Btrfs: RAID5 and RAID6
[deliverable/linux.git] / fs / btrfs / transaction.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 memset(transaction, 0, sizeof(*transaction));
44 kmem_cache_free(btrfs_transaction_cachep, transaction);
45 }
46 }
47
48 static noinline void switch_commit_root(struct btrfs_root *root)
49 {
50 free_extent_buffer(root->commit_root);
51 root->commit_root = btrfs_root_node(root);
52 }
53
54 /*
55 * either allocate a new transaction or hop into the existing one
56 */
57 static noinline int join_transaction(struct btrfs_root *root, int type)
58 {
59 struct btrfs_transaction *cur_trans;
60 struct btrfs_fs_info *fs_info = root->fs_info;
61
62 spin_lock(&fs_info->trans_lock);
63 loop:
64 /* The file system has been taken offline. No new transactions. */
65 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
66 spin_unlock(&fs_info->trans_lock);
67 return -EROFS;
68 }
69
70 if (fs_info->trans_no_join) {
71 /*
72 * If we are JOIN_NOLOCK we're already committing a current
73 * transaction, we just need a handle to deal with something
74 * when committing the transaction, such as inode cache and
75 * space cache. It is a special case.
76 */
77 if (type != TRANS_JOIN_NOLOCK) {
78 spin_unlock(&fs_info->trans_lock);
79 return -EBUSY;
80 }
81 }
82
83 cur_trans = fs_info->running_transaction;
84 if (cur_trans) {
85 if (cur_trans->aborted) {
86 spin_unlock(&fs_info->trans_lock);
87 return cur_trans->aborted;
88 }
89 atomic_inc(&cur_trans->use_count);
90 atomic_inc(&cur_trans->num_writers);
91 cur_trans->num_joined++;
92 spin_unlock(&fs_info->trans_lock);
93 return 0;
94 }
95 spin_unlock(&fs_info->trans_lock);
96
97 /*
98 * If we are ATTACH, we just want to catch the current transaction,
99 * and commit it. If there is no transaction, just return ENOENT.
100 */
101 if (type == TRANS_ATTACH)
102 return -ENOENT;
103
104 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
105 if (!cur_trans)
106 return -ENOMEM;
107
108 spin_lock(&fs_info->trans_lock);
109 if (fs_info->running_transaction) {
110 /*
111 * someone started a transaction after we unlocked. Make sure
112 * to redo the trans_no_join checks above
113 */
114 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
115 cur_trans = fs_info->running_transaction;
116 goto loop;
117 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
118 spin_unlock(&fs_info->trans_lock);
119 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
120 return -EROFS;
121 }
122
123 atomic_set(&cur_trans->num_writers, 1);
124 cur_trans->num_joined = 0;
125 init_waitqueue_head(&cur_trans->writer_wait);
126 init_waitqueue_head(&cur_trans->commit_wait);
127 cur_trans->in_commit = 0;
128 cur_trans->blocked = 0;
129 /*
130 * One for this trans handle, one so it will live on until we
131 * commit the transaction.
132 */
133 atomic_set(&cur_trans->use_count, 2);
134 cur_trans->commit_done = 0;
135 cur_trans->start_time = get_seconds();
136
137 cur_trans->delayed_refs.root = RB_ROOT;
138 cur_trans->delayed_refs.num_entries = 0;
139 cur_trans->delayed_refs.num_heads_ready = 0;
140 cur_trans->delayed_refs.num_heads = 0;
141 cur_trans->delayed_refs.flushing = 0;
142 cur_trans->delayed_refs.run_delayed_start = 0;
143
144 /*
145 * although the tree mod log is per file system and not per transaction,
146 * the log must never go across transaction boundaries.
147 */
148 smp_mb();
149 if (!list_empty(&fs_info->tree_mod_seq_list))
150 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
151 "creating a fresh transaction\n");
152 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
153 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
154 "creating a fresh transaction\n");
155 atomic_set(&fs_info->tree_mod_seq, 0);
156
157 spin_lock_init(&cur_trans->commit_lock);
158 spin_lock_init(&cur_trans->delayed_refs.lock);
159
160 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
161 list_add_tail(&cur_trans->list, &fs_info->trans_list);
162 extent_io_tree_init(&cur_trans->dirty_pages,
163 fs_info->btree_inode->i_mapping);
164 fs_info->generation++;
165 cur_trans->transid = fs_info->generation;
166 fs_info->running_transaction = cur_trans;
167 cur_trans->aborted = 0;
168 spin_unlock(&fs_info->trans_lock);
169
170 return 0;
171 }
172
173 /*
174 * this does all the record keeping required to make sure that a reference
175 * counted root is properly recorded in a given transaction. This is required
176 * to make sure the old root from before we joined the transaction is deleted
177 * when the transaction commits
178 */
179 static int record_root_in_trans(struct btrfs_trans_handle *trans,
180 struct btrfs_root *root)
181 {
182 if (root->ref_cows && root->last_trans < trans->transid) {
183 WARN_ON(root == root->fs_info->extent_root);
184 WARN_ON(root->commit_root != root->node);
185
186 /*
187 * see below for in_trans_setup usage rules
188 * we have the reloc mutex held now, so there
189 * is only one writer in this function
190 */
191 root->in_trans_setup = 1;
192
193 /* make sure readers find in_trans_setup before
194 * they find our root->last_trans update
195 */
196 smp_wmb();
197
198 spin_lock(&root->fs_info->fs_roots_radix_lock);
199 if (root->last_trans == trans->transid) {
200 spin_unlock(&root->fs_info->fs_roots_radix_lock);
201 return 0;
202 }
203 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
204 (unsigned long)root->root_key.objectid,
205 BTRFS_ROOT_TRANS_TAG);
206 spin_unlock(&root->fs_info->fs_roots_radix_lock);
207 root->last_trans = trans->transid;
208
209 /* this is pretty tricky. We don't want to
210 * take the relocation lock in btrfs_record_root_in_trans
211 * unless we're really doing the first setup for this root in
212 * this transaction.
213 *
214 * Normally we'd use root->last_trans as a flag to decide
215 * if we want to take the expensive mutex.
216 *
217 * But, we have to set root->last_trans before we
218 * init the relocation root, otherwise, we trip over warnings
219 * in ctree.c. The solution used here is to flag ourselves
220 * with root->in_trans_setup. When this is 1, we're still
221 * fixing up the reloc trees and everyone must wait.
222 *
223 * When this is zero, they can trust root->last_trans and fly
224 * through btrfs_record_root_in_trans without having to take the
225 * lock. smp_wmb() makes sure that all the writes above are
226 * done before we pop in the zero below
227 */
228 btrfs_init_reloc_root(trans, root);
229 smp_wmb();
230 root->in_trans_setup = 0;
231 }
232 return 0;
233 }
234
235
236 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
237 struct btrfs_root *root)
238 {
239 if (!root->ref_cows)
240 return 0;
241
242 /*
243 * see record_root_in_trans for comments about in_trans_setup usage
244 * and barriers
245 */
246 smp_rmb();
247 if (root->last_trans == trans->transid &&
248 !root->in_trans_setup)
249 return 0;
250
251 mutex_lock(&root->fs_info->reloc_mutex);
252 record_root_in_trans(trans, root);
253 mutex_unlock(&root->fs_info->reloc_mutex);
254
255 return 0;
256 }
257
258 /* wait for commit against the current transaction to become unblocked
259 * when this is done, it is safe to start a new transaction, but the current
260 * transaction might not be fully on disk.
261 */
262 static void wait_current_trans(struct btrfs_root *root)
263 {
264 struct btrfs_transaction *cur_trans;
265
266 spin_lock(&root->fs_info->trans_lock);
267 cur_trans = root->fs_info->running_transaction;
268 if (cur_trans && cur_trans->blocked) {
269 atomic_inc(&cur_trans->use_count);
270 spin_unlock(&root->fs_info->trans_lock);
271
272 wait_event(root->fs_info->transaction_wait,
273 !cur_trans->blocked);
274 put_transaction(cur_trans);
275 } else {
276 spin_unlock(&root->fs_info->trans_lock);
277 }
278 }
279
280 static int may_wait_transaction(struct btrfs_root *root, int type)
281 {
282 if (root->fs_info->log_root_recovering)
283 return 0;
284
285 if (type == TRANS_USERSPACE)
286 return 1;
287
288 if (type == TRANS_START &&
289 !atomic_read(&root->fs_info->open_ioctl_trans))
290 return 1;
291
292 return 0;
293 }
294
295 static struct btrfs_trans_handle *
296 start_transaction(struct btrfs_root *root, u64 num_items, int type,
297 enum btrfs_reserve_flush_enum flush)
298 {
299 struct btrfs_trans_handle *h;
300 struct btrfs_transaction *cur_trans;
301 u64 num_bytes = 0;
302 int ret;
303 u64 qgroup_reserved = 0;
304
305 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
306 return ERR_PTR(-EROFS);
307
308 if (current->journal_info) {
309 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
310 h = current->journal_info;
311 h->use_count++;
312 WARN_ON(h->use_count > 2);
313 h->orig_rsv = h->block_rsv;
314 h->block_rsv = NULL;
315 goto got_it;
316 }
317
318 /*
319 * Do the reservation before we join the transaction so we can do all
320 * the appropriate flushing if need be.
321 */
322 if (num_items > 0 && root != root->fs_info->chunk_root) {
323 if (root->fs_info->quota_enabled &&
324 is_fstree(root->root_key.objectid)) {
325 qgroup_reserved = num_items * root->leafsize;
326 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
327 if (ret)
328 return ERR_PTR(ret);
329 }
330
331 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
332 ret = btrfs_block_rsv_add(root,
333 &root->fs_info->trans_block_rsv,
334 num_bytes, flush);
335 if (ret)
336 return ERR_PTR(ret);
337 }
338 again:
339 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
340 if (!h)
341 return ERR_PTR(-ENOMEM);
342
343 /*
344 * If we are JOIN_NOLOCK we're already committing a transaction and
345 * waiting on this guy, so we don't need to do the sb_start_intwrite
346 * because we're already holding a ref. We need this because we could
347 * have raced in and did an fsync() on a file which can kick a commit
348 * and then we deadlock with somebody doing a freeze.
349 *
350 * If we are ATTACH, it means we just want to catch the current
351 * transaction and commit it, so we needn't do sb_start_intwrite().
352 */
353 if (type < TRANS_JOIN_NOLOCK)
354 sb_start_intwrite(root->fs_info->sb);
355
356 if (may_wait_transaction(root, type))
357 wait_current_trans(root);
358
359 do {
360 ret = join_transaction(root, type);
361 if (ret == -EBUSY)
362 wait_current_trans(root);
363 } while (ret == -EBUSY);
364
365 if (ret < 0) {
366 /* We must get the transaction if we are JOIN_NOLOCK. */
367 BUG_ON(type == TRANS_JOIN_NOLOCK);
368
369 if (type < TRANS_JOIN_NOLOCK)
370 sb_end_intwrite(root->fs_info->sb);
371 kmem_cache_free(btrfs_trans_handle_cachep, h);
372 return ERR_PTR(ret);
373 }
374
375 cur_trans = root->fs_info->running_transaction;
376
377 h->transid = cur_trans->transid;
378 h->transaction = cur_trans;
379 h->blocks_used = 0;
380 h->bytes_reserved = 0;
381 h->root = root;
382 h->delayed_ref_updates = 0;
383 h->use_count = 1;
384 h->adding_csums = 0;
385 h->block_rsv = NULL;
386 h->orig_rsv = NULL;
387 h->aborted = 0;
388 h->qgroup_reserved = qgroup_reserved;
389 h->delayed_ref_elem.seq = 0;
390 h->type = type;
391 INIT_LIST_HEAD(&h->qgroup_ref_list);
392 INIT_LIST_HEAD(&h->new_bgs);
393
394 smp_mb();
395 if (cur_trans->blocked && may_wait_transaction(root, type)) {
396 btrfs_commit_transaction(h, root);
397 goto again;
398 }
399
400 if (num_bytes) {
401 trace_btrfs_space_reservation(root->fs_info, "transaction",
402 h->transid, num_bytes, 1);
403 h->block_rsv = &root->fs_info->trans_block_rsv;
404 h->bytes_reserved = num_bytes;
405 }
406
407 got_it:
408 btrfs_record_root_in_trans(h, root);
409
410 if (!current->journal_info && type != TRANS_USERSPACE)
411 current->journal_info = h;
412 return h;
413 }
414
415 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
416 int num_items)
417 {
418 return start_transaction(root, num_items, TRANS_START,
419 BTRFS_RESERVE_FLUSH_ALL);
420 }
421
422 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
423 struct btrfs_root *root, int num_items)
424 {
425 return start_transaction(root, num_items, TRANS_START,
426 BTRFS_RESERVE_FLUSH_LIMIT);
427 }
428
429 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
430 {
431 return start_transaction(root, 0, TRANS_JOIN, 0);
432 }
433
434 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
435 {
436 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
437 }
438
439 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
440 {
441 return start_transaction(root, 0, TRANS_USERSPACE, 0);
442 }
443
444 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
445 {
446 return start_transaction(root, 0, TRANS_ATTACH, 0);
447 }
448
449 /* wait for a transaction commit to be fully complete */
450 static noinline void wait_for_commit(struct btrfs_root *root,
451 struct btrfs_transaction *commit)
452 {
453 wait_event(commit->commit_wait, commit->commit_done);
454 }
455
456 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
457 {
458 struct btrfs_transaction *cur_trans = NULL, *t;
459 int ret = 0;
460
461 if (transid) {
462 if (transid <= root->fs_info->last_trans_committed)
463 goto out;
464
465 ret = -EINVAL;
466 /* find specified transaction */
467 spin_lock(&root->fs_info->trans_lock);
468 list_for_each_entry(t, &root->fs_info->trans_list, list) {
469 if (t->transid == transid) {
470 cur_trans = t;
471 atomic_inc(&cur_trans->use_count);
472 ret = 0;
473 break;
474 }
475 if (t->transid > transid) {
476 ret = 0;
477 break;
478 }
479 }
480 spin_unlock(&root->fs_info->trans_lock);
481 /* The specified transaction doesn't exist */
482 if (!cur_trans)
483 goto out;
484 } else {
485 /* find newest transaction that is committing | committed */
486 spin_lock(&root->fs_info->trans_lock);
487 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
488 list) {
489 if (t->in_commit) {
490 if (t->commit_done)
491 break;
492 cur_trans = t;
493 atomic_inc(&cur_trans->use_count);
494 break;
495 }
496 }
497 spin_unlock(&root->fs_info->trans_lock);
498 if (!cur_trans)
499 goto out; /* nothing committing|committed */
500 }
501
502 wait_for_commit(root, cur_trans);
503 put_transaction(cur_trans);
504 out:
505 return ret;
506 }
507
508 void btrfs_throttle(struct btrfs_root *root)
509 {
510 if (!atomic_read(&root->fs_info->open_ioctl_trans))
511 wait_current_trans(root);
512 }
513
514 static int should_end_transaction(struct btrfs_trans_handle *trans,
515 struct btrfs_root *root)
516 {
517 int ret;
518
519 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
520 return ret ? 1 : 0;
521 }
522
523 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
524 struct btrfs_root *root)
525 {
526 struct btrfs_transaction *cur_trans = trans->transaction;
527 int updates;
528 int err;
529
530 smp_mb();
531 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
532 return 1;
533
534 updates = trans->delayed_ref_updates;
535 trans->delayed_ref_updates = 0;
536 if (updates) {
537 err = btrfs_run_delayed_refs(trans, root, updates);
538 if (err) /* Error code will also eval true */
539 return err;
540 }
541
542 return should_end_transaction(trans, root);
543 }
544
545 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
546 struct btrfs_root *root, int throttle)
547 {
548 struct btrfs_transaction *cur_trans = trans->transaction;
549 struct btrfs_fs_info *info = root->fs_info;
550 int count = 0;
551 int lock = (trans->type != TRANS_JOIN_NOLOCK);
552 int err = 0;
553
554 if (--trans->use_count) {
555 trans->block_rsv = trans->orig_rsv;
556 return 0;
557 }
558
559 /*
560 * do the qgroup accounting as early as possible
561 */
562 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
563
564 btrfs_trans_release_metadata(trans, root);
565 trans->block_rsv = NULL;
566 /*
567 * the same root has to be passed to start_transaction and
568 * end_transaction. Subvolume quota depends on this.
569 */
570 WARN_ON(trans->root != root);
571
572 if (trans->qgroup_reserved) {
573 btrfs_qgroup_free(root, trans->qgroup_reserved);
574 trans->qgroup_reserved = 0;
575 }
576
577 if (!list_empty(&trans->new_bgs))
578 btrfs_create_pending_block_groups(trans, root);
579
580 while (count < 2) {
581 unsigned long cur = trans->delayed_ref_updates;
582 trans->delayed_ref_updates = 0;
583 if (cur &&
584 trans->transaction->delayed_refs.num_heads_ready > 64) {
585 trans->delayed_ref_updates = 0;
586 btrfs_run_delayed_refs(trans, root, cur);
587 } else {
588 break;
589 }
590 count++;
591 }
592 btrfs_trans_release_metadata(trans, root);
593 trans->block_rsv = NULL;
594
595 if (!list_empty(&trans->new_bgs))
596 btrfs_create_pending_block_groups(trans, root);
597
598 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
599 should_end_transaction(trans, root)) {
600 trans->transaction->blocked = 1;
601 smp_wmb();
602 }
603
604 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
605 if (throttle) {
606 /*
607 * We may race with somebody else here so end up having
608 * to call end_transaction on ourselves again, so inc
609 * our use_count.
610 */
611 trans->use_count++;
612 return btrfs_commit_transaction(trans, root);
613 } else {
614 wake_up_process(info->transaction_kthread);
615 }
616 }
617
618 if (trans->type < TRANS_JOIN_NOLOCK)
619 sb_end_intwrite(root->fs_info->sb);
620
621 WARN_ON(cur_trans != info->running_transaction);
622 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
623 atomic_dec(&cur_trans->num_writers);
624
625 smp_mb();
626 if (waitqueue_active(&cur_trans->writer_wait))
627 wake_up(&cur_trans->writer_wait);
628 put_transaction(cur_trans);
629
630 if (current->journal_info == trans)
631 current->journal_info = NULL;
632
633 if (throttle)
634 btrfs_run_delayed_iputs(root);
635
636 if (trans->aborted ||
637 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
638 err = -EIO;
639 }
640 assert_qgroups_uptodate(trans);
641
642 memset(trans, 0, sizeof(*trans));
643 kmem_cache_free(btrfs_trans_handle_cachep, trans);
644 return err;
645 }
646
647 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
648 struct btrfs_root *root)
649 {
650 int ret;
651
652 ret = __btrfs_end_transaction(trans, root, 0);
653 if (ret)
654 return ret;
655 return 0;
656 }
657
658 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
659 struct btrfs_root *root)
660 {
661 int ret;
662
663 ret = __btrfs_end_transaction(trans, root, 1);
664 if (ret)
665 return ret;
666 return 0;
667 }
668
669 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
670 struct btrfs_root *root)
671 {
672 return __btrfs_end_transaction(trans, root, 1);
673 }
674
675 /*
676 * when btree blocks are allocated, they have some corresponding bits set for
677 * them in one of two extent_io trees. This is used to make sure all of
678 * those extents are sent to disk but does not wait on them
679 */
680 int btrfs_write_marked_extents(struct btrfs_root *root,
681 struct extent_io_tree *dirty_pages, int mark)
682 {
683 int err = 0;
684 int werr = 0;
685 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
686 struct extent_state *cached_state = NULL;
687 u64 start = 0;
688 u64 end;
689 struct blk_plug plug;
690
691 blk_start_plug(&plug);
692 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
693 mark, &cached_state)) {
694 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
695 mark, &cached_state, GFP_NOFS);
696 cached_state = NULL;
697 err = filemap_fdatawrite_range(mapping, start, end);
698 if (err)
699 werr = err;
700 cond_resched();
701 start = end + 1;
702 }
703 if (err)
704 werr = err;
705 blk_finish_plug(&plug);
706 return werr;
707 }
708
709 /*
710 * when btree blocks are allocated, they have some corresponding bits set for
711 * them in one of two extent_io trees. This is used to make sure all of
712 * those extents are on disk for transaction or log commit. We wait
713 * on all the pages and clear them from the dirty pages state tree
714 */
715 int btrfs_wait_marked_extents(struct btrfs_root *root,
716 struct extent_io_tree *dirty_pages, int mark)
717 {
718 int err = 0;
719 int werr = 0;
720 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
721 struct extent_state *cached_state = NULL;
722 u64 start = 0;
723 u64 end;
724
725 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
726 EXTENT_NEED_WAIT, &cached_state)) {
727 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
728 0, 0, &cached_state, GFP_NOFS);
729 err = filemap_fdatawait_range(mapping, start, end);
730 if (err)
731 werr = err;
732 cond_resched();
733 start = end + 1;
734 }
735 if (err)
736 werr = err;
737 return werr;
738 }
739
740 /*
741 * when btree blocks are allocated, they have some corresponding bits set for
742 * them in one of two extent_io trees. This is used to make sure all of
743 * those extents are on disk for transaction or log commit
744 */
745 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
746 struct extent_io_tree *dirty_pages, int mark)
747 {
748 int ret;
749 int ret2;
750
751 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
752 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
753
754 if (ret)
755 return ret;
756 if (ret2)
757 return ret2;
758 return 0;
759 }
760
761 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
762 struct btrfs_root *root)
763 {
764 if (!trans || !trans->transaction) {
765 struct inode *btree_inode;
766 btree_inode = root->fs_info->btree_inode;
767 return filemap_write_and_wait(btree_inode->i_mapping);
768 }
769 return btrfs_write_and_wait_marked_extents(root,
770 &trans->transaction->dirty_pages,
771 EXTENT_DIRTY);
772 }
773
774 /*
775 * this is used to update the root pointer in the tree of tree roots.
776 *
777 * But, in the case of the extent allocation tree, updating the root
778 * pointer may allocate blocks which may change the root of the extent
779 * allocation tree.
780 *
781 * So, this loops and repeats and makes sure the cowonly root didn't
782 * change while the root pointer was being updated in the metadata.
783 */
784 static int update_cowonly_root(struct btrfs_trans_handle *trans,
785 struct btrfs_root *root)
786 {
787 int ret;
788 u64 old_root_bytenr;
789 u64 old_root_used;
790 struct btrfs_root *tree_root = root->fs_info->tree_root;
791
792 old_root_used = btrfs_root_used(&root->root_item);
793 btrfs_write_dirty_block_groups(trans, root);
794
795 while (1) {
796 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
797 if (old_root_bytenr == root->node->start &&
798 old_root_used == btrfs_root_used(&root->root_item))
799 break;
800
801 btrfs_set_root_node(&root->root_item, root->node);
802 ret = btrfs_update_root(trans, tree_root,
803 &root->root_key,
804 &root->root_item);
805 if (ret)
806 return ret;
807
808 old_root_used = btrfs_root_used(&root->root_item);
809 ret = btrfs_write_dirty_block_groups(trans, root);
810 if (ret)
811 return ret;
812 }
813
814 if (root != root->fs_info->extent_root)
815 switch_commit_root(root);
816
817 return 0;
818 }
819
820 /*
821 * update all the cowonly tree roots on disk
822 *
823 * The error handling in this function may not be obvious. Any of the
824 * failures will cause the file system to go offline. We still need
825 * to clean up the delayed refs.
826 */
827 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
828 struct btrfs_root *root)
829 {
830 struct btrfs_fs_info *fs_info = root->fs_info;
831 struct list_head *next;
832 struct extent_buffer *eb;
833 int ret;
834
835 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
836 if (ret)
837 return ret;
838
839 eb = btrfs_lock_root_node(fs_info->tree_root);
840 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
841 0, &eb);
842 btrfs_tree_unlock(eb);
843 free_extent_buffer(eb);
844
845 if (ret)
846 return ret;
847
848 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
849 if (ret)
850 return ret;
851
852 ret = btrfs_run_dev_stats(trans, root->fs_info);
853 WARN_ON(ret);
854 ret = btrfs_run_dev_replace(trans, root->fs_info);
855 WARN_ON(ret);
856
857 ret = btrfs_run_qgroups(trans, root->fs_info);
858 BUG_ON(ret);
859
860 /* run_qgroups might have added some more refs */
861 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
862 BUG_ON(ret);
863
864 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
865 next = fs_info->dirty_cowonly_roots.next;
866 list_del_init(next);
867 root = list_entry(next, struct btrfs_root, dirty_list);
868
869 ret = update_cowonly_root(trans, root);
870 if (ret)
871 return ret;
872 }
873
874 down_write(&fs_info->extent_commit_sem);
875 switch_commit_root(fs_info->extent_root);
876 up_write(&fs_info->extent_commit_sem);
877
878 btrfs_after_dev_replace_commit(fs_info);
879
880 return 0;
881 }
882
883 /*
884 * dead roots are old snapshots that need to be deleted. This allocates
885 * a dirty root struct and adds it into the list of dead roots that need to
886 * be deleted
887 */
888 int btrfs_add_dead_root(struct btrfs_root *root)
889 {
890 spin_lock(&root->fs_info->trans_lock);
891 list_add(&root->root_list, &root->fs_info->dead_roots);
892 spin_unlock(&root->fs_info->trans_lock);
893 return 0;
894 }
895
896 /*
897 * update all the cowonly tree roots on disk
898 */
899 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
900 struct btrfs_root *root)
901 {
902 struct btrfs_root *gang[8];
903 struct btrfs_fs_info *fs_info = root->fs_info;
904 int i;
905 int ret;
906 int err = 0;
907
908 spin_lock(&fs_info->fs_roots_radix_lock);
909 while (1) {
910 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
911 (void **)gang, 0,
912 ARRAY_SIZE(gang),
913 BTRFS_ROOT_TRANS_TAG);
914 if (ret == 0)
915 break;
916 for (i = 0; i < ret; i++) {
917 root = gang[i];
918 radix_tree_tag_clear(&fs_info->fs_roots_radix,
919 (unsigned long)root->root_key.objectid,
920 BTRFS_ROOT_TRANS_TAG);
921 spin_unlock(&fs_info->fs_roots_radix_lock);
922
923 btrfs_free_log(trans, root);
924 btrfs_update_reloc_root(trans, root);
925 btrfs_orphan_commit_root(trans, root);
926
927 btrfs_save_ino_cache(root, trans);
928
929 /* see comments in should_cow_block() */
930 root->force_cow = 0;
931 smp_wmb();
932
933 if (root->commit_root != root->node) {
934 mutex_lock(&root->fs_commit_mutex);
935 switch_commit_root(root);
936 btrfs_unpin_free_ino(root);
937 mutex_unlock(&root->fs_commit_mutex);
938
939 btrfs_set_root_node(&root->root_item,
940 root->node);
941 }
942
943 err = btrfs_update_root(trans, fs_info->tree_root,
944 &root->root_key,
945 &root->root_item);
946 spin_lock(&fs_info->fs_roots_radix_lock);
947 if (err)
948 break;
949 }
950 }
951 spin_unlock(&fs_info->fs_roots_radix_lock);
952 return err;
953 }
954
955 /*
956 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
957 * otherwise every leaf in the btree is read and defragged.
958 */
959 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
960 {
961 struct btrfs_fs_info *info = root->fs_info;
962 struct btrfs_trans_handle *trans;
963 int ret;
964
965 if (xchg(&root->defrag_running, 1))
966 return 0;
967
968 while (1) {
969 trans = btrfs_start_transaction(root, 0);
970 if (IS_ERR(trans))
971 return PTR_ERR(trans);
972
973 ret = btrfs_defrag_leaves(trans, root, cacheonly);
974
975 btrfs_end_transaction(trans, root);
976 btrfs_btree_balance_dirty(info->tree_root);
977 cond_resched();
978
979 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
980 break;
981 }
982 root->defrag_running = 0;
983 return ret;
984 }
985
986 /*
987 * new snapshots need to be created at a very specific time in the
988 * transaction commit. This does the actual creation
989 */
990 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
991 struct btrfs_fs_info *fs_info,
992 struct btrfs_pending_snapshot *pending)
993 {
994 struct btrfs_key key;
995 struct btrfs_root_item *new_root_item;
996 struct btrfs_root *tree_root = fs_info->tree_root;
997 struct btrfs_root *root = pending->root;
998 struct btrfs_root *parent_root;
999 struct btrfs_block_rsv *rsv;
1000 struct inode *parent_inode;
1001 struct btrfs_path *path;
1002 struct btrfs_dir_item *dir_item;
1003 struct dentry *parent;
1004 struct dentry *dentry;
1005 struct extent_buffer *tmp;
1006 struct extent_buffer *old;
1007 struct timespec cur_time = CURRENT_TIME;
1008 int ret;
1009 u64 to_reserve = 0;
1010 u64 index = 0;
1011 u64 objectid;
1012 u64 root_flags;
1013 uuid_le new_uuid;
1014
1015 path = btrfs_alloc_path();
1016 if (!path) {
1017 ret = pending->error = -ENOMEM;
1018 goto path_alloc_fail;
1019 }
1020
1021 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1022 if (!new_root_item) {
1023 ret = pending->error = -ENOMEM;
1024 goto root_item_alloc_fail;
1025 }
1026
1027 ret = btrfs_find_free_objectid(tree_root, &objectid);
1028 if (ret) {
1029 pending->error = ret;
1030 goto no_free_objectid;
1031 }
1032
1033 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1034
1035 if (to_reserve > 0) {
1036 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1037 to_reserve,
1038 BTRFS_RESERVE_NO_FLUSH);
1039 if (ret) {
1040 pending->error = ret;
1041 goto no_free_objectid;
1042 }
1043 }
1044
1045 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1046 objectid, pending->inherit);
1047 if (ret) {
1048 pending->error = ret;
1049 goto no_free_objectid;
1050 }
1051
1052 key.objectid = objectid;
1053 key.offset = (u64)-1;
1054 key.type = BTRFS_ROOT_ITEM_KEY;
1055
1056 rsv = trans->block_rsv;
1057 trans->block_rsv = &pending->block_rsv;
1058
1059 dentry = pending->dentry;
1060 parent = dget_parent(dentry);
1061 parent_inode = parent->d_inode;
1062 parent_root = BTRFS_I(parent_inode)->root;
1063 record_root_in_trans(trans, parent_root);
1064
1065 /*
1066 * insert the directory item
1067 */
1068 ret = btrfs_set_inode_index(parent_inode, &index);
1069 BUG_ON(ret); /* -ENOMEM */
1070
1071 /* check if there is a file/dir which has the same name. */
1072 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1073 btrfs_ino(parent_inode),
1074 dentry->d_name.name,
1075 dentry->d_name.len, 0);
1076 if (dir_item != NULL && !IS_ERR(dir_item)) {
1077 pending->error = -EEXIST;
1078 goto fail;
1079 } else if (IS_ERR(dir_item)) {
1080 ret = PTR_ERR(dir_item);
1081 btrfs_abort_transaction(trans, root, ret);
1082 goto fail;
1083 }
1084 btrfs_release_path(path);
1085
1086 /*
1087 * pull in the delayed directory update
1088 * and the delayed inode item
1089 * otherwise we corrupt the FS during
1090 * snapshot
1091 */
1092 ret = btrfs_run_delayed_items(trans, root);
1093 if (ret) { /* Transaction aborted */
1094 btrfs_abort_transaction(trans, root, ret);
1095 goto fail;
1096 }
1097
1098 record_root_in_trans(trans, root);
1099 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1100 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1101 btrfs_check_and_init_root_item(new_root_item);
1102
1103 root_flags = btrfs_root_flags(new_root_item);
1104 if (pending->readonly)
1105 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1106 else
1107 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1108 btrfs_set_root_flags(new_root_item, root_flags);
1109
1110 btrfs_set_root_generation_v2(new_root_item,
1111 trans->transid);
1112 uuid_le_gen(&new_uuid);
1113 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1114 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1115 BTRFS_UUID_SIZE);
1116 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1117 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1118 btrfs_set_root_otransid(new_root_item, trans->transid);
1119 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1120 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1121 btrfs_set_root_stransid(new_root_item, 0);
1122 btrfs_set_root_rtransid(new_root_item, 0);
1123
1124 old = btrfs_lock_root_node(root);
1125 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1126 if (ret) {
1127 btrfs_tree_unlock(old);
1128 free_extent_buffer(old);
1129 btrfs_abort_transaction(trans, root, ret);
1130 goto fail;
1131 }
1132
1133 btrfs_set_lock_blocking(old);
1134
1135 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1136 /* clean up in any case */
1137 btrfs_tree_unlock(old);
1138 free_extent_buffer(old);
1139 if (ret) {
1140 btrfs_abort_transaction(trans, root, ret);
1141 goto fail;
1142 }
1143
1144 /* see comments in should_cow_block() */
1145 root->force_cow = 1;
1146 smp_wmb();
1147
1148 btrfs_set_root_node(new_root_item, tmp);
1149 /* record when the snapshot was created in key.offset */
1150 key.offset = trans->transid;
1151 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1152 btrfs_tree_unlock(tmp);
1153 free_extent_buffer(tmp);
1154 if (ret) {
1155 btrfs_abort_transaction(trans, root, ret);
1156 goto fail;
1157 }
1158
1159 /*
1160 * insert root back/forward references
1161 */
1162 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1163 parent_root->root_key.objectid,
1164 btrfs_ino(parent_inode), index,
1165 dentry->d_name.name, dentry->d_name.len);
1166 if (ret) {
1167 btrfs_abort_transaction(trans, root, ret);
1168 goto fail;
1169 }
1170
1171 key.offset = (u64)-1;
1172 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1173 if (IS_ERR(pending->snap)) {
1174 ret = PTR_ERR(pending->snap);
1175 btrfs_abort_transaction(trans, root, ret);
1176 goto fail;
1177 }
1178
1179 ret = btrfs_reloc_post_snapshot(trans, pending);
1180 if (ret) {
1181 btrfs_abort_transaction(trans, root, ret);
1182 goto fail;
1183 }
1184
1185 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1186 if (ret) {
1187 btrfs_abort_transaction(trans, root, ret);
1188 goto fail;
1189 }
1190
1191 ret = btrfs_insert_dir_item(trans, parent_root,
1192 dentry->d_name.name, dentry->d_name.len,
1193 parent_inode, &key,
1194 BTRFS_FT_DIR, index);
1195 /* We have check then name at the beginning, so it is impossible. */
1196 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1197 if (ret) {
1198 btrfs_abort_transaction(trans, root, ret);
1199 goto fail;
1200 }
1201
1202 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1203 dentry->d_name.len * 2);
1204 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1205 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1206 if (ret)
1207 btrfs_abort_transaction(trans, root, ret);
1208 fail:
1209 dput(parent);
1210 trans->block_rsv = rsv;
1211 no_free_objectid:
1212 kfree(new_root_item);
1213 root_item_alloc_fail:
1214 btrfs_free_path(path);
1215 path_alloc_fail:
1216 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1217 return ret;
1218 }
1219
1220 /*
1221 * create all the snapshots we've scheduled for creation
1222 */
1223 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1224 struct btrfs_fs_info *fs_info)
1225 {
1226 struct btrfs_pending_snapshot *pending;
1227 struct list_head *head = &trans->transaction->pending_snapshots;
1228
1229 list_for_each_entry(pending, head, list)
1230 create_pending_snapshot(trans, fs_info, pending);
1231 return 0;
1232 }
1233
1234 static void update_super_roots(struct btrfs_root *root)
1235 {
1236 struct btrfs_root_item *root_item;
1237 struct btrfs_super_block *super;
1238
1239 super = root->fs_info->super_copy;
1240
1241 root_item = &root->fs_info->chunk_root->root_item;
1242 super->chunk_root = root_item->bytenr;
1243 super->chunk_root_generation = root_item->generation;
1244 super->chunk_root_level = root_item->level;
1245
1246 root_item = &root->fs_info->tree_root->root_item;
1247 super->root = root_item->bytenr;
1248 super->generation = root_item->generation;
1249 super->root_level = root_item->level;
1250 if (btrfs_test_opt(root, SPACE_CACHE))
1251 super->cache_generation = root_item->generation;
1252 }
1253
1254 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1255 {
1256 int ret = 0;
1257 spin_lock(&info->trans_lock);
1258 if (info->running_transaction)
1259 ret = info->running_transaction->in_commit;
1260 spin_unlock(&info->trans_lock);
1261 return ret;
1262 }
1263
1264 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1265 {
1266 int ret = 0;
1267 spin_lock(&info->trans_lock);
1268 if (info->running_transaction)
1269 ret = info->running_transaction->blocked;
1270 spin_unlock(&info->trans_lock);
1271 return ret;
1272 }
1273
1274 /*
1275 * wait for the current transaction commit to start and block subsequent
1276 * transaction joins
1277 */
1278 static void wait_current_trans_commit_start(struct btrfs_root *root,
1279 struct btrfs_transaction *trans)
1280 {
1281 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1282 }
1283
1284 /*
1285 * wait for the current transaction to start and then become unblocked.
1286 * caller holds ref.
1287 */
1288 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1289 struct btrfs_transaction *trans)
1290 {
1291 wait_event(root->fs_info->transaction_wait,
1292 trans->commit_done || (trans->in_commit && !trans->blocked));
1293 }
1294
1295 /*
1296 * commit transactions asynchronously. once btrfs_commit_transaction_async
1297 * returns, any subsequent transaction will not be allowed to join.
1298 */
1299 struct btrfs_async_commit {
1300 struct btrfs_trans_handle *newtrans;
1301 struct btrfs_root *root;
1302 struct delayed_work work;
1303 };
1304
1305 static void do_async_commit(struct work_struct *work)
1306 {
1307 struct btrfs_async_commit *ac =
1308 container_of(work, struct btrfs_async_commit, work.work);
1309
1310 /*
1311 * We've got freeze protection passed with the transaction.
1312 * Tell lockdep about it.
1313 */
1314 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1315 rwsem_acquire_read(
1316 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1317 0, 1, _THIS_IP_);
1318
1319 current->journal_info = ac->newtrans;
1320
1321 btrfs_commit_transaction(ac->newtrans, ac->root);
1322 kfree(ac);
1323 }
1324
1325 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1326 struct btrfs_root *root,
1327 int wait_for_unblock)
1328 {
1329 struct btrfs_async_commit *ac;
1330 struct btrfs_transaction *cur_trans;
1331
1332 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1333 if (!ac)
1334 return -ENOMEM;
1335
1336 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1337 ac->root = root;
1338 ac->newtrans = btrfs_join_transaction(root);
1339 if (IS_ERR(ac->newtrans)) {
1340 int err = PTR_ERR(ac->newtrans);
1341 kfree(ac);
1342 return err;
1343 }
1344
1345 /* take transaction reference */
1346 cur_trans = trans->transaction;
1347 atomic_inc(&cur_trans->use_count);
1348
1349 btrfs_end_transaction(trans, root);
1350
1351 /*
1352 * Tell lockdep we've released the freeze rwsem, since the
1353 * async commit thread will be the one to unlock it.
1354 */
1355 if (trans->type < TRANS_JOIN_NOLOCK)
1356 rwsem_release(
1357 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1358 1, _THIS_IP_);
1359
1360 schedule_delayed_work(&ac->work, 0);
1361
1362 /* wait for transaction to start and unblock */
1363 if (wait_for_unblock)
1364 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1365 else
1366 wait_current_trans_commit_start(root, cur_trans);
1367
1368 if (current->journal_info == trans)
1369 current->journal_info = NULL;
1370
1371 put_transaction(cur_trans);
1372 return 0;
1373 }
1374
1375
1376 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1377 struct btrfs_root *root, int err)
1378 {
1379 struct btrfs_transaction *cur_trans = trans->transaction;
1380
1381 WARN_ON(trans->use_count > 1);
1382
1383 btrfs_abort_transaction(trans, root, err);
1384
1385 spin_lock(&root->fs_info->trans_lock);
1386 list_del_init(&cur_trans->list);
1387 if (cur_trans == root->fs_info->running_transaction) {
1388 root->fs_info->running_transaction = NULL;
1389 root->fs_info->trans_no_join = 0;
1390 }
1391 spin_unlock(&root->fs_info->trans_lock);
1392
1393 btrfs_cleanup_one_transaction(trans->transaction, root);
1394
1395 put_transaction(cur_trans);
1396 put_transaction(cur_trans);
1397
1398 trace_btrfs_transaction_commit(root);
1399
1400 btrfs_scrub_continue(root);
1401
1402 if (current->journal_info == trans)
1403 current->journal_info = NULL;
1404
1405 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1406 }
1407
1408 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1409 struct btrfs_root *root)
1410 {
1411 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1412 int snap_pending = 0;
1413 int ret;
1414
1415 if (!flush_on_commit) {
1416 spin_lock(&root->fs_info->trans_lock);
1417 if (!list_empty(&trans->transaction->pending_snapshots))
1418 snap_pending = 1;
1419 spin_unlock(&root->fs_info->trans_lock);
1420 }
1421
1422 if (flush_on_commit || snap_pending) {
1423 btrfs_start_delalloc_inodes(root, 1);
1424 btrfs_wait_ordered_extents(root, 1);
1425 }
1426
1427 ret = btrfs_run_delayed_items(trans, root);
1428 if (ret)
1429 return ret;
1430
1431 /*
1432 * running the delayed items may have added new refs. account
1433 * them now so that they hinder processing of more delayed refs
1434 * as little as possible.
1435 */
1436 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1437
1438 /*
1439 * rename don't use btrfs_join_transaction, so, once we
1440 * set the transaction to blocked above, we aren't going
1441 * to get any new ordered operations. We can safely run
1442 * it here and no for sure that nothing new will be added
1443 * to the list
1444 */
1445 btrfs_run_ordered_operations(root, 1);
1446
1447 return 0;
1448 }
1449
1450 /*
1451 * btrfs_transaction state sequence:
1452 * in_commit = 0, blocked = 0 (initial)
1453 * in_commit = 1, blocked = 1
1454 * blocked = 0
1455 * commit_done = 1
1456 */
1457 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *root)
1459 {
1460 unsigned long joined = 0;
1461 struct btrfs_transaction *cur_trans = trans->transaction;
1462 struct btrfs_transaction *prev_trans = NULL;
1463 DEFINE_WAIT(wait);
1464 int ret;
1465 int should_grow = 0;
1466 unsigned long now = get_seconds();
1467
1468 ret = btrfs_run_ordered_operations(root, 0);
1469 if (ret) {
1470 btrfs_abort_transaction(trans, root, ret);
1471 goto cleanup_transaction;
1472 }
1473
1474 if (cur_trans->aborted) {
1475 ret = cur_trans->aborted;
1476 goto cleanup_transaction;
1477 }
1478
1479 /* make a pass through all the delayed refs we have so far
1480 * any runnings procs may add more while we are here
1481 */
1482 ret = btrfs_run_delayed_refs(trans, root, 0);
1483 if (ret)
1484 goto cleanup_transaction;
1485
1486 btrfs_trans_release_metadata(trans, root);
1487 trans->block_rsv = NULL;
1488
1489 cur_trans = trans->transaction;
1490
1491 /*
1492 * set the flushing flag so procs in this transaction have to
1493 * start sending their work down.
1494 */
1495 cur_trans->delayed_refs.flushing = 1;
1496
1497 if (!list_empty(&trans->new_bgs))
1498 btrfs_create_pending_block_groups(trans, root);
1499
1500 ret = btrfs_run_delayed_refs(trans, root, 0);
1501 if (ret)
1502 goto cleanup_transaction;
1503
1504 spin_lock(&cur_trans->commit_lock);
1505 if (cur_trans->in_commit) {
1506 spin_unlock(&cur_trans->commit_lock);
1507 atomic_inc(&cur_trans->use_count);
1508 ret = btrfs_end_transaction(trans, root);
1509
1510 wait_for_commit(root, cur_trans);
1511
1512 put_transaction(cur_trans);
1513
1514 return ret;
1515 }
1516
1517 trans->transaction->in_commit = 1;
1518 trans->transaction->blocked = 1;
1519 spin_unlock(&cur_trans->commit_lock);
1520 wake_up(&root->fs_info->transaction_blocked_wait);
1521
1522 spin_lock(&root->fs_info->trans_lock);
1523 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1524 prev_trans = list_entry(cur_trans->list.prev,
1525 struct btrfs_transaction, list);
1526 if (!prev_trans->commit_done) {
1527 atomic_inc(&prev_trans->use_count);
1528 spin_unlock(&root->fs_info->trans_lock);
1529
1530 wait_for_commit(root, prev_trans);
1531
1532 put_transaction(prev_trans);
1533 } else {
1534 spin_unlock(&root->fs_info->trans_lock);
1535 }
1536 } else {
1537 spin_unlock(&root->fs_info->trans_lock);
1538 }
1539
1540 if (!btrfs_test_opt(root, SSD) &&
1541 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1542 should_grow = 1;
1543
1544 do {
1545 joined = cur_trans->num_joined;
1546
1547 WARN_ON(cur_trans != trans->transaction);
1548
1549 ret = btrfs_flush_all_pending_stuffs(trans, root);
1550 if (ret)
1551 goto cleanup_transaction;
1552
1553 prepare_to_wait(&cur_trans->writer_wait, &wait,
1554 TASK_UNINTERRUPTIBLE);
1555
1556 if (atomic_read(&cur_trans->num_writers) > 1)
1557 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1558 else if (should_grow)
1559 schedule_timeout(1);
1560
1561 finish_wait(&cur_trans->writer_wait, &wait);
1562 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1563 (should_grow && cur_trans->num_joined != joined));
1564
1565 ret = btrfs_flush_all_pending_stuffs(trans, root);
1566 if (ret)
1567 goto cleanup_transaction;
1568
1569 /*
1570 * Ok now we need to make sure to block out any other joins while we
1571 * commit the transaction. We could have started a join before setting
1572 * no_join so make sure to wait for num_writers to == 1 again.
1573 */
1574 spin_lock(&root->fs_info->trans_lock);
1575 root->fs_info->trans_no_join = 1;
1576 spin_unlock(&root->fs_info->trans_lock);
1577 wait_event(cur_trans->writer_wait,
1578 atomic_read(&cur_trans->num_writers) == 1);
1579
1580 /*
1581 * the reloc mutex makes sure that we stop
1582 * the balancing code from coming in and moving
1583 * extents around in the middle of the commit
1584 */
1585 mutex_lock(&root->fs_info->reloc_mutex);
1586
1587 /*
1588 * We needn't worry about the delayed items because we will
1589 * deal with them in create_pending_snapshot(), which is the
1590 * core function of the snapshot creation.
1591 */
1592 ret = create_pending_snapshots(trans, root->fs_info);
1593 if (ret) {
1594 mutex_unlock(&root->fs_info->reloc_mutex);
1595 goto cleanup_transaction;
1596 }
1597
1598 /*
1599 * We insert the dir indexes of the snapshots and update the inode
1600 * of the snapshots' parents after the snapshot creation, so there
1601 * are some delayed items which are not dealt with. Now deal with
1602 * them.
1603 *
1604 * We needn't worry that this operation will corrupt the snapshots,
1605 * because all the tree which are snapshoted will be forced to COW
1606 * the nodes and leaves.
1607 */
1608 ret = btrfs_run_delayed_items(trans, root);
1609 if (ret) {
1610 mutex_unlock(&root->fs_info->reloc_mutex);
1611 goto cleanup_transaction;
1612 }
1613
1614 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1615 if (ret) {
1616 mutex_unlock(&root->fs_info->reloc_mutex);
1617 goto cleanup_transaction;
1618 }
1619
1620 /*
1621 * make sure none of the code above managed to slip in a
1622 * delayed item
1623 */
1624 btrfs_assert_delayed_root_empty(root);
1625
1626 WARN_ON(cur_trans != trans->transaction);
1627
1628 btrfs_scrub_pause(root);
1629 /* btrfs_commit_tree_roots is responsible for getting the
1630 * various roots consistent with each other. Every pointer
1631 * in the tree of tree roots has to point to the most up to date
1632 * root for every subvolume and other tree. So, we have to keep
1633 * the tree logging code from jumping in and changing any
1634 * of the trees.
1635 *
1636 * At this point in the commit, there can't be any tree-log
1637 * writers, but a little lower down we drop the trans mutex
1638 * and let new people in. By holding the tree_log_mutex
1639 * from now until after the super is written, we avoid races
1640 * with the tree-log code.
1641 */
1642 mutex_lock(&root->fs_info->tree_log_mutex);
1643
1644 ret = commit_fs_roots(trans, root);
1645 if (ret) {
1646 mutex_unlock(&root->fs_info->tree_log_mutex);
1647 mutex_unlock(&root->fs_info->reloc_mutex);
1648 goto cleanup_transaction;
1649 }
1650
1651 /* commit_fs_roots gets rid of all the tree log roots, it is now
1652 * safe to free the root of tree log roots
1653 */
1654 btrfs_free_log_root_tree(trans, root->fs_info);
1655
1656 ret = commit_cowonly_roots(trans, root);
1657 if (ret) {
1658 mutex_unlock(&root->fs_info->tree_log_mutex);
1659 mutex_unlock(&root->fs_info->reloc_mutex);
1660 goto cleanup_transaction;
1661 }
1662
1663 btrfs_prepare_extent_commit(trans, root);
1664
1665 cur_trans = root->fs_info->running_transaction;
1666
1667 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1668 root->fs_info->tree_root->node);
1669 switch_commit_root(root->fs_info->tree_root);
1670
1671 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1672 root->fs_info->chunk_root->node);
1673 switch_commit_root(root->fs_info->chunk_root);
1674
1675 assert_qgroups_uptodate(trans);
1676 update_super_roots(root);
1677
1678 if (!root->fs_info->log_root_recovering) {
1679 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1680 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1681 }
1682
1683 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1684 sizeof(*root->fs_info->super_copy));
1685
1686 trans->transaction->blocked = 0;
1687 spin_lock(&root->fs_info->trans_lock);
1688 root->fs_info->running_transaction = NULL;
1689 root->fs_info->trans_no_join = 0;
1690 spin_unlock(&root->fs_info->trans_lock);
1691 mutex_unlock(&root->fs_info->reloc_mutex);
1692
1693 wake_up(&root->fs_info->transaction_wait);
1694
1695 ret = btrfs_write_and_wait_transaction(trans, root);
1696 if (ret) {
1697 btrfs_error(root->fs_info, ret,
1698 "Error while writing out transaction.");
1699 mutex_unlock(&root->fs_info->tree_log_mutex);
1700 goto cleanup_transaction;
1701 }
1702
1703 ret = write_ctree_super(trans, root, 0);
1704 if (ret) {
1705 mutex_unlock(&root->fs_info->tree_log_mutex);
1706 goto cleanup_transaction;
1707 }
1708
1709 /*
1710 * the super is written, we can safely allow the tree-loggers
1711 * to go about their business
1712 */
1713 mutex_unlock(&root->fs_info->tree_log_mutex);
1714
1715 btrfs_finish_extent_commit(trans, root);
1716
1717 cur_trans->commit_done = 1;
1718
1719 root->fs_info->last_trans_committed = cur_trans->transid;
1720
1721 wake_up(&cur_trans->commit_wait);
1722
1723 spin_lock(&root->fs_info->trans_lock);
1724 list_del_init(&cur_trans->list);
1725 spin_unlock(&root->fs_info->trans_lock);
1726
1727 put_transaction(cur_trans);
1728 put_transaction(cur_trans);
1729
1730 if (trans->type < TRANS_JOIN_NOLOCK)
1731 sb_end_intwrite(root->fs_info->sb);
1732
1733 trace_btrfs_transaction_commit(root);
1734
1735 btrfs_scrub_continue(root);
1736
1737 if (current->journal_info == trans)
1738 current->journal_info = NULL;
1739
1740 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1741
1742 if (current != root->fs_info->transaction_kthread)
1743 btrfs_run_delayed_iputs(root);
1744
1745 return ret;
1746
1747 cleanup_transaction:
1748 btrfs_trans_release_metadata(trans, root);
1749 trans->block_rsv = NULL;
1750 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1751 // WARN_ON(1);
1752 if (current->journal_info == trans)
1753 current->journal_info = NULL;
1754 cleanup_transaction(trans, root, ret);
1755
1756 return ret;
1757 }
1758
1759 /*
1760 * interface function to delete all the snapshots we have scheduled for deletion
1761 */
1762 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1763 {
1764 LIST_HEAD(list);
1765 struct btrfs_fs_info *fs_info = root->fs_info;
1766
1767 spin_lock(&fs_info->trans_lock);
1768 list_splice_init(&fs_info->dead_roots, &list);
1769 spin_unlock(&fs_info->trans_lock);
1770
1771 while (!list_empty(&list)) {
1772 int ret;
1773
1774 root = list_entry(list.next, struct btrfs_root, root_list);
1775 list_del(&root->root_list);
1776
1777 btrfs_kill_all_delayed_nodes(root);
1778
1779 if (btrfs_header_backref_rev(root->node) <
1780 BTRFS_MIXED_BACKREF_REV)
1781 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1782 else
1783 ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1784 BUG_ON(ret < 0);
1785 }
1786 return 0;
1787 }
This page took 0.068381 seconds and 6 git commands to generate.