);
1473
1474 WARN_ON(trans->use_count > 1);
1475
1476 btrfs_abort_transaction(trans, root, err);
1477
1478 spin_lock(&root->fs_info->trans_lock);
1479
1480 /*
1481 * If the transaction is removed from the list, it means this
1482 * transaction has been committed successfully, so it is impossible
1483 * to call the cleanup function.
1484 */
1485 BUG_ON(list_empty(&cur_trans->list));
1486
1487 list_del_init(&cur_trans->list);
1488 if (cur_trans == root->fs_info->running_transaction) {
1489 root->fs_info->trans_no_join = 1;
1490 spin_unlock(&root->fs_info->trans_lock);
1491 wait_event(cur_trans->writer_wait,
1492 atomic_read(&cur_trans->num_writers) == 1);
1493
1494 spin_lock(&root->fs_info->trans_lock);
1495 root->fs_info->running_transaction = NULL;
1496 }
1497 spin_unlock(&root->fs_info->trans_lock);
1498
1499 btrfs_cleanup_one_transaction(trans->transaction, root);
1500
1501 put_transaction(cur_trans);
1502 put_transaction(cur_trans);
1503
1504 trace_btrfs_transaction_commit(root);
1505
1506 btrfs_scrub_continue(root);
1507
1508 if (current->journal_info == trans)
1509 current->journal_info = NULL;
1510
1511 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1512
1513 spin_lock(&root->fs_info->trans_lock);
1514 root->fs_info->trans_no_join = 0;
1515 spin_unlock(&root->fs_info->trans_lock);
1516 }
1517
1518 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1519 struct btrfs_root *root)
1520 {
1521 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1522 int ret;
1523
1524 if (flush_on_commit) {
1525 ret = btrfs_start_all_delalloc_inodes(root->fs_info, 1);
1526 if (ret)
1527 return ret;
1528 btrfs_wait_all_ordered_extents(root->fs_info, 1);
1529 }
1530
1531 ret = btrfs_run_delayed_items(trans, root);
1532 if (ret)
1533 return ret;
1534
1535 /*
1536 * running the delayed items may have added new refs. account
1537 * them now so that they hinder processing of more delayed refs
1538 * as little as possible.
1539 */
1540 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1541
1542 /*
1543 * rename don't use btrfs_join_transaction, so, once we
1544 * set the transaction to blocked above, we aren't going
1545 * to get any new ordered operations. We can safely run
1546 * it here and no for sure that nothing new will be added
1547 * to the list
1548 */
1549 ret = btrfs_run_ordered_operations(trans, root, 1);
1550
1551 return ret;
1552 }
1553
1554 /*
1555 * btrfs_transaction state sequence:
1556 * in_commit = 0, blocked = 0 (initial)
1557 * in_commit = 1, blocked = 1
1558 * blocked = 0
1559 * commit_done = 1
1560 */
1561 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1562 struct btrfs_root *root)
1563 {
1564 unsigned long joined = 0;
1565 struct btrfs_transaction *cur_trans = trans->transaction;
1566 struct btrfs_transaction *prev_trans = NULL;
1567 DEFINE_WAIT(wait);
1568 int ret;
1569 int should_grow = 0;
1570 unsigned long now = get_seconds();
1571
1572 ret = btrfs_run_ordered_operations(trans, root, 0);
1573 if (ret) {
1574 btrfs_abort_transaction(trans, root, ret);
1575 btrfs_end_transaction(trans, root);
1576 return ret;
1577 }
1578
1579 /* Stop the commit early if ->aborted is set */
1580 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1581 ret = cur_trans->aborted;
1582 btrfs_end_transaction(trans, root);
1583 return ret;
1584 }
1585
1586 /* make a pass through all the delayed refs we have so far
1587 * any runnings procs may add more while we are here
1588 */
1589 ret = btrfs_run_delayed_refs(trans, root, 0);
1590 if (ret) {
1591 btrfs_end_transaction(trans, root);
1592 return ret;
1593 }
1594
1595 btrfs_trans_release_metadata(trans, root);
1596 trans->block_rsv = NULL;
1597 if (trans->qgroup_reserved) {
1598 btrfs_qgroup_free(root, trans->qgroup_reserved);
1599 trans->qgroup_reserved = 0;
1600 }
1601
1602 cur_trans = trans->transaction;
1603
1604 /*
1605 * set the flushing flag so procs in this transaction have to
1606 * start sending their work down.
1607 */
1608 cur_trans->delayed_refs.flushing = 1;
1609
1610 if (!list_empty(&trans->new_bgs))
1611 btrfs_create_pending_block_groups(trans, root);
1612
1613 ret = btrfs_run_delayed_refs(trans, root, 0);
1614 if (ret) {
1615 btrfs_end_transaction(trans, root);
1616 return ret;
1617 }
1618
1619 spin_lock(&cur_trans->commit_lock);
1620 if (cur_trans->in_commit) {
1621 spin_unlock(&cur_trans->commit_lock);
1622 atomic_inc(&cur_trans->use_count);
1623 ret = btrfs_end_transaction(trans, root);
1624
1625 wait_for_commit(root, cur_trans);
1626
1627 put_transaction(cur_trans);
1628
1629 return ret;
1630 }
1631
1632 trans->transaction->in_commit = 1;
1633 trans->transaction->blocked = 1;
1634 spin_unlock(&cur_trans->commit_lock);
1635 wake_up(&root->fs_info->transaction_blocked_wait);
1636
1637 spin_lock(&root->fs_info->trans_lock);
1638 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1639 prev_trans = list_entry(cur_trans->list.prev,
1640 struct btrfs_transaction, list);
1641 if (!prev_trans->commit_done) {
1642 atomic_inc(&prev_trans->use_count);
1643 spin_unlock(&root->fs_info->trans_lock);
1644
1645 wait_for_commit(root, prev_trans);
1646
1647 put_transaction(prev_trans);
1648 } else {
1649 spin_unlock(&root->fs_info->trans_lock);
1650 }
1651 } else {
1652 spin_unlock(&root->fs_info->trans_lock);
1653 }
1654
1655 extwriter_counter_dec(cur_trans, trans->type);
1656
1657 if (!btrfs_test_opt(root, SSD) &&
1658 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1659 should_grow = 1;
1660
1661 do {
1662 joined = cur_trans->num_joined;
1663
1664 WARN_ON(cur_trans != trans->transaction);
1665
1666 ret = btrfs_flush_all_pending_stuffs(trans, root);
1667 if (ret)
1668 goto cleanup_transaction;
1669
1670 prepare_to_wait(&cur_trans->writer_wait, &wait,
1671 TASK_UNINTERRUPTIBLE);
1672
1673 if (extwriter_counter_read(cur_trans) > 0)
1674 schedule();
1675 else if (should_grow)
1676 schedule_timeout(1);
1677
1678 finish_wait(&cur_trans->writer_wait, &wait);
1679 } while (extwriter_counter_read(cur_trans) > 0 ||
1680 (should_grow && cur_trans->num_joined != joined));
1681
1682 ret = btrfs_flush_all_pending_stuffs(trans, root);
1683 if (ret)
1684 goto cleanup_transaction;
1685
1686 /*
1687 * Ok now we need to make sure to block out any other joins while we
1688 * commit the transaction. We could have started a join before setting
1689 * no_join so make sure to wait for num_writers to == 1 again.
1690 */
1691 spin_lock(&root->fs_info->trans_lock);
1692 root->fs_info->trans_no_join = 1;
1693 spin_unlock(&root->fs_info->trans_lock);
1694 wait_event(cur_trans->writer_wait,
1695 atomic_read(&cur_trans->num_writers) == 1);
1696
1697 /* ->aborted might be set after the previous check, so check it */
1698 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1699 ret = cur_trans->aborted;
1700 goto cleanup_transaction;
1701 }
1702 /*
1703 * the reloc mutex makes sure that we stop
1704 * the balancing code from coming in and moving
1705 * extents around in the middle of the commit
1706 */
1707 mutex_lock(&root->fs_info->reloc_mutex);
1708
1709 /*
1710 * We needn't worry about the delayed items because we will
1711 * deal with them in create_pending_snapshot(), which is the
1712 * core function of the snapshot creation.
1713 */
1714 ret = create_pending_snapshots(trans, root->fs_info);
1715 if (ret) {
1716 mutex_unlock(&root->fs_info->reloc_mutex);
1717 goto cleanup_transaction;
1718 }
1719
1720 /*
1721 * We insert the dir indexes of the snapshots and update the inode
1722 * of the snapshots' parents after the snapshot creation, so there
1723 * are some delayed items which are not dealt with. Now deal with
1724 * them.
1725 *
1726 * We needn't worry that this operation will corrupt the snapshots,
1727 * because all the tree which are snapshoted will be forced to COW
1728 * the nodes and leaves.
1729 */
1730 ret = btrfs_run_delayed_items(trans, root);
1731 if (ret) {
1732 mutex_unlock(&root->fs_info->reloc_mutex);
1733 goto cleanup_transaction;
1734 }
1735
1736 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1737 if (ret) {
1738 mutex_unlock(&root->fs_info->reloc_mutex);
1739 goto cleanup_transaction;
1740 }
1741
1742 /*
1743 * make sure none of the code above managed to slip in a
1744 * delayed item
1745 */
1746 btrfs_assert_delayed_root_empty(root);
1747
1748 WARN_ON(cur_trans != trans->transaction);
1749
1750 btrfs_scrub_pause(root);
1751 /* btrfs_commit_tree_roots is responsible for getting the
1752 * various roots consistent with each other. Every pointer
1753 * in the tree of tree roots has to point to the most up to date
1754 * root for every subvolume and other tree. So, we have to keep
1755 * the tree logging code from jumping in and changing any
1756 * of the trees.
1757 *
1758 * At this point in the commit, there can't be any tree-log
1759 * writers, but a little lower down we drop the trans mutex
1760 * and let new people in. By holding the tree_log_mutex
1761 * from now until after the super is written, we avoid races
1762 * with the tree-log code.
1763 */
1764 mutex_lock(&root->fs_info->tree_log_mutex);
1765
1766 ret = commit_fs_roots(trans, root);
1767 if (ret) {
1768 mutex_unlock(&root->fs_info->tree_log_mutex);
1769 mutex_unlock(&root->fs_info->reloc_mutex);
1770 goto cleanup_transaction;
1771 }
1772
1773 /* commit_fs_roots gets rid of all the tree log roots, it is now
1774 * safe to free the root of tree log roots
1775 */
1776 btrfs_free_log_root_tree(trans, root->fs_info);
1777
1778 ret = commit_cowonly_roots(trans, root);
1779 if (ret) {
1780 mutex_unlock(&root->fs_info->tree_log_mutex);
1781 mutex_unlock(&root->fs_info->reloc_mutex);
1782 goto cleanup_transaction;
1783 }
1784
1785 /*
1786 * The tasks which save the space cache and inode cache may also
1787 * update ->aborted, check it.
1788 */
1789 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1790 ret = cur_trans->aborted;
1791 mutex_unlock(&root->fs_info->tree_log_mutex);
1792 mutex_unlock(&root->fs_info->reloc_mutex);
1793 goto cleanup_transaction;
1794 }
1795
1796 btrfs_prepare_extent_commit(trans, root);
1797
1798 cur_trans = root->fs_info->running_transaction;
1799
1800 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1801 root->fs_info->tree_root->node);
1802 switch_commit_root(root->fs_info->tree_root);
1803
1804 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1805 root->fs_info->chunk_root->node);
1806 switch_commit_root(root->fs_info->chunk_root);
1807
1808 assert_qgroups_uptodate(trans);
1809 update_super_roots(root);
1810
1811 if (!root->fs_info->log_root_recovering) {
1812 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1813 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1814 }
1815
1816 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1817 sizeof(*root->fs_info->super_copy));
1818
1819 trans->transaction->blocked = 0;
1820 spin_lock(&root->fs_info->trans_lock);
1821 root->fs_info->running_transaction = NULL;
1822 root->fs_info->trans_no_join = 0;
1823 spin_unlock(&root->fs_info->trans_lock);
1824 mutex_unlock(&root->fs_info->reloc_mutex);
1825
1826 wake_up(&root->fs_info->transaction_wait);
1827
1828 ret = btrfs_write_and_wait_transaction(trans, root);
1829 if (ret) {
1830 btrfs_error(root->fs_info, ret,
1831 "Error while writing out transaction");
1832 mutex_unlock(&root->fs_info->tree_log_mutex);
1833 goto cleanup_transaction;
1834 }
1835
1836 ret = write_ctree_super(trans, root, 0);
1837 if (ret) {
1838 mutex_unlock(&root->fs_info->tree_log_mutex);
1839 goto cleanup_transaction;
1840 }
1841
1842 /*
1843 * the super is written, we can safely allow the tree-loggers
1844 * to go about their business
1845 */
1846 mutex_unlock(&root->fs_info->tree_log_mutex);
1847
1848 btrfs_finish_extent_commit(trans, root);
1849
1850 cur_trans->commit_done = 1;
1851
1852 root->fs_info->last_trans_committed = cur_trans->transid;
1853
1854 wake_up(&cur_trans->commit_wait);
1855
1856 spin_lock(&root->fs_info->trans_lock);
1857 list_del_init(&cur_trans->list);
1858 spin_unlock(&root->fs_info->trans_lock);
1859
1860 put_transaction(cur_trans);
1861 put_transaction(cur_trans);
1862
1863 if (trans->type & __TRANS_FREEZABLE)
1864 sb_end_intwrite(root->fs_info->sb);
1865
1866 trace_btrfs_transaction_commit(root);
1867
1868 btrfs_scrub_continue(root);
1869
1870 if (current->journal_info == trans)
1871 current->journal_info = NULL;
1872
1873 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1874
1875 if (current != root->fs_info->transaction_kthread)
1876 btrfs_run_delayed_iputs(root);
1877
1878 return ret;
1879
1880 cleanup_transaction:
1881 btrfs_trans_release_metadata(trans, root);
1882 trans->block_rsv = NULL;
1883 if (trans->qgroup_reserved) {
1884 btrfs_qgroup_free(root, trans->qgroup_reserved);
1885 trans->qgroup_reserved = 0;
1886 }
1887 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1888 if (current->journal_info == trans)
1889 current->journal_info = NULL;
1890 cleanup_transaction(trans, root, ret);
1891
1892 return ret;
1893 }
1894
1895 /*
1896 * return < 0 if error
1897 * 0 if there are no more dead_roots at the time of call
1898 * 1 there are more to be processed, call me again
1899 *
1900 * The return value indicates there are certainly more snapshots to delete, but
1901 * if there comes a new one during processing, it may return 0. We don't mind,
1902 * because btrfs_commit_super will poke cleaner thread and it will process it a
1903 * few seconds later.
1904 */
1905 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1906 {
1907 int ret;
1908 struct btrfs_fs_info *fs_info = root->fs_info;
1909
1910 spin_lock(&fs_info->trans_lock);
1911 if (list_empty(&fs_info->dead_roots)) {
1912 spin_unlock(&fs_info->trans_lock);
1913 return 0;
1914 }
1915 root = list_first_entry(&fs_info->dead_roots,
1916 struct btrfs_root, root_list);
1917 list_del(&root->root_list);
1918 spin_unlock(&fs_info->trans_lock);
1919
1920 pr_debug("btrfs: cleaner removing %llu\n",
1921 (unsigned long long)root->objectid);
1922
1923 btrfs_kill_all_delayed_nodes(root);
1924
1925 if (btrfs_header_backref_rev(root->node) <
1926 BTRFS_MIXED_BACKREF_REV)
1927 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1928 else
1929 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1930 /*
1931 * If we encounter a transaction abort during snapshot cleaning, we
1932 * don't want to crash here
1933 */
1934 BUG_ON(ret < 0 && ret != -EAGAIN && ret != -EROFS);
1935 return 1;
1936 }
This page took 0.069486 seconds and 6 git commands to generate.