Btrfs: check the return value of btrfs_start_delalloc_inodes()
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
44 }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54 * either allocate a new transaction or hop into the existing one
55 */
56 static noinline int join_transaction(struct btrfs_root *root, int type)
57 {
58 struct btrfs_transaction *cur_trans;
59 struct btrfs_fs_info *fs_info = root->fs_info;
60
61 spin_lock(&fs_info->trans_lock);
62 loop:
63 /* The file system has been taken offline. No new transactions. */
64 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 spin_unlock(&fs_info->trans_lock);
66 return -EROFS;
67 }
68
69 if (fs_info->trans_no_join) {
70 /*
71 * If we are JOIN_NOLOCK we're already committing a current
72 * transaction, we just need a handle to deal with something
73 * when committing the transaction, such as inode cache and
74 * space cache. It is a special case.
75 */
76 if (type != TRANS_JOIN_NOLOCK) {
77 spin_unlock(&fs_info->trans_lock);
78 return -EBUSY;
79 }
80 }
81
82 cur_trans = fs_info->running_transaction;
83 if (cur_trans) {
84 if (cur_trans->aborted) {
85 spin_unlock(&fs_info->trans_lock);
86 return cur_trans->aborted;
87 }
88 atomic_inc(&cur_trans->use_count);
89 atomic_inc(&cur_trans->num_writers);
90 cur_trans->num_joined++;
91 spin_unlock(&fs_info->trans_lock);
92 return 0;
93 }
94 spin_unlock(&fs_info->trans_lock);
95
96 /*
97 * If we are ATTACH, we just want to catch the current transaction,
98 * and commit it. If there is no transaction, just return ENOENT.
99 */
100 if (type == TRANS_ATTACH)
101 return -ENOENT;
102
103 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
104 if (!cur_trans)
105 return -ENOMEM;
106
107 spin_lock(&fs_info->trans_lock);
108 if (fs_info->running_transaction) {
109 /*
110 * someone started a transaction after we unlocked. Make sure
111 * to redo the trans_no_join checks above
112 */
113 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
114 cur_trans = fs_info->running_transaction;
115 goto loop;
116 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 spin_unlock(&fs_info->trans_lock);
118 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
119 return -EROFS;
120 }
121
122 atomic_set(&cur_trans->num_writers, 1);
123 cur_trans->num_joined = 0;
124 init_waitqueue_head(&cur_trans->writer_wait);
125 init_waitqueue_head(&cur_trans->commit_wait);
126 cur_trans->in_commit = 0;
127 cur_trans->blocked = 0;
128 /*
129 * One for this trans handle, one so it will live on until we
130 * commit the transaction.
131 */
132 atomic_set(&cur_trans->use_count, 2);
133 cur_trans->commit_done = 0;
134 cur_trans->start_time = get_seconds();
135
136 cur_trans->delayed_refs.root = RB_ROOT;
137 cur_trans->delayed_refs.num_entries = 0;
138 cur_trans->delayed_refs.num_heads_ready = 0;
139 cur_trans->delayed_refs.num_heads = 0;
140 cur_trans->delayed_refs.flushing = 0;
141 cur_trans->delayed_refs.run_delayed_start = 0;
142
143 /*
144 * although the tree mod log is per file system and not per transaction,
145 * the log must never go across transaction boundaries.
146 */
147 smp_mb();
148 if (!list_empty(&fs_info->tree_mod_seq_list))
149 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
150 "creating a fresh transaction\n");
151 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
152 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
153 "creating a fresh transaction\n");
154 atomic_set(&fs_info->tree_mod_seq, 0);
155
156 spin_lock_init(&cur_trans->commit_lock);
157 spin_lock_init(&cur_trans->delayed_refs.lock);
158
159 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
160 list_add_tail(&cur_trans->list, &fs_info->trans_list);
161 extent_io_tree_init(&cur_trans->dirty_pages,
162 fs_info->btree_inode->i_mapping);
163 fs_info->generation++;
164 cur_trans->transid = fs_info->generation;
165 fs_info->running_transaction = cur_trans;
166 cur_trans->aborted = 0;
167 spin_unlock(&fs_info->trans_lock);
168
169 return 0;
170 }
171
172 /*
173 * this does all the record keeping required to make sure that a reference
174 * counted root is properly recorded in a given transaction. This is required
175 * to make sure the old root from before we joined the transaction is deleted
176 * when the transaction commits
177 */
178 static int record_root_in_trans(struct btrfs_trans_handle *trans,
179 struct btrfs_root *root)
180 {
181 if (root->ref_cows && root->last_trans < trans->transid) {
182 WARN_ON(root == root->fs_info->extent_root);
183 WARN_ON(root->commit_root != root->node);
184
185 /*
186 * see below for in_trans_setup usage rules
187 * we have the reloc mutex held now, so there
188 * is only one writer in this function
189 */
190 root->in_trans_setup = 1;
191
192 /* make sure readers find in_trans_setup before
193 * they find our root->last_trans update
194 */
195 smp_wmb();
196
197 spin_lock(&root->fs_info->fs_roots_radix_lock);
198 if (root->last_trans == trans->transid) {
199 spin_unlock(&root->fs_info->fs_roots_radix_lock);
200 return 0;
201 }
202 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
203 (unsigned long)root->root_key.objectid,
204 BTRFS_ROOT_TRANS_TAG);
205 spin_unlock(&root->fs_info->fs_roots_radix_lock);
206 root->last_trans = trans->transid;
207
208 /* this is pretty tricky. We don't want to
209 * take the relocation lock in btrfs_record_root_in_trans
210 * unless we're really doing the first setup for this root in
211 * this transaction.
212 *
213 * Normally we'd use root->last_trans as a flag to decide
214 * if we want to take the expensive mutex.
215 *
216 * But, we have to set root->last_trans before we
217 * init the relocation root, otherwise, we trip over warnings
218 * in ctree.c. The solution used here is to flag ourselves
219 * with root->in_trans_setup. When this is 1, we're still
220 * fixing up the reloc trees and everyone must wait.
221 *
222 * When this is zero, they can trust root->last_trans and fly
223 * through btrfs_record_root_in_trans without having to take the
224 * lock. smp_wmb() makes sure that all the writes above are
225 * done before we pop in the zero below
226 */
227 btrfs_init_reloc_root(trans, root);
228 smp_wmb();
229 root->in_trans_setup = 0;
230 }
231 return 0;
232 }
233
234
235 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
236 struct btrfs_root *root)
237 {
238 if (!root->ref_cows)
239 return 0;
240
241 /*
242 * see record_root_in_trans for comments about in_trans_setup usage
243 * and barriers
244 */
245 smp_rmb();
246 if (root->last_trans == trans->transid &&
247 !root->in_trans_setup)
248 return 0;
249
250 mutex_lock(&root->fs_info->reloc_mutex);
251 record_root_in_trans(trans, root);
252 mutex_unlock(&root->fs_info->reloc_mutex);
253
254 return 0;
255 }
256
257 /* wait for commit against the current transaction to become unblocked
258 * when this is done, it is safe to start a new transaction, but the current
259 * transaction might not be fully on disk.
260 */
261 static void wait_current_trans(struct btrfs_root *root)
262 {
263 struct btrfs_transaction *cur_trans;
264
265 spin_lock(&root->fs_info->trans_lock);
266 cur_trans = root->fs_info->running_transaction;
267 if (cur_trans && cur_trans->blocked) {
268 atomic_inc(&cur_trans->use_count);
269 spin_unlock(&root->fs_info->trans_lock);
270
271 wait_event(root->fs_info->transaction_wait,
272 !cur_trans->blocked);
273 put_transaction(cur_trans);
274 } else {
275 spin_unlock(&root->fs_info->trans_lock);
276 }
277 }
278
279 static int may_wait_transaction(struct btrfs_root *root, int type)
280 {
281 if (root->fs_info->log_root_recovering)
282 return 0;
283
284 if (type == TRANS_USERSPACE)
285 return 1;
286
287 if (type == TRANS_START &&
288 !atomic_read(&root->fs_info->open_ioctl_trans))
289 return 1;
290
291 return 0;
292 }
293
294 static struct btrfs_trans_handle *
295 start_transaction(struct btrfs_root *root, u64 num_items, int type,
296 enum btrfs_reserve_flush_enum flush)
297 {
298 struct btrfs_trans_handle *h;
299 struct btrfs_transaction *cur_trans;
300 u64 num_bytes = 0;
301 int ret;
302 u64 qgroup_reserved = 0;
303
304 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
305 return ERR_PTR(-EROFS);
306
307 if (current->journal_info) {
308 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
309 h = current->journal_info;
310 h->use_count++;
311 WARN_ON(h->use_count > 2);
312 h->orig_rsv = h->block_rsv;
313 h->block_rsv = NULL;
314 goto got_it;
315 }
316
317 /*
318 * Do the reservation before we join the transaction so we can do all
319 * the appropriate flushing if need be.
320 */
321 if (num_items > 0 && root != root->fs_info->chunk_root) {
322 if (root->fs_info->quota_enabled &&
323 is_fstree(root->root_key.objectid)) {
324 qgroup_reserved = num_items * root->leafsize;
325 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
326 if (ret)
327 return ERR_PTR(ret);
328 }
329
330 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
331 ret = btrfs_block_rsv_add(root,
332 &root->fs_info->trans_block_rsv,
333 num_bytes, flush);
334 if (ret)
335 goto reserve_fail;
336 }
337 again:
338 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
339 if (!h) {
340 ret = -ENOMEM;
341 goto alloc_fail;
342 }
343
344 /*
345 * If we are JOIN_NOLOCK we're already committing a transaction and
346 * waiting on this guy, so we don't need to do the sb_start_intwrite
347 * because we're already holding a ref. We need this because we could
348 * have raced in and did an fsync() on a file which can kick a commit
349 * and then we deadlock with somebody doing a freeze.
350 *
351 * If we are ATTACH, it means we just want to catch the current
352 * transaction and commit it, so we needn't do sb_start_intwrite().
353 */
354 if (type < TRANS_JOIN_NOLOCK)
355 sb_start_intwrite(root->fs_info->sb);
356
357 if (may_wait_transaction(root, type))
358 wait_current_trans(root);
359
360 do {
361 ret = join_transaction(root, type);
362 if (ret == -EBUSY)
363 wait_current_trans(root);
364 } while (ret == -EBUSY);
365
366 if (ret < 0) {
367 /* We must get the transaction if we are JOIN_NOLOCK. */
368 BUG_ON(type == TRANS_JOIN_NOLOCK);
369 goto join_fail;
370 }
371
372 cur_trans = root->fs_info->running_transaction;
373
374 h->transid = cur_trans->transid;
375 h->transaction = cur_trans;
376 h->blocks_used = 0;
377 h->bytes_reserved = 0;
378 h->root = root;
379 h->delayed_ref_updates = 0;
380 h->use_count = 1;
381 h->adding_csums = 0;
382 h->block_rsv = NULL;
383 h->orig_rsv = NULL;
384 h->aborted = 0;
385 h->qgroup_reserved = qgroup_reserved;
386 h->delayed_ref_elem.seq = 0;
387 h->type = type;
388 h->allocating_chunk = false;
389 INIT_LIST_HEAD(&h->qgroup_ref_list);
390 INIT_LIST_HEAD(&h->new_bgs);
391
392 smp_mb();
393 if (cur_trans->blocked && may_wait_transaction(root, type)) {
394 btrfs_commit_transaction(h, root);
395 goto again;
396 }
397
398 if (num_bytes) {
399 trace_btrfs_space_reservation(root->fs_info, "transaction",
400 h->transid, num_bytes, 1);
401 h->block_rsv = &root->fs_info->trans_block_rsv;
402 h->bytes_reserved = num_bytes;
403 }
404
405 got_it:
406 btrfs_record_root_in_trans(h, root);
407
408 if (!current->journal_info && type != TRANS_USERSPACE)
409 current->journal_info = h;
410 return h;
411
412 join_fail:
413 if (type < TRANS_JOIN_NOLOCK)
414 sb_end_intwrite(root->fs_info->sb);
415 kmem_cache_free(btrfs_trans_handle_cachep, h);
416 alloc_fail:
417 if (num_bytes)
418 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
419 num_bytes);
420 reserve_fail:
421 if (qgroup_reserved)
422 btrfs_qgroup_free(root, qgroup_reserved);
423 return ERR_PTR(ret);
424 }
425
426 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
427 int num_items)
428 {
429 return start_transaction(root, num_items, TRANS_START,
430 BTRFS_RESERVE_FLUSH_ALL);
431 }
432
433 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
434 struct btrfs_root *root, int num_items)
435 {
436 return start_transaction(root, num_items, TRANS_START,
437 BTRFS_RESERVE_FLUSH_LIMIT);
438 }
439
440 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
441 {
442 return start_transaction(root, 0, TRANS_JOIN, 0);
443 }
444
445 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
446 {
447 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
448 }
449
450 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
451 {
452 return start_transaction(root, 0, TRANS_USERSPACE, 0);
453 }
454
455 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
456 {
457 return start_transaction(root, 0, TRANS_ATTACH, 0);
458 }
459
460 /* wait for a transaction commit to be fully complete */
461 static noinline void wait_for_commit(struct btrfs_root *root,
462 struct btrfs_transaction *commit)
463 {
464 wait_event(commit->commit_wait, commit->commit_done);
465 }
466
467 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
468 {
469 struct btrfs_transaction *cur_trans = NULL, *t;
470 int ret = 0;
471
472 if (transid) {
473 if (transid <= root->fs_info->last_trans_committed)
474 goto out;
475
476 ret = -EINVAL;
477 /* find specified transaction */
478 spin_lock(&root->fs_info->trans_lock);
479 list_for_each_entry(t, &root->fs_info->trans_list, list) {
480 if (t->transid == transid) {
481 cur_trans = t;
482 atomic_inc(&cur_trans->use_count);
483 ret = 0;
484 break;
485 }
486 if (t->transid > transid) {
487 ret = 0;
488 break;
489 }
490 }
491 spin_unlock(&root->fs_info->trans_lock);
492 /* The specified transaction doesn't exist */
493 if (!cur_trans)
494 goto out;
495 } else {
496 /* find newest transaction that is committing | committed */
497 spin_lock(&root->fs_info->trans_lock);
498 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
499 list) {
500 if (t->in_commit) {
501 if (t->commit_done)
502 break;
503 cur_trans = t;
504 atomic_inc(&cur_trans->use_count);
505 break;
506 }
507 }
508 spin_unlock(&root->fs_info->trans_lock);
509 if (!cur_trans)
510 goto out; /* nothing committing|committed */
511 }
512
513 wait_for_commit(root, cur_trans);
514 put_transaction(cur_trans);
515 out:
516 return ret;
517 }
518
519 void btrfs_throttle(struct btrfs_root *root)
520 {
521 if (!atomic_read(&root->fs_info->open_ioctl_trans))
522 wait_current_trans(root);
523 }
524
525 static int should_end_transaction(struct btrfs_trans_handle *trans,
526 struct btrfs_root *root)
527 {
528 int ret;
529
530 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
531 return ret ? 1 : 0;
532 }
533
534 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
535 struct btrfs_root *root)
536 {
537 struct btrfs_transaction *cur_trans = trans->transaction;
538 int updates;
539 int err;
540
541 smp_mb();
542 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
543 return 1;
544
545 updates = trans->delayed_ref_updates;
546 trans->delayed_ref_updates = 0;
547 if (updates) {
548 err = btrfs_run_delayed_refs(trans, root, updates);
549 if (err) /* Error code will also eval true */
550 return err;
551 }
552
553 return should_end_transaction(trans, root);
554 }
555
556 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
557 struct btrfs_root *root, int throttle)
558 {
559 struct btrfs_transaction *cur_trans = trans->transaction;
560 struct btrfs_fs_info *info = root->fs_info;
561 int count = 0;
562 int lock = (trans->type != TRANS_JOIN_NOLOCK);
563 int err = 0;
564
565 if (--trans->use_count) {
566 trans->block_rsv = trans->orig_rsv;
567 return 0;
568 }
569
570 /*
571 * do the qgroup accounting as early as possible
572 */
573 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
574
575 btrfs_trans_release_metadata(trans, root);
576 trans->block_rsv = NULL;
577 /*
578 * the same root has to be passed to start_transaction and
579 * end_transaction. Subvolume quota depends on this.
580 */
581 WARN_ON(trans->root != root);
582
583 if (trans->qgroup_reserved) {
584 btrfs_qgroup_free(root, trans->qgroup_reserved);
585 trans->qgroup_reserved = 0;
586 }
587
588 if (!list_empty(&trans->new_bgs))
589 btrfs_create_pending_block_groups(trans, root);
590
591 while (count < 2) {
592 unsigned long cur = trans->delayed_ref_updates;
593 trans->delayed_ref_updates = 0;
594 if (cur &&
595 trans->transaction->delayed_refs.num_heads_ready > 64) {
596 trans->delayed_ref_updates = 0;
597 btrfs_run_delayed_refs(trans, root, cur);
598 } else {
599 break;
600 }
601 count++;
602 }
603 btrfs_trans_release_metadata(trans, root);
604 trans->block_rsv = NULL;
605
606 if (!list_empty(&trans->new_bgs))
607 btrfs_create_pending_block_groups(trans, root);
608
609 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
610 should_end_transaction(trans, root)) {
611 trans->transaction->blocked = 1;
612 smp_wmb();
613 }
614
615 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
616 if (throttle) {
617 /*
618 * We may race with somebody else here so end up having
619 * to call end_transaction on ourselves again, so inc
620 * our use_count.
621 */
622 trans->use_count++;
623 return btrfs_commit_transaction(trans, root);
624 } else {
625 wake_up_process(info->transaction_kthread);
626 }
627 }
628
629 if (trans->type < TRANS_JOIN_NOLOCK)
630 sb_end_intwrite(root->fs_info->sb);
631
632 WARN_ON(cur_trans != info->running_transaction);
633 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
634 atomic_dec(&cur_trans->num_writers);
635
636 smp_mb();
637 if (waitqueue_active(&cur_trans->writer_wait))
638 wake_up(&cur_trans->writer_wait);
639 put_transaction(cur_trans);
640
641 if (current->journal_info == trans)
642 current->journal_info = NULL;
643
644 if (throttle)
645 btrfs_run_delayed_iputs(root);
646
647 if (trans->aborted ||
648 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
649 err = -EIO;
650 }
651 assert_qgroups_uptodate(trans);
652
653 kmem_cache_free(btrfs_trans_handle_cachep, trans);
654 return err;
655 }
656
657 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
658 struct btrfs_root *root)
659 {
660 int ret;
661
662 ret = __btrfs_end_transaction(trans, root, 0);
663 if (ret)
664 return ret;
665 return 0;
666 }
667
668 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
669 struct btrfs_root *root)
670 {
671 int ret;
672
673 ret = __btrfs_end_transaction(trans, root, 1);
674 if (ret)
675 return ret;
676 return 0;
677 }
678
679 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root)
681 {
682 return __btrfs_end_transaction(trans, root, 1);
683 }
684
685 /*
686 * when btree blocks are allocated, they have some corresponding bits set for
687 * them in one of two extent_io trees. This is used to make sure all of
688 * those extents are sent to disk but does not wait on them
689 */
690 int btrfs_write_marked_extents(struct btrfs_root *root,
691 struct extent_io_tree *dirty_pages, int mark)
692 {
693 int err = 0;
694 int werr = 0;
695 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
696 struct extent_state *cached_state = NULL;
697 u64 start = 0;
698 u64 end;
699
700 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
701 mark, &cached_state)) {
702 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
703 mark, &cached_state, GFP_NOFS);
704 cached_state = NULL;
705 err = filemap_fdatawrite_range(mapping, start, end);
706 if (err)
707 werr = err;
708 cond_resched();
709 start = end + 1;
710 }
711 if (err)
712 werr = err;
713 return werr;
714 }
715
716 /*
717 * when btree blocks are allocated, they have some corresponding bits set for
718 * them in one of two extent_io trees. This is used to make sure all of
719 * those extents are on disk for transaction or log commit. We wait
720 * on all the pages and clear them from the dirty pages state tree
721 */
722 int btrfs_wait_marked_extents(struct btrfs_root *root,
723 struct extent_io_tree *dirty_pages, int mark)
724 {
725 int err = 0;
726 int werr = 0;
727 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
728 struct extent_state *cached_state = NULL;
729 u64 start = 0;
730 u64 end;
731
732 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
733 EXTENT_NEED_WAIT, &cached_state)) {
734 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
735 0, 0, &cached_state, GFP_NOFS);
736 err = filemap_fdatawait_range(mapping, start, end);
737 if (err)
738 werr = err;
739 cond_resched();
740 start = end + 1;
741 }
742 if (err)
743 werr = err;
744 return werr;
745 }
746
747 /*
748 * when btree blocks are allocated, they have some corresponding bits set for
749 * them in one of two extent_io trees. This is used to make sure all of
750 * those extents are on disk for transaction or log commit
751 */
752 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
753 struct extent_io_tree *dirty_pages, int mark)
754 {
755 int ret;
756 int ret2;
757
758 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
759 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
760
761 if (ret)
762 return ret;
763 if (ret2)
764 return ret2;
765 return 0;
766 }
767
768 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
769 struct btrfs_root *root)
770 {
771 if (!trans || !trans->transaction) {
772 struct inode *btree_inode;
773 btree_inode = root->fs_info->btree_inode;
774 return filemap_write_and_wait(btree_inode->i_mapping);
775 }
776 return btrfs_write_and_wait_marked_extents(root,
777 &trans->transaction->dirty_pages,
778 EXTENT_DIRTY);
779 }
780
781 /*
782 * this is used to update the root pointer in the tree of tree roots.
783 *
784 * But, in the case of the extent allocation tree, updating the root
785 * pointer may allocate blocks which may change the root of the extent
786 * allocation tree.
787 *
788 * So, this loops and repeats and makes sure the cowonly root didn't
789 * change while the root pointer was being updated in the metadata.
790 */
791 static int update_cowonly_root(struct btrfs_trans_handle *trans,
792 struct btrfs_root *root)
793 {
794 int ret;
795 u64 old_root_bytenr;
796 u64 old_root_used;
797 struct btrfs_root *tree_root = root->fs_info->tree_root;
798
799 old_root_used = btrfs_root_used(&root->root_item);
800 btrfs_write_dirty_block_groups(trans, root);
801
802 while (1) {
803 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
804 if (old_root_bytenr == root->node->start &&
805 old_root_used == btrfs_root_used(&root->root_item))
806 break;
807
808 btrfs_set_root_node(&root->root_item, root->node);
809 ret = btrfs_update_root(trans, tree_root,
810 &root->root_key,
811 &root->root_item);
812 if (ret)
813 return ret;
814
815 old_root_used = btrfs_root_used(&root->root_item);
816 ret = btrfs_write_dirty_block_groups(trans, root);
817 if (ret)
818 return ret;
819 }
820
821 if (root != root->fs_info->extent_root)
822 switch_commit_root(root);
823
824 return 0;
825 }
826
827 /*
828 * update all the cowonly tree roots on disk
829 *
830 * The error handling in this function may not be obvious. Any of the
831 * failures will cause the file system to go offline. We still need
832 * to clean up the delayed refs.
833 */
834 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
835 struct btrfs_root *root)
836 {
837 struct btrfs_fs_info *fs_info = root->fs_info;
838 struct list_head *next;
839 struct extent_buffer *eb;
840 int ret;
841
842 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
843 if (ret)
844 return ret;
845
846 eb = btrfs_lock_root_node(fs_info->tree_root);
847 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
848 0, &eb);
849 btrfs_tree_unlock(eb);
850 free_extent_buffer(eb);
851
852 if (ret)
853 return ret;
854
855 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
856 if (ret)
857 return ret;
858
859 ret = btrfs_run_dev_stats(trans, root->fs_info);
860 WARN_ON(ret);
861 ret = btrfs_run_dev_replace(trans, root->fs_info);
862 WARN_ON(ret);
863
864 ret = btrfs_run_qgroups(trans, root->fs_info);
865 BUG_ON(ret);
866
867 /* run_qgroups might have added some more refs */
868 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
869 BUG_ON(ret);
870
871 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
872 next = fs_info->dirty_cowonly_roots.next;
873 list_del_init(next);
874 root = list_entry(next, struct btrfs_root, dirty_list);
875
876 ret = update_cowonly_root(trans, root);
877 if (ret)
878 return ret;
879 }
880
881 down_write(&fs_info->extent_commit_sem);
882 switch_commit_root(fs_info->extent_root);
883 up_write(&fs_info->extent_commit_sem);
884
885 btrfs_after_dev_replace_commit(fs_info);
886
887 return 0;
888 }
889
890 /*
891 * dead roots are old snapshots that need to be deleted. This allocates
892 * a dirty root struct and adds it into the list of dead roots that need to
893 * be deleted
894 */
895 int btrfs_add_dead_root(struct btrfs_root *root)
896 {
897 spin_lock(&root->fs_info->trans_lock);
898 list_add(&root->root_list, &root->fs_info->dead_roots);
899 spin_unlock(&root->fs_info->trans_lock);
900 return 0;
901 }
902
903 /*
904 * update all the cowonly tree roots on disk
905 */
906 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
907 struct btrfs_root *root)
908 {
909 struct btrfs_root *gang[8];
910 struct btrfs_fs_info *fs_info = root->fs_info;
911 int i;
912 int ret;
913 int err = 0;
914
915 spin_lock(&fs_info->fs_roots_radix_lock);
916 while (1) {
917 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
918 (void **)gang, 0,
919 ARRAY_SIZE(gang),
920 BTRFS_ROOT_TRANS_TAG);
921 if (ret == 0)
922 break;
923 for (i = 0; i < ret; i++) {
924 root = gang[i];
925 radix_tree_tag_clear(&fs_info->fs_roots_radix,
926 (unsigned long)root->root_key.objectid,
927 BTRFS_ROOT_TRANS_TAG);
928 spin_unlock(&fs_info->fs_roots_radix_lock);
929
930 btrfs_free_log(trans, root);
931 btrfs_update_reloc_root(trans, root);
932 btrfs_orphan_commit_root(trans, root);
933
934 btrfs_save_ino_cache(root, trans);
935
936 /* see comments in should_cow_block() */
937 root->force_cow = 0;
938 smp_wmb();
939
940 if (root->commit_root != root->node) {
941 mutex_lock(&root->fs_commit_mutex);
942 switch_commit_root(root);
943 btrfs_unpin_free_ino(root);
944 mutex_unlock(&root->fs_commit_mutex);
945
946 btrfs_set_root_node(&root->root_item,
947 root->node);
948 }
949
950 err = btrfs_update_root(trans, fs_info->tree_root,
951 &root->root_key,
952 &root->root_item);
953 spin_lock(&fs_info->fs_roots_radix_lock);
954 if (err)
955 break;
956 }
957 }
958 spin_unlock(&fs_info->fs_roots_radix_lock);
959 return err;
960 }
961
962 /*
963 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
964 * otherwise every leaf in the btree is read and defragged.
965 */
966 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
967 {
968 struct btrfs_fs_info *info = root->fs_info;
969 struct btrfs_trans_handle *trans;
970 int ret;
971
972 if (xchg(&root->defrag_running, 1))
973 return 0;
974
975 while (1) {
976 trans = btrfs_start_transaction(root, 0);
977 if (IS_ERR(trans))
978 return PTR_ERR(trans);
979
980 ret = btrfs_defrag_leaves(trans, root, cacheonly);
981
982 btrfs_end_transaction(trans, root);
983 btrfs_btree_balance_dirty(info->tree_root);
984 cond_resched();
985
986 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
987 break;
988 }
989 root->defrag_running = 0;
990 return ret;
991 }
992
993 /*
994 * new snapshots need to be created at a very specific time in the
995 * transaction commit. This does the actual creation
996 */
997 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
998 struct btrfs_fs_info *fs_info,
999 struct btrfs_pending_snapshot *pending)
1000 {
1001 struct btrfs_key key;
1002 struct btrfs_root_item *new_root_item;
1003 struct btrfs_root *tree_root = fs_info->tree_root;
1004 struct btrfs_root *root = pending->root;
1005 struct btrfs_root *parent_root;
1006 struct btrfs_block_rsv *rsv;
1007 struct inode *parent_inode;
1008 struct btrfs_path *path;
1009 struct btrfs_dir_item *dir_item;
1010 struct dentry *parent;
1011 struct dentry *dentry;
1012 struct extent_buffer *tmp;
1013 struct extent_buffer *old;
1014 struct timespec cur_time = CURRENT_TIME;
1015 int ret;
1016 u64 to_reserve = 0;
1017 u64 index = 0;
1018 u64 objectid;
1019 u64 root_flags;
1020 uuid_le new_uuid;
1021
1022 path = btrfs_alloc_path();
1023 if (!path) {
1024 ret = pending->error = -ENOMEM;
1025 goto path_alloc_fail;
1026 }
1027
1028 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1029 if (!new_root_item) {
1030 ret = pending->error = -ENOMEM;
1031 goto root_item_alloc_fail;
1032 }
1033
1034 ret = btrfs_find_free_objectid(tree_root, &objectid);
1035 if (ret) {
1036 pending->error = ret;
1037 goto no_free_objectid;
1038 }
1039
1040 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1041
1042 if (to_reserve > 0) {
1043 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1044 to_reserve,
1045 BTRFS_RESERVE_NO_FLUSH);
1046 if (ret) {
1047 pending->error = ret;
1048 goto no_free_objectid;
1049 }
1050 }
1051
1052 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1053 objectid, pending->inherit);
1054 if (ret) {
1055 pending->error = ret;
1056 goto no_free_objectid;
1057 }
1058
1059 key.objectid = objectid;
1060 key.offset = (u64)-1;
1061 key.type = BTRFS_ROOT_ITEM_KEY;
1062
1063 rsv = trans->block_rsv;
1064 trans->block_rsv = &pending->block_rsv;
1065
1066 dentry = pending->dentry;
1067 parent = dget_parent(dentry);
1068 parent_inode = parent->d_inode;
1069 parent_root = BTRFS_I(parent_inode)->root;
1070 record_root_in_trans(trans, parent_root);
1071
1072 /*
1073 * insert the directory item
1074 */
1075 ret = btrfs_set_inode_index(parent_inode, &index);
1076 BUG_ON(ret); /* -ENOMEM */
1077
1078 /* check if there is a file/dir which has the same name. */
1079 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1080 btrfs_ino(parent_inode),
1081 dentry->d_name.name,
1082 dentry->d_name.len, 0);
1083 if (dir_item != NULL && !IS_ERR(dir_item)) {
1084 pending->error = -EEXIST;
1085 goto fail;
1086 } else if (IS_ERR(dir_item)) {
1087 ret = PTR_ERR(dir_item);
1088 btrfs_abort_transaction(trans, root, ret);
1089 goto fail;
1090 }
1091 btrfs_release_path(path);
1092
1093 /*
1094 * pull in the delayed directory update
1095 * and the delayed inode item
1096 * otherwise we corrupt the FS during
1097 * snapshot
1098 */
1099 ret = btrfs_run_delayed_items(trans, root);
1100 if (ret) { /* Transaction aborted */
1101 btrfs_abort_transaction(trans, root, ret);
1102 goto fail;
1103 }
1104
1105 record_root_in_trans(trans, root);
1106 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1107 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1108 btrfs_check_and_init_root_item(new_root_item);
1109
1110 root_flags = btrfs_root_flags(new_root_item);
1111 if (pending->readonly)
1112 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1113 else
1114 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1115 btrfs_set_root_flags(new_root_item, root_flags);
1116
1117 btrfs_set_root_generation_v2(new_root_item,
1118 trans->transid);
1119 uuid_le_gen(&new_uuid);
1120 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1121 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1122 BTRFS_UUID_SIZE);
1123 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1124 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1125 btrfs_set_root_otransid(new_root_item, trans->transid);
1126 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1127 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1128 btrfs_set_root_stransid(new_root_item, 0);
1129 btrfs_set_root_rtransid(new_root_item, 0);
1130
1131 old = btrfs_lock_root_node(root);
1132 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1133 if (ret) {
1134 btrfs_tree_unlock(old);
1135 free_extent_buffer(old);
1136 btrfs_abort_transaction(trans, root, ret);
1137 goto fail;
1138 }
1139
1140 btrfs_set_lock_blocking(old);
1141
1142 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1143 /* clean up in any case */
1144 btrfs_tree_unlock(old);
1145 free_extent_buffer(old);
1146 if (ret) {
1147 btrfs_abort_transaction(trans, root, ret);
1148 goto fail;
1149 }
1150
1151 /* see comments in should_cow_block() */
1152 root->force_cow = 1;
1153 smp_wmb();
1154
1155 btrfs_set_root_node(new_root_item, tmp);
1156 /* record when the snapshot was created in key.offset */
1157 key.offset = trans->transid;
1158 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1159 btrfs_tree_unlock(tmp);
1160 free_extent_buffer(tmp);
1161 if (ret) {
1162 btrfs_abort_transaction(trans, root, ret);
1163 goto fail;
1164 }
1165
1166 /*
1167 * insert root back/forward references
1168 */
1169 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1170 parent_root->root_key.objectid,
1171 btrfs_ino(parent_inode), index,
1172 dentry->d_name.name, dentry->d_name.len);
1173 if (ret) {
1174 btrfs_abort_transaction(trans, root, ret);
1175 goto fail;
1176 }
1177
1178 key.offset = (u64)-1;
1179 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1180 if (IS_ERR(pending->snap)) {
1181 ret = PTR_ERR(pending->snap);
1182 btrfs_abort_transaction(trans, root, ret);
1183 goto fail;
1184 }
1185
1186 ret = btrfs_reloc_post_snapshot(trans, pending);
1187 if (ret) {
1188 btrfs_abort_transaction(trans, root, ret);
1189 goto fail;
1190 }
1191
1192 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1193 if (ret) {
1194 btrfs_abort_transaction(trans, root, ret);
1195 goto fail;
1196 }
1197
1198 ret = btrfs_insert_dir_item(trans, parent_root,
1199 dentry->d_name.name, dentry->d_name.len,
1200 parent_inode, &key,
1201 BTRFS_FT_DIR, index);
1202 /* We have check then name at the beginning, so it is impossible. */
1203 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1204 if (ret) {
1205 btrfs_abort_transaction(trans, root, ret);
1206 goto fail;
1207 }
1208
1209 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1210 dentry->d_name.len * 2);
1211 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1212 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1213 if (ret)
1214 btrfs_abort_transaction(trans, root, ret);
1215 fail:
1216 dput(parent);
1217 trans->block_rsv = rsv;
1218 no_free_objectid:
1219 kfree(new_root_item);
1220 root_item_alloc_fail:
1221 btrfs_free_path(path);
1222 path_alloc_fail:
1223 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1224 return ret;
1225 }
1226
1227 /*
1228 * create all the snapshots we've scheduled for creation
1229 */
1230 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1231 struct btrfs_fs_info *fs_info)
1232 {
1233 struct btrfs_pending_snapshot *pending;
1234 struct list_head *head = &trans->transaction->pending_snapshots;
1235
1236 list_for_each_entry(pending, head, list)
1237 create_pending_snapshot(trans, fs_info, pending);
1238 return 0;
1239 }
1240
1241 static void update_super_roots(struct btrfs_root *root)
1242 {
1243 struct btrfs_root_item *root_item;
1244 struct btrfs_super_block *super;
1245
1246 super = root->fs_info->super_copy;
1247
1248 root_item = &root->fs_info->chunk_root->root_item;
1249 super->chunk_root = root_item->bytenr;
1250 super->chunk_root_generation = root_item->generation;
1251 super->chunk_root_level = root_item->level;
1252
1253 root_item = &root->fs_info->tree_root->root_item;
1254 super->root = root_item->bytenr;
1255 super->generation = root_item->generation;
1256 super->root_level = root_item->level;
1257 if (btrfs_test_opt(root, SPACE_CACHE))
1258 super->cache_generation = root_item->generation;
1259 }
1260
1261 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1262 {
1263 int ret = 0;
1264 spin_lock(&info->trans_lock);
1265 if (info->running_transaction)
1266 ret = info->running_transaction->in_commit;
1267 spin_unlock(&info->trans_lock);
1268 return ret;
1269 }
1270
1271 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1272 {
1273 int ret = 0;
1274 spin_lock(&info->trans_lock);
1275 if (info->running_transaction)
1276 ret = info->running_transaction->blocked;
1277 spin_unlock(&info->trans_lock);
1278 return ret;
1279 }
1280
1281 /*
1282 * wait for the current transaction commit to start and block subsequent
1283 * transaction joins
1284 */
1285 static void wait_current_trans_commit_start(struct btrfs_root *root,
1286 struct btrfs_transaction *trans)
1287 {
1288 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1289 }
1290
1291 /*
1292 * wait for the current transaction to start and then become unblocked.
1293 * caller holds ref.
1294 */
1295 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1296 struct btrfs_transaction *trans)
1297 {
1298 wait_event(root->fs_info->transaction_wait,
1299 trans->commit_done || (trans->in_commit && !trans->blocked));
1300 }
1301
1302 /*
1303 * commit transactions asynchronously. once btrfs_commit_transaction_async
1304 * returns, any subsequent transaction will not be allowed to join.
1305 */
1306 struct btrfs_async_commit {
1307 struct btrfs_trans_handle *newtrans;
1308 struct btrfs_root *root;
1309 struct work_struct work;
1310 };
1311
1312 static void do_async_commit(struct work_struct *work)
1313 {
1314 struct btrfs_async_commit *ac =
1315 container_of(work, struct btrfs_async_commit, work);
1316
1317 /*
1318 * We've got freeze protection passed with the transaction.
1319 * Tell lockdep about it.
1320 */
1321 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1322 rwsem_acquire_read(
1323 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1324 0, 1, _THIS_IP_);
1325
1326 current->journal_info = ac->newtrans;
1327
1328 btrfs_commit_transaction(ac->newtrans, ac->root);
1329 kfree(ac);
1330 }
1331
1332 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1333 struct btrfs_root *root,
1334 int wait_for_unblock)
1335 {
1336 struct btrfs_async_commit *ac;
1337 struct btrfs_transaction *cur_trans;
1338
1339 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1340 if (!ac)
1341 return -ENOMEM;
1342
1343 INIT_WORK(&ac->work, do_async_commit);
1344 ac->root = root;
1345 ac->newtrans = btrfs_join_transaction(root);
1346 if (IS_ERR(ac->newtrans)) {
1347 int err = PTR_ERR(ac->newtrans);
1348 kfree(ac);
1349 return err;
1350 }
1351
1352 /* take transaction reference */
1353 cur_trans = trans->transaction;
1354 atomic_inc(&cur_trans->use_count);
1355
1356 btrfs_end_transaction(trans, root);
1357
1358 /*
1359 * Tell lockdep we've released the freeze rwsem, since the
1360 * async commit thread will be the one to unlock it.
1361 */
1362 if (trans->type < TRANS_JOIN_NOLOCK)
1363 rwsem_release(
1364 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1365 1, _THIS_IP_);
1366
1367 schedule_work(&ac->work);
1368
1369 /* wait for transaction to start and unblock */
1370 if (wait_for_unblock)
1371 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1372 else
1373 wait_current_trans_commit_start(root, cur_trans);
1374
1375 if (current->journal_info == trans)
1376 current->journal_info = NULL;
1377
1378 put_transaction(cur_trans);
1379 return 0;
1380 }
1381
1382
1383 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1384 struct btrfs_root *root, int err)
1385 {
1386 struct btrfs_transaction *cur_trans = trans->transaction;
1387
1388 WARN_ON(trans->use_count > 1);
1389
1390 btrfs_abort_transaction(trans, root, err);
1391
1392 spin_lock(&root->fs_info->trans_lock);
1393 list_del_init(&cur_trans->list);
1394 if (cur_trans == root->fs_info->running_transaction) {
1395 root->fs_info->running_transaction = NULL;
1396 root->fs_info->trans_no_join = 0;
1397 }
1398 spin_unlock(&root->fs_info->trans_lock);
1399
1400 btrfs_cleanup_one_transaction(trans->transaction, root);
1401
1402 put_transaction(cur_trans);
1403 put_transaction(cur_trans);
1404
1405 trace_btrfs_transaction_commit(root);
1406
1407 btrfs_scrub_continue(root);
1408
1409 if (current->journal_info == trans)
1410 current->journal_info = NULL;
1411
1412 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1413 }
1414
1415 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1416 struct btrfs_root *root)
1417 {
1418 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1419 int snap_pending = 0;
1420 int ret;
1421
1422 if (!flush_on_commit) {
1423 spin_lock(&root->fs_info->trans_lock);
1424 if (!list_empty(&trans->transaction->pending_snapshots))
1425 snap_pending = 1;
1426 spin_unlock(&root->fs_info->trans_lock);
1427 }
1428
1429 if (flush_on_commit || snap_pending) {
1430 ret = btrfs_start_delalloc_inodes(root, 1);
1431 if (ret)
1432 return ret;
1433 btrfs_wait_ordered_extents(root, 1);
1434 }
1435
1436 ret = btrfs_run_delayed_items(trans, root);
1437 if (ret)
1438 return ret;
1439
1440 /*
1441 * running the delayed items may have added new refs. account
1442 * them now so that they hinder processing of more delayed refs
1443 * as little as possible.
1444 */
1445 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1446
1447 /*
1448 * rename don't use btrfs_join_transaction, so, once we
1449 * set the transaction to blocked above, we aren't going
1450 * to get any new ordered operations. We can safely run
1451 * it here and no for sure that nothing new will be added
1452 * to the list
1453 */
1454 btrfs_run_ordered_operations(root, 1);
1455
1456 return 0;
1457 }
1458
1459 /*
1460 * btrfs_transaction state sequence:
1461 * in_commit = 0, blocked = 0 (initial)
1462 * in_commit = 1, blocked = 1
1463 * blocked = 0
1464 * commit_done = 1
1465 */
1466 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1467 struct btrfs_root *root)
1468 {
1469 unsigned long joined = 0;
1470 struct btrfs_transaction *cur_trans = trans->transaction;
1471 struct btrfs_transaction *prev_trans = NULL;
1472 DEFINE_WAIT(wait);
1473 int ret;
1474 int should_grow = 0;
1475 unsigned long now = get_seconds();
1476
1477 ret = btrfs_run_ordered_operations(root, 0);
1478 if (ret) {
1479 btrfs_abort_transaction(trans, root, ret);
1480 goto cleanup_transaction;
1481 }
1482
1483 /* Stop the commit early if ->aborted is set */
1484 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1485 ret = cur_trans->aborted;
1486 goto cleanup_transaction;
1487 }
1488
1489 /* make a pass through all the delayed refs we have so far
1490 * any runnings procs may add more while we are here
1491 */
1492 ret = btrfs_run_delayed_refs(trans, root, 0);
1493 if (ret)
1494 goto cleanup_transaction;
1495
1496 btrfs_trans_release_metadata(trans, root);
1497 trans->block_rsv = NULL;
1498
1499 cur_trans = trans->transaction;
1500
1501 /*
1502 * set the flushing flag so procs in this transaction have to
1503 * start sending their work down.
1504 */
1505 cur_trans->delayed_refs.flushing = 1;
1506
1507 if (!list_empty(&trans->new_bgs))
1508 btrfs_create_pending_block_groups(trans, root);
1509
1510 ret = btrfs_run_delayed_refs(trans, root, 0);
1511 if (ret)
1512 goto cleanup_transaction;
1513
1514 spin_lock(&cur_trans->commit_lock);
1515 if (cur_trans->in_commit) {
1516 spin_unlock(&cur_trans->commit_lock);
1517 atomic_inc(&cur_trans->use_count);
1518 ret = btrfs_end_transaction(trans, root);
1519
1520 wait_for_commit(root, cur_trans);
1521
1522 put_transaction(cur_trans);
1523
1524 return ret;
1525 }
1526
1527 trans->transaction->in_commit = 1;
1528 trans->transaction->blocked = 1;
1529 spin_unlock(&cur_trans->commit_lock);
1530 wake_up(&root->fs_info->transaction_blocked_wait);
1531
1532 spin_lock(&root->fs_info->trans_lock);
1533 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1534 prev_trans = list_entry(cur_trans->list.prev,
1535 struct btrfs_transaction, list);
1536 if (!prev_trans->commit_done) {
1537 atomic_inc(&prev_trans->use_count);
1538 spin_unlock(&root->fs_info->trans_lock);
1539
1540 wait_for_commit(root, prev_trans);
1541
1542 put_transaction(prev_trans);
1543 } else {
1544 spin_unlock(&root->fs_info->trans_lock);
1545 }
1546 } else {
1547 spin_unlock(&root->fs_info->trans_lock);
1548 }
1549
1550 if (!btrfs_test_opt(root, SSD) &&
1551 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1552 should_grow = 1;
1553
1554 do {
1555 joined = cur_trans->num_joined;
1556
1557 WARN_ON(cur_trans != trans->transaction);
1558
1559 ret = btrfs_flush_all_pending_stuffs(trans, root);
1560 if (ret)
1561 goto cleanup_transaction;
1562
1563 prepare_to_wait(&cur_trans->writer_wait, &wait,
1564 TASK_UNINTERRUPTIBLE);
1565
1566 if (atomic_read(&cur_trans->num_writers) > 1)
1567 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1568 else if (should_grow)
1569 schedule_timeout(1);
1570
1571 finish_wait(&cur_trans->writer_wait, &wait);
1572 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1573 (should_grow && cur_trans->num_joined != joined));
1574
1575 ret = btrfs_flush_all_pending_stuffs(trans, root);
1576 if (ret)
1577 goto cleanup_transaction;
1578
1579 /*
1580 * Ok now we need to make sure to block out any other joins while we
1581 * commit the transaction. We could have started a join before setting
1582 * no_join so make sure to wait for num_writers to == 1 again.
1583 */
1584 spin_lock(&root->fs_info->trans_lock);
1585 root->fs_info->trans_no_join = 1;
1586 spin_unlock(&root->fs_info->trans_lock);
1587 wait_event(cur_trans->writer_wait,
1588 atomic_read(&cur_trans->num_writers) == 1);
1589
1590 /* ->aborted might be set after the previous check, so check it */
1591 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1592 ret = cur_trans->aborted;
1593 goto cleanup_transaction;
1594 }
1595 /*
1596 * the reloc mutex makes sure that we stop
1597 * the balancing code from coming in and moving
1598 * extents around in the middle of the commit
1599 */
1600 mutex_lock(&root->fs_info->reloc_mutex);
1601
1602 /*
1603 * We needn't worry about the delayed items because we will
1604 * deal with them in create_pending_snapshot(), which is the
1605 * core function of the snapshot creation.
1606 */
1607 ret = create_pending_snapshots(trans, root->fs_info);
1608 if (ret) {
1609 mutex_unlock(&root->fs_info->reloc_mutex);
1610 goto cleanup_transaction;
1611 }
1612
1613 /*
1614 * We insert the dir indexes of the snapshots and update the inode
1615 * of the snapshots' parents after the snapshot creation, so there
1616 * are some delayed items which are not dealt with. Now deal with
1617 * them.
1618 *
1619 * We needn't worry that this operation will corrupt the snapshots,
1620 * because all the tree which are snapshoted will be forced to COW
1621 * the nodes and leaves.
1622 */
1623 ret = btrfs_run_delayed_items(trans, root);
1624 if (ret) {
1625 mutex_unlock(&root->fs_info->reloc_mutex);
1626 goto cleanup_transaction;
1627 }
1628
1629 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1630 if (ret) {
1631 mutex_unlock(&root->fs_info->reloc_mutex);
1632 goto cleanup_transaction;
1633 }
1634
1635 /*
1636 * make sure none of the code above managed to slip in a
1637 * delayed item
1638 */
1639 btrfs_assert_delayed_root_empty(root);
1640
1641 WARN_ON(cur_trans != trans->transaction);
1642
1643 btrfs_scrub_pause(root);
1644 /* btrfs_commit_tree_roots is responsible for getting the
1645 * various roots consistent with each other. Every pointer
1646 * in the tree of tree roots has to point to the most up to date
1647 * root for every subvolume and other tree. So, we have to keep
1648 * the tree logging code from jumping in and changing any
1649 * of the trees.
1650 *
1651 * At this point in the commit, there can't be any tree-log
1652 * writers, but a little lower down we drop the trans mutex
1653 * and let new people in. By holding the tree_log_mutex
1654 * from now until after the super is written, we avoid races
1655 * with the tree-log code.
1656 */
1657 mutex_lock(&root->fs_info->tree_log_mutex);
1658
1659 ret = commit_fs_roots(trans, root);
1660 if (ret) {
1661 mutex_unlock(&root->fs_info->tree_log_mutex);
1662 mutex_unlock(&root->fs_info->reloc_mutex);
1663 goto cleanup_transaction;
1664 }
1665
1666 /* commit_fs_roots gets rid of all the tree log roots, it is now
1667 * safe to free the root of tree log roots
1668 */
1669 btrfs_free_log_root_tree(trans, root->fs_info);
1670
1671 ret = commit_cowonly_roots(trans, root);
1672 if (ret) {
1673 mutex_unlock(&root->fs_info->tree_log_mutex);
1674 mutex_unlock(&root->fs_info->reloc_mutex);
1675 goto cleanup_transaction;
1676 }
1677
1678 /*
1679 * The tasks which save the space cache and inode cache may also
1680 * update ->aborted, check it.
1681 */
1682 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1683 ret = cur_trans->aborted;
1684 mutex_unlock(&root->fs_info->tree_log_mutex);
1685 mutex_unlock(&root->fs_info->reloc_mutex);
1686 goto cleanup_transaction;
1687 }
1688
1689 btrfs_prepare_extent_commit(trans, root);
1690
1691 cur_trans = root->fs_info->running_transaction;
1692
1693 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1694 root->fs_info->tree_root->node);
1695 switch_commit_root(root->fs_info->tree_root);
1696
1697 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1698 root->fs_info->chunk_root->node);
1699 switch_commit_root(root->fs_info->chunk_root);
1700
1701 assert_qgroups_uptodate(trans);
1702 update_super_roots(root);
1703
1704 if (!root->fs_info->log_root_recovering) {
1705 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1706 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1707 }
1708
1709 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1710 sizeof(*root->fs_info->super_copy));
1711
1712 trans->transaction->blocked = 0;
1713 spin_lock(&root->fs_info->trans_lock);
1714 root->fs_info->running_transaction = NULL;
1715 root->fs_info->trans_no_join = 0;
1716 spin_unlock(&root->fs_info->trans_lock);
1717 mutex_unlock(&root->fs_info->reloc_mutex);
1718
1719 wake_up(&root->fs_info->transaction_wait);
1720
1721 ret = btrfs_write_and_wait_transaction(trans, root);
1722 if (ret) {
1723 btrfs_error(root->fs_info, ret,
1724 "Error while writing out transaction.");
1725 mutex_unlock(&root->fs_info->tree_log_mutex);
1726 goto cleanup_transaction;
1727 }
1728
1729 ret = write_ctree_super(trans, root, 0);
1730 if (ret) {
1731 mutex_unlock(&root->fs_info->tree_log_mutex);
1732 goto cleanup_transaction;
1733 }
1734
1735 /*
1736 * the super is written, we can safely allow the tree-loggers
1737 * to go about their business
1738 */
1739 mutex_unlock(&root->fs_info->tree_log_mutex);
1740
1741 btrfs_finish_extent_commit(trans, root);
1742
1743 cur_trans->commit_done = 1;
1744
1745 root->fs_info->last_trans_committed = cur_trans->transid;
1746
1747 wake_up(&cur_trans->commit_wait);
1748
1749 spin_lock(&root->fs_info->trans_lock);
1750 list_del_init(&cur_trans->list);
1751 spin_unlock(&root->fs_info->trans_lock);
1752
1753 put_transaction(cur_trans);
1754 put_transaction(cur_trans);
1755
1756 if (trans->type < TRANS_JOIN_NOLOCK)
1757 sb_end_intwrite(root->fs_info->sb);
1758
1759 trace_btrfs_transaction_commit(root);
1760
1761 btrfs_scrub_continue(root);
1762
1763 if (current->journal_info == trans)
1764 current->journal_info = NULL;
1765
1766 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1767
1768 if (current != root->fs_info->transaction_kthread)
1769 btrfs_run_delayed_iputs(root);
1770
1771 return ret;
1772
1773 cleanup_transaction:
1774 btrfs_trans_release_metadata(trans, root);
1775 trans->block_rsv = NULL;
1776 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1777 // WARN_ON(1);
1778 if (current->journal_info == trans)
1779 current->journal_info = NULL;
1780 cleanup_transaction(trans, root, ret);
1781
1782 return ret;
1783 }
1784
1785 /*
1786 * interface function to delete all the snapshots we have scheduled for deletion
1787 */
1788 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1789 {
1790 LIST_HEAD(list);
1791 struct btrfs_fs_info *fs_info = root->fs_info;
1792
1793 spin_lock(&fs_info->trans_lock);
1794 list_splice_init(&fs_info->dead_roots, &list);
1795 spin_unlock(&fs_info->trans_lock);
1796
1797 while (!list_empty(&list)) {
1798 int ret;
1799
1800 root = list_entry(list.next, struct btrfs_root, root_list);
1801 list_del(&root->root_list);
1802
1803 btrfs_kill_all_delayed_nodes(root);
1804
1805 if (btrfs_header_backref_rev(root->node) <
1806 BTRFS_MIXED_BACKREF_REV)
1807 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1808 else
1809 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1810 BUG_ON(ret < 0);
1811 }
1812 return 0;
1813 }
This page took 0.084461 seconds and 6 git commands to generate.