Btrfs: use reserved space for creating a snapshot
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
51 }
52
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54 int type)
55 {
56 return !(trans->in_commit &&
57 type != TRANS_JOIN &&
58 type != TRANS_JOIN_NOLOCK);
59 }
60
61 /*
62 * either allocate a new transaction or hop into the existing one
63 */
64 static noinline int join_transaction(struct btrfs_root *root, int type)
65 {
66 struct btrfs_transaction *cur_trans;
67 struct btrfs_fs_info *fs_info = root->fs_info;
68
69 spin_lock(&fs_info->trans_lock);
70 loop:
71 /* The file system has been taken offline. No new transactions. */
72 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73 spin_unlock(&fs_info->trans_lock);
74 return -EROFS;
75 }
76
77 if (fs_info->trans_no_join) {
78 /*
79 * If we are JOIN_NOLOCK we're already committing a current
80 * transaction, we just need a handle to deal with something
81 * when committing the transaction, such as inode cache and
82 * space cache. It is a special case.
83 */
84 if (type != TRANS_JOIN_NOLOCK) {
85 spin_unlock(&fs_info->trans_lock);
86 return -EBUSY;
87 }
88 }
89
90 cur_trans = fs_info->running_transaction;
91 if (cur_trans) {
92 if (cur_trans->aborted) {
93 spin_unlock(&fs_info->trans_lock);
94 return cur_trans->aborted;
95 }
96 if (!can_join_transaction(cur_trans, type)) {
97 spin_unlock(&fs_info->trans_lock);
98 return -EBUSY;
99 }
100 atomic_inc(&cur_trans->use_count);
101 atomic_inc(&cur_trans->num_writers);
102 cur_trans->num_joined++;
103 spin_unlock(&fs_info->trans_lock);
104 return 0;
105 }
106 spin_unlock(&fs_info->trans_lock);
107
108 /*
109 * If we are ATTACH, we just want to catch the current transaction,
110 * and commit it. If there is no transaction, just return ENOENT.
111 */
112 if (type == TRANS_ATTACH)
113 return -ENOENT;
114
115 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116 if (!cur_trans)
117 return -ENOMEM;
118
119 spin_lock(&fs_info->trans_lock);
120 if (fs_info->running_transaction) {
121 /*
122 * someone started a transaction after we unlocked. Make sure
123 * to redo the trans_no_join checks above
124 */
125 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126 cur_trans = fs_info->running_transaction;
127 goto loop;
128 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
129 spin_unlock(&fs_info->trans_lock);
130 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
131 return -EROFS;
132 }
133
134 atomic_set(&cur_trans->num_writers, 1);
135 cur_trans->num_joined = 0;
136 init_waitqueue_head(&cur_trans->writer_wait);
137 init_waitqueue_head(&cur_trans->commit_wait);
138 cur_trans->in_commit = 0;
139 cur_trans->blocked = 0;
140 /*
141 * One for this trans handle, one so it will live on until we
142 * commit the transaction.
143 */
144 atomic_set(&cur_trans->use_count, 2);
145 cur_trans->commit_done = 0;
146 cur_trans->start_time = get_seconds();
147
148 cur_trans->delayed_refs.root = RB_ROOT;
149 cur_trans->delayed_refs.num_entries = 0;
150 cur_trans->delayed_refs.num_heads_ready = 0;
151 cur_trans->delayed_refs.num_heads = 0;
152 cur_trans->delayed_refs.flushing = 0;
153 cur_trans->delayed_refs.run_delayed_start = 0;
154
155 /*
156 * although the tree mod log is per file system and not per transaction,
157 * the log must never go across transaction boundaries.
158 */
159 smp_mb();
160 if (!list_empty(&fs_info->tree_mod_seq_list))
161 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
162 "creating a fresh transaction\n");
163 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
164 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
165 "creating a fresh transaction\n");
166 atomic_set(&fs_info->tree_mod_seq, 0);
167
168 spin_lock_init(&cur_trans->commit_lock);
169 spin_lock_init(&cur_trans->delayed_refs.lock);
170 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
171 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
172 init_waitqueue_head(&cur_trans->delayed_refs.wait);
173
174 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
175 INIT_LIST_HEAD(&cur_trans->ordered_operations);
176 list_add_tail(&cur_trans->list, &fs_info->trans_list);
177 extent_io_tree_init(&cur_trans->dirty_pages,
178 fs_info->btree_inode->i_mapping);
179 fs_info->generation++;
180 cur_trans->transid = fs_info->generation;
181 fs_info->running_transaction = cur_trans;
182 cur_trans->aborted = 0;
183 spin_unlock(&fs_info->trans_lock);
184
185 return 0;
186 }
187
188 /*
189 * this does all the record keeping required to make sure that a reference
190 * counted root is properly recorded in a given transaction. This is required
191 * to make sure the old root from before we joined the transaction is deleted
192 * when the transaction commits
193 */
194 static int record_root_in_trans(struct btrfs_trans_handle *trans,
195 struct btrfs_root *root)
196 {
197 if (root->ref_cows && root->last_trans < trans->transid) {
198 WARN_ON(root == root->fs_info->extent_root);
199 WARN_ON(root->commit_root != root->node);
200
201 /*
202 * see below for in_trans_setup usage rules
203 * we have the reloc mutex held now, so there
204 * is only one writer in this function
205 */
206 root->in_trans_setup = 1;
207
208 /* make sure readers find in_trans_setup before
209 * they find our root->last_trans update
210 */
211 smp_wmb();
212
213 spin_lock(&root->fs_info->fs_roots_radix_lock);
214 if (root->last_trans == trans->transid) {
215 spin_unlock(&root->fs_info->fs_roots_radix_lock);
216 return 0;
217 }
218 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
219 (unsigned long)root->root_key.objectid,
220 BTRFS_ROOT_TRANS_TAG);
221 spin_unlock(&root->fs_info->fs_roots_radix_lock);
222 root->last_trans = trans->transid;
223
224 /* this is pretty tricky. We don't want to
225 * take the relocation lock in btrfs_record_root_in_trans
226 * unless we're really doing the first setup for this root in
227 * this transaction.
228 *
229 * Normally we'd use root->last_trans as a flag to decide
230 * if we want to take the expensive mutex.
231 *
232 * But, we have to set root->last_trans before we
233 * init the relocation root, otherwise, we trip over warnings
234 * in ctree.c. The solution used here is to flag ourselves
235 * with root->in_trans_setup. When this is 1, we're still
236 * fixing up the reloc trees and everyone must wait.
237 *
238 * When this is zero, they can trust root->last_trans and fly
239 * through btrfs_record_root_in_trans without having to take the
240 * lock. smp_wmb() makes sure that all the writes above are
241 * done before we pop in the zero below
242 */
243 btrfs_init_reloc_root(trans, root);
244 smp_wmb();
245 root->in_trans_setup = 0;
246 }
247 return 0;
248 }
249
250
251 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
252 struct btrfs_root *root)
253 {
254 if (!root->ref_cows)
255 return 0;
256
257 /*
258 * see record_root_in_trans for comments about in_trans_setup usage
259 * and barriers
260 */
261 smp_rmb();
262 if (root->last_trans == trans->transid &&
263 !root->in_trans_setup)
264 return 0;
265
266 mutex_lock(&root->fs_info->reloc_mutex);
267 record_root_in_trans(trans, root);
268 mutex_unlock(&root->fs_info->reloc_mutex);
269
270 return 0;
271 }
272
273 /* wait for commit against the current transaction to become unblocked
274 * when this is done, it is safe to start a new transaction, but the current
275 * transaction might not be fully on disk.
276 */
277 static void wait_current_trans(struct btrfs_root *root)
278 {
279 struct btrfs_transaction *cur_trans;
280
281 spin_lock(&root->fs_info->trans_lock);
282 cur_trans = root->fs_info->running_transaction;
283 if (cur_trans && cur_trans->blocked) {
284 atomic_inc(&cur_trans->use_count);
285 spin_unlock(&root->fs_info->trans_lock);
286
287 wait_event(root->fs_info->transaction_wait,
288 !cur_trans->blocked);
289 put_transaction(cur_trans);
290 } else {
291 spin_unlock(&root->fs_info->trans_lock);
292 }
293 }
294
295 static int may_wait_transaction(struct btrfs_root *root, int type)
296 {
297 if (root->fs_info->log_root_recovering)
298 return 0;
299
300 if (type == TRANS_USERSPACE)
301 return 1;
302
303 if (type == TRANS_START &&
304 !atomic_read(&root->fs_info->open_ioctl_trans))
305 return 1;
306
307 return 0;
308 }
309
310 static struct btrfs_trans_handle *
311 start_transaction(struct btrfs_root *root, u64 num_items, int type,
312 enum btrfs_reserve_flush_enum flush)
313 {
314 struct btrfs_trans_handle *h;
315 struct btrfs_transaction *cur_trans;
316 u64 num_bytes = 0;
317 int ret;
318 u64 qgroup_reserved = 0;
319
320 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
321 return ERR_PTR(-EROFS);
322
323 if (current->journal_info) {
324 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
325 h = current->journal_info;
326 h->use_count++;
327 WARN_ON(h->use_count > 2);
328 h->orig_rsv = h->block_rsv;
329 h->block_rsv = NULL;
330 goto got_it;
331 }
332
333 /*
334 * Do the reservation before we join the transaction so we can do all
335 * the appropriate flushing if need be.
336 */
337 if (num_items > 0 && root != root->fs_info->chunk_root) {
338 if (root->fs_info->quota_enabled &&
339 is_fstree(root->root_key.objectid)) {
340 qgroup_reserved = num_items * root->leafsize;
341 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
342 if (ret)
343 return ERR_PTR(ret);
344 }
345
346 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
347 ret = btrfs_block_rsv_add(root,
348 &root->fs_info->trans_block_rsv,
349 num_bytes, flush);
350 if (ret)
351 goto reserve_fail;
352 }
353 again:
354 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
355 if (!h) {
356 ret = -ENOMEM;
357 goto alloc_fail;
358 }
359
360 /*
361 * If we are JOIN_NOLOCK we're already committing a transaction and
362 * waiting on this guy, so we don't need to do the sb_start_intwrite
363 * because we're already holding a ref. We need this because we could
364 * have raced in and did an fsync() on a file which can kick a commit
365 * and then we deadlock with somebody doing a freeze.
366 *
367 * If we are ATTACH, it means we just want to catch the current
368 * transaction and commit it, so we needn't do sb_start_intwrite().
369 */
370 if (type < TRANS_JOIN_NOLOCK)
371 sb_start_intwrite(root->fs_info->sb);
372
373 if (may_wait_transaction(root, type))
374 wait_current_trans(root);
375
376 do {
377 ret = join_transaction(root, type);
378 if (ret == -EBUSY) {
379 wait_current_trans(root);
380 if (unlikely(type == TRANS_ATTACH))
381 ret = -ENOENT;
382 }
383 } while (ret == -EBUSY);
384
385 if (ret < 0) {
386 /* We must get the transaction if we are JOIN_NOLOCK. */
387 BUG_ON(type == TRANS_JOIN_NOLOCK);
388 goto join_fail;
389 }
390
391 cur_trans = root->fs_info->running_transaction;
392
393 h->transid = cur_trans->transid;
394 h->transaction = cur_trans;
395 h->blocks_used = 0;
396 h->bytes_reserved = 0;
397 h->root = root;
398 h->delayed_ref_updates = 0;
399 h->use_count = 1;
400 h->adding_csums = 0;
401 h->block_rsv = NULL;
402 h->orig_rsv = NULL;
403 h->aborted = 0;
404 h->qgroup_reserved = 0;
405 h->delayed_ref_elem.seq = 0;
406 h->type = type;
407 h->allocating_chunk = false;
408 INIT_LIST_HEAD(&h->qgroup_ref_list);
409 INIT_LIST_HEAD(&h->new_bgs);
410
411 smp_mb();
412 if (cur_trans->blocked && may_wait_transaction(root, type)) {
413 btrfs_commit_transaction(h, root);
414 goto again;
415 }
416
417 if (num_bytes) {
418 trace_btrfs_space_reservation(root->fs_info, "transaction",
419 h->transid, num_bytes, 1);
420 h->block_rsv = &root->fs_info->trans_block_rsv;
421 h->bytes_reserved = num_bytes;
422 }
423 h->qgroup_reserved = qgroup_reserved;
424
425 got_it:
426 btrfs_record_root_in_trans(h, root);
427
428 if (!current->journal_info && type != TRANS_USERSPACE)
429 current->journal_info = h;
430 return h;
431
432 join_fail:
433 if (type < TRANS_JOIN_NOLOCK)
434 sb_end_intwrite(root->fs_info->sb);
435 kmem_cache_free(btrfs_trans_handle_cachep, h);
436 alloc_fail:
437 if (num_bytes)
438 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
439 num_bytes);
440 reserve_fail:
441 if (qgroup_reserved)
442 btrfs_qgroup_free(root, qgroup_reserved);
443 return ERR_PTR(ret);
444 }
445
446 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
447 int num_items)
448 {
449 return start_transaction(root, num_items, TRANS_START,
450 BTRFS_RESERVE_FLUSH_ALL);
451 }
452
453 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
454 struct btrfs_root *root, int num_items)
455 {
456 return start_transaction(root, num_items, TRANS_START,
457 BTRFS_RESERVE_FLUSH_LIMIT);
458 }
459
460 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
461 {
462 return start_transaction(root, 0, TRANS_JOIN, 0);
463 }
464
465 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
466 {
467 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
468 }
469
470 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
471 {
472 return start_transaction(root, 0, TRANS_USERSPACE, 0);
473 }
474
475 /*
476 * btrfs_attach_transaction() - catch the running transaction
477 *
478 * It is used when we want to commit the current the transaction, but
479 * don't want to start a new one.
480 *
481 * Note: If this function return -ENOENT, it just means there is no
482 * running transaction. But it is possible that the inactive transaction
483 * is still in the memory, not fully on disk. If you hope there is no
484 * inactive transaction in the fs when -ENOENT is returned, you should
485 * invoke
486 * btrfs_attach_transaction_barrier()
487 */
488 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
489 {
490 return start_transaction(root, 0, TRANS_ATTACH, 0);
491 }
492
493 /*
494 * btrfs_attach_transaction() - catch the running transaction
495 *
496 * It is similar to the above function, the differentia is this one
497 * will wait for all the inactive transactions until they fully
498 * complete.
499 */
500 struct btrfs_trans_handle *
501 btrfs_attach_transaction_barrier(struct btrfs_root *root)
502 {
503 struct btrfs_trans_handle *trans;
504
505 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
506 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
507 btrfs_wait_for_commit(root, 0);
508
509 return trans;
510 }
511
512 /* wait for a transaction commit to be fully complete */
513 static noinline void wait_for_commit(struct btrfs_root *root,
514 struct btrfs_transaction *commit)
515 {
516 wait_event(commit->commit_wait, commit->commit_done);
517 }
518
519 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
520 {
521 struct btrfs_transaction *cur_trans = NULL, *t;
522 int ret = 0;
523
524 if (transid) {
525 if (transid <= root->fs_info->last_trans_committed)
526 goto out;
527
528 ret = -EINVAL;
529 /* find specified transaction */
530 spin_lock(&root->fs_info->trans_lock);
531 list_for_each_entry(t, &root->fs_info->trans_list, list) {
532 if (t->transid == transid) {
533 cur_trans = t;
534 atomic_inc(&cur_trans->use_count);
535 ret = 0;
536 break;
537 }
538 if (t->transid > transid) {
539 ret = 0;
540 break;
541 }
542 }
543 spin_unlock(&root->fs_info->trans_lock);
544 /* The specified transaction doesn't exist */
545 if (!cur_trans)
546 goto out;
547 } else {
548 /* find newest transaction that is committing | committed */
549 spin_lock(&root->fs_info->trans_lock);
550 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
551 list) {
552 if (t->in_commit) {
553 if (t->commit_done)
554 break;
555 cur_trans = t;
556 atomic_inc(&cur_trans->use_count);
557 break;
558 }
559 }
560 spin_unlock(&root->fs_info->trans_lock);
561 if (!cur_trans)
562 goto out; /* nothing committing|committed */
563 }
564
565 wait_for_commit(root, cur_trans);
566 put_transaction(cur_trans);
567 out:
568 return ret;
569 }
570
571 void btrfs_throttle(struct btrfs_root *root)
572 {
573 if (!atomic_read(&root->fs_info->open_ioctl_trans))
574 wait_current_trans(root);
575 }
576
577 static int should_end_transaction(struct btrfs_trans_handle *trans,
578 struct btrfs_root *root)
579 {
580 int ret;
581
582 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
583 return ret ? 1 : 0;
584 }
585
586 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
587 struct btrfs_root *root)
588 {
589 struct btrfs_transaction *cur_trans = trans->transaction;
590 int updates;
591 int err;
592
593 smp_mb();
594 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
595 return 1;
596
597 updates = trans->delayed_ref_updates;
598 trans->delayed_ref_updates = 0;
599 if (updates) {
600 err = btrfs_run_delayed_refs(trans, root, updates);
601 if (err) /* Error code will also eval true */
602 return err;
603 }
604
605 return should_end_transaction(trans, root);
606 }
607
608 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
609 struct btrfs_root *root, int throttle)
610 {
611 struct btrfs_transaction *cur_trans = trans->transaction;
612 struct btrfs_fs_info *info = root->fs_info;
613 int count = 0;
614 int lock = (trans->type != TRANS_JOIN_NOLOCK);
615 int err = 0;
616
617 if (--trans->use_count) {
618 trans->block_rsv = trans->orig_rsv;
619 return 0;
620 }
621
622 /*
623 * do the qgroup accounting as early as possible
624 */
625 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
626
627 btrfs_trans_release_metadata(trans, root);
628 trans->block_rsv = NULL;
629 /*
630 * the same root has to be passed to start_transaction and
631 * end_transaction. Subvolume quota depends on this.
632 */
633 WARN_ON(trans->root != root);
634
635 if (trans->qgroup_reserved) {
636 btrfs_qgroup_free(root, trans->qgroup_reserved);
637 trans->qgroup_reserved = 0;
638 }
639
640 if (!list_empty(&trans->new_bgs))
641 btrfs_create_pending_block_groups(trans, root);
642
643 while (count < 1) {
644 unsigned long cur = trans->delayed_ref_updates;
645 trans->delayed_ref_updates = 0;
646 if (cur &&
647 trans->transaction->delayed_refs.num_heads_ready > 64) {
648 trans->delayed_ref_updates = 0;
649 btrfs_run_delayed_refs(trans, root, cur);
650 } else {
651 break;
652 }
653 count++;
654 }
655
656 btrfs_trans_release_metadata(trans, root);
657 trans->block_rsv = NULL;
658
659 if (!list_empty(&trans->new_bgs))
660 btrfs_create_pending_block_groups(trans, root);
661
662 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
663 should_end_transaction(trans, root)) {
664 trans->transaction->blocked = 1;
665 smp_wmb();
666 }
667
668 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
669 if (throttle) {
670 /*
671 * We may race with somebody else here so end up having
672 * to call end_transaction on ourselves again, so inc
673 * our use_count.
674 */
675 trans->use_count++;
676 return btrfs_commit_transaction(trans, root);
677 } else {
678 wake_up_process(info->transaction_kthread);
679 }
680 }
681
682 if (trans->type < TRANS_JOIN_NOLOCK)
683 sb_end_intwrite(root->fs_info->sb);
684
685 WARN_ON(cur_trans != info->running_transaction);
686 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
687 atomic_dec(&cur_trans->num_writers);
688
689 smp_mb();
690 if (waitqueue_active(&cur_trans->writer_wait))
691 wake_up(&cur_trans->writer_wait);
692 put_transaction(cur_trans);
693
694 if (current->journal_info == trans)
695 current->journal_info = NULL;
696
697 if (throttle)
698 btrfs_run_delayed_iputs(root);
699
700 if (trans->aborted ||
701 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
702 err = -EIO;
703 assert_qgroups_uptodate(trans);
704
705 kmem_cache_free(btrfs_trans_handle_cachep, trans);
706 return err;
707 }
708
709 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
710 struct btrfs_root *root)
711 {
712 int ret;
713
714 ret = __btrfs_end_transaction(trans, root, 0);
715 if (ret)
716 return ret;
717 return 0;
718 }
719
720 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
721 struct btrfs_root *root)
722 {
723 int ret;
724
725 ret = __btrfs_end_transaction(trans, root, 1);
726 if (ret)
727 return ret;
728 return 0;
729 }
730
731 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
732 struct btrfs_root *root)
733 {
734 return __btrfs_end_transaction(trans, root, 1);
735 }
736
737 /*
738 * when btree blocks are allocated, they have some corresponding bits set for
739 * them in one of two extent_io trees. This is used to make sure all of
740 * those extents are sent to disk but does not wait on them
741 */
742 int btrfs_write_marked_extents(struct btrfs_root *root,
743 struct extent_io_tree *dirty_pages, int mark)
744 {
745 int err = 0;
746 int werr = 0;
747 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
748 struct extent_state *cached_state = NULL;
749 u64 start = 0;
750 u64 end;
751 struct blk_plug plug;
752
753 blk_start_plug(&plug);
754 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
755 mark, &cached_state)) {
756 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
757 mark, &cached_state, GFP_NOFS);
758 cached_state = NULL;
759 err = filemap_fdatawrite_range(mapping, start, end);
760 if (err)
761 werr = err;
762 cond_resched();
763 start = end + 1;
764 }
765 if (err)
766 werr = err;
767 blk_finish_plug(&plug);
768 return werr;
769 }
770
771 /*
772 * when btree blocks are allocated, they have some corresponding bits set for
773 * them in one of two extent_io trees. This is used to make sure all of
774 * those extents are on disk for transaction or log commit. We wait
775 * on all the pages and clear them from the dirty pages state tree
776 */
777 int btrfs_wait_marked_extents(struct btrfs_root *root,
778 struct extent_io_tree *dirty_pages, int mark)
779 {
780 int err = 0;
781 int werr = 0;
782 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
783 struct extent_state *cached_state = NULL;
784 u64 start = 0;
785 u64 end;
786
787 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
788 EXTENT_NEED_WAIT, &cached_state)) {
789 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
790 0, 0, &cached_state, GFP_NOFS);
791 err = filemap_fdatawait_range(mapping, start, end);
792 if (err)
793 werr = err;
794 cond_resched();
795 start = end + 1;
796 }
797 if (err)
798 werr = err;
799 return werr;
800 }
801
802 /*
803 * when btree blocks are allocated, they have some corresponding bits set for
804 * them in one of two extent_io trees. This is used to make sure all of
805 * those extents are on disk for transaction or log commit
806 */
807 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
808 struct extent_io_tree *dirty_pages, int mark)
809 {
810 int ret;
811 int ret2;
812
813 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
814 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
815
816 if (ret)
817 return ret;
818 if (ret2)
819 return ret2;
820 return 0;
821 }
822
823 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
824 struct btrfs_root *root)
825 {
826 if (!trans || !trans->transaction) {
827 struct inode *btree_inode;
828 btree_inode = root->fs_info->btree_inode;
829 return filemap_write_and_wait(btree_inode->i_mapping);
830 }
831 return btrfs_write_and_wait_marked_extents(root,
832 &trans->transaction->dirty_pages,
833 EXTENT_DIRTY);
834 }
835
836 /*
837 * this is used to update the root pointer in the tree of tree roots.
838 *
839 * But, in the case of the extent allocation tree, updating the root
840 * pointer may allocate blocks which may change the root of the extent
841 * allocation tree.
842 *
843 * So, this loops and repeats and makes sure the cowonly root didn't
844 * change while the root pointer was being updated in the metadata.
845 */
846 static int update_cowonly_root(struct btrfs_trans_handle *trans,
847 struct btrfs_root *root)
848 {
849 int ret;
850 u64 old_root_bytenr;
851 u64 old_root_used;
852 struct btrfs_root *tree_root = root->fs_info->tree_root;
853
854 old_root_used = btrfs_root_used(&root->root_item);
855 btrfs_write_dirty_block_groups(trans, root);
856
857 while (1) {
858 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
859 if (old_root_bytenr == root->node->start &&
860 old_root_used == btrfs_root_used(&root->root_item))
861 break;
862
863 btrfs_set_root_node(&root->root_item, root->node);
864 ret = btrfs_update_root(trans, tree_root,
865 &root->root_key,
866 &root->root_item);
867 if (ret)
868 return ret;
869
870 old_root_used = btrfs_root_used(&root->root_item);
871 ret = btrfs_write_dirty_block_groups(trans, root);
872 if (ret)
873 return ret;
874 }
875
876 if (root != root->fs_info->extent_root)
877 switch_commit_root(root);
878
879 return 0;
880 }
881
882 /*
883 * update all the cowonly tree roots on disk
884 *
885 * The error handling in this function may not be obvious. Any of the
886 * failures will cause the file system to go offline. We still need
887 * to clean up the delayed refs.
888 */
889 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
890 struct btrfs_root *root)
891 {
892 struct btrfs_fs_info *fs_info = root->fs_info;
893 struct list_head *next;
894 struct extent_buffer *eb;
895 int ret;
896
897 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
898 if (ret)
899 return ret;
900
901 eb = btrfs_lock_root_node(fs_info->tree_root);
902 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
903 0, &eb);
904 btrfs_tree_unlock(eb);
905 free_extent_buffer(eb);
906
907 if (ret)
908 return ret;
909
910 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
911 if (ret)
912 return ret;
913
914 ret = btrfs_run_dev_stats(trans, root->fs_info);
915 WARN_ON(ret);
916 ret = btrfs_run_dev_replace(trans, root->fs_info);
917 WARN_ON(ret);
918
919 ret = btrfs_run_qgroups(trans, root->fs_info);
920 BUG_ON(ret);
921
922 /* run_qgroups might have added some more refs */
923 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
924 BUG_ON(ret);
925
926 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
927 next = fs_info->dirty_cowonly_roots.next;
928 list_del_init(next);
929 root = list_entry(next, struct btrfs_root, dirty_list);
930
931 ret = update_cowonly_root(trans, root);
932 if (ret)
933 return ret;
934 }
935
936 down_write(&fs_info->extent_commit_sem);
937 switch_commit_root(fs_info->extent_root);
938 up_write(&fs_info->extent_commit_sem);
939
940 btrfs_after_dev_replace_commit(fs_info);
941
942 return 0;
943 }
944
945 /*
946 * dead roots are old snapshots that need to be deleted. This allocates
947 * a dirty root struct and adds it into the list of dead roots that need to
948 * be deleted
949 */
950 int btrfs_add_dead_root(struct btrfs_root *root)
951 {
952 spin_lock(&root->fs_info->trans_lock);
953 list_add(&root->root_list, &root->fs_info->dead_roots);
954 spin_unlock(&root->fs_info->trans_lock);
955 return 0;
956 }
957
958 /*
959 * update all the cowonly tree roots on disk
960 */
961 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
962 struct btrfs_root *root)
963 {
964 struct btrfs_root *gang[8];
965 struct btrfs_fs_info *fs_info = root->fs_info;
966 int i;
967 int ret;
968 int err = 0;
969
970 spin_lock(&fs_info->fs_roots_radix_lock);
971 while (1) {
972 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
973 (void **)gang, 0,
974 ARRAY_SIZE(gang),
975 BTRFS_ROOT_TRANS_TAG);
976 if (ret == 0)
977 break;
978 for (i = 0; i < ret; i++) {
979 root = gang[i];
980 radix_tree_tag_clear(&fs_info->fs_roots_radix,
981 (unsigned long)root->root_key.objectid,
982 BTRFS_ROOT_TRANS_TAG);
983 spin_unlock(&fs_info->fs_roots_radix_lock);
984
985 btrfs_free_log(trans, root);
986 btrfs_update_reloc_root(trans, root);
987 btrfs_orphan_commit_root(trans, root);
988
989 btrfs_save_ino_cache(root, trans);
990
991 /* see comments in should_cow_block() */
992 root->force_cow = 0;
993 smp_wmb();
994
995 if (root->commit_root != root->node) {
996 mutex_lock(&root->fs_commit_mutex);
997 switch_commit_root(root);
998 btrfs_unpin_free_ino(root);
999 mutex_unlock(&root->fs_commit_mutex);
1000
1001 btrfs_set_root_node(&root->root_item,
1002 root->node);
1003 }
1004
1005 err = btrfs_update_root(trans, fs_info->tree_root,
1006 &root->root_key,
1007 &root->root_item);
1008 spin_lock(&fs_info->fs_roots_radix_lock);
1009 if (err)
1010 break;
1011 }
1012 }
1013 spin_unlock(&fs_info->fs_roots_radix_lock);
1014 return err;
1015 }
1016
1017 /*
1018 * defrag a given btree.
1019 * Every leaf in the btree is read and defragged.
1020 */
1021 int btrfs_defrag_root(struct btrfs_root *root)
1022 {
1023 struct btrfs_fs_info *info = root->fs_info;
1024 struct btrfs_trans_handle *trans;
1025 int ret;
1026
1027 if (xchg(&root->defrag_running, 1))
1028 return 0;
1029
1030 while (1) {
1031 trans = btrfs_start_transaction(root, 0);
1032 if (IS_ERR(trans))
1033 return PTR_ERR(trans);
1034
1035 ret = btrfs_defrag_leaves(trans, root);
1036
1037 btrfs_end_transaction(trans, root);
1038 btrfs_btree_balance_dirty(info->tree_root);
1039 cond_resched();
1040
1041 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1042 break;
1043
1044 if (btrfs_defrag_cancelled(root->fs_info)) {
1045 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1046 ret = -EAGAIN;
1047 break;
1048 }
1049 }
1050 root->defrag_running = 0;
1051 return ret;
1052 }
1053
1054 /*
1055 * new snapshots need to be created at a very specific time in the
1056 * transaction commit. This does the actual creation
1057 */
1058 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1059 struct btrfs_fs_info *fs_info,
1060 struct btrfs_pending_snapshot *pending)
1061 {
1062 struct btrfs_key key;
1063 struct btrfs_root_item *new_root_item;
1064 struct btrfs_root *tree_root = fs_info->tree_root;
1065 struct btrfs_root *root = pending->root;
1066 struct btrfs_root *parent_root;
1067 struct btrfs_block_rsv *rsv;
1068 struct inode *parent_inode;
1069 struct btrfs_path *path;
1070 struct btrfs_dir_item *dir_item;
1071 struct dentry *parent;
1072 struct dentry *dentry;
1073 struct extent_buffer *tmp;
1074 struct extent_buffer *old;
1075 struct timespec cur_time = CURRENT_TIME;
1076 int ret;
1077 u64 to_reserve = 0;
1078 u64 index = 0;
1079 u64 objectid;
1080 u64 root_flags;
1081 uuid_le new_uuid;
1082
1083 path = btrfs_alloc_path();
1084 if (!path) {
1085 ret = pending->error = -ENOMEM;
1086 goto path_alloc_fail;
1087 }
1088
1089 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1090 if (!new_root_item) {
1091 ret = pending->error = -ENOMEM;
1092 goto root_item_alloc_fail;
1093 }
1094
1095 ret = btrfs_find_free_objectid(tree_root, &objectid);
1096 if (ret) {
1097 pending->error = ret;
1098 goto no_free_objectid;
1099 }
1100
1101 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1102
1103 if (to_reserve > 0) {
1104 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1105 to_reserve,
1106 BTRFS_RESERVE_NO_FLUSH);
1107 if (ret) {
1108 pending->error = ret;
1109 goto no_free_objectid;
1110 }
1111 }
1112
1113 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1114 objectid, pending->inherit);
1115 if (ret) {
1116 pending->error = ret;
1117 goto no_free_objectid;
1118 }
1119
1120 key.objectid = objectid;
1121 key.offset = (u64)-1;
1122 key.type = BTRFS_ROOT_ITEM_KEY;
1123
1124 rsv = trans->block_rsv;
1125 trans->block_rsv = &pending->block_rsv;
1126 trans->bytes_reserved = trans->block_rsv->reserved;
1127
1128 dentry = pending->dentry;
1129 parent = dget_parent(dentry);
1130 parent_inode = parent->d_inode;
1131 parent_root = BTRFS_I(parent_inode)->root;
1132 record_root_in_trans(trans, parent_root);
1133
1134 /*
1135 * insert the directory item
1136 */
1137 ret = btrfs_set_inode_index(parent_inode, &index);
1138 BUG_ON(ret); /* -ENOMEM */
1139
1140 /* check if there is a file/dir which has the same name. */
1141 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1142 btrfs_ino(parent_inode),
1143 dentry->d_name.name,
1144 dentry->d_name.len, 0);
1145 if (dir_item != NULL && !IS_ERR(dir_item)) {
1146 pending->error = -EEXIST;
1147 goto fail;
1148 } else if (IS_ERR(dir_item)) {
1149 ret = PTR_ERR(dir_item);
1150 btrfs_abort_transaction(trans, root, ret);
1151 goto fail;
1152 }
1153 btrfs_release_path(path);
1154
1155 /*
1156 * pull in the delayed directory update
1157 * and the delayed inode item
1158 * otherwise we corrupt the FS during
1159 * snapshot
1160 */
1161 ret = btrfs_run_delayed_items(trans, root);
1162 if (ret) { /* Transaction aborted */
1163 btrfs_abort_transaction(trans, root, ret);
1164 goto fail;
1165 }
1166
1167 record_root_in_trans(trans, root);
1168 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1169 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1170 btrfs_check_and_init_root_item(new_root_item);
1171
1172 root_flags = btrfs_root_flags(new_root_item);
1173 if (pending->readonly)
1174 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1175 else
1176 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1177 btrfs_set_root_flags(new_root_item, root_flags);
1178
1179 btrfs_set_root_generation_v2(new_root_item,
1180 trans->transid);
1181 uuid_le_gen(&new_uuid);
1182 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1183 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1184 BTRFS_UUID_SIZE);
1185 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1186 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1187 btrfs_set_root_otransid(new_root_item, trans->transid);
1188 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1189 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1190 btrfs_set_root_stransid(new_root_item, 0);
1191 btrfs_set_root_rtransid(new_root_item, 0);
1192
1193 old = btrfs_lock_root_node(root);
1194 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1195 if (ret) {
1196 btrfs_tree_unlock(old);
1197 free_extent_buffer(old);
1198 btrfs_abort_transaction(trans, root, ret);
1199 goto fail;
1200 }
1201
1202 btrfs_set_lock_blocking(old);
1203
1204 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1205 /* clean up in any case */
1206 btrfs_tree_unlock(old);
1207 free_extent_buffer(old);
1208 if (ret) {
1209 btrfs_abort_transaction(trans, root, ret);
1210 goto fail;
1211 }
1212
1213 /* see comments in should_cow_block() */
1214 root->force_cow = 1;
1215 smp_wmb();
1216
1217 btrfs_set_root_node(new_root_item, tmp);
1218 /* record when the snapshot was created in key.offset */
1219 key.offset = trans->transid;
1220 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1221 btrfs_tree_unlock(tmp);
1222 free_extent_buffer(tmp);
1223 if (ret) {
1224 btrfs_abort_transaction(trans, root, ret);
1225 goto fail;
1226 }
1227
1228 /*
1229 * insert root back/forward references
1230 */
1231 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1232 parent_root->root_key.objectid,
1233 btrfs_ino(parent_inode), index,
1234 dentry->d_name.name, dentry->d_name.len);
1235 if (ret) {
1236 btrfs_abort_transaction(trans, root, ret);
1237 goto fail;
1238 }
1239
1240 key.offset = (u64)-1;
1241 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1242 if (IS_ERR(pending->snap)) {
1243 ret = PTR_ERR(pending->snap);
1244 btrfs_abort_transaction(trans, root, ret);
1245 goto fail;
1246 }
1247
1248 ret = btrfs_reloc_post_snapshot(trans, pending);
1249 if (ret) {
1250 btrfs_abort_transaction(trans, root, ret);
1251 goto fail;
1252 }
1253
1254 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1255 if (ret) {
1256 btrfs_abort_transaction(trans, root, ret);
1257 goto fail;
1258 }
1259
1260 ret = btrfs_insert_dir_item(trans, parent_root,
1261 dentry->d_name.name, dentry->d_name.len,
1262 parent_inode, &key,
1263 BTRFS_FT_DIR, index);
1264 /* We have check then name at the beginning, so it is impossible. */
1265 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1266 if (ret) {
1267 btrfs_abort_transaction(trans, root, ret);
1268 goto fail;
1269 }
1270
1271 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1272 dentry->d_name.len * 2);
1273 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1274 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1275 if (ret)
1276 btrfs_abort_transaction(trans, root, ret);
1277 fail:
1278 dput(parent);
1279 trans->block_rsv = rsv;
1280 trans->bytes_reserved = 0;
1281 no_free_objectid:
1282 kfree(new_root_item);
1283 root_item_alloc_fail:
1284 btrfs_free_path(path);
1285 path_alloc_fail:
1286 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1287 return ret;
1288 }
1289
1290 /*
1291 * create all the snapshots we've scheduled for creation
1292 */
1293 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1294 struct btrfs_fs_info *fs_info)
1295 {
1296 struct btrfs_pending_snapshot *pending;
1297 struct list_head *head = &trans->transaction->pending_snapshots;
1298
1299 list_for_each_entry(pending, head, list)
1300 create_pending_snapshot(trans, fs_info, pending);
1301 return 0;
1302 }
1303
1304 static void update_super_roots(struct btrfs_root *root)
1305 {
1306 struct btrfs_root_item *root_item;
1307 struct btrfs_super_block *super;
1308
1309 super = root->fs_info->super_copy;
1310
1311 root_item = &root->fs_info->chunk_root->root_item;
1312 super->chunk_root = root_item->bytenr;
1313 super->chunk_root_generation = root_item->generation;
1314 super->chunk_root_level = root_item->level;
1315
1316 root_item = &root->fs_info->tree_root->root_item;
1317 super->root = root_item->bytenr;
1318 super->generation = root_item->generation;
1319 super->root_level = root_item->level;
1320 if (btrfs_test_opt(root, SPACE_CACHE))
1321 super->cache_generation = root_item->generation;
1322 }
1323
1324 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1325 {
1326 int ret = 0;
1327 spin_lock(&info->trans_lock);
1328 if (info->running_transaction)
1329 ret = info->running_transaction->in_commit;
1330 spin_unlock(&info->trans_lock);
1331 return ret;
1332 }
1333
1334 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1335 {
1336 int ret = 0;
1337 spin_lock(&info->trans_lock);
1338 if (info->running_transaction)
1339 ret = info->running_transaction->blocked;
1340 spin_unlock(&info->trans_lock);
1341 return ret;
1342 }
1343
1344 /*
1345 * wait for the current transaction commit to start and block subsequent
1346 * transaction joins
1347 */
1348 static void wait_current_trans_commit_start(struct btrfs_root *root,
1349 struct btrfs_transaction *trans)
1350 {
1351 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1352 }
1353
1354 /*
1355 * wait for the current transaction to start and then become unblocked.
1356 * caller holds ref.
1357 */
1358 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1359 struct btrfs_transaction *trans)
1360 {
1361 wait_event(root->fs_info->transaction_wait,
1362 trans->commit_done || (trans->in_commit && !trans->blocked));
1363 }
1364
1365 /*
1366 * commit transactions asynchronously. once btrfs_commit_transaction_async
1367 * returns, any subsequent transaction will not be allowed to join.
1368 */
1369 struct btrfs_async_commit {
1370 struct btrfs_trans_handle *newtrans;
1371 struct btrfs_root *root;
1372 struct work_struct work;
1373 };
1374
1375 static void do_async_commit(struct work_struct *work)
1376 {
1377 struct btrfs_async_commit *ac =
1378 container_of(work, struct btrfs_async_commit, work);
1379
1380 /*
1381 * We've got freeze protection passed with the transaction.
1382 * Tell lockdep about it.
1383 */
1384 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1385 rwsem_acquire_read(
1386 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1387 0, 1, _THIS_IP_);
1388
1389 current->journal_info = ac->newtrans;
1390
1391 btrfs_commit_transaction(ac->newtrans, ac->root);
1392 kfree(ac);
1393 }
1394
1395 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 int wait_for_unblock)
1398 {
1399 struct btrfs_async_commit *ac;
1400 struct btrfs_transaction *cur_trans;
1401
1402 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1403 if (!ac)
1404 return -ENOMEM;
1405
1406 INIT_WORK(&ac->work, do_async_commit);
1407 ac->root = root;
1408 ac->newtrans = btrfs_join_transaction(root);
1409 if (IS_ERR(ac->newtrans)) {
1410 int err = PTR_ERR(ac->newtrans);
1411 kfree(ac);
1412 return err;
1413 }
1414
1415 /* take transaction reference */
1416 cur_trans = trans->transaction;
1417 atomic_inc(&cur_trans->use_count);
1418
1419 btrfs_end_transaction(trans, root);
1420
1421 /*
1422 * Tell lockdep we've released the freeze rwsem, since the
1423 * async commit thread will be the one to unlock it.
1424 */
1425 if (trans->type < TRANS_JOIN_NOLOCK)
1426 rwsem_release(
1427 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1428 1, _THIS_IP_);
1429
1430 schedule_work(&ac->work);
1431
1432 /* wait for transaction to start and unblock */
1433 if (wait_for_unblock)
1434 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1435 else
1436 wait_current_trans_commit_start(root, cur_trans);
1437
1438 if (current->journal_info == trans)
1439 current->journal_info = NULL;
1440
1441 put_transaction(cur_trans);
1442 return 0;
1443 }
1444
1445
1446 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1447 struct btrfs_root *root, int err)
1448 {
1449 struct btrfs_transaction *cur_trans = trans->transaction;
1450
1451 WARN_ON(trans->use_count > 1);
1452
1453 btrfs_abort_transaction(trans, root, err);
1454
1455 spin_lock(&root->fs_info->trans_lock);
1456 list_del_init(&cur_trans->list);
1457 if (cur_trans == root->fs_info->running_transaction) {
1458 root->fs_info->running_transaction = NULL;
1459 root->fs_info->trans_no_join = 0;
1460 }
1461 spin_unlock(&root->fs_info->trans_lock);
1462
1463 btrfs_cleanup_one_transaction(trans->transaction, root);
1464
1465 put_transaction(cur_trans);
1466 put_transaction(cur_trans);
1467
1468 trace_btrfs_transaction_commit(root);
1469
1470 btrfs_scrub_continue(root);
1471
1472 if (current->journal_info == trans)
1473 current->journal_info = NULL;
1474
1475 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1476 }
1477
1478 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1479 struct btrfs_root *root)
1480 {
1481 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1482 int snap_pending = 0;
1483 int ret;
1484
1485 if (!flush_on_commit) {
1486 spin_lock(&root->fs_info->trans_lock);
1487 if (!list_empty(&trans->transaction->pending_snapshots))
1488 snap_pending = 1;
1489 spin_unlock(&root->fs_info->trans_lock);
1490 }
1491
1492 if (flush_on_commit || snap_pending) {
1493 ret = btrfs_start_delalloc_inodes(root, 1);
1494 if (ret)
1495 return ret;
1496 btrfs_wait_ordered_extents(root, 1);
1497 }
1498
1499 ret = btrfs_run_delayed_items(trans, root);
1500 if (ret)
1501 return ret;
1502
1503 /*
1504 * running the delayed items may have added new refs. account
1505 * them now so that they hinder processing of more delayed refs
1506 * as little as possible.
1507 */
1508 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1509
1510 /*
1511 * rename don't use btrfs_join_transaction, so, once we
1512 * set the transaction to blocked above, we aren't going
1513 * to get any new ordered operations. We can safely run
1514 * it here and no for sure that nothing new will be added
1515 * to the list
1516 */
1517 ret = btrfs_run_ordered_operations(trans, root, 1);
1518
1519 return ret;
1520 }
1521
1522 /*
1523 * btrfs_transaction state sequence:
1524 * in_commit = 0, blocked = 0 (initial)
1525 * in_commit = 1, blocked = 1
1526 * blocked = 0
1527 * commit_done = 1
1528 */
1529 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *root)
1531 {
1532 unsigned long joined = 0;
1533 struct btrfs_transaction *cur_trans = trans->transaction;
1534 struct btrfs_transaction *prev_trans = NULL;
1535 DEFINE_WAIT(wait);
1536 int ret;
1537 int should_grow = 0;
1538 unsigned long now = get_seconds();
1539
1540 ret = btrfs_run_ordered_operations(trans, root, 0);
1541 if (ret) {
1542 btrfs_abort_transaction(trans, root, ret);
1543 btrfs_end_transaction(trans, root);
1544 return ret;
1545 }
1546
1547 /* Stop the commit early if ->aborted is set */
1548 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1549 ret = cur_trans->aborted;
1550 btrfs_end_transaction(trans, root);
1551 return ret;
1552 }
1553
1554 /* make a pass through all the delayed refs we have so far
1555 * any runnings procs may add more while we are here
1556 */
1557 ret = btrfs_run_delayed_refs(trans, root, 0);
1558 if (ret) {
1559 btrfs_end_transaction(trans, root);
1560 return ret;
1561 }
1562
1563 btrfs_trans_release_metadata(trans, root);
1564 trans->block_rsv = NULL;
1565 if (trans->qgroup_reserved) {
1566 btrfs_qgroup_free(root, trans->qgroup_reserved);
1567 trans->qgroup_reserved = 0;
1568 }
1569
1570 cur_trans = trans->transaction;
1571
1572 /*
1573 * set the flushing flag so procs in this transaction have to
1574 * start sending their work down.
1575 */
1576 cur_trans->delayed_refs.flushing = 1;
1577
1578 if (!list_empty(&trans->new_bgs))
1579 btrfs_create_pending_block_groups(trans, root);
1580
1581 ret = btrfs_run_delayed_refs(trans, root, 0);
1582 if (ret) {
1583 btrfs_end_transaction(trans, root);
1584 return ret;
1585 }
1586
1587 spin_lock(&cur_trans->commit_lock);
1588 if (cur_trans->in_commit) {
1589 spin_unlock(&cur_trans->commit_lock);
1590 atomic_inc(&cur_trans->use_count);
1591 ret = btrfs_end_transaction(trans, root);
1592
1593 wait_for_commit(root, cur_trans);
1594
1595 put_transaction(cur_trans);
1596
1597 return ret;
1598 }
1599
1600 trans->transaction->in_commit = 1;
1601 trans->transaction->blocked = 1;
1602 spin_unlock(&cur_trans->commit_lock);
1603 wake_up(&root->fs_info->transaction_blocked_wait);
1604
1605 spin_lock(&root->fs_info->trans_lock);
1606 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1607 prev_trans = list_entry(cur_trans->list.prev,
1608 struct btrfs_transaction, list);
1609 if (!prev_trans->commit_done) {
1610 atomic_inc(&prev_trans->use_count);
1611 spin_unlock(&root->fs_info->trans_lock);
1612
1613 wait_for_commit(root, prev_trans);
1614
1615 put_transaction(prev_trans);
1616 } else {
1617 spin_unlock(&root->fs_info->trans_lock);
1618 }
1619 } else {
1620 spin_unlock(&root->fs_info->trans_lock);
1621 }
1622
1623 if (!btrfs_test_opt(root, SSD) &&
1624 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1625 should_grow = 1;
1626
1627 do {
1628 joined = cur_trans->num_joined;
1629
1630 WARN_ON(cur_trans != trans->transaction);
1631
1632 ret = btrfs_flush_all_pending_stuffs(trans, root);
1633 if (ret)
1634 goto cleanup_transaction;
1635
1636 prepare_to_wait(&cur_trans->writer_wait, &wait,
1637 TASK_UNINTERRUPTIBLE);
1638
1639 if (atomic_read(&cur_trans->num_writers) > 1)
1640 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1641 else if (should_grow)
1642 schedule_timeout(1);
1643
1644 finish_wait(&cur_trans->writer_wait, &wait);
1645 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1646 (should_grow && cur_trans->num_joined != joined));
1647
1648 ret = btrfs_flush_all_pending_stuffs(trans, root);
1649 if (ret)
1650 goto cleanup_transaction;
1651
1652 /*
1653 * Ok now we need to make sure to block out any other joins while we
1654 * commit the transaction. We could have started a join before setting
1655 * no_join so make sure to wait for num_writers to == 1 again.
1656 */
1657 spin_lock(&root->fs_info->trans_lock);
1658 root->fs_info->trans_no_join = 1;
1659 spin_unlock(&root->fs_info->trans_lock);
1660 wait_event(cur_trans->writer_wait,
1661 atomic_read(&cur_trans->num_writers) == 1);
1662
1663 /* ->aborted might be set after the previous check, so check it */
1664 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1665 ret = cur_trans->aborted;
1666 goto cleanup_transaction;
1667 }
1668 /*
1669 * the reloc mutex makes sure that we stop
1670 * the balancing code from coming in and moving
1671 * extents around in the middle of the commit
1672 */
1673 mutex_lock(&root->fs_info->reloc_mutex);
1674
1675 /*
1676 * We needn't worry about the delayed items because we will
1677 * deal with them in create_pending_snapshot(), which is the
1678 * core function of the snapshot creation.
1679 */
1680 ret = create_pending_snapshots(trans, root->fs_info);
1681 if (ret) {
1682 mutex_unlock(&root->fs_info->reloc_mutex);
1683 goto cleanup_transaction;
1684 }
1685
1686 /*
1687 * We insert the dir indexes of the snapshots and update the inode
1688 * of the snapshots' parents after the snapshot creation, so there
1689 * are some delayed items which are not dealt with. Now deal with
1690 * them.
1691 *
1692 * We needn't worry that this operation will corrupt the snapshots,
1693 * because all the tree which are snapshoted will be forced to COW
1694 * the nodes and leaves.
1695 */
1696 ret = btrfs_run_delayed_items(trans, root);
1697 if (ret) {
1698 mutex_unlock(&root->fs_info->reloc_mutex);
1699 goto cleanup_transaction;
1700 }
1701
1702 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1703 if (ret) {
1704 mutex_unlock(&root->fs_info->reloc_mutex);
1705 goto cleanup_transaction;
1706 }
1707
1708 /*
1709 * make sure none of the code above managed to slip in a
1710 * delayed item
1711 */
1712 btrfs_assert_delayed_root_empty(root);
1713
1714 WARN_ON(cur_trans != trans->transaction);
1715
1716 btrfs_scrub_pause(root);
1717 /* btrfs_commit_tree_roots is responsible for getting the
1718 * various roots consistent with each other. Every pointer
1719 * in the tree of tree roots has to point to the most up to date
1720 * root for every subvolume and other tree. So, we have to keep
1721 * the tree logging code from jumping in and changing any
1722 * of the trees.
1723 *
1724 * At this point in the commit, there can't be any tree-log
1725 * writers, but a little lower down we drop the trans mutex
1726 * and let new people in. By holding the tree_log_mutex
1727 * from now until after the super is written, we avoid races
1728 * with the tree-log code.
1729 */
1730 mutex_lock(&root->fs_info->tree_log_mutex);
1731
1732 ret = commit_fs_roots(trans, root);
1733 if (ret) {
1734 mutex_unlock(&root->fs_info->tree_log_mutex);
1735 mutex_unlock(&root->fs_info->reloc_mutex);
1736 goto cleanup_transaction;
1737 }
1738
1739 /* commit_fs_roots gets rid of all the tree log roots, it is now
1740 * safe to free the root of tree log roots
1741 */
1742 btrfs_free_log_root_tree(trans, root->fs_info);
1743
1744 ret = commit_cowonly_roots(trans, root);
1745 if (ret) {
1746 mutex_unlock(&root->fs_info->tree_log_mutex);
1747 mutex_unlock(&root->fs_info->reloc_mutex);
1748 goto cleanup_transaction;
1749 }
1750
1751 /*
1752 * The tasks which save the space cache and inode cache may also
1753 * update ->aborted, check it.
1754 */
1755 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1756 ret = cur_trans->aborted;
1757 mutex_unlock(&root->fs_info->tree_log_mutex);
1758 mutex_unlock(&root->fs_info->reloc_mutex);
1759 goto cleanup_transaction;
1760 }
1761
1762 btrfs_prepare_extent_commit(trans, root);
1763
1764 cur_trans = root->fs_info->running_transaction;
1765
1766 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1767 root->fs_info->tree_root->node);
1768 switch_commit_root(root->fs_info->tree_root);
1769
1770 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1771 root->fs_info->chunk_root->node);
1772 switch_commit_root(root->fs_info->chunk_root);
1773
1774 assert_qgroups_uptodate(trans);
1775 update_super_roots(root);
1776
1777 if (!root->fs_info->log_root_recovering) {
1778 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1779 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1780 }
1781
1782 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1783 sizeof(*root->fs_info->super_copy));
1784
1785 trans->transaction->blocked = 0;
1786 spin_lock(&root->fs_info->trans_lock);
1787 root->fs_info->running_transaction = NULL;
1788 root->fs_info->trans_no_join = 0;
1789 spin_unlock(&root->fs_info->trans_lock);
1790 mutex_unlock(&root->fs_info->reloc_mutex);
1791
1792 wake_up(&root->fs_info->transaction_wait);
1793
1794 ret = btrfs_write_and_wait_transaction(trans, root);
1795 if (ret) {
1796 btrfs_error(root->fs_info, ret,
1797 "Error while writing out transaction.");
1798 mutex_unlock(&root->fs_info->tree_log_mutex);
1799 goto cleanup_transaction;
1800 }
1801
1802 ret = write_ctree_super(trans, root, 0);
1803 if (ret) {
1804 mutex_unlock(&root->fs_info->tree_log_mutex);
1805 goto cleanup_transaction;
1806 }
1807
1808 /*
1809 * the super is written, we can safely allow the tree-loggers
1810 * to go about their business
1811 */
1812 mutex_unlock(&root->fs_info->tree_log_mutex);
1813
1814 btrfs_finish_extent_commit(trans, root);
1815
1816 cur_trans->commit_done = 1;
1817
1818 root->fs_info->last_trans_committed = cur_trans->transid;
1819
1820 wake_up(&cur_trans->commit_wait);
1821
1822 spin_lock(&root->fs_info->trans_lock);
1823 list_del_init(&cur_trans->list);
1824 spin_unlock(&root->fs_info->trans_lock);
1825
1826 put_transaction(cur_trans);
1827 put_transaction(cur_trans);
1828
1829 if (trans->type < TRANS_JOIN_NOLOCK)
1830 sb_end_intwrite(root->fs_info->sb);
1831
1832 trace_btrfs_transaction_commit(root);
1833
1834 btrfs_scrub_continue(root);
1835
1836 if (current->journal_info == trans)
1837 current->journal_info = NULL;
1838
1839 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1840
1841 if (current != root->fs_info->transaction_kthread)
1842 btrfs_run_delayed_iputs(root);
1843
1844 return ret;
1845
1846 cleanup_transaction:
1847 btrfs_trans_release_metadata(trans, root);
1848 trans->block_rsv = NULL;
1849 if (trans->qgroup_reserved) {
1850 btrfs_qgroup_free(root, trans->qgroup_reserved);
1851 trans->qgroup_reserved = 0;
1852 }
1853 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1854 // WARN_ON(1);
1855 if (current->journal_info == trans)
1856 current->journal_info = NULL;
1857 cleanup_transaction(trans, root, ret);
1858
1859 return ret;
1860 }
1861
1862 /*
1863 * interface function to delete all the snapshots we have scheduled for deletion
1864 */
1865 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1866 {
1867 LIST_HEAD(list);
1868 struct btrfs_fs_info *fs_info = root->fs_info;
1869
1870 spin_lock(&fs_info->trans_lock);
1871 list_splice_init(&fs_info->dead_roots, &list);
1872 spin_unlock(&fs_info->trans_lock);
1873
1874 while (!list_empty(&list)) {
1875 int ret;
1876
1877 root = list_entry(list.next, struct btrfs_root, root_list);
1878 list_del(&root->root_list);
1879
1880 btrfs_kill_all_delayed_nodes(root);
1881
1882 if (btrfs_header_backref_rev(root->node) <
1883 BTRFS_MIXED_BACKREF_REV)
1884 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1885 else
1886 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1887 BUG_ON(ret < 0);
1888 }
1889 return 0;
1890 }
This page took 0.067339 seconds and 6 git commands to generate.