Btrfs: join tree mod log code with the code holding back delayed refs
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 #include "volumes.h"
32
33 #define BTRFS_ROOT_TRANS_TAG 0
34
35 void put_transaction(struct btrfs_transaction *transaction)
36 {
37 WARN_ON(atomic_read(&transaction->use_count) == 0);
38 if (atomic_dec_and_test(&transaction->use_count)) {
39 BUG_ON(!list_empty(&transaction->list));
40 WARN_ON(transaction->delayed_refs.root.rb_node);
41 memset(transaction, 0, sizeof(*transaction));
42 kmem_cache_free(btrfs_transaction_cachep, transaction);
43 }
44 }
45
46 static noinline void switch_commit_root(struct btrfs_root *root)
47 {
48 free_extent_buffer(root->commit_root);
49 root->commit_root = btrfs_root_node(root);
50 }
51
52 /*
53 * either allocate a new transaction or hop into the existing one
54 */
55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
56 {
57 struct btrfs_transaction *cur_trans;
58 struct btrfs_fs_info *fs_info = root->fs_info;
59
60 spin_lock(&fs_info->trans_lock);
61 loop:
62 /* The file system has been taken offline. No new transactions. */
63 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
64 spin_unlock(&fs_info->trans_lock);
65 return -EROFS;
66 }
67
68 if (fs_info->trans_no_join) {
69 if (!nofail) {
70 spin_unlock(&fs_info->trans_lock);
71 return -EBUSY;
72 }
73 }
74
75 cur_trans = fs_info->running_transaction;
76 if (cur_trans) {
77 if (cur_trans->aborted) {
78 spin_unlock(&fs_info->trans_lock);
79 return cur_trans->aborted;
80 }
81 atomic_inc(&cur_trans->use_count);
82 atomic_inc(&cur_trans->num_writers);
83 cur_trans->num_joined++;
84 spin_unlock(&fs_info->trans_lock);
85 return 0;
86 }
87 spin_unlock(&fs_info->trans_lock);
88
89 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
90 if (!cur_trans)
91 return -ENOMEM;
92
93 spin_lock(&fs_info->trans_lock);
94 if (fs_info->running_transaction) {
95 /*
96 * someone started a transaction after we unlocked. Make sure
97 * to redo the trans_no_join checks above
98 */
99 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
100 cur_trans = fs_info->running_transaction;
101 goto loop;
102 } else if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
103 spin_unlock(&root->fs_info->trans_lock);
104 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
105 return -EROFS;
106 }
107
108 atomic_set(&cur_trans->num_writers, 1);
109 cur_trans->num_joined = 0;
110 init_waitqueue_head(&cur_trans->writer_wait);
111 init_waitqueue_head(&cur_trans->commit_wait);
112 cur_trans->in_commit = 0;
113 cur_trans->blocked = 0;
114 /*
115 * One for this trans handle, one so it will live on until we
116 * commit the transaction.
117 */
118 atomic_set(&cur_trans->use_count, 2);
119 cur_trans->commit_done = 0;
120 cur_trans->start_time = get_seconds();
121
122 cur_trans->delayed_refs.root = RB_ROOT;
123 cur_trans->delayed_refs.num_entries = 0;
124 cur_trans->delayed_refs.num_heads_ready = 0;
125 cur_trans->delayed_refs.num_heads = 0;
126 cur_trans->delayed_refs.flushing = 0;
127 cur_trans->delayed_refs.run_delayed_start = 0;
128
129 /*
130 * although the tree mod log is per file system and not per transaction,
131 * the log must never go across transaction boundaries.
132 */
133 smp_mb();
134 if (!list_empty(&fs_info->tree_mod_seq_list)) {
135 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
136 "creating a fresh transaction\n");
137 WARN_ON(1);
138 }
139 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
140 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
141 "creating a fresh transaction\n");
142 WARN_ON(1);
143 }
144 atomic_set(&fs_info->tree_mod_seq, 0);
145
146 spin_lock_init(&cur_trans->commit_lock);
147 spin_lock_init(&cur_trans->delayed_refs.lock);
148
149 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
150 list_add_tail(&cur_trans->list, &fs_info->trans_list);
151 extent_io_tree_init(&cur_trans->dirty_pages,
152 fs_info->btree_inode->i_mapping);
153 fs_info->generation++;
154 cur_trans->transid = fs_info->generation;
155 fs_info->running_transaction = cur_trans;
156 cur_trans->aborted = 0;
157 spin_unlock(&fs_info->trans_lock);
158
159 return 0;
160 }
161
162 /*
163 * this does all the record keeping required to make sure that a reference
164 * counted root is properly recorded in a given transaction. This is required
165 * to make sure the old root from before we joined the transaction is deleted
166 * when the transaction commits
167 */
168 static int record_root_in_trans(struct btrfs_trans_handle *trans,
169 struct btrfs_root *root)
170 {
171 if (root->ref_cows && root->last_trans < trans->transid) {
172 WARN_ON(root == root->fs_info->extent_root);
173 WARN_ON(root->commit_root != root->node);
174
175 /*
176 * see below for in_trans_setup usage rules
177 * we have the reloc mutex held now, so there
178 * is only one writer in this function
179 */
180 root->in_trans_setup = 1;
181
182 /* make sure readers find in_trans_setup before
183 * they find our root->last_trans update
184 */
185 smp_wmb();
186
187 spin_lock(&root->fs_info->fs_roots_radix_lock);
188 if (root->last_trans == trans->transid) {
189 spin_unlock(&root->fs_info->fs_roots_radix_lock);
190 return 0;
191 }
192 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
193 (unsigned long)root->root_key.objectid,
194 BTRFS_ROOT_TRANS_TAG);
195 spin_unlock(&root->fs_info->fs_roots_radix_lock);
196 root->last_trans = trans->transid;
197
198 /* this is pretty tricky. We don't want to
199 * take the relocation lock in btrfs_record_root_in_trans
200 * unless we're really doing the first setup for this root in
201 * this transaction.
202 *
203 * Normally we'd use root->last_trans as a flag to decide
204 * if we want to take the expensive mutex.
205 *
206 * But, we have to set root->last_trans before we
207 * init the relocation root, otherwise, we trip over warnings
208 * in ctree.c. The solution used here is to flag ourselves
209 * with root->in_trans_setup. When this is 1, we're still
210 * fixing up the reloc trees and everyone must wait.
211 *
212 * When this is zero, they can trust root->last_trans and fly
213 * through btrfs_record_root_in_trans without having to take the
214 * lock. smp_wmb() makes sure that all the writes above are
215 * done before we pop in the zero below
216 */
217 btrfs_init_reloc_root(trans, root);
218 smp_wmb();
219 root->in_trans_setup = 0;
220 }
221 return 0;
222 }
223
224
225 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
226 struct btrfs_root *root)
227 {
228 if (!root->ref_cows)
229 return 0;
230
231 /*
232 * see record_root_in_trans for comments about in_trans_setup usage
233 * and barriers
234 */
235 smp_rmb();
236 if (root->last_trans == trans->transid &&
237 !root->in_trans_setup)
238 return 0;
239
240 mutex_lock(&root->fs_info->reloc_mutex);
241 record_root_in_trans(trans, root);
242 mutex_unlock(&root->fs_info->reloc_mutex);
243
244 return 0;
245 }
246
247 /* wait for commit against the current transaction to become unblocked
248 * when this is done, it is safe to start a new transaction, but the current
249 * transaction might not be fully on disk.
250 */
251 static void wait_current_trans(struct btrfs_root *root)
252 {
253 struct btrfs_transaction *cur_trans;
254
255 spin_lock(&root->fs_info->trans_lock);
256 cur_trans = root->fs_info->running_transaction;
257 if (cur_trans && cur_trans->blocked) {
258 atomic_inc(&cur_trans->use_count);
259 spin_unlock(&root->fs_info->trans_lock);
260
261 wait_event(root->fs_info->transaction_wait,
262 !cur_trans->blocked);
263 put_transaction(cur_trans);
264 } else {
265 spin_unlock(&root->fs_info->trans_lock);
266 }
267 }
268
269 enum btrfs_trans_type {
270 TRANS_START,
271 TRANS_JOIN,
272 TRANS_USERSPACE,
273 TRANS_JOIN_NOLOCK,
274 };
275
276 static int may_wait_transaction(struct btrfs_root *root, int type)
277 {
278 if (root->fs_info->log_root_recovering)
279 return 0;
280
281 if (type == TRANS_USERSPACE)
282 return 1;
283
284 if (type == TRANS_START &&
285 !atomic_read(&root->fs_info->open_ioctl_trans))
286 return 1;
287
288 return 0;
289 }
290
291 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
292 u64 num_items, int type)
293 {
294 struct btrfs_trans_handle *h;
295 struct btrfs_transaction *cur_trans;
296 u64 num_bytes = 0;
297 int ret;
298
299 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
300 return ERR_PTR(-EROFS);
301
302 if (current->journal_info) {
303 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
304 h = current->journal_info;
305 h->use_count++;
306 h->orig_rsv = h->block_rsv;
307 h->block_rsv = NULL;
308 goto got_it;
309 }
310
311 /*
312 * Do the reservation before we join the transaction so we can do all
313 * the appropriate flushing if need be.
314 */
315 if (num_items > 0 && root != root->fs_info->chunk_root) {
316 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
317 ret = btrfs_block_rsv_add(root,
318 &root->fs_info->trans_block_rsv,
319 num_bytes);
320 if (ret)
321 return ERR_PTR(ret);
322 }
323 again:
324 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
325 if (!h)
326 return ERR_PTR(-ENOMEM);
327
328 if (may_wait_transaction(root, type))
329 wait_current_trans(root);
330
331 do {
332 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
333 if (ret == -EBUSY)
334 wait_current_trans(root);
335 } while (ret == -EBUSY);
336
337 if (ret < 0) {
338 kmem_cache_free(btrfs_trans_handle_cachep, h);
339 return ERR_PTR(ret);
340 }
341
342 cur_trans = root->fs_info->running_transaction;
343
344 h->transid = cur_trans->transid;
345 h->transaction = cur_trans;
346 h->blocks_used = 0;
347 h->bytes_reserved = 0;
348 h->delayed_ref_updates = 0;
349 h->use_count = 1;
350 h->block_rsv = NULL;
351 h->orig_rsv = NULL;
352 h->aborted = 0;
353
354 smp_mb();
355 if (cur_trans->blocked && may_wait_transaction(root, type)) {
356 btrfs_commit_transaction(h, root);
357 goto again;
358 }
359
360 if (num_bytes) {
361 trace_btrfs_space_reservation(root->fs_info, "transaction",
362 h->transid, num_bytes, 1);
363 h->block_rsv = &root->fs_info->trans_block_rsv;
364 h->bytes_reserved = num_bytes;
365 }
366
367 got_it:
368 btrfs_record_root_in_trans(h, root);
369
370 if (!current->journal_info && type != TRANS_USERSPACE)
371 current->journal_info = h;
372 return h;
373 }
374
375 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
376 int num_items)
377 {
378 return start_transaction(root, num_items, TRANS_START);
379 }
380 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
381 {
382 return start_transaction(root, 0, TRANS_JOIN);
383 }
384
385 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
386 {
387 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
388 }
389
390 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
391 {
392 return start_transaction(root, 0, TRANS_USERSPACE);
393 }
394
395 /* wait for a transaction commit to be fully complete */
396 static noinline void wait_for_commit(struct btrfs_root *root,
397 struct btrfs_transaction *commit)
398 {
399 wait_event(commit->commit_wait, commit->commit_done);
400 }
401
402 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
403 {
404 struct btrfs_transaction *cur_trans = NULL, *t;
405 int ret;
406
407 ret = 0;
408 if (transid) {
409 if (transid <= root->fs_info->last_trans_committed)
410 goto out;
411
412 /* find specified transaction */
413 spin_lock(&root->fs_info->trans_lock);
414 list_for_each_entry(t, &root->fs_info->trans_list, list) {
415 if (t->transid == transid) {
416 cur_trans = t;
417 atomic_inc(&cur_trans->use_count);
418 break;
419 }
420 if (t->transid > transid)
421 break;
422 }
423 spin_unlock(&root->fs_info->trans_lock);
424 ret = -EINVAL;
425 if (!cur_trans)
426 goto out; /* bad transid */
427 } else {
428 /* find newest transaction that is committing | committed */
429 spin_lock(&root->fs_info->trans_lock);
430 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
431 list) {
432 if (t->in_commit) {
433 if (t->commit_done)
434 break;
435 cur_trans = t;
436 atomic_inc(&cur_trans->use_count);
437 break;
438 }
439 }
440 spin_unlock(&root->fs_info->trans_lock);
441 if (!cur_trans)
442 goto out; /* nothing committing|committed */
443 }
444
445 wait_for_commit(root, cur_trans);
446
447 put_transaction(cur_trans);
448 ret = 0;
449 out:
450 return ret;
451 }
452
453 void btrfs_throttle(struct btrfs_root *root)
454 {
455 if (!atomic_read(&root->fs_info->open_ioctl_trans))
456 wait_current_trans(root);
457 }
458
459 static int should_end_transaction(struct btrfs_trans_handle *trans,
460 struct btrfs_root *root)
461 {
462 int ret;
463
464 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
465 return ret ? 1 : 0;
466 }
467
468 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
469 struct btrfs_root *root)
470 {
471 struct btrfs_transaction *cur_trans = trans->transaction;
472 struct btrfs_block_rsv *rsv = trans->block_rsv;
473 int updates;
474 int err;
475
476 smp_mb();
477 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
478 return 1;
479
480 /*
481 * We need to do this in case we're deleting csums so the global block
482 * rsv get's used instead of the csum block rsv.
483 */
484 trans->block_rsv = NULL;
485
486 updates = trans->delayed_ref_updates;
487 trans->delayed_ref_updates = 0;
488 if (updates) {
489 err = btrfs_run_delayed_refs(trans, root, updates);
490 if (err) /* Error code will also eval true */
491 return err;
492 }
493
494 trans->block_rsv = rsv;
495
496 return should_end_transaction(trans, root);
497 }
498
499 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
500 struct btrfs_root *root, int throttle, int lock)
501 {
502 struct btrfs_transaction *cur_trans = trans->transaction;
503 struct btrfs_fs_info *info = root->fs_info;
504 int count = 0;
505 int err = 0;
506
507 if (--trans->use_count) {
508 trans->block_rsv = trans->orig_rsv;
509 return 0;
510 }
511
512 btrfs_trans_release_metadata(trans, root);
513 trans->block_rsv = NULL;
514 while (count < 2) {
515 unsigned long cur = trans->delayed_ref_updates;
516 trans->delayed_ref_updates = 0;
517 if (cur &&
518 trans->transaction->delayed_refs.num_heads_ready > 64) {
519 trans->delayed_ref_updates = 0;
520 btrfs_run_delayed_refs(trans, root, cur);
521 } else {
522 break;
523 }
524 count++;
525 }
526
527 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
528 should_end_transaction(trans, root)) {
529 trans->transaction->blocked = 1;
530 smp_wmb();
531 }
532
533 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
534 if (throttle) {
535 /*
536 * We may race with somebody else here so end up having
537 * to call end_transaction on ourselves again, so inc
538 * our use_count.
539 */
540 trans->use_count++;
541 return btrfs_commit_transaction(trans, root);
542 } else {
543 wake_up_process(info->transaction_kthread);
544 }
545 }
546
547 WARN_ON(cur_trans != info->running_transaction);
548 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
549 atomic_dec(&cur_trans->num_writers);
550
551 smp_mb();
552 if (waitqueue_active(&cur_trans->writer_wait))
553 wake_up(&cur_trans->writer_wait);
554 put_transaction(cur_trans);
555
556 if (current->journal_info == trans)
557 current->journal_info = NULL;
558
559 if (throttle)
560 btrfs_run_delayed_iputs(root);
561
562 if (trans->aborted ||
563 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
564 err = -EIO;
565 }
566
567 memset(trans, 0, sizeof(*trans));
568 kmem_cache_free(btrfs_trans_handle_cachep, trans);
569 return err;
570 }
571
572 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
573 struct btrfs_root *root)
574 {
575 int ret;
576
577 ret = __btrfs_end_transaction(trans, root, 0, 1);
578 if (ret)
579 return ret;
580 return 0;
581 }
582
583 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root)
585 {
586 int ret;
587
588 ret = __btrfs_end_transaction(trans, root, 1, 1);
589 if (ret)
590 return ret;
591 return 0;
592 }
593
594 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
595 struct btrfs_root *root)
596 {
597 int ret;
598
599 ret = __btrfs_end_transaction(trans, root, 0, 0);
600 if (ret)
601 return ret;
602 return 0;
603 }
604
605 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
606 struct btrfs_root *root)
607 {
608 return __btrfs_end_transaction(trans, root, 1, 1);
609 }
610
611 /*
612 * when btree blocks are allocated, they have some corresponding bits set for
613 * them in one of two extent_io trees. This is used to make sure all of
614 * those extents are sent to disk but does not wait on them
615 */
616 int btrfs_write_marked_extents(struct btrfs_root *root,
617 struct extent_io_tree *dirty_pages, int mark)
618 {
619 int err = 0;
620 int werr = 0;
621 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
622 u64 start = 0;
623 u64 end;
624
625 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
626 mark)) {
627 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
628 GFP_NOFS);
629 err = filemap_fdatawrite_range(mapping, start, end);
630 if (err)
631 werr = err;
632 cond_resched();
633 start = end + 1;
634 }
635 if (err)
636 werr = err;
637 return werr;
638 }
639
640 /*
641 * when btree blocks are allocated, they have some corresponding bits set for
642 * them in one of two extent_io trees. This is used to make sure all of
643 * those extents are on disk for transaction or log commit. We wait
644 * on all the pages and clear them from the dirty pages state tree
645 */
646 int btrfs_wait_marked_extents(struct btrfs_root *root,
647 struct extent_io_tree *dirty_pages, int mark)
648 {
649 int err = 0;
650 int werr = 0;
651 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
652 u64 start = 0;
653 u64 end;
654
655 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
656 EXTENT_NEED_WAIT)) {
657 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
658 err = filemap_fdatawait_range(mapping, start, end);
659 if (err)
660 werr = err;
661 cond_resched();
662 start = end + 1;
663 }
664 if (err)
665 werr = err;
666 return werr;
667 }
668
669 /*
670 * when btree blocks are allocated, they have some corresponding bits set for
671 * them in one of two extent_io trees. This is used to make sure all of
672 * those extents are on disk for transaction or log commit
673 */
674 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
675 struct extent_io_tree *dirty_pages, int mark)
676 {
677 int ret;
678 int ret2;
679
680 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
681 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
682
683 if (ret)
684 return ret;
685 if (ret2)
686 return ret2;
687 return 0;
688 }
689
690 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
691 struct btrfs_root *root)
692 {
693 if (!trans || !trans->transaction) {
694 struct inode *btree_inode;
695 btree_inode = root->fs_info->btree_inode;
696 return filemap_write_and_wait(btree_inode->i_mapping);
697 }
698 return btrfs_write_and_wait_marked_extents(root,
699 &trans->transaction->dirty_pages,
700 EXTENT_DIRTY);
701 }
702
703 /*
704 * this is used to update the root pointer in the tree of tree roots.
705 *
706 * But, in the case of the extent allocation tree, updating the root
707 * pointer may allocate blocks which may change the root of the extent
708 * allocation tree.
709 *
710 * So, this loops and repeats and makes sure the cowonly root didn't
711 * change while the root pointer was being updated in the metadata.
712 */
713 static int update_cowonly_root(struct btrfs_trans_handle *trans,
714 struct btrfs_root *root)
715 {
716 int ret;
717 u64 old_root_bytenr;
718 u64 old_root_used;
719 struct btrfs_root *tree_root = root->fs_info->tree_root;
720
721 old_root_used = btrfs_root_used(&root->root_item);
722 btrfs_write_dirty_block_groups(trans, root);
723
724 while (1) {
725 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
726 if (old_root_bytenr == root->node->start &&
727 old_root_used == btrfs_root_used(&root->root_item))
728 break;
729
730 btrfs_set_root_node(&root->root_item, root->node);
731 ret = btrfs_update_root(trans, tree_root,
732 &root->root_key,
733 &root->root_item);
734 if (ret)
735 return ret;
736
737 old_root_used = btrfs_root_used(&root->root_item);
738 ret = btrfs_write_dirty_block_groups(trans, root);
739 if (ret)
740 return ret;
741 }
742
743 if (root != root->fs_info->extent_root)
744 switch_commit_root(root);
745
746 return 0;
747 }
748
749 /*
750 * update all the cowonly tree roots on disk
751 *
752 * The error handling in this function may not be obvious. Any of the
753 * failures will cause the file system to go offline. We still need
754 * to clean up the delayed refs.
755 */
756 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
757 struct btrfs_root *root)
758 {
759 struct btrfs_fs_info *fs_info = root->fs_info;
760 struct list_head *next;
761 struct extent_buffer *eb;
762 int ret;
763
764 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
765 if (ret)
766 return ret;
767
768 eb = btrfs_lock_root_node(fs_info->tree_root);
769 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
770 0, &eb);
771 btrfs_tree_unlock(eb);
772 free_extent_buffer(eb);
773
774 if (ret)
775 return ret;
776
777 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
778 if (ret)
779 return ret;
780
781 ret = btrfs_run_dev_stats(trans, root->fs_info);
782 BUG_ON(ret);
783
784 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
785 next = fs_info->dirty_cowonly_roots.next;
786 list_del_init(next);
787 root = list_entry(next, struct btrfs_root, dirty_list);
788
789 ret = update_cowonly_root(trans, root);
790 if (ret)
791 return ret;
792 }
793
794 down_write(&fs_info->extent_commit_sem);
795 switch_commit_root(fs_info->extent_root);
796 up_write(&fs_info->extent_commit_sem);
797
798 return 0;
799 }
800
801 /*
802 * dead roots are old snapshots that need to be deleted. This allocates
803 * a dirty root struct and adds it into the list of dead roots that need to
804 * be deleted
805 */
806 int btrfs_add_dead_root(struct btrfs_root *root)
807 {
808 spin_lock(&root->fs_info->trans_lock);
809 list_add(&root->root_list, &root->fs_info->dead_roots);
810 spin_unlock(&root->fs_info->trans_lock);
811 return 0;
812 }
813
814 /*
815 * update all the cowonly tree roots on disk
816 */
817 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
818 struct btrfs_root *root)
819 {
820 struct btrfs_root *gang[8];
821 struct btrfs_fs_info *fs_info = root->fs_info;
822 int i;
823 int ret;
824 int err = 0;
825
826 spin_lock(&fs_info->fs_roots_radix_lock);
827 while (1) {
828 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
829 (void **)gang, 0,
830 ARRAY_SIZE(gang),
831 BTRFS_ROOT_TRANS_TAG);
832 if (ret == 0)
833 break;
834 for (i = 0; i < ret; i++) {
835 root = gang[i];
836 radix_tree_tag_clear(&fs_info->fs_roots_radix,
837 (unsigned long)root->root_key.objectid,
838 BTRFS_ROOT_TRANS_TAG);
839 spin_unlock(&fs_info->fs_roots_radix_lock);
840
841 btrfs_free_log(trans, root);
842 btrfs_update_reloc_root(trans, root);
843 btrfs_orphan_commit_root(trans, root);
844
845 btrfs_save_ino_cache(root, trans);
846
847 /* see comments in should_cow_block() */
848 root->force_cow = 0;
849 smp_wmb();
850
851 if (root->commit_root != root->node) {
852 mutex_lock(&root->fs_commit_mutex);
853 switch_commit_root(root);
854 btrfs_unpin_free_ino(root);
855 mutex_unlock(&root->fs_commit_mutex);
856
857 btrfs_set_root_node(&root->root_item,
858 root->node);
859 }
860
861 err = btrfs_update_root(trans, fs_info->tree_root,
862 &root->root_key,
863 &root->root_item);
864 spin_lock(&fs_info->fs_roots_radix_lock);
865 if (err)
866 break;
867 }
868 }
869 spin_unlock(&fs_info->fs_roots_radix_lock);
870 return err;
871 }
872
873 /*
874 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
875 * otherwise every leaf in the btree is read and defragged.
876 */
877 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
878 {
879 struct btrfs_fs_info *info = root->fs_info;
880 struct btrfs_trans_handle *trans;
881 int ret;
882 unsigned long nr;
883
884 if (xchg(&root->defrag_running, 1))
885 return 0;
886
887 while (1) {
888 trans = btrfs_start_transaction(root, 0);
889 if (IS_ERR(trans))
890 return PTR_ERR(trans);
891
892 ret = btrfs_defrag_leaves(trans, root, cacheonly);
893
894 nr = trans->blocks_used;
895 btrfs_end_transaction(trans, root);
896 btrfs_btree_balance_dirty(info->tree_root, nr);
897 cond_resched();
898
899 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
900 break;
901 }
902 root->defrag_running = 0;
903 return ret;
904 }
905
906 /*
907 * new snapshots need to be created at a very specific time in the
908 * transaction commit. This does the actual creation
909 */
910 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
911 struct btrfs_fs_info *fs_info,
912 struct btrfs_pending_snapshot *pending)
913 {
914 struct btrfs_key key;
915 struct btrfs_root_item *new_root_item;
916 struct btrfs_root *tree_root = fs_info->tree_root;
917 struct btrfs_root *root = pending->root;
918 struct btrfs_root *parent_root;
919 struct btrfs_block_rsv *rsv;
920 struct inode *parent_inode;
921 struct dentry *parent;
922 struct dentry *dentry;
923 struct extent_buffer *tmp;
924 struct extent_buffer *old;
925 int ret;
926 u64 to_reserve = 0;
927 u64 index = 0;
928 u64 objectid;
929 u64 root_flags;
930
931 rsv = trans->block_rsv;
932
933 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
934 if (!new_root_item) {
935 ret = pending->error = -ENOMEM;
936 goto fail;
937 }
938
939 ret = btrfs_find_free_objectid(tree_root, &objectid);
940 if (ret) {
941 pending->error = ret;
942 goto fail;
943 }
944
945 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
946
947 if (to_reserve > 0) {
948 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
949 to_reserve);
950 if (ret) {
951 pending->error = ret;
952 goto fail;
953 }
954 }
955
956 key.objectid = objectid;
957 key.offset = (u64)-1;
958 key.type = BTRFS_ROOT_ITEM_KEY;
959
960 trans->block_rsv = &pending->block_rsv;
961
962 dentry = pending->dentry;
963 parent = dget_parent(dentry);
964 parent_inode = parent->d_inode;
965 parent_root = BTRFS_I(parent_inode)->root;
966 record_root_in_trans(trans, parent_root);
967
968 /*
969 * insert the directory item
970 */
971 ret = btrfs_set_inode_index(parent_inode, &index);
972 BUG_ON(ret); /* -ENOMEM */
973 ret = btrfs_insert_dir_item(trans, parent_root,
974 dentry->d_name.name, dentry->d_name.len,
975 parent_inode, &key,
976 BTRFS_FT_DIR, index);
977 if (ret == -EEXIST) {
978 pending->error = -EEXIST;
979 dput(parent);
980 goto fail;
981 } else if (ret) {
982 goto abort_trans_dput;
983 }
984
985 btrfs_i_size_write(parent_inode, parent_inode->i_size +
986 dentry->d_name.len * 2);
987 ret = btrfs_update_inode(trans, parent_root, parent_inode);
988 if (ret)
989 goto abort_trans_dput;
990
991 /*
992 * pull in the delayed directory update
993 * and the delayed inode item
994 * otherwise we corrupt the FS during
995 * snapshot
996 */
997 ret = btrfs_run_delayed_items(trans, root);
998 if (ret) { /* Transaction aborted */
999 dput(parent);
1000 goto fail;
1001 }
1002
1003 record_root_in_trans(trans, root);
1004 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1005 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1006 btrfs_check_and_init_root_item(new_root_item);
1007
1008 root_flags = btrfs_root_flags(new_root_item);
1009 if (pending->readonly)
1010 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1011 else
1012 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1013 btrfs_set_root_flags(new_root_item, root_flags);
1014
1015 old = btrfs_lock_root_node(root);
1016 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1017 if (ret) {
1018 btrfs_tree_unlock(old);
1019 free_extent_buffer(old);
1020 goto abort_trans_dput;
1021 }
1022
1023 btrfs_set_lock_blocking(old);
1024
1025 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1026 /* clean up in any case */
1027 btrfs_tree_unlock(old);
1028 free_extent_buffer(old);
1029 if (ret)
1030 goto abort_trans_dput;
1031
1032 /* see comments in should_cow_block() */
1033 root->force_cow = 1;
1034 smp_wmb();
1035
1036 btrfs_set_root_node(new_root_item, tmp);
1037 /* record when the snapshot was created in key.offset */
1038 key.offset = trans->transid;
1039 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1040 btrfs_tree_unlock(tmp);
1041 free_extent_buffer(tmp);
1042 if (ret)
1043 goto abort_trans_dput;
1044
1045 /*
1046 * insert root back/forward references
1047 */
1048 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1049 parent_root->root_key.objectid,
1050 btrfs_ino(parent_inode), index,
1051 dentry->d_name.name, dentry->d_name.len);
1052 dput(parent);
1053 if (ret)
1054 goto fail;
1055
1056 key.offset = (u64)-1;
1057 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1058 if (IS_ERR(pending->snap)) {
1059 ret = PTR_ERR(pending->snap);
1060 goto abort_trans;
1061 }
1062
1063 ret = btrfs_reloc_post_snapshot(trans, pending);
1064 if (ret)
1065 goto abort_trans;
1066 ret = 0;
1067 fail:
1068 kfree(new_root_item);
1069 trans->block_rsv = rsv;
1070 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1071 return ret;
1072
1073 abort_trans_dput:
1074 dput(parent);
1075 abort_trans:
1076 btrfs_abort_transaction(trans, root, ret);
1077 goto fail;
1078 }
1079
1080 /*
1081 * create all the snapshots we've scheduled for creation
1082 */
1083 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1084 struct btrfs_fs_info *fs_info)
1085 {
1086 struct btrfs_pending_snapshot *pending;
1087 struct list_head *head = &trans->transaction->pending_snapshots;
1088
1089 list_for_each_entry(pending, head, list)
1090 create_pending_snapshot(trans, fs_info, pending);
1091 return 0;
1092 }
1093
1094 static void update_super_roots(struct btrfs_root *root)
1095 {
1096 struct btrfs_root_item *root_item;
1097 struct btrfs_super_block *super;
1098
1099 super = root->fs_info->super_copy;
1100
1101 root_item = &root->fs_info->chunk_root->root_item;
1102 super->chunk_root = root_item->bytenr;
1103 super->chunk_root_generation = root_item->generation;
1104 super->chunk_root_level = root_item->level;
1105
1106 root_item = &root->fs_info->tree_root->root_item;
1107 super->root = root_item->bytenr;
1108 super->generation = root_item->generation;
1109 super->root_level = root_item->level;
1110 if (btrfs_test_opt(root, SPACE_CACHE))
1111 super->cache_generation = root_item->generation;
1112 }
1113
1114 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1115 {
1116 int ret = 0;
1117 spin_lock(&info->trans_lock);
1118 if (info->running_transaction)
1119 ret = info->running_transaction->in_commit;
1120 spin_unlock(&info->trans_lock);
1121 return ret;
1122 }
1123
1124 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1125 {
1126 int ret = 0;
1127 spin_lock(&info->trans_lock);
1128 if (info->running_transaction)
1129 ret = info->running_transaction->blocked;
1130 spin_unlock(&info->trans_lock);
1131 return ret;
1132 }
1133
1134 /*
1135 * wait for the current transaction commit to start and block subsequent
1136 * transaction joins
1137 */
1138 static void wait_current_trans_commit_start(struct btrfs_root *root,
1139 struct btrfs_transaction *trans)
1140 {
1141 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1142 }
1143
1144 /*
1145 * wait for the current transaction to start and then become unblocked.
1146 * caller holds ref.
1147 */
1148 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1149 struct btrfs_transaction *trans)
1150 {
1151 wait_event(root->fs_info->transaction_wait,
1152 trans->commit_done || (trans->in_commit && !trans->blocked));
1153 }
1154
1155 /*
1156 * commit transactions asynchronously. once btrfs_commit_transaction_async
1157 * returns, any subsequent transaction will not be allowed to join.
1158 */
1159 struct btrfs_async_commit {
1160 struct btrfs_trans_handle *newtrans;
1161 struct btrfs_root *root;
1162 struct delayed_work work;
1163 };
1164
1165 static void do_async_commit(struct work_struct *work)
1166 {
1167 struct btrfs_async_commit *ac =
1168 container_of(work, struct btrfs_async_commit, work.work);
1169
1170 btrfs_commit_transaction(ac->newtrans, ac->root);
1171 kfree(ac);
1172 }
1173
1174 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1175 struct btrfs_root *root,
1176 int wait_for_unblock)
1177 {
1178 struct btrfs_async_commit *ac;
1179 struct btrfs_transaction *cur_trans;
1180
1181 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1182 if (!ac)
1183 return -ENOMEM;
1184
1185 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1186 ac->root = root;
1187 ac->newtrans = btrfs_join_transaction(root);
1188 if (IS_ERR(ac->newtrans)) {
1189 int err = PTR_ERR(ac->newtrans);
1190 kfree(ac);
1191 return err;
1192 }
1193
1194 /* take transaction reference */
1195 cur_trans = trans->transaction;
1196 atomic_inc(&cur_trans->use_count);
1197
1198 btrfs_end_transaction(trans, root);
1199 schedule_delayed_work(&ac->work, 0);
1200
1201 /* wait for transaction to start and unblock */
1202 if (wait_for_unblock)
1203 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1204 else
1205 wait_current_trans_commit_start(root, cur_trans);
1206
1207 if (current->journal_info == trans)
1208 current->journal_info = NULL;
1209
1210 put_transaction(cur_trans);
1211 return 0;
1212 }
1213
1214
1215 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root, int err)
1217 {
1218 struct btrfs_transaction *cur_trans = trans->transaction;
1219
1220 WARN_ON(trans->use_count > 1);
1221
1222 btrfs_abort_transaction(trans, root, err);
1223
1224 spin_lock(&root->fs_info->trans_lock);
1225 list_del_init(&cur_trans->list);
1226 if (cur_trans == root->fs_info->running_transaction) {
1227 root->fs_info->running_transaction = NULL;
1228 root->fs_info->trans_no_join = 0;
1229 }
1230 spin_unlock(&root->fs_info->trans_lock);
1231
1232 btrfs_cleanup_one_transaction(trans->transaction, root);
1233
1234 put_transaction(cur_trans);
1235 put_transaction(cur_trans);
1236
1237 trace_btrfs_transaction_commit(root);
1238
1239 btrfs_scrub_continue(root);
1240
1241 if (current->journal_info == trans)
1242 current->journal_info = NULL;
1243
1244 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1245 }
1246
1247 /*
1248 * btrfs_transaction state sequence:
1249 * in_commit = 0, blocked = 0 (initial)
1250 * in_commit = 1, blocked = 1
1251 * blocked = 0
1252 * commit_done = 1
1253 */
1254 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1255 struct btrfs_root *root)
1256 {
1257 unsigned long joined = 0;
1258 struct btrfs_transaction *cur_trans = trans->transaction;
1259 struct btrfs_transaction *prev_trans = NULL;
1260 DEFINE_WAIT(wait);
1261 int ret = -EIO;
1262 int should_grow = 0;
1263 unsigned long now = get_seconds();
1264 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1265
1266 btrfs_run_ordered_operations(root, 0);
1267
1268 btrfs_trans_release_metadata(trans, root);
1269 trans->block_rsv = NULL;
1270
1271 if (cur_trans->aborted)
1272 goto cleanup_transaction;
1273
1274 /* make a pass through all the delayed refs we have so far
1275 * any runnings procs may add more while we are here
1276 */
1277 ret = btrfs_run_delayed_refs(trans, root, 0);
1278 if (ret)
1279 goto cleanup_transaction;
1280
1281 cur_trans = trans->transaction;
1282
1283 /*
1284 * set the flushing flag so procs in this transaction have to
1285 * start sending their work down.
1286 */
1287 cur_trans->delayed_refs.flushing = 1;
1288
1289 ret = btrfs_run_delayed_refs(trans, root, 0);
1290 if (ret)
1291 goto cleanup_transaction;
1292
1293 spin_lock(&cur_trans->commit_lock);
1294 if (cur_trans->in_commit) {
1295 spin_unlock(&cur_trans->commit_lock);
1296 atomic_inc(&cur_trans->use_count);
1297 ret = btrfs_end_transaction(trans, root);
1298
1299 wait_for_commit(root, cur_trans);
1300
1301 put_transaction(cur_trans);
1302
1303 return ret;
1304 }
1305
1306 trans->transaction->in_commit = 1;
1307 trans->transaction->blocked = 1;
1308 spin_unlock(&cur_trans->commit_lock);
1309 wake_up(&root->fs_info->transaction_blocked_wait);
1310
1311 spin_lock(&root->fs_info->trans_lock);
1312 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1313 prev_trans = list_entry(cur_trans->list.prev,
1314 struct btrfs_transaction, list);
1315 if (!prev_trans->commit_done) {
1316 atomic_inc(&prev_trans->use_count);
1317 spin_unlock(&root->fs_info->trans_lock);
1318
1319 wait_for_commit(root, prev_trans);
1320
1321 put_transaction(prev_trans);
1322 } else {
1323 spin_unlock(&root->fs_info->trans_lock);
1324 }
1325 } else {
1326 spin_unlock(&root->fs_info->trans_lock);
1327 }
1328
1329 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1330 should_grow = 1;
1331
1332 do {
1333 int snap_pending = 0;
1334
1335 joined = cur_trans->num_joined;
1336 if (!list_empty(&trans->transaction->pending_snapshots))
1337 snap_pending = 1;
1338
1339 WARN_ON(cur_trans != trans->transaction);
1340
1341 if (flush_on_commit || snap_pending) {
1342 btrfs_start_delalloc_inodes(root, 1);
1343 btrfs_wait_ordered_extents(root, 0, 1);
1344 }
1345
1346 ret = btrfs_run_delayed_items(trans, root);
1347 if (ret)
1348 goto cleanup_transaction;
1349
1350 /*
1351 * rename don't use btrfs_join_transaction, so, once we
1352 * set the transaction to blocked above, we aren't going
1353 * to get any new ordered operations. We can safely run
1354 * it here and no for sure that nothing new will be added
1355 * to the list
1356 */
1357 btrfs_run_ordered_operations(root, 1);
1358
1359 prepare_to_wait(&cur_trans->writer_wait, &wait,
1360 TASK_UNINTERRUPTIBLE);
1361
1362 if (atomic_read(&cur_trans->num_writers) > 1)
1363 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1364 else if (should_grow)
1365 schedule_timeout(1);
1366
1367 finish_wait(&cur_trans->writer_wait, &wait);
1368 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1369 (should_grow && cur_trans->num_joined != joined));
1370
1371 /*
1372 * Ok now we need to make sure to block out any other joins while we
1373 * commit the transaction. We could have started a join before setting
1374 * no_join so make sure to wait for num_writers to == 1 again.
1375 */
1376 spin_lock(&root->fs_info->trans_lock);
1377 root->fs_info->trans_no_join = 1;
1378 spin_unlock(&root->fs_info->trans_lock);
1379 wait_event(cur_trans->writer_wait,
1380 atomic_read(&cur_trans->num_writers) == 1);
1381
1382 /*
1383 * the reloc mutex makes sure that we stop
1384 * the balancing code from coming in and moving
1385 * extents around in the middle of the commit
1386 */
1387 mutex_lock(&root->fs_info->reloc_mutex);
1388
1389 ret = btrfs_run_delayed_items(trans, root);
1390 if (ret) {
1391 mutex_unlock(&root->fs_info->reloc_mutex);
1392 goto cleanup_transaction;
1393 }
1394
1395 ret = create_pending_snapshots(trans, root->fs_info);
1396 if (ret) {
1397 mutex_unlock(&root->fs_info->reloc_mutex);
1398 goto cleanup_transaction;
1399 }
1400
1401 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1402 if (ret) {
1403 mutex_unlock(&root->fs_info->reloc_mutex);
1404 goto cleanup_transaction;
1405 }
1406
1407 /*
1408 * make sure none of the code above managed to slip in a
1409 * delayed item
1410 */
1411 btrfs_assert_delayed_root_empty(root);
1412
1413 WARN_ON(cur_trans != trans->transaction);
1414
1415 btrfs_scrub_pause(root);
1416 /* btrfs_commit_tree_roots is responsible for getting the
1417 * various roots consistent with each other. Every pointer
1418 * in the tree of tree roots has to point to the most up to date
1419 * root for every subvolume and other tree. So, we have to keep
1420 * the tree logging code from jumping in and changing any
1421 * of the trees.
1422 *
1423 * At this point in the commit, there can't be any tree-log
1424 * writers, but a little lower down we drop the trans mutex
1425 * and let new people in. By holding the tree_log_mutex
1426 * from now until after the super is written, we avoid races
1427 * with the tree-log code.
1428 */
1429 mutex_lock(&root->fs_info->tree_log_mutex);
1430
1431 ret = commit_fs_roots(trans, root);
1432 if (ret) {
1433 mutex_unlock(&root->fs_info->tree_log_mutex);
1434 mutex_unlock(&root->fs_info->reloc_mutex);
1435 goto cleanup_transaction;
1436 }
1437
1438 /* commit_fs_roots gets rid of all the tree log roots, it is now
1439 * safe to free the root of tree log roots
1440 */
1441 btrfs_free_log_root_tree(trans, root->fs_info);
1442
1443 ret = commit_cowonly_roots(trans, root);
1444 if (ret) {
1445 mutex_unlock(&root->fs_info->tree_log_mutex);
1446 mutex_unlock(&root->fs_info->reloc_mutex);
1447 goto cleanup_transaction;
1448 }
1449
1450 btrfs_prepare_extent_commit(trans, root);
1451
1452 cur_trans = root->fs_info->running_transaction;
1453
1454 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1455 root->fs_info->tree_root->node);
1456 switch_commit_root(root->fs_info->tree_root);
1457
1458 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1459 root->fs_info->chunk_root->node);
1460 switch_commit_root(root->fs_info->chunk_root);
1461
1462 update_super_roots(root);
1463
1464 if (!root->fs_info->log_root_recovering) {
1465 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1466 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1467 }
1468
1469 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1470 sizeof(*root->fs_info->super_copy));
1471
1472 trans->transaction->blocked = 0;
1473 spin_lock(&root->fs_info->trans_lock);
1474 root->fs_info->running_transaction = NULL;
1475 root->fs_info->trans_no_join = 0;
1476 spin_unlock(&root->fs_info->trans_lock);
1477 mutex_unlock(&root->fs_info->reloc_mutex);
1478
1479 wake_up(&root->fs_info->transaction_wait);
1480
1481 ret = btrfs_write_and_wait_transaction(trans, root);
1482 if (ret) {
1483 btrfs_error(root->fs_info, ret,
1484 "Error while writing out transaction.");
1485 mutex_unlock(&root->fs_info->tree_log_mutex);
1486 goto cleanup_transaction;
1487 }
1488
1489 ret = write_ctree_super(trans, root, 0);
1490 if (ret) {
1491 mutex_unlock(&root->fs_info->tree_log_mutex);
1492 goto cleanup_transaction;
1493 }
1494
1495 /*
1496 * the super is written, we can safely allow the tree-loggers
1497 * to go about their business
1498 */
1499 mutex_unlock(&root->fs_info->tree_log_mutex);
1500
1501 btrfs_finish_extent_commit(trans, root);
1502
1503 cur_trans->commit_done = 1;
1504
1505 root->fs_info->last_trans_committed = cur_trans->transid;
1506
1507 wake_up(&cur_trans->commit_wait);
1508
1509 spin_lock(&root->fs_info->trans_lock);
1510 list_del_init(&cur_trans->list);
1511 spin_unlock(&root->fs_info->trans_lock);
1512
1513 put_transaction(cur_trans);
1514 put_transaction(cur_trans);
1515
1516 trace_btrfs_transaction_commit(root);
1517
1518 btrfs_scrub_continue(root);
1519
1520 if (current->journal_info == trans)
1521 current->journal_info = NULL;
1522
1523 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1524
1525 if (current != root->fs_info->transaction_kthread)
1526 btrfs_run_delayed_iputs(root);
1527
1528 return ret;
1529
1530 cleanup_transaction:
1531 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1532 // WARN_ON(1);
1533 if (current->journal_info == trans)
1534 current->journal_info = NULL;
1535 cleanup_transaction(trans, root, ret);
1536
1537 return ret;
1538 }
1539
1540 /*
1541 * interface function to delete all the snapshots we have scheduled for deletion
1542 */
1543 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1544 {
1545 LIST_HEAD(list);
1546 struct btrfs_fs_info *fs_info = root->fs_info;
1547
1548 spin_lock(&fs_info->trans_lock);
1549 list_splice_init(&fs_info->dead_roots, &list);
1550 spin_unlock(&fs_info->trans_lock);
1551
1552 while (!list_empty(&list)) {
1553 int ret;
1554
1555 root = list_entry(list.next, struct btrfs_root, root_list);
1556 list_del(&root->root_list);
1557
1558 btrfs_kill_all_delayed_nodes(root);
1559
1560 if (btrfs_header_backref_rev(root->node) <
1561 BTRFS_MIXED_BACKREF_REV)
1562 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1563 else
1564 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1565 BUG_ON(ret < 0);
1566 }
1567 return 0;
1568 }
This page took 0.092607 seconds and 6 git commands to generate.