Btrfs: fix the deadlock between the transaction start/attach and commit
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
51 }
52
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54 int type)
55 {
56 return !(trans->in_commit &&
57 type != TRANS_JOIN &&
58 type != TRANS_JOIN_NOLOCK);
59 }
60
61 /*
62 * either allocate a new transaction or hop into the existing one
63 */
64 static noinline int join_transaction(struct btrfs_root *root, int type)
65 {
66 struct btrfs_transaction *cur_trans;
67 struct btrfs_fs_info *fs_info = root->fs_info;
68
69 spin_lock(&fs_info->trans_lock);
70 loop:
71 /* The file system has been taken offline. No new transactions. */
72 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73 spin_unlock(&fs_info->trans_lock);
74 return -EROFS;
75 }
76
77 if (fs_info->trans_no_join) {
78 /*
79 * If we are JOIN_NOLOCK we're already committing a current
80 * transaction, we just need a handle to deal with something
81 * when committing the transaction, such as inode cache and
82 * space cache. It is a special case.
83 */
84 if (type != TRANS_JOIN_NOLOCK) {
85 spin_unlock(&fs_info->trans_lock);
86 return -EBUSY;
87 }
88 }
89
90 cur_trans = fs_info->running_transaction;
91 if (cur_trans) {
92 if (cur_trans->aborted) {
93 spin_unlock(&fs_info->trans_lock);
94 return cur_trans->aborted;
95 }
96 if (!can_join_transaction(cur_trans, type)) {
97 spin_unlock(&fs_info->trans_lock);
98 return -EBUSY;
99 }
100 atomic_inc(&cur_trans->use_count);
101 atomic_inc(&cur_trans->num_writers);
102 cur_trans->num_joined++;
103 spin_unlock(&fs_info->trans_lock);
104 return 0;
105 }
106 spin_unlock(&fs_info->trans_lock);
107
108 /*
109 * If we are ATTACH, we just want to catch the current transaction,
110 * and commit it. If there is no transaction, just return ENOENT.
111 */
112 if (type == TRANS_ATTACH)
113 return -ENOENT;
114
115 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116 if (!cur_trans)
117 return -ENOMEM;
118
119 spin_lock(&fs_info->trans_lock);
120 if (fs_info->running_transaction) {
121 /*
122 * someone started a transaction after we unlocked. Make sure
123 * to redo the trans_no_join checks above
124 */
125 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126 cur_trans = fs_info->running_transaction;
127 goto loop;
128 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
129 spin_unlock(&fs_info->trans_lock);
130 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
131 return -EROFS;
132 }
133
134 atomic_set(&cur_trans->num_writers, 1);
135 cur_trans->num_joined = 0;
136 init_waitqueue_head(&cur_trans->writer_wait);
137 init_waitqueue_head(&cur_trans->commit_wait);
138 cur_trans->in_commit = 0;
139 cur_trans->blocked = 0;
140 /*
141 * One for this trans handle, one so it will live on until we
142 * commit the transaction.
143 */
144 atomic_set(&cur_trans->use_count, 2);
145 cur_trans->commit_done = 0;
146 cur_trans->start_time = get_seconds();
147
148 cur_trans->delayed_refs.root = RB_ROOT;
149 cur_trans->delayed_refs.num_entries = 0;
150 cur_trans->delayed_refs.num_heads_ready = 0;
151 cur_trans->delayed_refs.num_heads = 0;
152 cur_trans->delayed_refs.flushing = 0;
153 cur_trans->delayed_refs.run_delayed_start = 0;
154
155 /*
156 * although the tree mod log is per file system and not per transaction,
157 * the log must never go across transaction boundaries.
158 */
159 smp_mb();
160 if (!list_empty(&fs_info->tree_mod_seq_list))
161 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
162 "creating a fresh transaction\n");
163 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
164 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
165 "creating a fresh transaction\n");
166 atomic_set(&fs_info->tree_mod_seq, 0);
167
168 spin_lock_init(&cur_trans->commit_lock);
169 spin_lock_init(&cur_trans->delayed_refs.lock);
170
171 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
172 INIT_LIST_HEAD(&cur_trans->ordered_operations);
173 list_add_tail(&cur_trans->list, &fs_info->trans_list);
174 extent_io_tree_init(&cur_trans->dirty_pages,
175 fs_info->btree_inode->i_mapping);
176 fs_info->generation++;
177 cur_trans->transid = fs_info->generation;
178 fs_info->running_transaction = cur_trans;
179 cur_trans->aborted = 0;
180 spin_unlock(&fs_info->trans_lock);
181
182 return 0;
183 }
184
185 /*
186 * this does all the record keeping required to make sure that a reference
187 * counted root is properly recorded in a given transaction. This is required
188 * to make sure the old root from before we joined the transaction is deleted
189 * when the transaction commits
190 */
191 static int record_root_in_trans(struct btrfs_trans_handle *trans,
192 struct btrfs_root *root)
193 {
194 if (root->ref_cows && root->last_trans < trans->transid) {
195 WARN_ON(root == root->fs_info->extent_root);
196 WARN_ON(root->commit_root != root->node);
197
198 /*
199 * see below for in_trans_setup usage rules
200 * we have the reloc mutex held now, so there
201 * is only one writer in this function
202 */
203 root->in_trans_setup = 1;
204
205 /* make sure readers find in_trans_setup before
206 * they find our root->last_trans update
207 */
208 smp_wmb();
209
210 spin_lock(&root->fs_info->fs_roots_radix_lock);
211 if (root->last_trans == trans->transid) {
212 spin_unlock(&root->fs_info->fs_roots_radix_lock);
213 return 0;
214 }
215 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
216 (unsigned long)root->root_key.objectid,
217 BTRFS_ROOT_TRANS_TAG);
218 spin_unlock(&root->fs_info->fs_roots_radix_lock);
219 root->last_trans = trans->transid;
220
221 /* this is pretty tricky. We don't want to
222 * take the relocation lock in btrfs_record_root_in_trans
223 * unless we're really doing the first setup for this root in
224 * this transaction.
225 *
226 * Normally we'd use root->last_trans as a flag to decide
227 * if we want to take the expensive mutex.
228 *
229 * But, we have to set root->last_trans before we
230 * init the relocation root, otherwise, we trip over warnings
231 * in ctree.c. The solution used here is to flag ourselves
232 * with root->in_trans_setup. When this is 1, we're still
233 * fixing up the reloc trees and everyone must wait.
234 *
235 * When this is zero, they can trust root->last_trans and fly
236 * through btrfs_record_root_in_trans without having to take the
237 * lock. smp_wmb() makes sure that all the writes above are
238 * done before we pop in the zero below
239 */
240 btrfs_init_reloc_root(trans, root);
241 smp_wmb();
242 root->in_trans_setup = 0;
243 }
244 return 0;
245 }
246
247
248 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
249 struct btrfs_root *root)
250 {
251 if (!root->ref_cows)
252 return 0;
253
254 /*
255 * see record_root_in_trans for comments about in_trans_setup usage
256 * and barriers
257 */
258 smp_rmb();
259 if (root->last_trans == trans->transid &&
260 !root->in_trans_setup)
261 return 0;
262
263 mutex_lock(&root->fs_info->reloc_mutex);
264 record_root_in_trans(trans, root);
265 mutex_unlock(&root->fs_info->reloc_mutex);
266
267 return 0;
268 }
269
270 /* wait for commit against the current transaction to become unblocked
271 * when this is done, it is safe to start a new transaction, but the current
272 * transaction might not be fully on disk.
273 */
274 static void wait_current_trans(struct btrfs_root *root)
275 {
276 struct btrfs_transaction *cur_trans;
277
278 spin_lock(&root->fs_info->trans_lock);
279 cur_trans = root->fs_info->running_transaction;
280 if (cur_trans && cur_trans->blocked) {
281 atomic_inc(&cur_trans->use_count);
282 spin_unlock(&root->fs_info->trans_lock);
283
284 wait_event(root->fs_info->transaction_wait,
285 !cur_trans->blocked);
286 put_transaction(cur_trans);
287 } else {
288 spin_unlock(&root->fs_info->trans_lock);
289 }
290 }
291
292 static int may_wait_transaction(struct btrfs_root *root, int type)
293 {
294 if (root->fs_info->log_root_recovering)
295 return 0;
296
297 if (type == TRANS_USERSPACE)
298 return 1;
299
300 if (type == TRANS_START &&
301 !atomic_read(&root->fs_info->open_ioctl_trans))
302 return 1;
303
304 return 0;
305 }
306
307 static struct btrfs_trans_handle *
308 start_transaction(struct btrfs_root *root, u64 num_items, int type,
309 enum btrfs_reserve_flush_enum flush)
310 {
311 struct btrfs_trans_handle *h;
312 struct btrfs_transaction *cur_trans;
313 u64 num_bytes = 0;
314 int ret;
315 u64 qgroup_reserved = 0;
316
317 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
318 return ERR_PTR(-EROFS);
319
320 if (current->journal_info) {
321 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
322 h = current->journal_info;
323 h->use_count++;
324 WARN_ON(h->use_count > 2);
325 h->orig_rsv = h->block_rsv;
326 h->block_rsv = NULL;
327 goto got_it;
328 }
329
330 /*
331 * Do the reservation before we join the transaction so we can do all
332 * the appropriate flushing if need be.
333 */
334 if (num_items > 0 && root != root->fs_info->chunk_root) {
335 if (root->fs_info->quota_enabled &&
336 is_fstree(root->root_key.objectid)) {
337 qgroup_reserved = num_items * root->leafsize;
338 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
339 if (ret)
340 return ERR_PTR(ret);
341 }
342
343 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
344 ret = btrfs_block_rsv_add(root,
345 &root->fs_info->trans_block_rsv,
346 num_bytes, flush);
347 if (ret)
348 goto reserve_fail;
349 }
350 again:
351 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
352 if (!h) {
353 ret = -ENOMEM;
354 goto alloc_fail;
355 }
356
357 /*
358 * If we are JOIN_NOLOCK we're already committing a transaction and
359 * waiting on this guy, so we don't need to do the sb_start_intwrite
360 * because we're already holding a ref. We need this because we could
361 * have raced in and did an fsync() on a file which can kick a commit
362 * and then we deadlock with somebody doing a freeze.
363 *
364 * If we are ATTACH, it means we just want to catch the current
365 * transaction and commit it, so we needn't do sb_start_intwrite().
366 */
367 if (type < TRANS_JOIN_NOLOCK)
368 sb_start_intwrite(root->fs_info->sb);
369
370 if (may_wait_transaction(root, type))
371 wait_current_trans(root);
372
373 do {
374 ret = join_transaction(root, type);
375 if (ret == -EBUSY) {
376 wait_current_trans(root);
377 if (unlikely(type == TRANS_ATTACH))
378 ret = -ENOENT;
379 }
380 } while (ret == -EBUSY);
381
382 if (ret < 0) {
383 /* We must get the transaction if we are JOIN_NOLOCK. */
384 BUG_ON(type == TRANS_JOIN_NOLOCK);
385 goto join_fail;
386 }
387
388 cur_trans = root->fs_info->running_transaction;
389
390 h->transid = cur_trans->transid;
391 h->transaction = cur_trans;
392 h->blocks_used = 0;
393 h->bytes_reserved = 0;
394 h->root = root;
395 h->delayed_ref_updates = 0;
396 h->use_count = 1;
397 h->adding_csums = 0;
398 h->block_rsv = NULL;
399 h->orig_rsv = NULL;
400 h->aborted = 0;
401 h->qgroup_reserved = 0;
402 h->delayed_ref_elem.seq = 0;
403 h->type = type;
404 h->allocating_chunk = false;
405 INIT_LIST_HEAD(&h->qgroup_ref_list);
406 INIT_LIST_HEAD(&h->new_bgs);
407
408 smp_mb();
409 if (cur_trans->blocked && may_wait_transaction(root, type)) {
410 btrfs_commit_transaction(h, root);
411 goto again;
412 }
413
414 if (num_bytes) {
415 trace_btrfs_space_reservation(root->fs_info, "transaction",
416 h->transid, num_bytes, 1);
417 h->block_rsv = &root->fs_info->trans_block_rsv;
418 h->bytes_reserved = num_bytes;
419 }
420 h->qgroup_reserved = qgroup_reserved;
421
422 got_it:
423 btrfs_record_root_in_trans(h, root);
424
425 if (!current->journal_info && type != TRANS_USERSPACE)
426 current->journal_info = h;
427 return h;
428
429 join_fail:
430 if (type < TRANS_JOIN_NOLOCK)
431 sb_end_intwrite(root->fs_info->sb);
432 kmem_cache_free(btrfs_trans_handle_cachep, h);
433 alloc_fail:
434 if (num_bytes)
435 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
436 num_bytes);
437 reserve_fail:
438 if (qgroup_reserved)
439 btrfs_qgroup_free(root, qgroup_reserved);
440 return ERR_PTR(ret);
441 }
442
443 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
444 int num_items)
445 {
446 return start_transaction(root, num_items, TRANS_START,
447 BTRFS_RESERVE_FLUSH_ALL);
448 }
449
450 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
451 struct btrfs_root *root, int num_items)
452 {
453 return start_transaction(root, num_items, TRANS_START,
454 BTRFS_RESERVE_FLUSH_LIMIT);
455 }
456
457 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
458 {
459 return start_transaction(root, 0, TRANS_JOIN, 0);
460 }
461
462 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
463 {
464 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
465 }
466
467 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
468 {
469 return start_transaction(root, 0, TRANS_USERSPACE, 0);
470 }
471
472 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
473 {
474 return start_transaction(root, 0, TRANS_ATTACH, 0);
475 }
476
477 /* wait for a transaction commit to be fully complete */
478 static noinline void wait_for_commit(struct btrfs_root *root,
479 struct btrfs_transaction *commit)
480 {
481 wait_event(commit->commit_wait, commit->commit_done);
482 }
483
484 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
485 {
486 struct btrfs_transaction *cur_trans = NULL, *t;
487 int ret = 0;
488
489 if (transid) {
490 if (transid <= root->fs_info->last_trans_committed)
491 goto out;
492
493 ret = -EINVAL;
494 /* find specified transaction */
495 spin_lock(&root->fs_info->trans_lock);
496 list_for_each_entry(t, &root->fs_info->trans_list, list) {
497 if (t->transid == transid) {
498 cur_trans = t;
499 atomic_inc(&cur_trans->use_count);
500 ret = 0;
501 break;
502 }
503 if (t->transid > transid) {
504 ret = 0;
505 break;
506 }
507 }
508 spin_unlock(&root->fs_info->trans_lock);
509 /* The specified transaction doesn't exist */
510 if (!cur_trans)
511 goto out;
512 } else {
513 /* find newest transaction that is committing | committed */
514 spin_lock(&root->fs_info->trans_lock);
515 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
516 list) {
517 if (t->in_commit) {
518 if (t->commit_done)
519 break;
520 cur_trans = t;
521 atomic_inc(&cur_trans->use_count);
522 break;
523 }
524 }
525 spin_unlock(&root->fs_info->trans_lock);
526 if (!cur_trans)
527 goto out; /* nothing committing|committed */
528 }
529
530 wait_for_commit(root, cur_trans);
531 put_transaction(cur_trans);
532 out:
533 return ret;
534 }
535
536 void btrfs_throttle(struct btrfs_root *root)
537 {
538 if (!atomic_read(&root->fs_info->open_ioctl_trans))
539 wait_current_trans(root);
540 }
541
542 static int should_end_transaction(struct btrfs_trans_handle *trans,
543 struct btrfs_root *root)
544 {
545 int ret;
546
547 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
548 return ret ? 1 : 0;
549 }
550
551 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
552 struct btrfs_root *root)
553 {
554 struct btrfs_transaction *cur_trans = trans->transaction;
555 int updates;
556 int err;
557
558 smp_mb();
559 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
560 return 1;
561
562 updates = trans->delayed_ref_updates;
563 trans->delayed_ref_updates = 0;
564 if (updates) {
565 err = btrfs_run_delayed_refs(trans, root, updates);
566 if (err) /* Error code will also eval true */
567 return err;
568 }
569
570 return should_end_transaction(trans, root);
571 }
572
573 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
574 struct btrfs_root *root, int throttle)
575 {
576 struct btrfs_transaction *cur_trans = trans->transaction;
577 struct btrfs_fs_info *info = root->fs_info;
578 int count = 0;
579 int lock = (trans->type != TRANS_JOIN_NOLOCK);
580 int err = 0;
581
582 if (--trans->use_count) {
583 trans->block_rsv = trans->orig_rsv;
584 return 0;
585 }
586
587 /*
588 * do the qgroup accounting as early as possible
589 */
590 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
591
592 btrfs_trans_release_metadata(trans, root);
593 trans->block_rsv = NULL;
594 /*
595 * the same root has to be passed to start_transaction and
596 * end_transaction. Subvolume quota depends on this.
597 */
598 WARN_ON(trans->root != root);
599
600 if (trans->qgroup_reserved) {
601 btrfs_qgroup_free(root, trans->qgroup_reserved);
602 trans->qgroup_reserved = 0;
603 }
604
605 if (!list_empty(&trans->new_bgs))
606 btrfs_create_pending_block_groups(trans, root);
607
608 while (count < 2) {
609 unsigned long cur = trans->delayed_ref_updates;
610 trans->delayed_ref_updates = 0;
611 if (cur &&
612 trans->transaction->delayed_refs.num_heads_ready > 64) {
613 trans->delayed_ref_updates = 0;
614 btrfs_run_delayed_refs(trans, root, cur);
615 } else {
616 break;
617 }
618 count++;
619 }
620 btrfs_trans_release_metadata(trans, root);
621 trans->block_rsv = NULL;
622
623 if (!list_empty(&trans->new_bgs))
624 btrfs_create_pending_block_groups(trans, root);
625
626 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
627 should_end_transaction(trans, root)) {
628 trans->transaction->blocked = 1;
629 smp_wmb();
630 }
631
632 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
633 if (throttle) {
634 /*
635 * We may race with somebody else here so end up having
636 * to call end_transaction on ourselves again, so inc
637 * our use_count.
638 */
639 trans->use_count++;
640 return btrfs_commit_transaction(trans, root);
641 } else {
642 wake_up_process(info->transaction_kthread);
643 }
644 }
645
646 if (trans->type < TRANS_JOIN_NOLOCK)
647 sb_end_intwrite(root->fs_info->sb);
648
649 WARN_ON(cur_trans != info->running_transaction);
650 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
651 atomic_dec(&cur_trans->num_writers);
652
653 smp_mb();
654 if (waitqueue_active(&cur_trans->writer_wait))
655 wake_up(&cur_trans->writer_wait);
656 put_transaction(cur_trans);
657
658 if (current->journal_info == trans)
659 current->journal_info = NULL;
660
661 if (throttle)
662 btrfs_run_delayed_iputs(root);
663
664 if (trans->aborted ||
665 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
666 err = -EIO;
667 assert_qgroups_uptodate(trans);
668
669 kmem_cache_free(btrfs_trans_handle_cachep, trans);
670 return err;
671 }
672
673 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
674 struct btrfs_root *root)
675 {
676 int ret;
677
678 ret = __btrfs_end_transaction(trans, root, 0);
679 if (ret)
680 return ret;
681 return 0;
682 }
683
684 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
685 struct btrfs_root *root)
686 {
687 int ret;
688
689 ret = __btrfs_end_transaction(trans, root, 1);
690 if (ret)
691 return ret;
692 return 0;
693 }
694
695 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
696 struct btrfs_root *root)
697 {
698 return __btrfs_end_transaction(trans, root, 1);
699 }
700
701 /*
702 * when btree blocks are allocated, they have some corresponding bits set for
703 * them in one of two extent_io trees. This is used to make sure all of
704 * those extents are sent to disk but does not wait on them
705 */
706 int btrfs_write_marked_extents(struct btrfs_root *root,
707 struct extent_io_tree *dirty_pages, int mark)
708 {
709 int err = 0;
710 int werr = 0;
711 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
712 struct extent_state *cached_state = NULL;
713 u64 start = 0;
714 u64 end;
715
716 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
717 mark, &cached_state)) {
718 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
719 mark, &cached_state, GFP_NOFS);
720 cached_state = NULL;
721 err = filemap_fdatawrite_range(mapping, start, end);
722 if (err)
723 werr = err;
724 cond_resched();
725 start = end + 1;
726 }
727 if (err)
728 werr = err;
729 return werr;
730 }
731
732 /*
733 * when btree blocks are allocated, they have some corresponding bits set for
734 * them in one of two extent_io trees. This is used to make sure all of
735 * those extents are on disk for transaction or log commit. We wait
736 * on all the pages and clear them from the dirty pages state tree
737 */
738 int btrfs_wait_marked_extents(struct btrfs_root *root,
739 struct extent_io_tree *dirty_pages, int mark)
740 {
741 int err = 0;
742 int werr = 0;
743 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
744 struct extent_state *cached_state = NULL;
745 u64 start = 0;
746 u64 end;
747
748 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
749 EXTENT_NEED_WAIT, &cached_state)) {
750 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
751 0, 0, &cached_state, GFP_NOFS);
752 err = filemap_fdatawait_range(mapping, start, end);
753 if (err)
754 werr = err;
755 cond_resched();
756 start = end + 1;
757 }
758 if (err)
759 werr = err;
760 return werr;
761 }
762
763 /*
764 * when btree blocks are allocated, they have some corresponding bits set for
765 * them in one of two extent_io trees. This is used to make sure all of
766 * those extents are on disk for transaction or log commit
767 */
768 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
769 struct extent_io_tree *dirty_pages, int mark)
770 {
771 int ret;
772 int ret2;
773
774 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
775 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
776
777 if (ret)
778 return ret;
779 if (ret2)
780 return ret2;
781 return 0;
782 }
783
784 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
785 struct btrfs_root *root)
786 {
787 if (!trans || !trans->transaction) {
788 struct inode *btree_inode;
789 btree_inode = root->fs_info->btree_inode;
790 return filemap_write_and_wait(btree_inode->i_mapping);
791 }
792 return btrfs_write_and_wait_marked_extents(root,
793 &trans->transaction->dirty_pages,
794 EXTENT_DIRTY);
795 }
796
797 /*
798 * this is used to update the root pointer in the tree of tree roots.
799 *
800 * But, in the case of the extent allocation tree, updating the root
801 * pointer may allocate blocks which may change the root of the extent
802 * allocation tree.
803 *
804 * So, this loops and repeats and makes sure the cowonly root didn't
805 * change while the root pointer was being updated in the metadata.
806 */
807 static int update_cowonly_root(struct btrfs_trans_handle *trans,
808 struct btrfs_root *root)
809 {
810 int ret;
811 u64 old_root_bytenr;
812 u64 old_root_used;
813 struct btrfs_root *tree_root = root->fs_info->tree_root;
814
815 old_root_used = btrfs_root_used(&root->root_item);
816 btrfs_write_dirty_block_groups(trans, root);
817
818 while (1) {
819 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
820 if (old_root_bytenr == root->node->start &&
821 old_root_used == btrfs_root_used(&root->root_item))
822 break;
823
824 btrfs_set_root_node(&root->root_item, root->node);
825 ret = btrfs_update_root(trans, tree_root,
826 &root->root_key,
827 &root->root_item);
828 if (ret)
829 return ret;
830
831 old_root_used = btrfs_root_used(&root->root_item);
832 ret = btrfs_write_dirty_block_groups(trans, root);
833 if (ret)
834 return ret;
835 }
836
837 if (root != root->fs_info->extent_root)
838 switch_commit_root(root);
839
840 return 0;
841 }
842
843 /*
844 * update all the cowonly tree roots on disk
845 *
846 * The error handling in this function may not be obvious. Any of the
847 * failures will cause the file system to go offline. We still need
848 * to clean up the delayed refs.
849 */
850 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
851 struct btrfs_root *root)
852 {
853 struct btrfs_fs_info *fs_info = root->fs_info;
854 struct list_head *next;
855 struct extent_buffer *eb;
856 int ret;
857
858 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
859 if (ret)
860 return ret;
861
862 eb = btrfs_lock_root_node(fs_info->tree_root);
863 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
864 0, &eb);
865 btrfs_tree_unlock(eb);
866 free_extent_buffer(eb);
867
868 if (ret)
869 return ret;
870
871 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
872 if (ret)
873 return ret;
874
875 ret = btrfs_run_dev_stats(trans, root->fs_info);
876 WARN_ON(ret);
877 ret = btrfs_run_dev_replace(trans, root->fs_info);
878 WARN_ON(ret);
879
880 ret = btrfs_run_qgroups(trans, root->fs_info);
881 BUG_ON(ret);
882
883 /* run_qgroups might have added some more refs */
884 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
885 BUG_ON(ret);
886
887 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
888 next = fs_info->dirty_cowonly_roots.next;
889 list_del_init(next);
890 root = list_entry(next, struct btrfs_root, dirty_list);
891
892 ret = update_cowonly_root(trans, root);
893 if (ret)
894 return ret;
895 }
896
897 down_write(&fs_info->extent_commit_sem);
898 switch_commit_root(fs_info->extent_root);
899 up_write(&fs_info->extent_commit_sem);
900
901 btrfs_after_dev_replace_commit(fs_info);
902
903 return 0;
904 }
905
906 /*
907 * dead roots are old snapshots that need to be deleted. This allocates
908 * a dirty root struct and adds it into the list of dead roots that need to
909 * be deleted
910 */
911 int btrfs_add_dead_root(struct btrfs_root *root)
912 {
913 spin_lock(&root->fs_info->trans_lock);
914 list_add(&root->root_list, &root->fs_info->dead_roots);
915 spin_unlock(&root->fs_info->trans_lock);
916 return 0;
917 }
918
919 /*
920 * update all the cowonly tree roots on disk
921 */
922 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
923 struct btrfs_root *root)
924 {
925 struct btrfs_root *gang[8];
926 struct btrfs_fs_info *fs_info = root->fs_info;
927 int i;
928 int ret;
929 int err = 0;
930
931 spin_lock(&fs_info->fs_roots_radix_lock);
932 while (1) {
933 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
934 (void **)gang, 0,
935 ARRAY_SIZE(gang),
936 BTRFS_ROOT_TRANS_TAG);
937 if (ret == 0)
938 break;
939 for (i = 0; i < ret; i++) {
940 root = gang[i];
941 radix_tree_tag_clear(&fs_info->fs_roots_radix,
942 (unsigned long)root->root_key.objectid,
943 BTRFS_ROOT_TRANS_TAG);
944 spin_unlock(&fs_info->fs_roots_radix_lock);
945
946 btrfs_free_log(trans, root);
947 btrfs_update_reloc_root(trans, root);
948 btrfs_orphan_commit_root(trans, root);
949
950 btrfs_save_ino_cache(root, trans);
951
952 /* see comments in should_cow_block() */
953 root->force_cow = 0;
954 smp_wmb();
955
956 if (root->commit_root != root->node) {
957 mutex_lock(&root->fs_commit_mutex);
958 switch_commit_root(root);
959 btrfs_unpin_free_ino(root);
960 mutex_unlock(&root->fs_commit_mutex);
961
962 btrfs_set_root_node(&root->root_item,
963 root->node);
964 }
965
966 err = btrfs_update_root(trans, fs_info->tree_root,
967 &root->root_key,
968 &root->root_item);
969 spin_lock(&fs_info->fs_roots_radix_lock);
970 if (err)
971 break;
972 }
973 }
974 spin_unlock(&fs_info->fs_roots_radix_lock);
975 return err;
976 }
977
978 /*
979 * defrag a given btree.
980 * Every leaf in the btree is read and defragged.
981 */
982 int btrfs_defrag_root(struct btrfs_root *root)
983 {
984 struct btrfs_fs_info *info = root->fs_info;
985 struct btrfs_trans_handle *trans;
986 int ret;
987
988 if (xchg(&root->defrag_running, 1))
989 return 0;
990
991 while (1) {
992 trans = btrfs_start_transaction(root, 0);
993 if (IS_ERR(trans))
994 return PTR_ERR(trans);
995
996 ret = btrfs_defrag_leaves(trans, root);
997
998 btrfs_end_transaction(trans, root);
999 btrfs_btree_balance_dirty(info->tree_root);
1000 cond_resched();
1001
1002 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1003 break;
1004
1005 if (btrfs_defrag_cancelled(root->fs_info)) {
1006 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1007 ret = -EAGAIN;
1008 break;
1009 }
1010 }
1011 root->defrag_running = 0;
1012 return ret;
1013 }
1014
1015 /*
1016 * new snapshots need to be created at a very specific time in the
1017 * transaction commit. This does the actual creation
1018 */
1019 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1020 struct btrfs_fs_info *fs_info,
1021 struct btrfs_pending_snapshot *pending)
1022 {
1023 struct btrfs_key key;
1024 struct btrfs_root_item *new_root_item;
1025 struct btrfs_root *tree_root = fs_info->tree_root;
1026 struct btrfs_root *root = pending->root;
1027 struct btrfs_root *parent_root;
1028 struct btrfs_block_rsv *rsv;
1029 struct inode *parent_inode;
1030 struct btrfs_path *path;
1031 struct btrfs_dir_item *dir_item;
1032 struct dentry *parent;
1033 struct dentry *dentry;
1034 struct extent_buffer *tmp;
1035 struct extent_buffer *old;
1036 struct timespec cur_time = CURRENT_TIME;
1037 int ret;
1038 u64 to_reserve = 0;
1039 u64 index = 0;
1040 u64 objectid;
1041 u64 root_flags;
1042 uuid_le new_uuid;
1043
1044 path = btrfs_alloc_path();
1045 if (!path) {
1046 ret = pending->error = -ENOMEM;
1047 goto path_alloc_fail;
1048 }
1049
1050 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1051 if (!new_root_item) {
1052 ret = pending->error = -ENOMEM;
1053 goto root_item_alloc_fail;
1054 }
1055
1056 ret = btrfs_find_free_objectid(tree_root, &objectid);
1057 if (ret) {
1058 pending->error = ret;
1059 goto no_free_objectid;
1060 }
1061
1062 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1063
1064 if (to_reserve > 0) {
1065 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1066 to_reserve,
1067 BTRFS_RESERVE_NO_FLUSH);
1068 if (ret) {
1069 pending->error = ret;
1070 goto no_free_objectid;
1071 }
1072 }
1073
1074 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1075 objectid, pending->inherit);
1076 if (ret) {
1077 pending->error = ret;
1078 goto no_free_objectid;
1079 }
1080
1081 key.objectid = objectid;
1082 key.offset = (u64)-1;
1083 key.type = BTRFS_ROOT_ITEM_KEY;
1084
1085 rsv = trans->block_rsv;
1086 trans->block_rsv = &pending->block_rsv;
1087
1088 dentry = pending->dentry;
1089 parent = dget_parent(dentry);
1090 parent_inode = parent->d_inode;
1091 parent_root = BTRFS_I(parent_inode)->root;
1092 record_root_in_trans(trans, parent_root);
1093
1094 /*
1095 * insert the directory item
1096 */
1097 ret = btrfs_set_inode_index(parent_inode, &index);
1098 BUG_ON(ret); /* -ENOMEM */
1099
1100 /* check if there is a file/dir which has the same name. */
1101 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1102 btrfs_ino(parent_inode),
1103 dentry->d_name.name,
1104 dentry->d_name.len, 0);
1105 if (dir_item != NULL && !IS_ERR(dir_item)) {
1106 pending->error = -EEXIST;
1107 goto fail;
1108 } else if (IS_ERR(dir_item)) {
1109 ret = PTR_ERR(dir_item);
1110 btrfs_abort_transaction(trans, root, ret);
1111 goto fail;
1112 }
1113 btrfs_release_path(path);
1114
1115 /*
1116 * pull in the delayed directory update
1117 * and the delayed inode item
1118 * otherwise we corrupt the FS during
1119 * snapshot
1120 */
1121 ret = btrfs_run_delayed_items(trans, root);
1122 if (ret) { /* Transaction aborted */
1123 btrfs_abort_transaction(trans, root, ret);
1124 goto fail;
1125 }
1126
1127 record_root_in_trans(trans, root);
1128 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1129 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1130 btrfs_check_and_init_root_item(new_root_item);
1131
1132 root_flags = btrfs_root_flags(new_root_item);
1133 if (pending->readonly)
1134 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1135 else
1136 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1137 btrfs_set_root_flags(new_root_item, root_flags);
1138
1139 btrfs_set_root_generation_v2(new_root_item,
1140 trans->transid);
1141 uuid_le_gen(&new_uuid);
1142 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1143 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1144 BTRFS_UUID_SIZE);
1145 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1146 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1147 btrfs_set_root_otransid(new_root_item, trans->transid);
1148 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1149 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1150 btrfs_set_root_stransid(new_root_item, 0);
1151 btrfs_set_root_rtransid(new_root_item, 0);
1152
1153 old = btrfs_lock_root_node(root);
1154 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1155 if (ret) {
1156 btrfs_tree_unlock(old);
1157 free_extent_buffer(old);
1158 btrfs_abort_transaction(trans, root, ret);
1159 goto fail;
1160 }
1161
1162 btrfs_set_lock_blocking(old);
1163
1164 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1165 /* clean up in any case */
1166 btrfs_tree_unlock(old);
1167 free_extent_buffer(old);
1168 if (ret) {
1169 btrfs_abort_transaction(trans, root, ret);
1170 goto fail;
1171 }
1172
1173 /* see comments in should_cow_block() */
1174 root->force_cow = 1;
1175 smp_wmb();
1176
1177 btrfs_set_root_node(new_root_item, tmp);
1178 /* record when the snapshot was created in key.offset */
1179 key.offset = trans->transid;
1180 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1181 btrfs_tree_unlock(tmp);
1182 free_extent_buffer(tmp);
1183 if (ret) {
1184 btrfs_abort_transaction(trans, root, ret);
1185 goto fail;
1186 }
1187
1188 /*
1189 * insert root back/forward references
1190 */
1191 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1192 parent_root->root_key.objectid,
1193 btrfs_ino(parent_inode), index,
1194 dentry->d_name.name, dentry->d_name.len);
1195 if (ret) {
1196 btrfs_abort_transaction(trans, root, ret);
1197 goto fail;
1198 }
1199
1200 key.offset = (u64)-1;
1201 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1202 if (IS_ERR(pending->snap)) {
1203 ret = PTR_ERR(pending->snap);
1204 btrfs_abort_transaction(trans, root, ret);
1205 goto fail;
1206 }
1207
1208 ret = btrfs_reloc_post_snapshot(trans, pending);
1209 if (ret) {
1210 btrfs_abort_transaction(trans, root, ret);
1211 goto fail;
1212 }
1213
1214 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1215 if (ret) {
1216 btrfs_abort_transaction(trans, root, ret);
1217 goto fail;
1218 }
1219
1220 ret = btrfs_insert_dir_item(trans, parent_root,
1221 dentry->d_name.name, dentry->d_name.len,
1222 parent_inode, &key,
1223 BTRFS_FT_DIR, index);
1224 /* We have check then name at the beginning, so it is impossible. */
1225 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1226 if (ret) {
1227 btrfs_abort_transaction(trans, root, ret);
1228 goto fail;
1229 }
1230
1231 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1232 dentry->d_name.len * 2);
1233 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1234 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1235 if (ret)
1236 btrfs_abort_transaction(trans, root, ret);
1237 fail:
1238 dput(parent);
1239 trans->block_rsv = rsv;
1240 no_free_objectid:
1241 kfree(new_root_item);
1242 root_item_alloc_fail:
1243 btrfs_free_path(path);
1244 path_alloc_fail:
1245 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1246 return ret;
1247 }
1248
1249 /*
1250 * create all the snapshots we've scheduled for creation
1251 */
1252 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1253 struct btrfs_fs_info *fs_info)
1254 {
1255 struct btrfs_pending_snapshot *pending;
1256 struct list_head *head = &trans->transaction->pending_snapshots;
1257
1258 list_for_each_entry(pending, head, list)
1259 create_pending_snapshot(trans, fs_info, pending);
1260 return 0;
1261 }
1262
1263 static void update_super_roots(struct btrfs_root *root)
1264 {
1265 struct btrfs_root_item *root_item;
1266 struct btrfs_super_block *super;
1267
1268 super = root->fs_info->super_copy;
1269
1270 root_item = &root->fs_info->chunk_root->root_item;
1271 super->chunk_root = root_item->bytenr;
1272 super->chunk_root_generation = root_item->generation;
1273 super->chunk_root_level = root_item->level;
1274
1275 root_item = &root->fs_info->tree_root->root_item;
1276 super->root = root_item->bytenr;
1277 super->generation = root_item->generation;
1278 super->root_level = root_item->level;
1279 if (btrfs_test_opt(root, SPACE_CACHE))
1280 super->cache_generation = root_item->generation;
1281 }
1282
1283 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1284 {
1285 int ret = 0;
1286 spin_lock(&info->trans_lock);
1287 if (info->running_transaction)
1288 ret = info->running_transaction->in_commit;
1289 spin_unlock(&info->trans_lock);
1290 return ret;
1291 }
1292
1293 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1294 {
1295 int ret = 0;
1296 spin_lock(&info->trans_lock);
1297 if (info->running_transaction)
1298 ret = info->running_transaction->blocked;
1299 spin_unlock(&info->trans_lock);
1300 return ret;
1301 }
1302
1303 /*
1304 * wait for the current transaction commit to start and block subsequent
1305 * transaction joins
1306 */
1307 static void wait_current_trans_commit_start(struct btrfs_root *root,
1308 struct btrfs_transaction *trans)
1309 {
1310 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1311 }
1312
1313 /*
1314 * wait for the current transaction to start and then become unblocked.
1315 * caller holds ref.
1316 */
1317 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1318 struct btrfs_transaction *trans)
1319 {
1320 wait_event(root->fs_info->transaction_wait,
1321 trans->commit_done || (trans->in_commit && !trans->blocked));
1322 }
1323
1324 /*
1325 * commit transactions asynchronously. once btrfs_commit_transaction_async
1326 * returns, any subsequent transaction will not be allowed to join.
1327 */
1328 struct btrfs_async_commit {
1329 struct btrfs_trans_handle *newtrans;
1330 struct btrfs_root *root;
1331 struct work_struct work;
1332 };
1333
1334 static void do_async_commit(struct work_struct *work)
1335 {
1336 struct btrfs_async_commit *ac =
1337 container_of(work, struct btrfs_async_commit, work);
1338
1339 /*
1340 * We've got freeze protection passed with the transaction.
1341 * Tell lockdep about it.
1342 */
1343 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1344 rwsem_acquire_read(
1345 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1346 0, 1, _THIS_IP_);
1347
1348 current->journal_info = ac->newtrans;
1349
1350 btrfs_commit_transaction(ac->newtrans, ac->root);
1351 kfree(ac);
1352 }
1353
1354 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1355 struct btrfs_root *root,
1356 int wait_for_unblock)
1357 {
1358 struct btrfs_async_commit *ac;
1359 struct btrfs_transaction *cur_trans;
1360
1361 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1362 if (!ac)
1363 return -ENOMEM;
1364
1365 INIT_WORK(&ac->work, do_async_commit);
1366 ac->root = root;
1367 ac->newtrans = btrfs_join_transaction(root);
1368 if (IS_ERR(ac->newtrans)) {
1369 int err = PTR_ERR(ac->newtrans);
1370 kfree(ac);
1371 return err;
1372 }
1373
1374 /* take transaction reference */
1375 cur_trans = trans->transaction;
1376 atomic_inc(&cur_trans->use_count);
1377
1378 btrfs_end_transaction(trans, root);
1379
1380 /*
1381 * Tell lockdep we've released the freeze rwsem, since the
1382 * async commit thread will be the one to unlock it.
1383 */
1384 if (trans->type < TRANS_JOIN_NOLOCK)
1385 rwsem_release(
1386 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1387 1, _THIS_IP_);
1388
1389 schedule_work(&ac->work);
1390
1391 /* wait for transaction to start and unblock */
1392 if (wait_for_unblock)
1393 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1394 else
1395 wait_current_trans_commit_start(root, cur_trans);
1396
1397 if (current->journal_info == trans)
1398 current->journal_info = NULL;
1399
1400 put_transaction(cur_trans);
1401 return 0;
1402 }
1403
1404
1405 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1406 struct btrfs_root *root, int err)
1407 {
1408 struct btrfs_transaction *cur_trans = trans->transaction;
1409
1410 WARN_ON(trans->use_count > 1);
1411
1412 btrfs_abort_transaction(trans, root, err);
1413
1414 spin_lock(&root->fs_info->trans_lock);
1415 list_del_init(&cur_trans->list);
1416 if (cur_trans == root->fs_info->running_transaction) {
1417 root->fs_info->running_transaction = NULL;
1418 root->fs_info->trans_no_join = 0;
1419 }
1420 spin_unlock(&root->fs_info->trans_lock);
1421
1422 btrfs_cleanup_one_transaction(trans->transaction, root);
1423
1424 put_transaction(cur_trans);
1425 put_transaction(cur_trans);
1426
1427 trace_btrfs_transaction_commit(root);
1428
1429 btrfs_scrub_continue(root);
1430
1431 if (current->journal_info == trans)
1432 current->journal_info = NULL;
1433
1434 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1435 }
1436
1437 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1438 struct btrfs_root *root)
1439 {
1440 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1441 int snap_pending = 0;
1442 int ret;
1443
1444 if (!flush_on_commit) {
1445 spin_lock(&root->fs_info->trans_lock);
1446 if (!list_empty(&trans->transaction->pending_snapshots))
1447 snap_pending = 1;
1448 spin_unlock(&root->fs_info->trans_lock);
1449 }
1450
1451 if (flush_on_commit || snap_pending) {
1452 ret = btrfs_start_delalloc_inodes(root, 1);
1453 if (ret)
1454 return ret;
1455 btrfs_wait_ordered_extents(root, 1);
1456 }
1457
1458 ret = btrfs_run_delayed_items(trans, root);
1459 if (ret)
1460 return ret;
1461
1462 /*
1463 * running the delayed items may have added new refs. account
1464 * them now so that they hinder processing of more delayed refs
1465 * as little as possible.
1466 */
1467 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1468
1469 /*
1470 * rename don't use btrfs_join_transaction, so, once we
1471 * set the transaction to blocked above, we aren't going
1472 * to get any new ordered operations. We can safely run
1473 * it here and no for sure that nothing new will be added
1474 * to the list
1475 */
1476 ret = btrfs_run_ordered_operations(trans, root, 1);
1477
1478 return ret;
1479 }
1480
1481 /*
1482 * btrfs_transaction state sequence:
1483 * in_commit = 0, blocked = 0 (initial)
1484 * in_commit = 1, blocked = 1
1485 * blocked = 0
1486 * commit_done = 1
1487 */
1488 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1489 struct btrfs_root *root)
1490 {
1491 unsigned long joined = 0;
1492 struct btrfs_transaction *cur_trans = trans->transaction;
1493 struct btrfs_transaction *prev_trans = NULL;
1494 DEFINE_WAIT(wait);
1495 int ret;
1496 int should_grow = 0;
1497 unsigned long now = get_seconds();
1498
1499 ret = btrfs_run_ordered_operations(trans, root, 0);
1500 if (ret) {
1501 btrfs_abort_transaction(trans, root, ret);
1502 btrfs_end_transaction(trans, root);
1503 return ret;
1504 }
1505
1506 /* Stop the commit early if ->aborted is set */
1507 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1508 ret = cur_trans->aborted;
1509 btrfs_end_transaction(trans, root);
1510 return ret;
1511 }
1512
1513 /* make a pass through all the delayed refs we have so far
1514 * any runnings procs may add more while we are here
1515 */
1516 ret = btrfs_run_delayed_refs(trans, root, 0);
1517 if (ret) {
1518 btrfs_end_transaction(trans, root);
1519 return ret;
1520 }
1521
1522 btrfs_trans_release_metadata(trans, root);
1523 trans->block_rsv = NULL;
1524
1525 cur_trans = trans->transaction;
1526
1527 /*
1528 * set the flushing flag so procs in this transaction have to
1529 * start sending their work down.
1530 */
1531 cur_trans->delayed_refs.flushing = 1;
1532
1533 if (!list_empty(&trans->new_bgs))
1534 btrfs_create_pending_block_groups(trans, root);
1535
1536 ret = btrfs_run_delayed_refs(trans, root, 0);
1537 if (ret) {
1538 btrfs_end_transaction(trans, root);
1539 return ret;
1540 }
1541
1542 spin_lock(&cur_trans->commit_lock);
1543 if (cur_trans->in_commit) {
1544 spin_unlock(&cur_trans->commit_lock);
1545 atomic_inc(&cur_trans->use_count);
1546 ret = btrfs_end_transaction(trans, root);
1547
1548 wait_for_commit(root, cur_trans);
1549
1550 put_transaction(cur_trans);
1551
1552 return ret;
1553 }
1554
1555 trans->transaction->in_commit = 1;
1556 trans->transaction->blocked = 1;
1557 spin_unlock(&cur_trans->commit_lock);
1558 wake_up(&root->fs_info->transaction_blocked_wait);
1559
1560 spin_lock(&root->fs_info->trans_lock);
1561 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1562 prev_trans = list_entry(cur_trans->list.prev,
1563 struct btrfs_transaction, list);
1564 if (!prev_trans->commit_done) {
1565 atomic_inc(&prev_trans->use_count);
1566 spin_unlock(&root->fs_info->trans_lock);
1567
1568 wait_for_commit(root, prev_trans);
1569
1570 put_transaction(prev_trans);
1571 } else {
1572 spin_unlock(&root->fs_info->trans_lock);
1573 }
1574 } else {
1575 spin_unlock(&root->fs_info->trans_lock);
1576 }
1577
1578 if (!btrfs_test_opt(root, SSD) &&
1579 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1580 should_grow = 1;
1581
1582 do {
1583 joined = cur_trans->num_joined;
1584
1585 WARN_ON(cur_trans != trans->transaction);
1586
1587 ret = btrfs_flush_all_pending_stuffs(trans, root);
1588 if (ret)
1589 goto cleanup_transaction;
1590
1591 prepare_to_wait(&cur_trans->writer_wait, &wait,
1592 TASK_UNINTERRUPTIBLE);
1593
1594 if (atomic_read(&cur_trans->num_writers) > 1)
1595 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1596 else if (should_grow)
1597 schedule_timeout(1);
1598
1599 finish_wait(&cur_trans->writer_wait, &wait);
1600 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1601 (should_grow && cur_trans->num_joined != joined));
1602
1603 ret = btrfs_flush_all_pending_stuffs(trans, root);
1604 if (ret)
1605 goto cleanup_transaction;
1606
1607 /*
1608 * Ok now we need to make sure to block out any other joins while we
1609 * commit the transaction. We could have started a join before setting
1610 * no_join so make sure to wait for num_writers to == 1 again.
1611 */
1612 spin_lock(&root->fs_info->trans_lock);
1613 root->fs_info->trans_no_join = 1;
1614 spin_unlock(&root->fs_info->trans_lock);
1615 wait_event(cur_trans->writer_wait,
1616 atomic_read(&cur_trans->num_writers) == 1);
1617
1618 /* ->aborted might be set after the previous check, so check it */
1619 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1620 ret = cur_trans->aborted;
1621 goto cleanup_transaction;
1622 }
1623 /*
1624 * the reloc mutex makes sure that we stop
1625 * the balancing code from coming in and moving
1626 * extents around in the middle of the commit
1627 */
1628 mutex_lock(&root->fs_info->reloc_mutex);
1629
1630 /*
1631 * We needn't worry about the delayed items because we will
1632 * deal with them in create_pending_snapshot(), which is the
1633 * core function of the snapshot creation.
1634 */
1635 ret = create_pending_snapshots(trans, root->fs_info);
1636 if (ret) {
1637 mutex_unlock(&root->fs_info->reloc_mutex);
1638 goto cleanup_transaction;
1639 }
1640
1641 /*
1642 * We insert the dir indexes of the snapshots and update the inode
1643 * of the snapshots' parents after the snapshot creation, so there
1644 * are some delayed items which are not dealt with. Now deal with
1645 * them.
1646 *
1647 * We needn't worry that this operation will corrupt the snapshots,
1648 * because all the tree which are snapshoted will be forced to COW
1649 * the nodes and leaves.
1650 */
1651 ret = btrfs_run_delayed_items(trans, root);
1652 if (ret) {
1653 mutex_unlock(&root->fs_info->reloc_mutex);
1654 goto cleanup_transaction;
1655 }
1656
1657 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1658 if (ret) {
1659 mutex_unlock(&root->fs_info->reloc_mutex);
1660 goto cleanup_transaction;
1661 }
1662
1663 /*
1664 * make sure none of the code above managed to slip in a
1665 * delayed item
1666 */
1667 btrfs_assert_delayed_root_empty(root);
1668
1669 WARN_ON(cur_trans != trans->transaction);
1670
1671 btrfs_scrub_pause(root);
1672 /* btrfs_commit_tree_roots is responsible for getting the
1673 * various roots consistent with each other. Every pointer
1674 * in the tree of tree roots has to point to the most up to date
1675 * root for every subvolume and other tree. So, we have to keep
1676 * the tree logging code from jumping in and changing any
1677 * of the trees.
1678 *
1679 * At this point in the commit, there can't be any tree-log
1680 * writers, but a little lower down we drop the trans mutex
1681 * and let new people in. By holding the tree_log_mutex
1682 * from now until after the super is written, we avoid races
1683 * with the tree-log code.
1684 */
1685 mutex_lock(&root->fs_info->tree_log_mutex);
1686
1687 ret = commit_fs_roots(trans, root);
1688 if (ret) {
1689 mutex_unlock(&root->fs_info->tree_log_mutex);
1690 mutex_unlock(&root->fs_info->reloc_mutex);
1691 goto cleanup_transaction;
1692 }
1693
1694 /* commit_fs_roots gets rid of all the tree log roots, it is now
1695 * safe to free the root of tree log roots
1696 */
1697 btrfs_free_log_root_tree(trans, root->fs_info);
1698
1699 ret = commit_cowonly_roots(trans, root);
1700 if (ret) {
1701 mutex_unlock(&root->fs_info->tree_log_mutex);
1702 mutex_unlock(&root->fs_info->reloc_mutex);
1703 goto cleanup_transaction;
1704 }
1705
1706 /*
1707 * The tasks which save the space cache and inode cache may also
1708 * update ->aborted, check it.
1709 */
1710 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1711 ret = cur_trans->aborted;
1712 mutex_unlock(&root->fs_info->tree_log_mutex);
1713 mutex_unlock(&root->fs_info->reloc_mutex);
1714 goto cleanup_transaction;
1715 }
1716
1717 btrfs_prepare_extent_commit(trans, root);
1718
1719 cur_trans = root->fs_info->running_transaction;
1720
1721 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1722 root->fs_info->tree_root->node);
1723 switch_commit_root(root->fs_info->tree_root);
1724
1725 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1726 root->fs_info->chunk_root->node);
1727 switch_commit_root(root->fs_info->chunk_root);
1728
1729 assert_qgroups_uptodate(trans);
1730 update_super_roots(root);
1731
1732 if (!root->fs_info->log_root_recovering) {
1733 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1734 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1735 }
1736
1737 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1738 sizeof(*root->fs_info->super_copy));
1739
1740 trans->transaction->blocked = 0;
1741 spin_lock(&root->fs_info->trans_lock);
1742 root->fs_info->running_transaction = NULL;
1743 root->fs_info->trans_no_join = 0;
1744 spin_unlock(&root->fs_info->trans_lock);
1745 mutex_unlock(&root->fs_info->reloc_mutex);
1746
1747 wake_up(&root->fs_info->transaction_wait);
1748
1749 ret = btrfs_write_and_wait_transaction(trans, root);
1750 if (ret) {
1751 btrfs_error(root->fs_info, ret,
1752 "Error while writing out transaction.");
1753 mutex_unlock(&root->fs_info->tree_log_mutex);
1754 goto cleanup_transaction;
1755 }
1756
1757 ret = write_ctree_super(trans, root, 0);
1758 if (ret) {
1759 mutex_unlock(&root->fs_info->tree_log_mutex);
1760 goto cleanup_transaction;
1761 }
1762
1763 /*
1764 * the super is written, we can safely allow the tree-loggers
1765 * to go about their business
1766 */
1767 mutex_unlock(&root->fs_info->tree_log_mutex);
1768
1769 btrfs_finish_extent_commit(trans, root);
1770
1771 cur_trans->commit_done = 1;
1772
1773 root->fs_info->last_trans_committed = cur_trans->transid;
1774
1775 wake_up(&cur_trans->commit_wait);
1776
1777 spin_lock(&root->fs_info->trans_lock);
1778 list_del_init(&cur_trans->list);
1779 spin_unlock(&root->fs_info->trans_lock);
1780
1781 put_transaction(cur_trans);
1782 put_transaction(cur_trans);
1783
1784 if (trans->type < TRANS_JOIN_NOLOCK)
1785 sb_end_intwrite(root->fs_info->sb);
1786
1787 trace_btrfs_transaction_commit(root);
1788
1789 btrfs_scrub_continue(root);
1790
1791 if (current->journal_info == trans)
1792 current->journal_info = NULL;
1793
1794 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1795
1796 if (current != root->fs_info->transaction_kthread)
1797 btrfs_run_delayed_iputs(root);
1798
1799 return ret;
1800
1801 cleanup_transaction:
1802 btrfs_trans_release_metadata(trans, root);
1803 trans->block_rsv = NULL;
1804 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1805 // WARN_ON(1);
1806 if (current->journal_info == trans)
1807 current->journal_info = NULL;
1808 cleanup_transaction(trans, root, ret);
1809
1810 return ret;
1811 }
1812
1813 /*
1814 * interface function to delete all the snapshots we have scheduled for deletion
1815 */
1816 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1817 {
1818 LIST_HEAD(list);
1819 struct btrfs_fs_info *fs_info = root->fs_info;
1820
1821 spin_lock(&fs_info->trans_lock);
1822 list_splice_init(&fs_info->dead_roots, &list);
1823 spin_unlock(&fs_info->trans_lock);
1824
1825 while (!list_empty(&list)) {
1826 int ret;
1827
1828 root = list_entry(list.next, struct btrfs_root, root_list);
1829 list_del(&root->root_list);
1830
1831 btrfs_kill_all_delayed_nodes(root);
1832
1833 if (btrfs_header_backref_rev(root->node) <
1834 BTRFS_MIXED_BACKREF_REV)
1835 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1836 else
1837 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1838 BUG_ON(ret < 0);
1839 }
1840 return 0;
1841 }
This page took 0.069502 seconds and 6 git commands to generate.